
eir
i-
el
-

cal
ile
-

ic
o-

n,
-

n-
es
r-

a-

s”
.

the
r

er,

s
h
is-
n
s.
ute
o-
uc-
ut-

is
o-
r

o
ds
.

of
T
c-

ct
d 7

Speculative Data-Driven Multithreading

Amir Roth and Gurindar S. Sohi
Computer Sciences Department, University of Wisconsin - Madison

{amir, sohi}@cs.wisc.edu

Appears in the Proceedings of the 7th International Conference on High Performance Computer Architecture (HPCA-7), Jan. 22-24, 2001.
Abstract

Mispredicted branches and loads that miss in the cache cause
the majority of retirement stalls experienced by sequential pro-
cessors; we call these critical instructions. Despite their
importance, a sequential processor has difficulty prioritizing
critical computations (computations of critical instructions),
because it must fetch all computations sequentially, regardless
of their contribution to performance. Speculative data-driven
multithreading (DDMT) is a general-purpose mechanism for
overcoming this limitation.

In DDMT, critical computations are annotated so that they can
execute standalone. When the processor predicts an upcoming
instance of a critical instruction, it microarchitecturally forks
a copy of its computation as a new kind of speculative thread:
a data-driven thread (DDT). The DDT executes in parallel
with the main program thread, but typically generates the crit-
ical result much faster since it fetches and executes only the
critical computation and not the whole program. A DDT
“pre-executes” a critical computation and effectively “con-
sumes” its latency on behalf of the main thread. A DDMT
component called integration incorporates results computed in
DDTs directly into the main thread, sparing it from having to
repeat the work.

We simulate an implementation of DDMT on top of a simulta-
neous multithreading (SMT) processor and use program pro-
files to create DDTs and annotate them into the executable.
Our experiments show that DDMT pre-execution of critical
loads and branches can improve performance significantly.

1 Introduction

Sequential program performance is measured by instruction
retirement throughput. Performance degrades when retire-
ment stalls waiting for the oldest active instruction to com-
plete. The majority of retirement stalls are due to loads that
miss in the cache and, indirectly, to mispredicted branches
which delay the fetch and completion of future instructions.
We call misbehaving branches and loadscritical instructions.

Since they are responsible for the majority of lost throughput,
it seems intuitive that processors would prioritize critical
instructions. However, in acontrol-driven(or sequential) pro-
cessor, this conceptually simple goal is difficult to achieve.
First, prioritizing only the critical instructions themselves is
rarely sufficient — thecomputationsof the critical instruc-
tions, the instructions that transitively contribute values to the
critical instruction, must also be prioritized. At the same time,
the number of high-priority operations must be limited lest the
entire program be prioritized. A more significant problem is
that instructions must besequenced(i.e., fetched and renamed)
before they can be scheduled, and a sequential processor must

sequence instructions in program order, regardless of th
contribution to performance. Using a compiler to isolate crit
cal computations from their surroundings at the program lev
is also difficult. It often requires algorithm-level code trans
formations, and may shift criticality to new instructions.

Speculative data-driven multithreading (DDMT)is a general-
purpose mechanism that expedites the execution of criti
computations by allowing them to be sequenced directly wh
skipping over dynamically interleaved instructions from non
critical computations. DDMT exploits the fact that only a few
static critical computations produce the majority of dynam
critical instruction instances. These computations are ann
tated so that they can execute standalone. When themain
thread (which we also call thesequentialor control-driven
thread) predicts an upcoming instance of a critical instructio
it “forks” a copy of its computation as a new kind of specula
tive thread — adata-driven thread (DDT).A DDT is data-
driven in the sense that it is not necessarily a dynamically co
tiguous instruction sequence. The main thread continu
fetching and executing the entire program sequentially. In pa
allel, the DDT fetches and executes only the critical comput
tion often completing execution of the critical instruction
before the main thread has even fetched it. A DDT “absorb
a critical computation’s latency on behalf of the main thread

DDTs executespeculatively, they do not change the archi-
tected state of the machine. As such, it would appear that
only way a DDT can assist the main thread is indirectly — fo
instance by initiating would-be cache misses early. Howev
DDMT can take advantage of a technique calledregister inte-
gration [18] to allow the main thread to directly use result
computed in DDTs. Integration exploits the fact that bot
main thread and DDT place results in a shared physical reg
ter file. Using a modification to register renaming, integratio
allows the main thread to recognize and claim DDT result
Integration spares the main thread from having to re-exec
(but not re-fetch) DDT instructions. It also enforces a one-t
one correspondence between DDT and main thread instr
tions, a property we use to match pre-computed branch o
comes with their intended dynamic branch instances.

In this paper, we present an implementation of DDMT that
based on simultaneous multithreading (SMT) and an alg
rithm for creating DDT annotations from program traces. Ou
experiments using this framework show that using DDMT t
pre-compute frequently misbehaving branches and loa
improves performance over aggressive base configurations

The next section presents an overview and working example
DDMT. Sections 3 and 4 describe two DDMT aspects, DD
selection and hardware implementation, in more detail. Se
tion 5 evaluates DDMT’s effectiveness in reducing the impa
of mispredicted branches and cache misses. Sections 6 an
discuss related and future work.
1

)

.

a-
-
s.

l-

n-

nt

f
s
ile

e

an

d
IT
ted
2 Working Example

As an overview of DDMT, we begin with a working example
The top of Figure 1 shows a simple computation loop th
traverses a linked list of nodes. Computation for each no
checks for the existence of and then accesses a neighbor n
This is a simplified version of a computation fromem3din
which each node loops over an array of neighbors. The neig
bor-test branch and neighbor data-access in bold are two c
cal instructions. The bottom of Figure 1 shows a samp
execution of parts of four loop iterations. The instructions of
single iteration are shaded to match the source code. Criti
branch (I3) and load (I5) instances are in darker shade and
although it is not explicitly represented, we wish to “absorb
their latencies by pre-executing their computations as DDTs

The DDT we choose consists of the boxed instructions in t
trace —I10, I10, I2, I3 andI5. The first boxed instance ofI10
(marker 1) is actuallynot in the DDT itself, rather it is theDDT
trigger — the instructionafter which the DDT is forked. The
trigger is typically chosen to be the instruction that comput
the last external input to the DDT. In our example, the trigge
I10 provides the only register input to the DDT —r1 which
containsnode. The DDT executes two instances of the loo
induction instructionI10 (node = node->next) (markers 2 and
3), effectively jumping two iterations ahead of the mai
thread, then executesI2, I3 andI5, the computations that lead
from the induction variable to the branch and load.

