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Abstract
This paper presents CMP Cooperative Caching, a unified

framework to manage a CMP’s aggregate on-chip cache
resources. Cooperative caching combines the strengths
of private and shared cache organizations by forming
an aggregate “shared” cache through cooperation among
private caches. Locally active data are attracted to the
private caches by their accessing processors to reduce
remote on-chip references, while globally active data are
cooperatively identified and kept in the aggregate cache to
reduce off-chip accesses. Examples of cooperation include
cache-to-cache transfers of clean data, replication-aware
data replacement, and global replacement of inactive data.
These policies can be implemented by modifying an existing
cache replacement policy and cache coherence protocol, or
by the new implementation of a directory-based protocol
presented in this paper.

Our evaluation using full-system simulation shows that
cooperative caching achieves an off-chip miss rate similar
to that of a shared cache, and a local cache hit rate
similar to that of using private caches. Cooperative
caching performs robustly over a range of system/cache
sizes and memory latencies. For an 8-core CMP with 1MB
L2 cache per core, the best cooperative caching scheme
improves the performance of multithreaded commercial
workloads by 5-11% compared with a shared cache and
4-38% compared with private caches. For a 4-core
CMP running multiprogrammed SPEC2000 workloads,
cooperative caching is on average 11% and 6% faster than
shared and private cache organizations, respectively.

1 Introduction
Future chip multiprocessors (CMPs) will both require,

as well as enable, innovative designs of on-chip memory
hierarchies. The combination of a higher demand from
more processing cores (especially if the number of cores
increases at a faster rate than on-chip storage), the likely
scaling of the working set sizes of future workloads, and
the increasing costs of off-chip misses will place significant
demands on the organization of on-chip storage. This
storage will need to be organized to maximize the number
of requests that can be serviced on chip [14, 20, 26].
Increasing on-chip wire delays will create additional, and
perhaps conflicting, demands on how this storage should
be organized: on-chip data should be kept in storage that
is close to the processor(s) working on it to minimize the

access latency. This collection of potentially conflicting yet
very important demands call for novel organizations and
management of the on-chip storage, so that both goals can
be achieved simultaneously.

Proposals for the on-chip memory hierarchy of CMPs
have borrowed heavily from the memory hierarchies of
traditional multiprocessors. Here, each processor has
private L1 data and instruction caches, and the L2 caches
can either be shared or private. A shared L2 cache
organization is preferable if reducing the collective number
of L2 misses is important, whereas an organization with
private L2 caches is preferable if reducing the L2 access
latency and cache design complexity is important.

Most CMP proposals use the private L1 cache structures
of traditional multiprocessors, although the L1 cache may
not use inclusion [4]. The interesting question has to
do with the organization of on-chip L2 cache resources.
Proposed CMP designs [5, 19, 32] have emphasized
minimizing the number of off-chip accesses and thus have
used a banked, shared L2 cache organization. In such
designs, data are spread evenly across all banks and only
a fraction of references are typically satisfied by the banks
that are close to the requesting processor. Hence the average
L2 cache access latency is heavily influenced by the latency
of accessing remote cache banks, which in turn is influenced
by on-chip wire delays. While a shared cache may be a good
choice when on-chip wire delays are not significant, it can
rapidly become a poor choice when such delays increase.

Private L2 caches have the advantage that most L1
misses can be handled locally, so the number of remote on-
chip L2 cache accesses is reduced. This allows private L2
cache based designs to be more tolerant of increasing on-
chip wire latencies. However, due to inefficient use of the
aggregate L2 cache capacity, such designs typically result
in many more off-chip accesses than a shared L2 cache, and
thus they have not been favored by CMP cache designers.

Recently, there have been several proposals for hybrid
CMP cache designs that attempt to achieve the low access
latency advantages of private L2 caches and the low off-chip
miss rates of shared L2 caches [6, 8, 35]. These proposals
typically start out with a banked shared cache and attempt
to keep data that is likely to be accessed on an L1 miss (e.g.,
L1 cache victims) close to where it is being consumed, i.e.,
in the local L2 bank or other proximate L2 banks. Some
proposals further use both data migration and replication to
optimize important sharing patterns [6, 8], but they require
significant hardware changes and do not allow adaptive
control of such optimizations.



We believe that on-chip cache hierarchies with private
L2 caches deserve fresh thought. In addition to their
latency benefits, private L2 cache designs have several
other potential benefits that are likely to be of increasing
importance for future CMPs. These include: (1)
private cache based designs lend themselves to easier
implementation of performance isolation [18, 33], priority
and QoS [16, 34], which traditionally have been assumed
or needed by applications and operating systems; (2)
compared with a shared cache whose directory information
is stored with cache tags and distributed across all banks,
a private cache is more self-contained and thus serves
as a natural unit for resource management (e.g., power
off to save energy); (3) instead of building a highly-
associative shared cache to avoid inter-thread contention,
the same set-associativity is available for an aggregate cache
formed by the private caches, each with much lower set-
associativity, thus reducing power, complexity and latency
overhead; (4) the bandwidth requirement of the cross-
chip interconnection network is generally much lower with
private L2 caches, and this leads to a simpler and potentially
higher performing network. But partaking of these potential
advantages first requires a solution to the major, and
predominant, drawback of private L2 cache designs: the
larger number of off-chip cache misses compared to shared
L2 cache designs.

This paper presents CMP Cooperative Caching (CC), a
proposal for organizing the on-chip hierarchy to achieve the
benefits of both private and shared cache designs. Using
private L2 caches as the basic design point, cooperative
caching manages the aggregate on-chip L2 cache resources
so that they cooperate to overcome the inefficient use of
resources and associated limitations of traditional private
L2 cache designs. Cooperative caching uses a collection
of mechanisms that attempt to keep data in the aggregate
on-chip L2 cache resources as much as possible, thereby
achieving much of the capacity benefits of equivalent-sized
shared L2 cache designs. For example, one mechanism
used by cooperative caching is to put a locally evicted
block in another on-chip L2 cache that may have spare
capacity, rather than evict it from the on-chip hierarchy
entirely. We demonstrate that using private L2 caches
to form a cooperatively managed aggregate L2 cache can
achieve the latency benefits of private L2 caches and the
capacity benefits of shared L2 caches, for a range of CMP
configurations.

