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Abstract

Corventionalinstructionfetch medhanismdetd contig-
uousblodksof instructionsin ead cycle They are difficult
to scalesincetaken branchesmale it hard to increasethe
size of these blodks beyond eight instructions. Trace
cadcheshavebeenproposedas a solutionto this problem,
but they use calbe space inéitiently.

We show that fetching large blocks of contiguous
instructions,or wide fetd, is inefficientfor modernout-of-
orderprocessos. Insteadof theusualapproad of fetching
large blocks of instructionsfrom a single pointin the pro-
gram, we proposea high-bandwidthfetch medanismthat
fetchessmall blocks of instructionsfrom multiple pointsin
a program.

In this paper we demonstate that it is possibleto
achieve high-bandwidthfetdh by using multiple narrow
fetch unitsoperating in parallel. Our medanismperforms
as well as a trace cache, doesnot wastecade space is
mote resilientto instructioncache missesandis a natural
fit for techniqueghatrequire fetching multiplethreadsJike
multithreading dual-path execution, and speculative
threads.

1 Introduction

Modern processors need a large instruction window to
ensurghatmary independeninstructionsareavailablefor
executionatary time. As processorsvith morefunctional
units are built, it is also necessary to increase the
instruction fetch bandwidth so that the instruction window
size can be correspondingly increased.

Increasingheinstructionfetch bandwidthbeyond eight
instructions per cycle poses special problems. Typical
programs contain taken branches every eight instructions
on average [6]. At every taken branch in a program, the
fetch unit must be redirected to fetch instructions from a
new address. Since most instruction caches can only
supply data from contiguous memory locations in one
cycle,instructionsfrom the branchtargetaddressannotbe
fetched in the same cycle as the instructions up to the
branch. This restricts instruction fetch bandwidth to the

average number of instructions between taken branches.
The wider the fetch unit, the more likely it is that fetch
slots will be wasted because of discontinuities in the
instruction stream.

Proposed solutions to this problem can be divided into
two categories: (a) augmenting the branch predictor to
predictmultiple branchepercycle [21] andtheinstruction
cache to supply multiple discontinuous lines per cycle [4],
and (b) storing instructions in dynamic execution order in
the cache (i.e. using a trace cache) [11,12,16]. The first
solution makes the branch predictor and the cache more
complex, potentially increasing the cycle time; the second
solution leads to inefficient use of cache space, potentially
increasing cache miss rates.

Both classes of solutions work by fetching a large
number of contiguous instructions from a single point in
theprogramevery cycle. In this paperwe proposea high-
bandwidthfetch mechanisnthatfetchesa smallnumberof
contiguous instructions from multiple points in the
program, as opposed to fetching a large number of
contiguous instructions from a single point.

Fetching a large block of contiguous instructions, or
wide fetch, is inefficient for out-of-order processors.
Figurel illustrateshow fetchandexecutionof consecutie
instructions overlapsin time. This datais from a 16-wide
processor augmented with a trace cache. Traces are
variable length, up to a maximum of 16 instructions. The
trace selection agorithm is described in Section 2.4.1, and
the simulated machine configuration is discussed in
Section 3. On average, the processor fetches one trace
every two cycles. The first instruction of atypical trace
starts execution three cycles after the trace has been
completely fetched, and it takes about 20 cycles for all
instructions in the trace to i@ executing.

As clearly illustrated by the figure, traces are fetched
consecutively but their execution is almost entirely
concurrent. Thisis not an entirely unexpected result:
previouswork hasshown thatsignificantparallelismexists
between instructions of different traces [20]. Therefore,
the actual order in which instructions are executed is very
different from their order in the program. First, a small
number of data-independent instructions in both traces get
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Figure 1. Temporal relationship between instructions in consecutive traces

executed, followed by the rest of the instructions in the
traces in datafle order

Even though atrace cache can fetch an entire trace in
onecycle, all instructionsin thetracearenot needed in that
cycle since only a small fraction will be executed
immediately. Wide fetch is inefficient for out-of-order
processors since instructions are not needed in sequential
order. A few instructions from each trace that are first in
dataflow order are the ones needed earliest, followed later
by the rest of the instructions in the trace. Wide fetch
mechanisms must fetch not only the critical instructions
that are first in dataflow order, but also all the intervening
instructions.