Our choice of DDT (and trigger) is meant to maximize th
execution advantage, with respect to the critical computatio
the DDT has over the main thread. The main thread and DD
execute in parallel starting from the trigger. To get to the crit
cal computation (marker 3) from this point, the main threa
must fetch 22 instructions while the DDT must only fetch 2
Notice, I3 andI5 computations from the two iterationsimme-
diately followingthe trigger (markers 4) areexcludedfrom the
DDT. Their proximity to the trigger means that a DDT has lit
tle if any advantage over the main thread in sequencing a
executing them. This certainly does not mean that any I3 or
instances are ignored. Each iteration’s critical computation
forked by the induction instruction of two iterations before
Notice, it is possible for a single dynamic instruction (marke
3) to be logically part of multiple DDTs (the ones launche
from markers 1 and 2). Integration ensures that DDTs phy
cally share such instances.

Inside the processor, DDTs arestatically represented by the
data-driven thread cache(DDTC) (marker 5) — a structure
resembling a trace-cache [15]. The DDTC is indexed by DD
trigger PC and represents DDTs as ordered lists of instru
tions. Each DDTC instruction is tagged with its PC becau
PCs are needed to recognize DDT instruction results duri
integration and because DDT instructions are not sequentia

The main thread forks the DDT when it decodes an instance
its trigger instruction,I10 (marker 1). A new hardware context
is allocated to execute the DDT and initialized with a copy o
the main thread’s post-trigger rename map (marker 6). Th
rename-map forkprovides the DDT with a natural and archi-
tecturally precise way to access results produced by the m
thread (via map translations), to allocate storage for its ow
results without affecting main-thread state (by allocating phy
ical registers and changing only its private mappings), and
communicate results among its own instructions (again v
.
at
de
ode.

h-
riti-
le
a
cal
,
”
.

he

es
r

map translations). A similar operation is used (for similar re
sons) in threaded multipath execution (TME) [28]. It also pro
vides a common mapping for starting the integration proces

DDTs are fetched and executed like conventional (contro
driven) traces — performingno explicit control flow. DDT
instructions are not sequential, so control flow has little mea
ing for them. The outcomes of DDT control instructions (like
I3) are saved for later integration but do not affect subseque
DDT instructions. In lieu of explicit control, a DDT may
implicitly represent any control flow (ours contains parts o
two “unrolled” loop iterations). This arrangement simplifie
implementation and prevents runaway cyclic threads, wh
still letting DDTs perform perfectly general computations.

A DDT executes speculatively — its results are not mad
architecturally visible. However, all DDT instruction results
are entered into the physical register file and indexed in
integration table (IT)(marker 7). The IT indexes physical reg-
isters by their dataflow properties — the instruction (PC) an
physical registers used to compute the stored value. The
also contains a target field that remembers the pre-compu
p

n

e
n,
T

i-
d
.

-
nd
I5
is
.
r
d
si-

T
c-

se
ng
l.

of

f
is

ain
n

s-
to
ia

FIGURE 1. Working Example.(Top) Loop with frequently
mispredicted branch and frequently missing load. (Bottom
Execution of parts of four iterations augmented with a
DDT that pre-executes the branch and load computation
The computation results are subsequently integrated.

PC
Instbeq

I3
ldq
I2

ldq
I10

ldq
I10

ldt
I5

ldq r2, 8(r1)
beq r1, I12

beq r2, I10
ldt f0, 16(r1)

mult f1, f2, f3
subt f0, f3, f0
stt f0, 16(r1)

br I1I11:

I9:
I8:
I7:

I4:

ldt f2, 24(r1)I6:
ldt f1, 16(r2)I5:

I1:

I3:
I2:

subt f0, f3, f0
stt f0, 16(r1)

br I1I11:

I9:
I8:

ldq r2, 8(r1)
beq r1, I12

beq r2, I10
ldt f0, 16(r1)

mult f1, f2, f3
subt f0, f3, f0
stt f0, 16(r1)

br I1I11:

I9:
I8:
I7:

I4:

ldt f2, 24(r1)I6:
ldt f1, 16(r2)I5:

I1:

I3:
I2:

beq r1, I12

ldt f0, 16(r1)I4:

ldt f2, 24(r1)I6:
ldt f1, 16(r2)I5:

I1:

5

12

 if (node->neighbor != NULL)
for (node = list; node; node = node->next)

node->value -= node->neighbor->value * node->coeff

ldq r1, 0(r1)I10
ldq r1, 0(r1)I10

beq r2, I10
ldt f1, 16(r2)I5

I3
ldq r2, 8(r1)I2

InstructionPC

P6 - I4I3

DDTC

P5 P6 -I2
P4 P5 -I10
P2 P4 -I10
Pin Pout TgPC

6

I10:

P2r1:
MAP

P2r1:
MAP

P6 - I3I3
P5 P6 -I2

P4 P5 -I10

P2 P4 -I10
Pin Pout TgPC

P4r1:

P5r1:
P6r2:

P6r2: P6 P7 -I5 P5f1:

P6r2:

P5r1:

P4r1:
MAP

P2r1:
MAP

P6 P7 -I5
IT DDT

MAIN THREAD

7

8 9 10

11 13

14

ldq r1, 0(r1)I10:

ldq r2, 8(r1)I2:
beq r2, I10I3:

ldq r1, 0(r1)I10:

ldq r1, 0(r1)I10:
1

4

4

2

3

2

c-

ht

he

en
-
a
u-
he
l-

-
ns
al-
e
ree
e
h
ur
n
te

r-
ns
e

ad

T
ide
s.
ot
s

xt
o
ial
d.

n
e
g
te
targets of control instructions. The IT in the figure contains
description of the dataflow graph of our DDT. Physical regis
ter P4 holds the result ofI10 which was executed with physi-
cal registerP2 (found via lookup in the DDT’s copy of the
map) as input.P5 holds the result of the second instance o
I10 which was computed withP4 as input, and so on.