The rest of the paper is organized as follows. In
section 2 we explain the cooperative caching idea and
different cooperation policies that private caches can use to
achieve the capacity advantages of a shared cache. Section 3
discusses possible implementations of cooperative caching,
including a central directory-based design. Section 4 covers
our performance evaluation using full-system simulation
with an out-of-order processor model. Related work is
discussed in Section 5 and we conclude in Section 6.

2 CMP Cooperative Caching
2.1 Background

The basic concept of CMP cooperative caching is
inspired by software cooperative caching algorithms [9],
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Figure 1. Cooperative Caching (The shaded area
represents the aggregate shared cache formed via
cooperation.)

which have been proposed and shown to be effective in the
context of file and web caching [9,10]. Although physically
separate, individual file/web caches cooperatively share
each other’s space to meet their dynamic capacity
requirements, thus reducing the traffic to the remote servers.
In a similar vein, CMP cooperative caching tries to create
a globally-managed, “shared,” aggregate on-chip cache via
the cooperation of the different on-chip caches, so that the
aggregate cache resources can better adapt to the dynamic
caching demands of different applications. To simplify the
discussion in this paper, we will assume a CMP memory
hierarchy with private L1 instruction and data caches for
each processing core and banks of L2 caches. The ideas of
cooperative caching are equally applicable if there are more
levels of caches on the chip.

Figure 1 depicts the cooperative caching concept for
a CMP with four cores. Each core’s local L2 caches
are physically close to it, and privately owned such that
only the processor itself can directly access them. Local
L2 cache misses can possibly be served by remote on-
chip caches via cache-to-cache transfers as in a traditional
cache coherence protocol. Cooperative caching will further
attempt to make the ensemble of private L2 caches (the
shaded area in Figure 1) appear like a collective shared
cache via cooperative actions. For example, cooperative
caching will attempt to use remote L2 caches to hold (and
thus serve) data that would generally not fit in the local L2
cache, if there is spare space available in a remote L2 cache.

Cache cooperation, for example to share the aggregate
cache capacity, is a new hardware caching opportunity
afforded by CMPs. As we shall see, cooperation between
caches will require the exchange of information and data
between different caches, under the control of a cache
coherence engine. Such an exchange of information and
data, over and above a basic cache coherence protocol, was
not considered practical, or fruitful, in multiprocessors built
with multiple chips. For example, for a variety of reasons,
when a data block is evicted from the L2 cache of one
processor, it would not be placed in the L2 cache of another
processor. The complexity of determining which L2 cache
to place the evicted block into, and transferring the block to
its new L2 cache home, would be significant. Moreover, this
additional complexity would provide little benefit, since the
latency of getting a block from memory would typically be
lower than getting it from another L2 cache. The situation
for CMP on-chip caches is very different: the transfer of
information and data between on-chip L2 caches can be
done relatively easily and efficiently, and the cost of an



off-chip miss is significant. This situation is analogous to
web caches: the cost of communicating information and
data among web caches, so as to reduce the total number
of misses, is typically much lower than the cost of servicing
the misses from the remote server.

2.2 Cooperative Caching Framework
We view cooperative caching as a unified framework

for organizing the on-chip cache resources of a CMP.
Two major applications for CC immediately come to
mind: (1) optimizing the average latency of a memory
request so as to improve performance, and (2) achieving a
balance between dynamic sharing of cache resources and
performance isolation, so as to achieve better performance
and quality of service in a throughput-oriented environment.
We focus on the first application in this paper and leave
the second one for future work, though some aspects of the
second will appear in the evaluation.

Cooperative caching tries to optimize the average latency
of a memory request by combining the strengths of
private and shared caches adaptively. This is achieved in
three ways: (1) by using private caches as the baseline
organization, it attracts data locally to reduce remote on-
chip accesses, thus lowering the average on-chip memory
latency; (2) via cooperation among private caches, it can
form an aggregate cache having similar effective capacity
to a shared cache, to reduce costly off-chip misses; (3)
by controlling the amount of cooperation, it can provide a
spectrum of choices between the two extremes of private
and shared caches, to better suit the dynamic workload
behavior.

2.3 Policies to Reduce Off-chip Accesses
The baseline organization of private L2 caches allows

for low latency access to data that can be contained in a
processing core’s private L2 cache. We now consider how
the multiple L2 caches can cooperate to allow better use
of aggregate on-chip cache resources and thereby reduce
the number of off-chip accesses. We present three policies
for cooperation. The first policy facilitates cache-to-cache
transfers of on-chip “clean” blocks to eliminate unnecessary
off-chip accesses to data that already reside elsewhere on
the chip. The second policy replaces replicated data blocks
to make room for unique on-chip copies (called singlets),
thereby making better use of the on-chip cache resources.
The third policy allows singlet blocks evicted from a local
L2 cache to be placed in another L2 cache, possibly taking
the cache slot of an inactive data block, thereby keeping
potentially more useful data on the chip.
2.3.1 Cache-to-cache Transfers of Clean Data

In a hierarchy with private L2 caches, a memory access
can be avoided on an L2 cache miss if the data can
be obtained from another cache. Such inter-cache data
sharing (via cache-to-cache transfers) can be viewed as
a simple form of cooperation, usually implemented by
the cache coherence protocol to ensure correct operation.
Except for a few protocols that have the notion of a
“clean owner,”1 modern multiprocessors employ variants of

1For example, the Illinois protocol [28], the EDWP protocol [2], and
Token Coherence [23].

invalidate-based coherence protocols that only allow cache-
to-cache transfers of “dirty” data (meaning that the data
was written but has not been stored back to the lower level
storage). If there is a miss on a block that only has clean
copies in other caches, the lower-level storage (usually the
main memory) has to respond with the block, even though
it is unnecessary for correct operation and can be more
expensive than a cache-to-cache transfer in a CMP.

There are two main reasons why coherence protocols
employed by traditional multiprocessors do not support
such sharing of clean copies. First, cache-to-cache transfer
requires one and only one cache to respond to the miss
request to ensure correctness, however maintaining a unique
clean owner is not as straightforward as maintaining a
dirty owner. Second, in traditional multiprocessors, off-
chip communication is required whether sourcing the clean
copy from another cache or from the main memory, but the
latency savings of the first option is often not big enough to
justify the complexity it adds to the coherence protocol. In
fact, in many cases obtaining the data from memory can be
faster than obtaining it from another cache.