We propose a fetch mechanism that fetches multiple
traces concurrently using multiple narrow instruction
sequencers instead of one wide sequencer. Since multiple
traces are fetched concurrently, the individual instructions
are fetched out-of-order. Narrow sequencers use the
available bandwidth more effectively since fewer fetch

slotsarewasteddueto branchesndcache-lineboundaries.

Moreover, just like out-of-order execution is able to
overlap long latency operations with other useful
instructions, out-of-order fetch can tolerate instruction
supply delays like I-cache misses by fetching other useful
instructions while the miss is resolved. This mechanism
can be thought of as just-in-time trace constructor [8] that
can liild multiple traces concurrently

We also observed that programs display a remarkably
large amount of trace locality. In some benchmarks as
many as 70% of the dynamic traces repeat within the next
sixteen traces. It may be better to reuse the constructed
traces rather than discarding them immediately after use.
This turns our mechanism into a small trace cache with a
very fast trace construction mechanism. Whereas a trace
cache can exploit almost al the locality that is available, it
is slow at constructingracesthis mechanisntanexploit a
smalleramountof locality, but canconstructracesguickly.
Reusing trace buffers also has the advantage of reducing
accesses to the instruction cache by more than 80% in
some cases and 50% oreeage.

Multiple sequencers also make it possible to use the
fetchunit in far moreflexible waysthana monolithicfetch
unit would allow. It is much easier to implement

techniques like dual-path execution [5,10], speculative
threadq22], etc.,thatrequirefetchingmultiple threads.In
a multithreaded processor, multiple sequencers enable a
much finer grained control over allocation of fetch
resources to threads than is possible otherwise.

The next section describes our mechanism in detail.
Section 3 contains an evaluation of the proposed
mechanism. We discuss some related work in Section 4.
Section 5 concludes the paper with a summary and some
future research directions.

2 Instruction Fetch with Multiple Sequencers

The conventional approach of fetching instructions
from the location pointed to by the program counter is
insufficient for fetching instructions from multiple points
in the program. To be able to fetch from multiple
locations, we must know the addresses of multiple
instructions in the near future rather than just a single
current address.

Instead of keeping track of control flow at the
granularity of individual instructions we divide the
instruction stream into coarser units called traces. A trace
is a dynamic sequence of instructions in program order,
potentiallyspanningcontrolinstructions. Controlflow can
be predicted on the granularity of traces using a trace
predictor [11,16]. It has been demonstrated that trace
predictors can achieve equivalent or higher prediction
accuracies than ceantional branch predictors [7].

Once future control flow can be predicted at trace
granularity, multiple traces can be fetched concurrently by
using multiple instruction sequencers. This parallelizes
instruction fetch: the latency and the width of a single
instruction sequencer are no longer the primary
determinants of the fetch bandwidth since it is
straightforward to add more instruction sequencers to
increase the total wvafetch bandwidth.

2.1 Design Details

The architecture we are proposing is illustrated in
Figure 2. Theinstruction fetch queue (IFQ) between the
fetch and decode stages is preceded by a set of trace
buffers. The fetch unit is replicated, and fetched
instructions are placed in trace buffers rather than directly
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in thelFQ. A tracepredictoris usedfor control prediction
instead of a branch predictor. The L1 instruction cache is
banked so that multiple sequencers can fetch instructions
concurrently. Bank accesses are controlled by a bank
access controller that receives requests for cache accesses,
converts these requests into a sequence of bank accesses,
and schedules the accesses in order to avoid conflicts. All
pipeline stages after the IFQ are unchanged.

Each trace buffer is a small FIFO queue of instructions.
Associatedvith it is a setof registersthatdescribets fetch
context: a startingaddressa programcounter(PC),branch
prediction bits, and bits indicating whether the buffer is
vaid and active. A buffer isvalid when it contains a trace
not completely consumed by the IFQ. A valid buffer is
active if instructions are still being fetched into it, i.e., if
the trace being fetched into it has not been constructed
completely All valid tracebuffersarelinkedto eachother
by a sequence of retrace pointers.

Instructionsarefetchedinto active tracebuffers starting
at the address pointed to by each buffer’'s PC. Each trace
buffer’s PC is updated as usual when instructions are
fetchedintoit. ThelFQ readsinstructionsoutof theoldest
trace buffer and follows the next trace pointer when it
encounters the end of the current trace. Once all
instructions in the trace are inserted into the IFQ, the trace
buffer is marled irvalid.