When the main thread itself starts renaming the critical com
putation, it uses the IT to locate the results of the correspon
ing DDT instructions. For instance, when it renamesI10 the
main thread sees that the input of that instruction isP2 (marker
8). Looking in the IT, the main thread sees thatP4 holds a
value created by instructionI10 with inputP2 (marker 9). The
main thread recognizes P4 as having been created by
instruction that corresponds to the one it is currently renamin
It “claims” this result by mapping the output of the curren
instruction toP4 (marker 10). Its ownI10 is now integrated
and need not re-execute if it has already executed in the DD
Integration proceeds recursively. When it renames the seco
instance ofI10, the main thread sees the recently integratedP4
as its input (marker 11). In the IT, it finds an instance ofI10
with input P4 and outputP5 (marker 12). The input match
results in the integration ofP5 (marker 13), which in turn
enables the integration of I2, and so on. WhenI3 is integrated,
its mis-prediction can be resolved immediately (marker 14).

3 Data-Driven Thread Selection

Data-driven thread selection is a significant factor in determi
ing the performance impact of DDMT. Good DDTs pre-com
pute results that would have otherwise induced pipeline sta
using minimal additional fetch and execution bandwidth. Ba
DDTs pre-compute results that would not have caused sta
do so no faster than a control-driven thread, and slow the s
tem down by consuming too much bandwidth. Our aim in th
paper is to introduce the problem of DDT selection, describe
new metric for estimating the utility of DDT candidates, an
present an algorithm that uses this metric to create DDT ann
tations from program traces.

In this paper, we assume a profile-driven off-line implement
tion that communicates the annotations to the processor via
executable. The same approach is taken by the Multisca
architecture [9, 22]. A hardware implementation of this algo
rithm which would make DDMT entirely microarchitectura
may also be possible. Simple hardware has been proposed
extracting restricted threads [16, 17] and mechanisms for ge
eral threads are currently being investigated.

3.1 Measuring Utility of Data-Driven Threads

Intuitively, a good DDT is one that, when executed in parall
with its corresponding sequential region, will execute the crit
cal computation faster than a control-driven thread executi
the sequential region by itself. To identify good DDTs, w
need to quantitatively estimatea priori the difference in execu-
tion times between a given computation executing in a contr
driven thread and that same computation executing as a DD

We estimate execution times using thefetch-constrained data-
flow-height (FCDH), a composite metric that captures th
effects of both data-dependences and limited fetch bandwid
For conventional dataflow height calculations, the input heig
(DHin) of an instruction represents the time at which th
instruction becomes data-ready and is computed as the m
a
-

f

-
d-

an
g.
t

T.
nd

n-
-
lls
d
lls,
ys-
is
a

d
o-

a-
the
lar
-

l
for
n-

el
i-
ng
e

mum of the output heights (DHout) of those instructions on
which it is data dependent. DHout — the time at which the
instruction is complete — is computed by adding the instru
tion’s execution latency to its DHin. FCDH takes fetch into
account by including a fetch constraint (FC) in the input heig
calculation. FCDHin is the maximum of the output heights
(FCDHout) of an instruction’s dataflow predecessorsand this
fetch constraint — it represents the earliest time at which t
instruction is both data-readyand fetched. Since instruction
distances from the trigger are always lower in a data-driv
context, it is this fetch term which promises that a given com
putation will execute at least as fast as a DDT as it would in
control-driven thread. The fetch constraint (FC) can be calc
lated in several ways; the simple one we use divides t
instruction’s dynamic distance from the trigger by the avai
able fetch bandwidth. FCDHout is computed in the usual way
— by adding the instruction’s latency to its FCDHin. The
FCDH of a DDT is the maximum FCDHout of its instructions.

In Figure 3, we compute the FCDH for the DDT from our run
ning example. For simplicity, we assume that all operatio
have unit latencies. The figure shows two separate FCDH c
culations: one for the control-driven context and one for th
data-driven context. Each computation is represented by th
columns — I# is the instruction’s dynamic distance from th
trigger, FC is computed by dividing I# by the available fetc
width, FCDH is computed using dataflow-rules and FC. O
calculation is for a 4-wide machine so, for the control-drive
calculation, we use a fetch width of 4. However, to simula
the fact that a DDTsharesfetch bandwidth with the main
thread, the data-driven calculation uses a fetch width of 2.

The FCDH computation shows where a DDT gets its perfo
mance advantage. In the control-driven context, instructio
are further away from the trigger. While the DDT fetches th
two instances ofI10 in the cycle immediately following trig-
gering and executes them in cycles 2 and 3, the main thre
must wait until cycle 3 to fetch the first instance ofI10 and
until cycle 6 to fetch the second one. By that time, the DD
has fetched and executed the entire computation. On a 4-w
machine, this DDT accelerates the critical results by 4 cycle
Repeating these calculations for an 8-wide machine (n
shown), we find that doubling available fetch bandwidth doe
not help the DDT but greatly helps the control-driven conte
for which critical computation execution time drops from 9 t
6 cycles. DDTs attack the control-driven thread’s sequent
fetch constraints — they themselves are not fetch boun
Wider fetch is a brute force attack on the same problem.

The FCDH metric is intuitive. However, it oversimplifies the
control-driven model by ignoring sources of control-drive
fetch under-utilization and the nature of the other work in th
main thread. It oversimplifies the data-driven model, ignorin
contentious parallel execution. Unfortunately, more accura
estimates require detail equivalent to full simulation.
ol-
T.

e
th.
ht
e
axi-FIGURE 2. Calculating FCDH for a DDT.

ldq r1, 0(r1)I10
ldq r1, 0(r1)I10

ldq r1, 0(r1)I10
ldq r2, 8(r1)
beq r2, I10
ldt f1, 16(r2)I5

I3
I2

11
0

22

28
26
25

1
0

2

5
3
3

3
0

6

7
7
7

1
0

1

3
2
2

4
1

7

9
9
8

I# I#FC FCFCDH
Data-Driven

2
1

3

5
5
4

FCDH
Control-Driven
3

-
n
vi-
he
be

nt.
h.

at
i-

ng
lk
ult
c-
s
e

ead
mic
l
o-

cal
o

is
al
T
-

T
ead
n-
nd
FIGURE 3. DDT Selection Algorithm. The algorithm
makes three bottom-to-top passes, each time includin
fewer critical instruction instances, until it finds a DDT
that provides a sufficient execution (FCDH) advantage.

ldq r2, 8(r1)
beq r1, I12

beq r2, I10
ldt f0, 16(r1)

mult f1, f2, f3
subt f0, f3, f0
stt f0, 16(r1)

br I1I11:

I9:
I8:
I7:

I4:

ldt f2, 24(r1)I6:
ldt f1, 16(r2)I5:

I1:

I3:
I2:

subt f0, f3, f0
stt f0, 16(r1)

br I1I11:

I9:
I8:

ldq r2, 8(r1)
beq r1, I12

beq r2, I10
ldt f0, 16(r1)

mult f1, f2, f3
subt f0, f3, f0
stt f0, 16(r1)

br I1I11:

I9:
I8:
I7:

I4:

ldt f2, 24(r1)I6:
ldt f1, 16(r2)I5:

I1:

I3:
I2:

beq r1, I12

ldt f0, 16(r1)I4:

I1:

PROGRAM TRACE

7

6
7

CD DD
FCDH

6

5

4
5

4

3

3

1

1

9

8
8

7

6

5
5

5

3

2

1

1

6
CD DD

FCDH

5

4
5

4

3

3

1

1

9

6

5
5

5

3

2

1

1

5
CD DD

FCDH

4

3

3

1

1

9

6

3

2

1

1

PASS #1 PASS #3PASS #2

5

6

1

2
3

4

7

10

ldq r1, 0(r1)I10:

ldt f1, 16(r2)I5:

beq r2, I10I3:
ldq r2, 8(r1)I2:

ldq r1, 0(r1)I10:

ldq r1, 0(r1)I10: 98
-
ct
er
i-
ur

of
)
].
a

ly
ion
-
o

t-
e
nd
ut
c-
g

3.2 Extracting Threads from a Program Trace

We now present an algorithm for extracting static DDT ann
tations from program traces. The algorithm is illustrated
Figure 3. Input to the algorithm is a program trace on whic
all critical load instances that miss in the cache and all misp
dicted critical branch instances are marked. The trace is a
marked with all load and store address which are needed
establish memory dependences.

The algorithm constructs a DDT candidate for every mi
behaving instance of a critical instruction (marker 1). A DDT
candidate is built by walking backwards through the trace a
adding any instruction that (a) is itself a misbehaving instan
of a critical instruction (marker 2) or (b) satisfies an active re
ister or memory dependence for an included instruction, i
writes to a register or a memory location that is read by a
instruction in the DDT candidate (marker 3). When a
instruction is added, the dependence it satisfies is deactiva
and its own input dependences are added.

Adding instructions to DDTs is simple. The key to the algo
rithm is figuring out when to stop. Essentially, we want to fin
the DDT for which a data-driven engine has the largest exec
tion time advantage over a control driven engine. The FCD
was designed to answer this exact question. Whenever we
an instruction to our DDT candidate, we compute the FCD
of the newly created DDT (i.e., the DDT that assumes the ne
g

o-
in
h

re-
lso
to

s-

nd
ce
g-
.e.
n

n
ted

-
d
u-
H
add
H
w

instruction is the trigger) in both the control-driven and data
driven contexts. If the difference between the control-drive
and data-driven FCDH is greater than any other such pre
ously computed difference, the new instruction becomes t
trigger (marker 4) and the search continues for what might
an evem better DDT (marker 5).

The search for ever better DDTs must itself stop at some poi
We use two criteria to determine when to stop the searc
First, the algorithm considers atrace windowof only the 1024
most recent instructions. The reason for this restriction is th
a DDT instructions that are moved too far ahead of their arch
tectural location in the program consume storage for too lo
before they are eventually integrated. As it turns out, the bu
of a computation for a given result happens close to that res
[30] so this particular constraint is rarely activated. The se
ond criterion, a hard limit on the total number of instruction
in the DDT, is activated much more frequently. The purpos
of this restriction is to limit DDT overhead.

To give thread selection the best chance to succeed, the thr
constructor repeats the selection process for each dyna
instance multiple times, each time allowing fewer critica
instructions to be added along the way. In the figure, the alg
rithm makes three passes over the trace, adding criti
instructions from three iterations (marker 5), then from tw
(marker 6), and finally from one (marker 7), building a new
DDT each time (markers 8, 9 and 10, respectively). Th
enhancement leads to the discovery that including the critic
branch and load from a single iteration gives a better DD
(marker 10) than including computations from multiple itera
tions (markers 8 and 9).

When the program trace is completely processed, the DD
candidates are pruned based on relative frequencies. Thr
selection can be tuned using maximum DDT size, trace wi
dow size, control- and data- driven width parameters a
FCDH difference threshold.

This algorithm finds fairly good DDTs.Optimal DDT selec-
tion is a combinatorial problem where the inclusion of a com
putation in a DDT must consider not only the resource impa
on the main thread but also the fetch delay induced in oth
computations in the DDT. DDT overlap, overhead, and likel
hood of eventual integration are additional factors that o
algorithm accounts for only implicitly.

4 Hardware Implementation

In this paper, we propose and present an implementation
DDMT that builds on a simultaneous multithreading (SMT
[27, 29] processor like Compaq’s announced Alpha 21464 [7
In addition to multiple sequencers, an SMT processor has
centralized implementation that allows resources to be flexib
shared among several threads. Flexible resource allocat
lowers the run-time cost of DDTs by letting them “steal” what
ever bandwidth the main thread is unable to exploit. It als
allows us to conduct a fair evaluation of DDMT by construc
ing DDMT and non-DDMT systems with identical resourc
and bandwidth budgets. The shared physical register file a
register renaming also support integration. We do not rule o
other implementations. Other multithreaded microarchite
tures, including decentralized ones like chip multiprocessin
(CMP) [13], can support DDMT, albeit with a different imple-
mentation of integration or perhaps no integration at all.
4

).
s.
in

T

r
va-

er
g

-
es
lly

e
al
is-
s
ese
g-
ca-
h
or
’t
e
rs

n-
al
ker
d
is-
the
a

se
m
er
ti-
e
a

i-

d
ts
er
of

ins
4.1 Life Cycle of a Data Driven Thread

Figure 4 shows an SMT pipeline enhanced to support DDMT.
The shaded structures and bold paths are DDMT-specific addi-
tions and modifications. Shaded slots in conventional struc-
tures indicate that DDT instructions may occupy these
structures. The important events in the life of a DDT and its
instructions are marked and numbered.