However, CMPs have made off-chip accesses
significantly more costly than on-chip cache-to-cache
transfers; currently there is an order of magnitude difference
in the latencies of the two operations. Furthermore, a high
percentage of misses in commercial workloads can be
satisfied by cache-to-cache transfers of clean data, due
to frequent misses to (mostly) read-only data (especially
instructions). These factors make it more appealing to let
caches share clean data.2 Our simulation results show that
for commercial workloads, sharing clean data can reduce
10-50% of off-chip misses, with only a slight increase in
traffic in the network connecting the on-chip caches.
2.3.2 Replication-aware Data Replacement

The baseline private L2 caches employed by cooperative
caching allow replication of the same data block in
multiple on-chip caches. When cache capacity exceeds
the program’s working set size, replication reduces cache
access latency because more requests can be satisfied
by replicated local copies. However, when cache size
is dwarfed by the working set size, replicate blocks
will compete for the limited capacity with unique
copies. Cooperative caching uses replication-aware data
replacement to optimize capacity by discriminating against
replicated blocks in the replacement process. This policy
aims to increase the number of on-chip unique blocks, thus
improving the probability of finding a given block in the
aggregate on-chip cache.

We define a cache block in a valid coherence state as
a singlet if it is the only on-chip copy, otherwise it is a
replicate because replications exist. Cooperative caching
employs a simple policy to trade off between access latency
and capacity: evict singlets only when no replicates are
available as victims. The private cache’s replacement policy
is augmented to prefer evicting replicates. If all the blocks

2For example, IBM Power4 systems [32] add two states (SL and T) to
their MESI-based coherence protocol to partially support cache-to-cache
transfers of clean data, but don’t select follow-up owners when the initial
owner replaces the block.



in the private cache’s candidate set are singlets, a victim is
chosen by the default cache replacement policy (e.g., LRU).

A singlet block evicted from a cache can be further
“spilled” into another cache on the chip. Using the
aformentioned replacement policy, both invalidated and
replicate blocks in the receiving cache are replaced first,
again reducing the amount of replication. By giving priority
to singlets, all private caches cooperate to evict blocks
with other on-chip copies, and replace them with unique
data blocks that may be used later by other caches. This
increases the number of unique on-chip cache lines, and
thus reduces the number of off-chip accesses.

Many options exist to choose the host cache for spilling;
we randomly choose a host but give higher probabilities to
close neighbors. This random algorithm needs no global
coordination, and allows one cache’s victims to reach all
other on-chip caches without requiring rippled spilling.
Keeping spilled singlets close to their evicting caches can
reduce the spilling time and access latency for later reuse.

2.3.3 Global Replacement of Inactive Data
Spilling a victim into a peer cache both allows and

requires global management of all private caches. The
aggregate cache’s effective associativity now equals the
aggregate associativity of all caches. For example, 8 private
L2 caches with 4-way associativity effectively offers 32-
way set associativity for cooperative caching to exploit.

Similar to replication-aware data replacement, we
want to cooperatively identify singlet but inactive blocks,
and keep globally active data on-chip. This is
especially important for multiprogrammed workloads with
heterogeneous access patterns. Because these applications
do not share data and have little operating system activity,
almost all cached blocks are singlets after the initial warmup
stage. However, one program with poor temporal locality
may touch many blocks which soon become inactive (or
dead), while another program with good temporal locality
will have to make do with the remaining cache space,
frequently evicting active data and incurring misses.

Implementing a global-LRU policy for cooperative
caching would be beneficial but is difficult because all
the private caches’ local LRU information has to be
synchronized and communicated globally. Practical global
replacement policies have been proposed to approximate
global age information by using reuse counters [29] or
epoch-based software probabilistic algorithms [11]. In this
paper we modify N-Chance Forwarding [9], a simple and
fast algorithm from cooperative file caching research, to
achieve global replacement.

N-Chance Forwarding was originally designed with two
goals: it tries to avoid discarding singlets, and it tries
to dynamically adjust each program’s share of aggregate
cache capacity depending on its activity. Each block has
a recirculation count. When a private cache selects a singlet
victim, it sets the block’s recirculation count to N, and
forwards it to a random peer cache to host the block. The
host cache receives the data, adds it to the top of its LRU
stack (for the chosen set) and evicts the least active block in
its local cache. If a recirculating block is later evicted, its
count is decremented and it is forwarded again unless the

count becomes zero. If the block is reused, its recirculation
count is reset to 0. To avoid a ripple effect where a spilled
block causes a second spill and so on, receiving a spilled
block is not allowed to trigger a subsequent spill.

The parameter N was set to 2 in the original proposal [9].
A larger N gives singlets more opportunities to recirculate
through different private caches, and hence makes it more
likely to replace a non-singlet without being reused before
its eviction from the aggregate cache. CMP cooperative
caching sets N to 1, as replication control is already
employed. We call the modified policy 1-Fwd.

1-Fwd dynamically balances each private cache’s
allocation between local data accessed by its own processor
and global data stored to improve the aggregate cache
usage. The active processors’ local references will quickly
force global data out of their caches, while inactive
processors will accumulate global data in their caches for
the benefit of other processors. This way, both capacity
sharing and global age-based replacement are achieved.

2.4 Cooperation Throttling
Because cooperative caching uses the cache

replacement/placement policy as the unified technique to
control replication and achieve global cache management,
it offers a single control point for cooperation throttling
which allows it to adapt to a spectrum of sharing behaviors.
A cooperation probability can be consulted upon cache
replacement, to decide how often to use replication-aware
data replacement instead of the baseline replacement
policy, and a spill probability can decide whether to spill
a singlet victim or not. If both probabilities are set to
zero, cooperative caching defaults to private caches (albeit
with support for cache-to-cache transfer of clean data). Its
behavior moves towards an unconstrained shared cache as
the probabilities increase.

2.5 Role of L1 caches and Inclusion
A discussion of the interactions between the L1 and L2

caches in cooperative caching is in order. Cache hierarchies
with private L2 caches often employ inclusion, since this
simplifies the implementation of the coherence protocol,
especially in traditional multiprocessors. Maintaining
inclusion implies that a block is invalidated in an L1 cache
when it is evicted from or invalidated in the companion L2
cache, i.e., the L1 cache can only maintain a copy of data in
the companion L2 cache. Because cooperative caching’s
objective is to create a global shared L2 cache from the
individual private L2 caches, an arbitrary L1 cache needs
to be able to cache any block from the aggregate L2 cache,
and not only a block from the companion L2 cache bank.
Maintaining inclusion in the traditional sense (i.e., between
an L1 cache and its associated L2 cache) unnecessarily
restricts this ability. Thus, for cooperative caching to be
effective, inclusion is maintained between L1 caches and
the aggregation of all L2 banks, while each L1 cache can be
non-inclusive with respect to its associated L2 bank.