2.2 Fetch Unit

When a program starts executing, the fetch unit fetches
instructions sequentially, as usual, and places them in an

availabletracebuffer insteadof theinstructionfetchqueue.

It alsocheckseachinstructionfetchedfor tracetermination
conditions. At the end of the trace, it obtains a new trace
buffer, links it to the old one, and marks the old buffer
inactive. Then, it continues fetching instructions
sequentially into the netrace liffer.

On atrace prediction, the fetch unit obtains a new trace
buffer and adds it to the end of the chain of valid buffers.
When multiple trace buffers are active, instructions are
fetched into all of them simultaneously if enough
sequencers areailable.

A new tracebuffer canbecreatedn thefollowing ways:
first, when the trace predictor makes a prediction, and
second, by fall through from the previous trace if no
prediction is available. A third way is when the fetch unit
is redirected after a misprediction—this will be discussed
in Section 2.6. Branches are assumed not-taken if
predictions are notvailable.

Instruction fetch into different buffers is completely
decoupled. Stallsin one buffer do not affect the other
active buffers. Traceendpointsmaybereachedn anorder
completely different from program order. The IFQ still
receives the instructions in program order, so no changes
areneededo themachinebeyondthelFQ, exceptfor some
mechanisms for recovering from mispredictions and
training the trace predictor

2.3 Banked Instruction Cache

To enable multiple sequencers to fetch instructions
concurrently, the instruction cache must be able to supply
multiple cache lines in the same cycle. Although this can
beachievedby multiportingthe cachesothatmultiple lines
can be read out of a single bank in the same cycle, that
would substantially increase the size of the cache, slow it
down, and increase its power consumption. We instead
achieve the same effect by banking the cache and adding a

bank access controller that schedules access to the banks.

Lines are mapped to banks using standard low-order
interleaving. The bank access controller services requests
in oldest-trace-first order, servicing at most one request
from each sequencer in gote.

2.4 Trace Selection and Prediction

Good trace selection involves balancing several
contradictory requirements. First, the traces must be
reasonably long. At the same time, traces should be
terminated at the end of control structures like loops and
functions to increase the prediction accuracy and decrease
the number of unique traces. However, we don’'t want to
stop traces at each control instruction since being able to
fetch past control instructions is one of the primary
motivations for lilding traces.

We use function boundaries as the primary division,
along with some other constraints to ensure reasonable
size, high prediction accuracy, and a small working set.
The reader is referred to other papers[11,17] for a more
detailed &ploration of trace selection techniques.

2.4.1 Trace Selection. We limit the size of tracesto 16
instructions. Tracesareterminatedf (1) they aretoolong,
(2) acall, return, or indirect branch is encountered, or
(3) the trace is longer than eight instructions and an
unconditional branch is encountered.



Table 1: Trace Characteristics of SPEC 2000 Benchmarks

Benchmark Dynamic Traces AverageTrace Dynamic Traces Contributing
Instructions Size Traces 95% instructions
Integer
bzip2 8822 M 1819 12.79 690 M 109 ( 6%)
crafty 4265 M 7541 12.02 355 M 909 (12%)
gap 1246 M 9074 10.70 117 M 972 (11%)
gcc 2016 M 38180 11.26 179 M 7165 (19%)
gzip 3367 M 1942 12.06 279 M 58 ( 3%)
mcf 260 M 1424 9.84 26 M 132 ( 9%)
parser 4203 M 6496 10.35 406 M 692 (11%)
Floating Point
ammp 5491 M 2932 13.11 419 M 332 (11%)
equale 1443 M 2182 11.10 130 M 356 (16%)
lucas 3689 M 1090 15.68 235 M 130 ( 7%)
mesa 2845 M 2543 11.30 252 M 110 ( 4%)

Terminatingtracesat calls/returnsaandindirectbranches
enables using a return address stack (RAS) and an indirect
branch predictor to supplement the trace predictor,
significantly increasing prediction accuracy (see
Section 2.4.3 for details). Terminating traces at all
unconditional branches when the trace is longer than eight
instructions reduces the number of unique traces in the
program since traces tend to start at fewer points. This
leadsto higherpredictionaccurag andsmallertracecache
miss rate.