A DDT is dynamically “born” when an instance of its trigger
instruction is renamed in a control-driven thread (marker 1).
Implicit in this statement is the restriction that DDTs cannot
launch other DDTs. This measure is also taken in an attempt
to contain overhead since the alternative could potentially cre-
ate a DDT explosion. Trigger instructions can be recognized
using either pre-decode bits or a small lookup table. The deci-
sion regarding which pipeline stage should fork DDTs is actu-
ally fairly important. Forking a DDT early maximizes its fetch
advantage over the control-driven main thread and the latency
it can “absorb.” However, early forking also increases the
probability that the trigger instruction is itself mis-speculated
and that the DDT is falsely forked. Empirically, forking DDTs
at fetch produces many false DDTs that, although they can be
detected and aborted, consume a significant amount of fetch
bandwidth. In our implementation, DDTs are forked at the
rename stage, reducing false squashes by roughly 50% while
delaying DDTs by a relatively small fixed amount. Reducing
this overhead much further requires waiting for the trigger
instruction to retire to fork DDTs and potentially incurring
much longer delays.

A forked DDT must be initialized with an execution context.
This context is a copy of the control-driven register map as it
appears immediately after the renaming of the trigger instruc-
tion (marker 2). As mentioned in Section 2, this copy allows
the DDT to pick up external values using register renaming
and synchronizes the DDT and main thread with a common
mapping that will later be used to start the integration process.

In parallel with the map copy operation, the thread controller
begins scheduling the new DDT for fetch (marker 3). In our
implementation, instructions from only one thread are fetched
in any cycle. The thread control uses a modified ICOUNT
[26] policy to decide which thread has control of fetch in a
given cycle. The chosen thread is the one that has the fewest
total entries in the instruction fetch queue (IFQ) and reserva-
tion stations (RS). Reorder buffer (ROB) occupancy is not
used because DDT instructions are not allocated ROB entries.

DDT instructions are fetched out of the data-driven thread
cache (DDTC) (marker 4) and placed into the IFQ. Upon exit
from the IFQ, DDT instructions are renamed and entries for

them are created in the integration table (IT) (marker 5
These actions are, in fact, not particular to DDT instruction
All instructions are renamed, and all are created new entries
the IT — unless an entry for them is already found in the I
which is the subject of the Section 4.2.

After renaming, DDT instructions are sent to the out-of-orde
execution engine (marker 6) where they are allocated reser
tion-station slots (RS). However, unlike control-driven
instructions, DDT instructions are not allocated reorder buff
(ROB) slots, nor are they entered into the memory orderin
buffers (LDQ, STQ). DDT instructions do not affect architec
tural state until they are integrated. In-order retirement do
not need to be enforced for them because they do not rea
retire. For a unified physical register file organization, lik
that of our SMT, the ROB also controls the freeing of physic
registers — an instruction’s retirement frees the physical reg
ter previously mapped to its output. DDT instructions — a
long as they have not been integrated — do not share th
semantics. When DDT instructions are allocated physical re
isters, the physical registers previously mapped to these lo
tions either belong to control-driven instructions, in whic
case the control-driven ROB is responsible for freeing them
by previous instructions in the DDT, in which case we don
want to free them — we want to integrate them! In lieu of th
ROB, the integration table (IT) controls the freeing of registe
allocated by DDT instructions.

DDT instructions issue from the reservation stations like co
ventional instructions, reading from the same pool of physic
registers and executing on the same functional units (mar
7). The only difference is in the handling of DDT loads an
stores. DDT loads and stores cannot really be ordered or d
ambiguated and hence they have no need to occupy slots in
memory ordering queues. However, there is a need for
mechanism to provide store-to-load forwarding for DDT
instructions, without sending DDT stores to the cache. We u
a variation of the speculative memory cloaking mechanis
[12] for this purpose. DDT stores are entered into a buff
where their address/value pairs are marked with a DDT iden
fier. DDT loads probe this structure in parallel with cach
access, potentially picking up a value from a store with
matching address/identifier pair (marker 8).

Completed DDT instructions write their results into the phys
cal register file and forward them to other waiting DDT
instructions. When a completed DDT instruction is remove
from the execution engine, the only remaining record of i
existence is its IT entry which marks the physical regist
holding the result it computed. The second phase in the life
a DDT begins when the main thread that spawned it beg
renaming the instructions corresponding to the DDT.
ey are

FIGURE 4. Hardware Implementation Aspects.Logical block diagram of a data-driven multithreading enabled SMT
processor. In an actual implementation, the rename tables, instruction buffers and re-order buffers would be shared. Th
distributed for illustration purposes. DDTC is the data-driven thread cache. CT is the cloaking table.

CT

LRM1

Instruction

DDT
Cache

CachePC1

BPred

Thread

Integration

LRM0 FU

FU

AGU

AGU

Data
CacheLDQ

STQ

RS PREG

ROB

IFQ

PC0

1

3

4

2

5

6
8

9

7

10
5

n

es

es.

are

es-

t
in

ns.

res
y

uc-

its
sly

et
ns.
to

v-
f

to
te-

ld
wo

n
in
me
The working example in Figure 1 showed the integration pr
cess in detail. As the control-driven main thread renam
instructions, it matches mappings found in its own map tab
with ones in the IT to locate the physical registers holding th
results previously computed by corresponding DDT instru
tions. If a physical register is found, the main thread remaps
as the output of the current control-driven instruction (mark
9). The post-rename handling of an integrated instruction
exactly the opposite of that of a DDT instruction. An inte
grated instructionis entered into the ROB (marker 10) and
memory ordering queues (LDQ,STQ) so that it can be order
with respect to other control-driven instructions, but it isnot
allocated a new reservation station because it is either co
plete or already sitting in a reservation station allocated to it
its DDT execution. When a completed branch that was in
tially mis-predicted is integrated, recovery starts immediate
expediting the fetch of correct-path instructions and relievin
some of the demand on the fetch engine.