2.6 Summary
Cooperative caching uses private caches to form a

globally managed aggregate cache via three optimizations:



(1) making use of on-chip clean data; (2) replication-aware
data replacement; and (3) global replacement of inactive
data. Through cooperative cache replacement and spilling-
based victim placement, the three optimizations are unified
and can be integrated with any existing cache replacement
policy and coherence protocol.

Using these optimizations, cooperative caching can
reduce the number of off-chip accesses and their
contribution to the average access latency. Although these
optimizations also cause more L1 cache misses to be
satisfied by remote on-chip caches, a private L2 cache’s
reference stream will also keep frequently used data in it to
maintain a high local cache hit ratio. The general net effect
of using private caches and cooperative optimizations is
higher performance than can be achieved with either shared
or private cache organization.

3 Hardware Implementation
In this section we present our hardware implementation

of cooperative caching functions by exploiting a CMP’s
high-bandwidth, low-latency on-chip communication and
flexible on-chip topology. The requirements for cooperative
caching are described in Section 2 and summarized below.

• The cooperative private caches need to maintain
cooperation related hints for replacement, including
whether a cache block is a singlet and the reuse status
of a spilled block (required by our 1-Fwd policy).

• The coherence protocol needs to support cache-to-
cache transfers of clean blocks, and spilling, a form
of data migration among private caches for capacity
sharing.

We believe that these requirements can be met by
modifying various existing implementations. The private
caches can add two bits to each tag, indicating whether the
block was once spilled but has not been reused (for 1-Fwd)
and whether the block is a singlet (for replication-aware
data replacement). The singlet bit can be maintained by
private caches by either observing other caches’ fetch and
eviction activities via a snooping protocol, or by receiving
notification from a directory when duplication is removed.
Because these bits are only used for victim selection, having
no correctness implication, they can be imprecise.

On the protocol side, a clean owner can be selected
by a snooping protocol through arbitration, or by a
directory protocol by maintaining exact presence vector
information. Spilling can be implemented in either a
“push” or “pull” strategy. In a pull-based implementation, a
victim is buffered locally while the evicting cache notifies a
randomly chosen host cache to fetch the block. The host
cache then pulls the block by issuing a special prefetch
request, which migrates the block using a conventional
cache coherence protocol. A push-based implementation
involves sending the block from the evicting cache to the
host cache, which may be split into two data transfers if a
directory is involved. To handle race conditions, the host
cache needs to acknowledge the sender to finish the spilling
process.
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Figure 2. Private Caches with a Central Directory

Challenges remain to support cooperative caching with
reduced latency and space overhead. A snooping protocol
incurs bus arbitration overhead on every local L2 miss,
which may degrade performance for workloads with low
local L2 hit ratios. A directory protocol can reduce such
overhead, using a directory lookup instead of waiting for
responses from all caches, but requires an implementation
that only provides state information for on-chip blocks in
order to avoid the prohibitive amount of storage needed to
provide directory information for all memory blocks.

3.1 Private Caches with a Central Directory
Our proposed implementation of cooperative caching

uses a specialized, on-chip, central directory to answer
these challenges. This implementation is based on a MOSI
directory protocol to maintain cache coherence, but differs
from a traditional directory-based system in several ways:
(1) the directory memory for private caches is efficiently
implemented by duplicating the tag structures (not the exact
tag content) of all private caches; (2) the directory is
centralized to serve as the serializing point for coherence
and provide fast access to all caches; (3) the directory is
connected to individual cores using a special point-to-point
ordered network, separate from the network connecting
peer caches for data transfers. It should be noted that this
design can be used for other CMP systems while CMP
cooperative caching can also be implemented in various
other ways.

Figure 2 illustrates the major on-chip structures for
a 4-core CMP. The Central Coherence Engine (CCE)
embodies the directory memory and coherence engine, and
its proximity to all caches can reduce the network latency.
As the number of cores increases for future CMPs, the CCE
will become a performance bottleneck. We limit the number
of cores managed by a CCE (e.g., 4 or 8), and believe that
CCE-managed small-scale clusters of cores can be used as
building blocks for large-scale CMPs. However the design
and evaluation of such cluster-based, hierarchical CMPs are
not covered in this paper.

3.2 Central Coherence Engine (CCE)
The internal structure of the CCE is shown in Figure 3,

with its directory memory organization illustrated. Similar
to the remote cache shadow directory used in [25], the
CCE’s directory memory is organized as a duplication of all
private caches’ tag arrays. Figure 3 shows the directory for
an 8-core CMP, each core having 2-way associative L1 I/D
split caches and a 4-way associative L2 cache. The tags are
indexed in exactly the same way as in an individual core.
Each tag entry consists of the tag bits and state bits. In
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Figure 3. CCE and Directory Memory Structure (8-
core CMP with 4-way associative L2 caches)

our implementation, the directory memory is multi-banked
using low-order tag bits to provide high throughput.

A directory lookup will be directed to the corresponding
bank, to search the related cache sets in all the duplicated
tag arrays in parallel. The results from all tag arrays are
gathered to form a state/presence vector as in a conventional
directory implementation. The latency of a directory lookup
is expected to be almost the same as a private L2 cache
tag lookup, since the gather step should only marginally
increase the latency.

Because cooperative caching requires the L1 caches to
be non-inclusive with the local L2 caches, the CCE has
to duplicate the tags for all cache levels. The tags are
updated by the protocol engine to reflect what blocks are
stored in each core’s private caches, and what their states
are. However, the CCE does not have to know whether a
block resides in a processor’s L1 or L2 cache because we
want to be able to move the block between different cache
levels without notifying the CCE. In essence, the CCE is
concerned with knowing whether a processor’s private (L1
and L2) caches have a block, but not the precise location of
the block.