Table 1 lists the trace characteristics of the SPEC CPU
2000 benchmarks used in this study. Most benchmarks
have a fairly small number of static traces. Integer
benchmarks have more traces, as well as smaller traces,
thanfloating pointbenchmarks As the lastcolumnshaws,
the number of traces that execute frequently is a small
percentagef thenumberof tracesn all benchmarksanda
relatively smallabsolutenumberfor all benchmark&xcept
gcc.

2.4.2 Trace Prediction. We use the trace predictor
proposed by Jacobson et al. [7]. Each traceis assigned a
trace identifier obtained by combining bits from the
starting address of the trace and its branch history. The
predictor consists of a correlated table indexed by trace
identifiers of the previous traces, and a smaller filtering
table to eliminate the easy to predict traces from the
primary table. The trace predictor is based on the
Multiscalar task predictor named “DOLC” [1].
Eachentryin the predictorcontainsthe startingaddress
of the trace, a bitmap encoding the directions of
conditional branches, and bits indicating whether the trace
endswith afunctioncall, return,or indirectbranch. In case
of atrace ending with a call or indirect branch, the
predictor also contains the address of the last instruction.
The predictor isindexed by a hash function applied to the

tracehistorybuffer. Thepredictoris updatedn thecommit
stage as instructions retire.

Theletters D, O, L, and C in the name of the predictor
stand for the four parameters that define the predictor: the
size of the history buffer (or Depth), the number of bits
extracted from the identifier of Current trace, the number
of bits extracted from the identifier of Last trace, and the
number of bits extracted from the identifiers of Older
traces. We use the values D=9, C=9, L=7, and O=4. The
primary table contains 64k lines and the secondary table
16k lines. Figure 3 shows both the trace prediction
accuracy and the branch prediction accuracy of the
predictor

2.4.3 Returnsand Indirect Branches. Since instructions
are being fetched out of order, it is possible for a later
return instruction to be fetched before an earlier return
instruction. However, return instructions must access the
RAS in program order for its predictions to be correct. A
similar agument holds for the indirect branch predictor

We accesshe RAS or theindirectpredictorwhentraces
are predicted. Traces can contain at most one call, return,
or indirect branch since these instructions end traces. The
tracepredictorpredictswhethera tracewill endwith these
instructions, and the address of the instruction if required.
Since traces are predicted in program order, the RAS and
theindirectbranchpredictorareaccesseth programorder
as well.

Restoring predictor state on mispredictions is handled
by making a copy of any data that is modified, just likein
conventional out-of-order processor. When the last
instruction of atrace is fetched, the prediction is verified.
On mispredictions, the predictor state is repaired by
restoring it to the backed up value and then redoing the
modifications made by future traces.
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2.5 Trace Reuse

The technique as described above discards instructions
in trace buffers once they have been decoded. An
alternatve is to keepinstructionsin the buffer andto reuse
buffers if control flow reaches the same trace again. If
there is sufficient locality in the instruction stream, trace
reusecouldleadto animpravementin performanceswell
as a reduction in cache/memory fiaf

Reduced cache traffic makes the performance much
more robust in the presence of bank conflicts. It also
reduces the power consumed by the L1 instruction cache.
However, it may not lead to an net reduction in power
usage as compared to a processor without multiple
sequencers, since the reduction is offset by the power
consumed by traceuffers.

2.6 Recovering from Branch Mispredictions

On a branch misprediction, in addition to simply
redirectingthefetchunit, the currentfetch context mustbe
restored so that (1) the trace selection algorithm does not
get misaligned, and (2) the trace identifier history remains
accurate. This can be done with mechanisms that already
exist in all processors for restoring the global branch
history after mispredictions.

Some mispredictions can be detected in the fetch stage
itself by comparingthe PCfollowing thelastinstructionin
atrace to the predicted next trace. In case of a mismatch,
all future traces are marked invalid. Early detection of
such mispredictions allows earlier recovery, and reduces
the number of spurious instructions fetched areteted.

2.7 Out-of-Order Renaming

Oncetheinstructionsarebeingfetchedout of order it is
desirable to be able to execute independent instructions
from a later trace before previous traces have been fetched
completely. This requires renaming instructions out of

order We believe thata solutionsimilar to thoseproposed
by Stark et a. [19] and Cher et al. [3] can be used to solve
this problem.