4.2 Integration

The integration mechanism incorporates results from DD
instructions directly into the main thread, sparing the ma
thread the task of re-executing the work. With integration,
DDT can perform entire computations on behalf of the ma
thread. Without it, a DDT can impact performance only ind
rectly, for instance by prefetching. However, integration
more general than that — it is a mechanism for sharing a
reusing results among the different execution contexts of a s
gle program. Previous work has described integration as
mechanism for implementing squash reuse, salvaging res
that were unnecessarily lost due to a sequential mis-specu
tion recovery [18]. The enabling principle for that applicatio
is the same one we exploit here. An instruction instance a
its result are unambiguously identified by the identity of th
creating instruction and the physical registers used as inputs
the operation. Any subsequent matching instruction that h
the same input physical registers must, by definition, be a
executed instance of the original instruction and can, by t
same token, claim the result as its own. Integrating a res
into a new execution context involves only updates to th
appropriate context mappings. Integration does not requ
reading from or writing to the physical registers themselves

Our previous work on integration-based squash reuse [1
describes the mechanics of integration in detail — the requi
ments of the base microarchitectures, the integration algorith
and circuit, the structure of the integration table, and a snoo
ing based solution for guaranteeing the safe integration
loads. We will not go into these details here.

Now we describe a new underlying framework for integratio
that combines squash reuse with the DDT reuse that is a c
tral feature of DDMT. Aspects of this framework are shown i
Figure 5. One feature of this framework is that it allows inte
gration to proceed in several directions. Obviously, contro
driven threads may integrate both squashed results and D
results. A natural extension of this is that DDT instruction
can be integrated, then subsequently squashed and re-i
grated! However, our framework also allows DDT instruc
tions to integrate main thread results as well as results fro
other DDTs. These two capabilities are useful because th
ensure that DDT results can still be integrated in situatio
where two DDTs partially overlap and in the event that th
main threadtemporarily runs ahead of a DDT.
o-
es
le
e

c-
it

er
is

-

ed

m-
 in
i-

ly,
g

T
in
a
in
i-
is
nd
in-

a
ults
la-

n
nd
e
to

as
re-
he
ult
e
ire
.

In our framework, the integration table (IT) assumes the duti
of the free list manager and contains entries forall physical
registers, not only the ones that are integration candidat
Each physical register is in one of five states:Free, coMmitted,
Control-driven,Data-driven,or Squashed. The states and the
processor actions that effect the transitions between them
shown at the top of the figure. TheF, M, andC states, shown
in light gray, are the basic physical register states of a proc
sor that does not implement integration. Registers in theF
state are unmapped, those in theM state are mapped to the las
committed instances of the architectural registers, and those
theC state are mapped to the outputs of the active instructio

An implementation of integration-based squash reuse requi
the addition of theS state and the corresponding dark gra
transitions. Rather than transition into theF state on mis-
speculation recovery, registers allocated to squashed instr
tions remain mapped and transition into theSstate where they
can subsequently be integrated back into theC state. Since the
only pointer to a register in theSstate may be in the IT, if it is
not eventually integrated no execution event can trigger
freeing. To prevent leakage, a register can be spontaneou
reclaimed from theS to theF state.

DDT integration requires the addition of theD state, which
marks all registers that were allocated by DDTs and have y
to be integrated into the main thread, and the black transitio
Registers in theD state can also be spontaneously reclaimed
theF state, for reasons similar to those stated above.

The bottom of Figure 5 expands on the register transitions ha
ing to do with integration. Rows correspond to the type o
instruction attempting to perform the integration, columns
pre-integration register state, and table entries to the post-in
gration register state. Registers in theF or M state cannot be
integrated for obvious reasons. A register in theC state cannot
be integrated by a control-driven instruction since that wou
create a situation with a single physical register mapped to t
main thread instructions simultaneously! AC state register-
canbe integrated by a DDT instruction, but it must remain i
the C state to avoid the aforementioned case. Instructions
theS andD states can always be integrated and these assu
the state of the integrating instruction.
8]
re-
m
p-
of

n
en-
n
-
l-
DT
s
nte-
-
m
ey

ns
e

FIGURE 5. Integration Framework. (Top) Physical
register state transition diagram. States and transitions
belonging to conventional processors are in light gray.
Integration based squash reuse integration adds those i
darker gray. DDT integration adds those in black.
(Bottom) Integration specific transition rules.

F

FD

C

M

S Com
mit

Overwrite
Initialize mapped

Initialize unmapped

Squash

Al
lo

ca
te

Integrate

In
te

gr
at

e

Integrate

Allocate

Sq
ua

sh

Reclaim

Rec
lai

m

M C S D
Physical Register State

-
- - C C

- - C D D

F = free
M = committed
C = control-driven
S = squashed
D = data-driven

Data-Driven Instruction
-Control-Driven Instruction -
6

d
cy
-

ere
ce

0

k-
iza-
ll
es
nt

T.
a

B
of
64
.
e-
T

in a

of
if-
en
ng
l-
or
n
e-

the
of
5 Performance Evaluation

In this section, we evaluate the performance potential of
DDMT in two roles — reducing the observed latency of first-
level data cache misses and reducing the resolution latency of
mispredicted branches. Our baseline system is an 8-wide
SMT similar in spirit, but perhaps not in internal organization,
to the Alpha 21464 [7]. The DDMT system also includes a
DDTC and cloaking table. We do not model the effects of
DDMT on processor cycle time or pipeline depth.

It is difficult, and perhaps improper, to simulate DDT integra-
tion — the integration of DDT instructions by the main thread
— without simulating squash reuse integration as well. In
order to correctly attribute performance to DDMT and DDT
integration, our base processor configuration simulates inte-
gration-based squash reuse. For performance reporting pur-
poses, the number of integrated DDT instructions is equal to
the number of committed instructions whose physical register
outputs were allocated by DDTs. DDT instructions that are
integrated and squashed are not counted, while DDT instruc-
tions that are integrated, squashed, and integrated again (via
squash reuse) are counted only once.

5.1 Methodology

The benchmarks we use are a collection of programs selected
from the SPEC2000 and Olden pointer-intensive benchmark-
suites. The Olden programs,em3d, bhandmst, are in essence
microbenchmarks, executing a single algorithm on a synthetic
input. Their relative simplicity allows correlations to be
clearly drawn between DDT metrics and performance and
trade-offs to be clearly explored. At the same time, their com-
plexity is high enough to fully exercise the thread selection
algorithm. Programs are selected for their (relatively) high
branch misprediction or data-cache miss rates. The programs
are compiled for the Alpha EV6 architecture by the Digital
UNIX V4 cc compiler with optimizations-O3 -fast . All
programs are simulated in their entirety. The DDT selection
algorithm permits a maximum DDT length of 32 instructions
and considers only misbehaving instances as potential DDT
candidate seeds. FCDH metrics are computed using control-

and data- driven fetch widths of 8 and 4, respectively, an
assuming a 10 cycle latency for critical loads, a 3 cycle laten
for non-critical loads and a 1 cycle latency for all other instruc
tions. The DDT selection phase uses a smaller and, wh
possible, different input data set than the DDMT performan
measurement phase.