Table 1 lists the storage overhead for an 8-core CMP
with a 4-way associative 1MB per-core L2 cache, assuming
a system with 4 Terabytes of total physical memory and a
128-byte block size. The total capacity of extra bits in cache
blocks, duplicate tag arrays and spilling buffers is 216KB,
increasing the on-chip cache capacity by 2.3% (or 4.6% for
a 64-byte block size). This ratio is similar to Piranha [5]
and lower than CMP-NuRapid [8]. We do not model the
area of the separate point-to-point network as it requires the
consideration of many physical constraints, which is not
the focus of this paper. However, we believe it should be
comparable to that of existing CMP’s on-chip networks.

Besides maintaining cache coherence, the CCE also
needs to support cooperation-related on-chip data transfers
and provide singlet information for the private caches. The
implementation of these functions is discussed below.

3.2.1 Sharing of Clean Data
To support on-chip cache-to-cache transfers of clean

data, the CCE needs to select a clean owner for a miss
request. By searching the CCE directory memory, the CCE
can simply choose any cache with a clean copy as the owner
and forward the request to it, which will in turn forward its
clean block to the requester. This implementation requires
no extra coherence state or arbitration among the private
caches. On the other hand, CCE directory state has to be
updated when evicting a clean copy. This requirement is

Table 1. Storage Overhead
Component Location Size (KB)

Cache tag duplication Directory 192
Singlet/reuse bits Caches 16

Spilling buffers CCE 8
Total 216

met by extending the baseline cache coherence protocol
with a “PUTS” (or PUT-Shared) transaction, which notifies
the CCE about the replacement of a clean data block. On
receiving such a request, the CCE updates its directory state.
3.2.2 Spilling

In the current implementation, private caches and the
CCE cooperate to implement push-based spilling, which
consists of two data transfers. The first transfer is a
normal write back initiated by the private cache, sending
the block to the CCE, which temporarily buffers the data
and acknowledges the sender. The second transfer ships the
block from the CCE to a randomly chosen host cache. The
cache that receives the spilled block will then acknowledge
the directory to release the buffer.
3.2.3 Communicating Singlet Information

When the CCE receives a write back message, or a PUTS
message which indicates the eviction of a clean block,
it checks the presence vector to see if this action leaves
only one copy of the block on-chip. If so, an advisory
notification will be sent to the cache holding the last copy
of the block, which can set the block’s singlet bit to 1.

4 Performance Evaluation
We now present an evaluation of cooperative caching

for a variety of different scenarios. We compare the
effectiveness of cooperative caching to the private and
shared cache schemes and also compare against victim
replication [35].

4.1 Methodology
We use a Simics-based [21] full-system execution-driven

simulator. The cache simulator is a modified version
of Ruby from the GEMS toolset [22]. The processor
module ms2sim is a timing-directed functional simulator
that models modern out-of-order superscalar processors
using Simics Microarchitecture Interface (MAI). Table 2
lists the relevant configuration parameters used in our
simulations.

Table 2. Processor and Cache/Memory Parameters
Component Parameters

Processor pipeline 4-wide, 10-stages
Window/scheduler 128 / 64 entries
Branch predictors 12K YAGS + 64-entry RAS

Block size 128 bytes
L1 I/D caches 32KB, 2-way, 2-cycle

L2 caches/banks Sequential tag/data access, 15-cycle
On-chip network Point-to-point, 5-cycle per-hop

Main Memory 300 cycles total



Table 5. Multithreaded Workload Miss Rate and L1 Miss Breakdown
Thousand misses per transaction L1 Misses breakdown (Private / Shared / CC)
Off-chip (Private / Shared / CC) Local L2 Remote L2 Off-chip

OLTP 9.75 / 3.10 / 3.80 90% / 15% / 86% 7% / 84% / 13% 3% / 1% / 1%
Apache 1.60 / 0.90 / 0.94 65% / 9% / 51% 15% / 77% / 36% 20% / 14% / 13%

JBB 0.13 / 0.08 / 0.10 72% / 10% / 57% 14% / 80% / 32% 14% / 10% / 11%
Zeus 0.71 / 0.46 / 0.49 67% / 9% / 45% 15% / 78% / 41% 19% / 12% / 13%

Table 3. Workloads
Multiprogrammed (4-core)

Name Benchmarks
Mix1 apsi, art, equake, mesa
Mix2 ammp, mesa, swim, vortex
Mix3 apsi, gzip, mcf, mesa
Mix4 ammp, gzip, vortex, wupwise
Rate1 4 copies of twolf, WS larger than 1MB
Rate2 4 copies of art, WS smaller than 1MB

Multithreaded (8-core)
Name (#trs) Setup
OLTP (400) IBM DB2 EEE v7.2, 25K warehouses, 128 users
Apache (2500) 20000 files, 3200 clients, 25ms think time
JBB (12000) Sun HotSpot 1.4.0, 1.5 warehouses per-core
Zeus (2500) Similar to Apache except being event-driven

Table 4. Network and Cache Configurations
4-core, 4MB total L2 capacity

Network L2 assoc. Worst-case latency
Private 2X2 mesh 4-way 50-cycle
Shared 2X2 mesh 16-way 40-cycle

8-core, 8MB total L2 capacity
Network L2 assoc. Worst-case latency

Private 3X3 mesh 4-way 70-cycle
Shared 4X2 mesh 32-way 60-cycle

For benchmarks, we use a mixture of multithreaded
commercial workloads and multiprogrammed SPEC2000
workloads. The commercial multithreaded benchmarks
include OLTP (TPC-C), Apache (static web content
serving using the open source Apache server), JBB (a
Java server benchmark) and Zeus (another static web
benchmark running the commercial Zeus server) [1].
Multiprogrammed workloads are combinations of
heterogeneous and homogeneous SPEC CPU2000
benchmarks. We use the same set of heterogeneous
workloads as [8] for their representative behavior, and
include two homogeneous workloads with different
working set sizes to explore extreme cases. Table 3
provides more information on the workload selection and
configuration. The commercial workloads are simulated
with an 8-core CMP, while the multiprogrammed workloads
use a 4-core CMP, as we believe the scale of CMP systems
may be different for servers vs. desktops.

Our default configuration associates each core with a
1MB 4-way associative unified L2 cache. Inclusion is not
maintained between L1/L2 caches for cooperative caching
(thus the baseline private caches) for the reasons described
in section 2.5. For the shared cache scheme, private L1

caches are inclusive with the shared L2 cache to simplify the
protocol design. Throughout our evaluation, we compare
private L2 caches with a shared L2 cache having the same
aggregate associativity and total capacity. We classify L2
hits for a shared cache into local and remote L2 hits,
meaning hits into a processor’s local and remote L2 banks,
respectively. Unless noted otherwise, all caches use LRU
for replacement.