The trace predictor can be augmented to predict a
rename mask thatidentifiesindependeninstructions This
mask can be used to selectively execute only these
instructions until all prior traces have been fetched.
Delayedinstructionscanberenameadvhenall their sources
are available. Alternatively, they can be renamed
specul atively, and on a misspeculation the source register
valuescancopiedinto the predictedphysicalregistersafter
execution of the source instructions.

This paperconcentratesnly on the fetchcomponenbf
theinstructionsupplyproblem. We do not evaluateout-of-
order renaming in this paper

3 Experimental Evaluation

We used a simulator based on the SimpleScalar tool set
[2] to model a multiple sequencer based fetch mechanism.
Parameters of the base-case processor are shown in
Table 2. We simulate a 16-wide processor with large
caches to ensure that it can achieve high IPC, and can
therefore benefit from high bandwidth instruction fetch.
Large caches also ensure that the conventional instruction
fetch mechanism works as well as possible, which shows
that the performance improvement due to multiple
sequencers cannot simply be achieved by enlarging the
instruction cache.

All benchmarks were taken from the SPEC CPU 2000
suite and compiled with optimization using the Compag/
Alphavendorcompiler(version6.4-214). Testinputswere
used, and the programs were simulated for at most one
billion instructions. Table 1 lists some characteristics of
thebenchmarks We usedonly a subsebf thebenchmarks
because of limitations in the simulator: (1) many floating
point programs produced output that did not match the



Table 2: Simulation Parameters

Width Fetch,decodeandcommitatmost16
instructions perycle

Functional 16 integer ALUs, 4 intger multipli-

Units ers,4 floatingpointALUs, 1 floating
point multiplier, 4 load/store units

In-flight 256 entry instruction winde

Instructions 128 entry load/store queue

L1 Caches 64K, 2-way set-associate,

(Insn & Data) | 1 ¢ycle access time, 64b blocks

L2 Cache 256K, 4-way set-associate, 10

(Unified) cycle access time, 128 byte blocks

Memory 100 g/cle access time

reference output because of differences in the behavior of
floating point instructions, (2) no support for the exec
system call, and (3) problems related to Fortran runtime
libraries.

We compare three different instruction fetch
mechanisms: conventional 16-wide fetch (W 16), trace
cache (TC), and multiple sequencers (MS). W16 fetches
instructions sequentialy, stopping at the first taken branch
or cacheline boundary The numberof branchpredictions
per cycleisunlimited. TC models a2-way set associative
trace cache with 16 instructions per trace. On a cache hit,
the entire trace can be fetched in one cycle if there are
sufficient slots in the instruction fetch queue. On a cache
miss,instructionsarefetchedfrom the L1 instructioncache
using the W16 mechanism. The processor containsan L1
instruction cache of the same size as the trace cache. We
foundthatthis division gave betterresultsthanalargetrace
cache without an L1 instruction cache. In one cycle,
instructions can be fetched from either the trace cache, or
the L1 instruction cache, but not both. The trace predictor
is described in Section 2.4. The total size of the level one
instructionstorages keptthe samewheneer two schemes
are compared (i.e. when TC is compared to W16, the sum
of the size of the trace cache and L1 instruction cache in
TC is equalto thesizeof theL1 instructioncachein W16).

The various M S configurations are labeled using the
convention M S-NxMw where N is the number of
sequencers and M the width of each sequencer. For
example,MS-2x8w denoteswo 8-widesequencersThere
arel6tracebuffersof 16instructionseach. Theinstruction
cache is divided into eight banks as described in
Section 2.3. The trace predictor and the trace selection
algorithm are identical to those used by TC. The trace
predictor can make one prediction every cycle. New trace
buffers are activated on predictions made by the predictor
regardless of the number of buffers already active.

Sequencers are assigned to trace buffers in oldest first
order The L1 instruction cache is the same a4/it6.

The results section is structured as follows. First, in
Section 3.1, we study the effect of multiple sequencers on
instruction cache traffic. 1n Section 3.2 we compare the
performance of multiple sequencers with conventional
instruction sequencing and trace caches. Finally, in
Section 3.3 we study the behavior of these mechanisms
under high cache miss rates.