Our cycle-level simulator is built using the SimpleScalar 3.
[3] Alpha toolkit. We model an SMT processor with full out-
of-order speculative execution, register renaming, non-bloc
ing caches, finite miss resources and cycle accurate bus util
tion. We simulate 4 hardware contexts that share a
bandwidths and resources. Our DDMT configuration execut
a single control-driven thread and up to three concurre
DDTs. Table 1 shows the simulation parameters in detail.

Our base microarchitecture makes two concessions to DDM
First, it has a large number of physical registers, 512, where
machine with 64 architectural registers and a 128-entry RO
would need only 196. Second, it supports a large number
outstanding cache misses, 64, where a machine with only
loads simultaneously in-flight typically provides for fewer
The extra registers hold DDT results as they wait to be int
grated. The extra miss resources reflect the fact that DDM
can overlap many cache misses that cannot be overlapped
purely sequential machine.

5.2 Targeting Cache Misses

Our first experiment uses DDMT to target the latencies
loads that miss in the first level data-cache. Although a sign
icant portion of second level cache hit latency can be hidd
by a machine with 128 instruction lookahead and reorderi
capability, DDMT can further increase memory-level paralle
ism (MLP) by overcoming sequencing constraints. Results f
six benchmarks are summarized in Table 2. All the instructio
quantities are dynamic and counted in millions of events. Ex
cution time savings range from 4.1% forparser to 24.8% for
mst.

The other metrics support these numbers. Load latency is
average difference between the issue and completion times
.

d.
e-

-

y

h

Front End 16K entry combined 10-bit history gshare and 2-bit predictors. 2K entry, 4-way associative BTB. 3-stage
fetch. 32-entry instruction buffer. Up to 8 instructions from two cache blocks fetched per cycle with a max-
imum of one taken branch per cycle. Up to 4 hardware contexts share the fetch engine on a cycle basis
Each cycle, instructions are fetched from the active thread with the fewest instructions in the fetch queue
and reservation stations.

Execution
Engine

8-way, out-of-order, speculative issue with a maximum of 128 instructions or 64 loads or 32 stores in-flight.
80 reservation-station slots. 512 physical registers. 2 cycle decode/register-rename. 2 cycle register rea
Loads speculatively issue in the presence of earlier stores with unknown addresses. The load and subs
quent instructions are squashed and refetched on a memory ordering violation. A 64-entry collision history
table (CHT) synchronizes loads that mis-speculated in the past. 1 cycle address generation. 2 cycle store
to-load forwarding. Loads and branches have the highest scheduling priority. Scheduling priority within a
group is determined by age.

Memory
System

32KB, 32B lines, 2-way associative, 1 cycle access first level instruction cache. 64KB, 32B lines, 2-way
associative, 2 cycle access, first level data cache. A maximum of 64 outstanding load misses. 16-entr
store buffer. 16-entry ITLB, 32-entry DTLB with 30 cycle hardware miss handling. Shared 1MB, 64B line,
4-way associative, 12 cycle access second level cache. 70-cycle memory latency. 16B per cycle bandwidt
to the L2 cache and 8B per cycle bandwidth to main memory. Cycle level bus utilization modeled.

Execution
Units

8 int ALU (latency = 1), 3 int mult (3), 3 int div (20), 4 FP add (2), 3 FP mult (4), 3 FP div (24), 4 load/store
(3) . The FP adders and all multipliers are fully pipelined.

DDMT
Support

16-entry, 1 cycle access data-driven thread cache (DDTC) with a maximum of 32 instructions per DDT. Up
to 8 data-driven instructions from a single DDT fetched per cycle. 16-entry cloaking table.

TABLE 1. Simulated machine configuration.
7

77
.46
2
4

5
7

0

0
4

6
5

5

6
2

ds
ys-
y
ts
e

ect,
es

f
d.
of

rk
v-
ut
e.
se-
he

as

e-

l,
y

y.
ar-
t
fi-
parser mcf gzip vpr em3d mst
Instructions committed (M) 4203.56 259.62 3367.27 692.50 67.75 230.
Base Instructions fetched (M) 8358.33 529.39 5883.09 1304.95 124.64 232

Load latency (cycles) 5.48 12.43 3.41 3.86 11.39 20.2
MSHR occupancy (/cycle) 1.49 3.23 0.83 1.70 9.42 2.4

Base +
DDMT

DDTs forked (M) 15.85 4.06 26.28 10.19 0.72 0.53
Instructions
fetched (M)

Ctrl-driven 8351.17 466.88 5203.62 1249.14 110.77 232.3
Data-driven 380.18 108.08 671.02 151.80 21.17 15.9

Instructions
integrated (M)

Total 109.68 34.44 269.20 41.27 7.15 14.45
Completed 105.73 32.01 248.52 40.81 4.99 9.7

Critical loads
integrated (M)

Total 15.60 6.18 22.43 5.36 3.87 4.09
Completed 11.67 4.99 13.80 5.09 2.34 1.66

Load latency (cycles) 4.20 7.45 3.11 3.36 8.30 14.8
MSHR occupancy (/cycle) 1.49 3.81 1.05 1.87 10.80 3.1
Execution time saved (%) 4.1 9.2 15.4 12.0 15.9 24.8

TABLE 2. Using DDMT to pre-execute loads that miss in the L1 cache.

em3d-1 em3d-2 em3d-3 mst-1 mst-2 mst-3
Base +
DDMT

DDTs forked (M) 0.72 0.68 0.69 0.53 0.53 0.53
Instructions
fetched (M)

Ctrl-driven 110.77 109.68 109.24 232.35 232.29 232.2
Data-driven 21.17 20.49 21.32 15.97 17.56 19.1

Instructions
integrated (M)

Total 7.15 8.93 9.59 14.45 14.41 14.39
Completed 4.99 7.00 8.73 9.70 11.60 12.3

Critical loads
integrated (M)

Total 3.87 4.92 5.31 4.09 4.08 4.07
Completed 2.34 3.50 4.62 1.66 2.40 2.79

Load latency (cycles) 8.30 6.05 3.90 14.80 11.71 9.7
MSHR occupancy (/cycle) 10.80 11.36 11.88 3.14 3.62 4.0
Execution time saved (%) 15.9 21.1 23.1 24.8 37.5 44.9