Mesh networks are used for intra-chip data transfers,
modeling non-uniform hit latencies for the shared cache.
We model on-chip network and cache latencies similar
to those in [35], but model a 12-FO4 processor cycle
as compared to a 24-FO4 cycle delay to reflect a high-
frequency design. Cooperative caching and private caches
communicate with the CCE using point-to-point links
having one-hop latency, adding 10 cycles of extra latency
for local L2 misses (including one extra network hop and
directory access latencies). Network and CCE contention
are both modeled. Table 4 provides more details on network
and cache configurations.

4.2 Multithreaded Workload Results
Instead of reporting IPC and misses per instruction, we

measure the performance of commercial workloads using
a work-related throughput metric [1] and run multiple
simulations with random perturbation to compensate for
workload variability. The number of transactions simulated
for each benchmark is reported in Table 3. Table 5 shows
the off-chip miss rates and L1 miss breakdowns and helps to
explain the performance advantage of cooperative caching.
For each benchmark, we report the off-chip miss rate in
terms of thousand misses per transaction (column 2), and
break down L1 misses into local and remote L2 hits as
well as off-chip accesses (columns 3-5). An ideal caching
scheme should have an off-chip miss rate as low as the
shared cache, and local L2 hit ratio as high as the private
scheme. Cooperative caching has much lower off-chip miss
rates (within 4-25% of a shared cache) than the baseline
private caches, and 5-6 times higher local L2 hit ratios than
the shared cache. These characteristics suggest cooperative
caching will likely perform better than both private and
shared cache schemes unless off-chip miss rates are very
low (favoring private caches) or memory latencies are
extremely long (favoring a shared cache).

Figure 4 compares the performance of private, shared
and cooperative caching schemes, as transaction throughput
normalized to the shared cache. Four cooperative caching
schemes are included for each benchmark: from left to
right they use system-wide cooperation/spill probabilities
of 0%, 30%, 70% and 100% respectively. Currently we set
the spill and cooperation probabilities equal to each other.
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Figure 4. Multithreaded Workload Performance
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Figure 5. Multithreaded Workload Average Memory
Access Latency (from left to right in each group: Private
(P), Shared (S), CC 0% (0), CC 30% (3), CC 70% (7) and
CC 100% (C))

As discussed in Section 2.4, this probability is used by L2
caches to decide how often to apply replication-aware data
replacement and spilling of singlet victims. The default
cooperative caching scheme uses a 100% cooperation
probability, to optimize capacity by having no cooperation
throttling. We choose only four different probabilities as
representative points along the sharing spectrum, although
cooperative caching can support finer-grained throttling by
simply varying the cooperation probability.

For our commercial workloads, the default cooperative
caching scheme (“CC 100%”) always performs better than
the private and shared caches. The best performing
cooperation probability varies with the different
benchmarks, which boosts the throughput to be 5-
11% better than a shared cache and 4-38% better than with
private caches. An ideal shared cache scheme is included to
model a shared cache with the same uniform access latency
as a local bank (15-cycle). Cooperative caching achieves
over half of the performance benefit of an ideal shared
cache for all benchmarks.

The average memory access latencies (normalized to
the shared cache) for different schemes are shown in
Figure 5. In each case we break down the access
latency into cycles spent in L1 hits, local and remote
L2 hits and off-chip accesses. We calculate the average
latency by assuming no overlap between memory accesses.
Comparing Figures 4 and 5, we see that lower access
latency does not necessarily result in better performance.
For example, in the case of OLTP, private caches have
a relatively lower access latency but effectively the same
performance as a shared cache. This is because off-chip
accesses have a much smaller contribution to the average
latency for shared caches than they do for private caches,
whereas the contribution of on-chip accesses is much larger.
An out-of-order processor can tolerate some of the on-chip
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Figure 6. Multithreaded Workload Bandwidth (“#”
indicates the best performing CC scheme)

latencies, even to remote L2 cache banks, but can do little
for off-chip latencies. For Apache and Zeus, whose off-
chip accesses consist of over 50% of the total memory
cycles, on-chip caches play an important role in reducing
the number of off-chip accesses and thereby improving
performance.

Figure 6 presents the relative amount of network traffic
(normalized to the bandwidth consumption generated with a
shared cache) to accomplish the same amount of work (e.g.,
an OLTP transaction) for the different caching schemes.
Cooperative caching consumes bandwidth to “recirculate”
data, but filters traffic by satisfying L1 misses from the local
L2 caches. Although unthrottled cooperative caching can
sometimes generate more traffic than a shared cache, the
best performing cooperative caching schemes’ bandwidth
requirements are lower by more than 50%.

4.3 Multiprogrammed Workload Results

In this section, we analyze cooperative caching’s
performance for multiprogrammed workloads. We compare
performance using the aggregate IPCs from 1 billion cycles
of simulation. No cooperation throttling is used because a
single system-wide cooperation probability is not sufficient
to accomodate the heterogeneity across benchmarks, and
we plan to study adaptation mechanisms for heterogeneous
workloads in the future.

Multiprogrammed SPEC2000 workloads differ from
commercial multithreaded workloads in several ways: (1)
no replication control is needed for private caches as little
sharing exists among threads; (2) consequently most L1
cache misses in the private cache scheme are satisfied by
the local L2 cache, which often leads to reduced average
on-chip cache latency and better performance than a shared
cache; (3) the aggregate on-chip cache resources still need
to be managed globally to allow dynamic capacity sharing
among programs with different working set sizes. We
expect cooperative caching to retain the advantages of
private caches and reduce the number of off-chip misses via
cooperation.