3.1 Instruction Cache Taffic

When building a high bandwidth fetch unit, it is
inevitable that the number of instructions fetched will be
much greater than the number of committed instructions,
due to fetching down mispredicted paths. An over-eager
fetch mechanism may increase memory traffic and worsen
instruction cache performance, doing more harm than
good.

Figure 4 shows the number of instructions fetched by
W16, TC, and M S without trace reuse, normalized by the
number of committed instructions. The number of
instructions fetched is equal to the total number of
instructions read from the L1 cache for W16 and M S, and
the sum of the number of instructions fetched from the L1
cache and the trace cache for TC. Floating point
benchmarks show only a small increase in the number of
instructionsfetched. Integerbenchmarkshaw arelatively
higher increase of 40% on average. Thisis comparable to
the number ofdra instructions fetched by a trace cache.

Figure 5 presents the same data as Figure 4, except that
trace reuse is now enabled. Trace reuse directly translates
into reduced cache traffic, since the instructions
corresponding to reused traces do not have to be fetched
from the instruction cache. Cache traffic is reduced
dramatically—by 50% over all benchmarks on average,
and by more than 80% for four benchmarks (bzi p2,
gzi p, ncf, and amp). The trace buffers act as afilter
cache [9,15] making the number of instructions fetched
from the cache smaller than the number of instructions
executed in most cases.

Interestingly, two benchmarks that benefit the most
from tracereusegzi p andntf , arealsotheonesthathad
the most wasted instructions without trace reuse. This
suggestshatmostof the mispredictionsn themaredueto
asmallnumberof tracesthatoccurfrequently but arehard
to predict—forexample,anunpredictableswitch statement
in a long running loop.

3.2 Rerformance

As discussed earlier, one way of thinking about this
technique is that it constructs traces just in time so that by
thetime controlreaches tracethe entiretracehasalready
been constructed. If this happens often, this scheme will
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provide the illusion of atrace cache, and therefore will
perform as well as atrace cache. Infact, it islikely that in
that case M Swill perform better than atrace cache, since a
trace cache requires both predictability as well aslocality
in the sequence of traces, whereas M S requires only
predictability since traces are constructed on the fly.

Figure 6 shows the fraction of traces pre-constructed
completely before they are needed. On average, 85% of
the traces are successfully pre-constructed. The graph also
demonstrates the effectiveness of multiple narrow
sequencers. M S-1x16w is able to construct only 60% of
the traces in time, and as the number of sequencers
increases the number of successfully constructed traces
increases.

Figure 7 directly compares the performance of different
fetch mechanisms, normalized by the performance of W 16.
M S-2x8w performs better than TC on the average, and
M S-4x4w performsaswell asTC. TC performs poorly on
the benchmarks gcc and cr af t y since both these
benchmarks have a large number of frequently executed

traces, whereas M S, which uses cache space more
efficiently, performswell. TC performs comparably toM S
on both these benchmarks if the trace cache size is
increased.

Performance decreases as the width of the fetch unit
decreases, especially when the fetch unit is narrower than
four. Multiple narrow fetch units rely on being able to
predict future traces ahead of time, and the probability of
misprediction increases as traces are predicted further into
the future. For example, eight two-wide fetch units would
be able to maintain instruction supply only if it were
possible to accurately predict the next eight traces at all
points in the program. If the trace prediction accuracy is
95%, the eighth trace has a one in three (1 - 0.958 = 0.34)
chance of being mispredicted.

The integer benchmarks show more benefit from high
bandwidth fetch than floating point programs. Improving
instruction fetch bandwidth does not help floating point
programs since they are usually limited by large instruction
|atencies (cache misses, floating point operations).
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3.3 Instruction Cache Size

Figure 8 shows the performance of W16, TC and MS
over arange of instruction cache sizes. The figure plots
execution time normalized to W16 with a 64K instruction
cache. TC suffers the most as the cache becomes smaller,
since efficient use of cache space is more critical with
small caches. W16 outperforms TC at cache sizes of less
than 16K.

The four M'S schemes provide the most robust
performance, slowing down less than 10% even when the
cacheisone-eighthin size. Multiple sequencers are ableto
utilize the avail able cache space more efficiently since they
do not have the storage overheads associated with trace
caches. In case an L1 cache miss does occur, they are better
at tolerating the miss latency since other instructions can be
fetched while the miss is handled, and multiple misses can
be overlapped with each other.