Table 6 lists the off-chip miss rates and L1 miss
breakdowns for private, shared and cooperative caching
schemes. As with multithreaded workloads, cooperative
caching can effectively reduce the amount of both off-chip
(shown by the low miss rates in column 2) and cross-chip
references (demonstrated by the high local L2 hit ratios in
column 3). The off-chip miss rates are only 0-33% higher
than a shared cache, and the local L2 hit ratios are close to



Table 6. Multiprogrammed Workload Miss Rate and L1 Miss Breakdown
Misses per thousand instructions L1 Misses breakdown (Private / Shared / CC)
Off-chip (Private / Shared / CC) Local L2 Remote L2 Off-chip

Mix1 3.1 / 2.0 / 2.4 78% / 19% / 67% 3% / 73% / 22% 19% / 9% / 11%
Mix2 3.0 / 1.6 / 1.8 64% / 35% / 75% 4% / 55% / 14% 32% / 9% / 11%
Mix3 1.2 / 0.7 / 0.8 91% / 20% / 87% 1% / 77% / 9% 7% / 3% / 4%
Mix4 0.6 / 0.3 / 0.3 95% / 12% / 90% 0% / 86% / 8% 4% / 2% / 2%
Rate1 0.8 / 0.6 / 0.8 90% / 20% / 80% 3% / 76% / 13% 7% / 4% / 6%
Rate2 53 / 51 / 41 31% / 7% / 24% 11% / 47% / 34% 58% / 46% / 42%
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Figure 7. Multiprogrammed Workload Performance
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Figure 8. Multiprogrammed Workload Average
Memory Access Latency (from left to right in each group:
Private, Shared, and cooperative caching)

those using private caches.3
Notice the high off-chip miss rates of Rate2 (over 40

misses per thousand instructions) are caused by running
four copies of art, whose working set exceeds 1MB
(which is one processor’s fair share of the total L2 capacity).
Surprisingly, a shared cache has an off-chip miss rate
similar to private caches due to inter-thread contention,
which indicates the importance of achieving performance
isolation. Cooperative caching has 20% fewer misses
because it allows more stable dynamic capacity sharing
through replacement-based global cache management (as
compared to a shared cache’s request-driven management).
Further investigation of cooperative caching’s performance
isolation features will be the topic of another paper.

The aggregate IPCs for the different schemes,
normalized to the shared cache scheme, are shown in
Figure 7. Cooperative caching outperforms the private
scheme by an average of 6% and the shared caches by
10%. For Rate2, cooperative caching performs better
than the ideal shared scheme because it has lower miss
rate than a shared cache. Figure 8 shows the average
memory access latency, assuming no overlap between
accesses. It illustrates that private caches run faster than

3For Mix2, cooperative caching’s local L2 hit ratio is higher than
the private scheme because one of the benchmarks (ammp) experiences
much fewer off-chip misses thus progresses faster and reaches a different
computation phase during the simulation.
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Figure 9. Multiprogrammed Workload Bandwidth

a shared cache for Mix1, Mix3 and Mix4 by reducing
cross-chip references, while a shared cache improves
Mix2’s performance by having many fewer off-chip
misses. Cooperative caching combines their strengths and
outperforms both for all heterogeneous workloads. For
homogeneous workloads, Rate1 consists of four copies
of twolf, whose working set fits in the 1MB L2 cache,
so private caches are the best choice while cooperative
caching is slightly behind. Cooperative caching reduces the
off-chip miss rate for Rate2, and consequently improves its
performance by over 20%.

Figure 9 shows the amount of network traffic per
committed instruction, normalized to the shared scheme.
Except for Rate2, cooperative caching generates 25-60% of
the network traffic of a shared cache. Cooperative caching
generates many spills, and thus more cross-chip traffic, for
Rate2 because art’s large working set causes frequent
local L2 evictions. Although art’s absolute bandwidth
requirement is low, it still indicates the importance of
cooperation throttling for multiprogrammed workloads,
especially for benchmarks with large working sets and less
temporal locality.

4.4 Sensitivity Studies
We first evaluate the performance robustness of

cooperative caching with a sensitivity study of commercial
workload performance using in-order, blocking processors.
We choose to use in-order processors mainly to reduce
simulation time, but they also represent a relevant design
choice [19]. The main idea here is to assess the benefit of
cooperative caching across a spectrum of memory hierarchy
parameters.

Figure 10 compares the relative performance
(transaction throughput normalized to the shared cache
scheme) of private, shared and cooperative caching for
different system sizes (4-core vs. 8-core), per-core cache
capacities (512KB, 1MB, and 2MB) and memory latencies
(300 cycles vs. 600 cycles). It is clear that the shared
cache performs better than private caches when per-core
cache capacity is small, while the performance gap closes
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4-core and 8-core CMPs with 512KB, 1MB and 2MB per-
core caches)

Table 7. Speedups with Varied CCE Latencies
Extra cycles 0 +5 +10 +15

Multithreaded 7.5% 4.7% 3.2% 0.1%
Multiprogrammed 11% 8.0% 7.0% 5.9%

when per-core capacity increases. However cooperative
caching’s performance is more dependent on the aggregate
on-chip cache capacity. As the aggregate cache size
increases, cooperative caching is increasingly better than
a shared cache, while its advantage over the private cache
scheme gradually decreases. Overall, cooperative caching
achieves the best performance for most configurations
with a 300-cycle memory latency. When memory latency
doubles, the latency of off-chip access dominates, and
cooperative caching becomes similar to a shared cache,
having -2.2% to 2.5% average speedups.

We then study cooperative caching’s performance
sensitivity to the CCE latency. Table 7 shows the
speedups of cooperative caching over the baseline shared
cache design when the CCE latency is further increased.
Speedups over private caches are not included because both
cooperative caching and private caches are implemented
using the CCE, and increasing CCE latency has a similar
effect on both designs. We can observe that cooperative
caching continues to perform better than a shared cache
with 10 extra cycles of CCE latency.

4.5 Comparison With Victim Replication
We choose to compare cooperative caching with

victim replication [35] but not other recent CMP caching
schemes [6, 7, 17] for several reasons: (1) both victim

replication and cooperative caching use cache replacement
as the underlying technique to control replication; (2) both
schemes are based on a traditional cache organization,
while other proposals require significant changes in the
cache organization; (3) they both use a directory-based
protocol implementation, rather than requiring different
styles of coherence protocols (e.g., snooping protocol or
token coherence).

The comparison is conducted using in-order processors
with the same L1/L2 cache sizes and on-chip latency
parameters as [35] to specifically match its evaluation. We
also tried using the set of parameters as in Section 4.1,
however, victim replication is worse than both shared and
private schemes for 3 out of 4 commercial benchmarks. As
in [35], we use random replacement for victim replication,
because it’s not straightforward to set the LRU information
for the replica.

To create as realistic a match to the previous paper
as possible, we also include results for 9 SPECOMP
benchmarks [3] and 4 single-threaded SPEC2000
benchmarks with the MinneSPEC reduced input set [27], all
running on 8-core CMPs. The single-threaded benchmarks
are in common with [35], and the SPECOMP benchmarks
have characteristics similar to the multithreaded workloads
it used. We report the performance measurement (either
transaction throughput or IPC, normalized to the shared
scheme), instead of the average memory access latency
used by [35].

Figure 11 compares the performance of private, shared,
cooperative caching and victim replication schemes for
all four classes of workloads: commercial multithreaded
workloads with large working sets and substantial inter-
thread sharing, SPEC2000 multiprogrammed workloads,
SPECOMP multithreaded workloads with little sharing and
single-threaded workloads. Victim replication outperforms
both private and shared schemes for SPECOMP and single-
threaded workloads, on average by 2% and 12%. However,
victim replication performs poorly for commercial and
multiprogrammed workloads, being on average 6% slower
than private caches and 11% slower than a shared cache.

Cooperative caching consistently performs better than
victim replication (except for OLTP). Cooperative caching
provides the best performance for 3 out of 4 commercial
workloads, 5 out of 6 multiprogrammed workloads and all
single-threaded workloads; it is less than 1.4% slower than
the best schemes for all SPECOMP benchmarks. Across all
of these benchmarks, cooperative caching is on average 8%
better than private caches, 11% better than a shared cache,
and 9.2% better than victim replication.



5 Related Work
CMP cooperative caching is inspired by software

cooperative caching schemes [9–11]. The same key issues
and observations of file/web caching can be applied to
improve on-chip CMP cache organization, but different
mechanisms are needed to support cooperation at the
level of processor caches. In balancing space allocation
between local vs. global data, cooperative caching is similar
to variable allocation, global replacement based virtual
memory management. In the hardware domain, cooperative
caching is related to COMA architectures [12, 30] in
that they both try to reduce the impact of long-latency
remote accesses by attracting data to their consumers’ local
storage. They also face similar issues such as directory
implementation, replacement policy and replication control,
although different tradeoffs and solutions are needed for
DSM vs. CMP architectures. For CMP caching designs,
two lines of research are most relevant to our proposal: (1)
proposals to optimize both the latency and the capacity of
CMP caches; and (2) coherence protocol optimizations to
reduce complexity and improve performance.

Optimizing Latency and Capacity
Besides the many CMP caching studies [18, 20, 26, 31],

several hybrid caching schemes [6, 8, 13, 15, 34, 35] are
closely related to our proposal of optimizing both CMP
cache capacity and access latency. Beckmann and Wood [6]
study the performance of CMP-NUCA schemes and the
benefit of using LC transmission lines to reduce wire
delay. Cooperative caching is orthogonal to such new
technologies and can potentially use fast wires to speed
up on-chip accesses. Cooperative caching is similar to
victim replication [35] in that replication is controlled
through the cache replacement policy. Victim replication
is simpler by identifying replications via static address
mapping. Cooperative caching differs by using private
caches for both dynamic sharing and performance isolation.

CMP-NuRapid [8], like CMP-NUCA, also optimizes
for special sharing patterns using distributed algorithms
(i.e., controlled replication for read-only sharing, in-
situ communication for read-write sharing, and capacity
stealing for non-sharing). In contrast, cooperative caching
aims to achieve these optimizations through a unified
technique: cooperative cache placement/replacement,
which can be implemented in either a centralized
or distributed manner. CMP-NuRapid implements
a distributed directory/routing service by maintaining
forward and reverse pointers between the private tag arrays
and the shared data arrays. This implementation requires
extra tag entries that may limit its scalability, and increases
the complexity of the coherence protocol (e.g., the protocol
has to avoid creating dangling pointers). Cooperative
caching tries to avoid such issues by using a simple, central
directory engine with less space requirements.

Based on a non-uniform cache architecture
(NUCA) [17], Huh et al. [15] design a CMP cache to
support a spectrum of sharing degrees, denoting the
number of processors sharing a pool of their local L2
banks. The average access latency can be optimized by

partitioning the aggregate on-chip cache into disjoint pools,
to fit the running application’s capacity requirement and
sharing patterns. Static mappings with a sharing degree of
2 or 4 are found to work the best. Dynamic mapping can
improve performance at the cost of complexity and power
consumption. Cooperative caching is similar in trying to
support a spectrum of dynamic sharing points, but achieves
it through cooperation among private caches with dynamic
throttling.

Similarly, synergistic caching [13] groups neighboring
cores and their private L1 caches into clusters to allow fast
access of shared data among neighbours. It offers three
duplication modes (i.e., beg, borrow and steal) to balance
between latency and capacity and shows that no single
duplication mode performs the best across all benchmarks.

Lastly, Yeh and Reinman [34] propose a distributed
NUCA cache consisted of ring-connected private caches to
improve both throughput and fairness for multiprogrammed
workloads. Cooperative caching can benefit from their
approach to achieve quality of service.

Coherence Protocol Optimizations
Multiprocessor researchers have studied various

coherence protocol optimizations for decades. To
save space, only techniques that are closely related
to cooperative caching are discussed. Although the
concept of CMP cooperative caching is orthogonal to the
implementation of the coherence protocol, techniques to
improve both protocol simplicity and performance are
related to the proposed mechanisms. Token coherence [23]
and its application to multiple-CMP systems [24] simplifies
the protocol design by decoupling the protocol’s correctness
substrate and performance policy. The CCE utilizes a fast
central directory, similar to the central coherence unit
proposed by Takahashi et al. [31] and a directory memory
structure resembling [25]’s remote cache shadow directory.

6 Conclusion
We have presented cooperative caching as a unified

approach to manage a CMP’s aggregate on-chip cache
resources. Cooperative caching answers the challenges of
CMP cache designs in two ways: it combines the strengths
of both private and shared caches to reduce the number of
expensive cross-chip and off-chip accesses, and it supports a
spectrum of capacity sharing points to suit the requirements
of specific workloads. Our simulation shows that using
cooperative caching achieves the best performance for
different CMP configurations and workloads. Cooperative
caching can reduce the runtime of simulated workloads
by 4-38%, and performs at worst 2.2% slower than
the best of private and shared caches in extreme cases.
Cooperative caching also outperforms the victim replication
scheme by 9% on average over a mixture of multithreaded,
single-threaded and multiprogrammed workloads, while the
performance advantage increases for workloads with large
working sets. Using cooperative private caches also allows
other applications such as power optimization and simpler
implementation of performance isolation, which are left as
future work.
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