M S-1x16w behaves as robustly as the other M'S
schemes, even though it cannot fetch multiple traces in

parallel. This suggests that it is the ability to initiate
multiple cache misses in parallel that is the important
factor in tolerating small cache sizes.

4 Related Work

Stark et al. [19] proposed a limited form of out-of-order
instruction fetch for tolerating instruction cache misses,
and proposed several ways of out-of-order renaming.
Unlike the technique described in this paper, instruction
fetch proceeded normally during most of the execution.
Instructions were fetched out-of-order only on cache
misses.

Trace preconstruction was proposed by Jacobson et al.
[8] to decrease the number of trace cache misses on
programs with large working sets. Their focus was
constructing a set of traces well ahead of the current trace
so that when control reached that point in the future it
would suffer no trace cache misses. Their technique
maintains a stack containing entries corresponding to the
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hierarchical structure of functions and loops in the
program. The stack is used to identify potential
preconstruction points many cycles ahead of when they are
needed. In contrast, our scheme uses a standard trace
predictor to make predictions and tries to stay just alittle
ahead of the processor. These two factors are related: the
reason we are able to use a standard trace predictor is that
we only predict control flow in the immediate future.
Unlike the aim of trace preconstruction—prefetching
potential trace cache misses—our scheme takes the idea to
its limit by making the cache very small and constructing
al the traces just before control flow reaches them.

Fetch Target Queue [14] was proposed by Reinman et
al. to decouple instruction fetch from the rest of the
execution pipeline. Their scheme predicts targets of future
branches in advance of when the branches are fetched and
inserts the target addresses in the fetch target queue. This
queue can then be used for prefetching cache blocks that
are not present in the level oneinstruction cache. However,
the fetch bandwidth of the processor is still limited by the
density of taken branches in the instruction stream.

Speculative multithreading architectures like
Multiscalar [1,18] come closest to this technique as far as
the nature of instruction fetch is concerned. They typically
consist of multiple execution cores, each of which has a
fetch unit and a trace/task predictor that assigns traces to
cores. Since each execution core fetches instructions it
needs by itself, instructions are fetched as and when they
are needed, in an order different from program order. The
technique proposed in this paper decouples the decision to
build clustered fetch units from the decision to build
clustered execution cores.

Another approach to high bandwidth fetch is changing
the code layout to correspond more closely to the desired
fetch order. Ramirez et al. proposed a profile based
compiler optimization called a Software Trace Cache [13]

that rearranges basic blocks in the program so that the
instruction cache stores continuous traces of instructions,
just like a trace cache. Their results show that the best
performance is achieved by a combination of both the
hardware and software trace cache.

5 Conclusions and Future Directions

High bandwidth instruction fetch is essential for
building high performance processors. Conventional
instruction fetch techniques are difficult to scale up to
provide this extra bandwidth since the fetch unit needs to
be redirected on each taken branch. Trace caches are a
brute force solution to this problem. They are capable of
supplying instructions at a very high rate but are expensive
in terms of their area requirements since they utilize cache
space inefficiently.

Sequencing through the program at the granularity of
traces and fetching multiple traces simultaneously by using
areplicated fetch unit can be used to get the best of both
worlds: fetch bandwidth of atrace cache, and the storage
efficiency of an instruction cache. Trace-granularity
sequencing decouples the fetch of different parts of the
program from each other, and this decoupling enables
paralelizing instruction fetch by using multiple sequential
instruction sequencers. We described the design of such a
fetch unit in detail and demonstrated that it is capable of
achieving similar fetch bandwidth to a trace cache, and, at
the same time, decreasing the number of instructions
fetched from the instruction cache.

Our results also suggest that multiple sequencers are
more resilient to larger I-cache miss rates than a trace
cache. Animportant area of future work is evaluating this
mechanism in the context of future technology trends like
variable latency caches, longer access times and power
consumption restrictions. We expect that multiple
sequencers will turn out to be a good fit for the
reguirements of future processors.

Fetching instructions out of order is only half the battle,
since even when instructions are fetched out of order they
simply wait in a buffer for instructions before them to be
fetched before they can be executed. In the future, we plan
to relax this restriction as well by renaming instructions
out-of -order and issuing them to execution units without
requiring al prior instructions to be fetched.
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