TABLE 3. Effect of induction variable unrolling on DDT latency tolerance and performance impact.

head associated with DDTs. We approximate the full effect of
DDT resource contention by comparing the number of instruc-

ily forks a fair number of DDTs using trigger instructions tha
turn out to lie along mis-speculated paths. The more signi
everycommittedload. The baseline load latency for our pro-
cessor is 3 cycles — 1 cycle to compute an address and 2 to
either hit in the first level cache or the store-queue. However,
with integration, average load latency can actually drop below
this number. DDT loads that are integrated after completion
and subsequently committed contribute an observed latency of
zero. MSHR occupancy, a measure of MLP, is the per-cycle
average number of in-flight cache misses. In all cases, DDMT
reduces load latency while increasing miss overlapping. Ide-
ally, DDMT would not generate any new and unnecessary
cache misses, and the increase in MSHR occupancy simply
reflects the same number of misses divided by a shorter execu-
tion time. This indeed appears to be the case in most of the
benchmarks. One exception ismcf for which some unneces-
sary misses are generated.

The reduction in sequentially observed load latency does not
always translate directly to performance. One factor is the nat-
ural latency tolerance that exists in programs. The latency of
some loads may be naturally hidden by branch mispredictions,
other long latency loads, or simply other parallel work.
Attacking the, albeit long, latency of these loads will not
improve performance. An interesting and important extension
to this work would be to narrow its focus to only loads whose
latency actually determines performance [24].

A more significant factor that limits performance is the over-

tions fetched by each system. Overall, the use of DDTs ten
to increase the total number of instructions fetched by the s
tem, albeit not significantly as the main thread typicall
fetches fewer wrong path instructions. There are two effec
here. First, reducing load latency reduces the resolution tim
of branches that depend on these loads. The dominant eff
however, is simple fetch contention — the main thread fetch
fewer instructions while waiting for branches to resolve.

One troubling statistic is the relatively small number o
fetched DDT instructions that are eventually integrate
Table 2 lists integration counts broken down by the status
the DDT instruction at the time it was integrated. DDT
instructions integrated after completing have done useful wo
on behalf of the main thread. Instructions integrated after ha
ing issued but before completing contribute some work, b
empirically very few instructions are integrated in this stat
Integrated instructions that have not issued are essentially u
less, because they did not save the main thread any work. T
integration of these instructions indicates that the DDT w
trying to do the right thing, but didn’t have sufficient time in
which to do it. The integration rates we observe can som
times be very high (mst), but are often lower than 30%. Inte-
gration rates for completed instructions are lower stil
although most DDT instructions do complete by the time the
are integrated. Two factors contribute to this inefficienc
First, our choice to fork DDTs at the rename stage unnecess
8

ut-
on
e
o
g
ure

re
n
een
e
ed
e-
is

n.
r-

u-

in
a-
c-
or

n-
e-
g
e-
for
er-
e-
on
er-
nd
re

.44
6.08
0
28
2
1
4

0

98
cant factor, however, is inherent in the implicit control struc-
ture of DDTs themselves. A DDMT processor implicitly
predicts upcoming instances of a critical instruction by the
appearance of its DDT’s trigger. Such speculation is not
always correct — a dynamic instance of a trigger instruction
doesnot necessarilyimply that a dynamic instance of the cor-
responding critical instruction is forthcoming. However,
absent control flow, a DDT cannot deduce this fact and is
forced to execute all computations within it, even ones from
which the main thread has diverged. Note that this isnot the
same as saying that DDT efficiency is tied to the branch pre-
diction accuracy in the main thread — in fact, efficiency may
increase with decreased prediction accuracy. However, while
our DDTs and forking procedure are fundamentally specula-
tive, no alternatives are obvious at this time.

Our example from Figure 1 showed a DDT that uses two
instances of a loop’s induction step (node = node->next) to over-
lap the control-driven execution of a computation with a DDT
execution of one from two iterations ahead. This idiom,
which we callinduction unrolling, is quite powerful. By add-
ing a single loop induction to the head of a DDT, we increase
its latency-tolerance capability by one loop iteration. When
the cost of an induction is low in terms of instructions and exe-
cution time, we have the flexibility to create DDTs that can
tolerate nearly arbitrary latencies!

Table 3 shows the effectiveness of induction unrolling using
the programsem3dandmst. Both programs have inexpensive
induction operations — pointer-chases that hit in the cache.
The table shows the performance impact of three DDTs for
each program — using one, two, and three unrolled induc-
tions, respectively. Mst exhibits the classic behavior. The
number of instructions fetched by DDTs is progressively
higher, mirroring the larger size of each DDT, while the num-
ber of integrated DDT instructions is constant. However, the
number ofcompletedinstructions integrated grows with each
additional induction, while average load latency decreases and
total execution time decreases.Em3d’s behavior is similar.
However, its variable loop iteration sizes mean that moving
DDTs further ahead of their architectural iterations increases
the likelihood that the control-driven thread will integrate the
DDT and not vice versa.

5.3 Targeting Branch Mispredictions

Our second experiment uses DDTs to pre-compute the o
comes of frequently mispredicted branches. This applicati
is particularly attractive because, in addition to expediting th
fetch of correct-path instructions, it has the potential t
directly reduce the number of instructions fetched alon
mispredicted paths and alleviate some of the fetch press
created by DDMT itself.

Accelerated branch resolution results for six benchmarks a
shown in Table 4. The branch misprediction resolutio
latency is calculated as the average number of cycles betw
the misprediction of a branch and its completion. For th
DDMT system we also measure the number of mispredict
branches resolved by integrated DDT instructions. A mispr
dicted branch that integrates a completed DDT instruction
resolved instantly, for these DDMT accomplished its missio
Integration of non-completed branches may still improve pe
formance if most of thecomputationof the branch has been
completed by the DDT.

For the branch pre-computation application, we obtain exec
tion time savings in the range of 0.4% forcrafty to 12.9% for
gzip. These savings are in proportion with the reductions
misprediction resolution latency. As projected, this applic
tion of DDMT sometimes reduces the total number of instru
tions fetched by the system. Not surprisingly, programs f
which this is the case —gzip, em3dand bh — observe the
greatest benefit.

Our work investigates the performance impact of integratio
based branch resolution. With integration matching pre-ex
cuted DDT instruction instances with their correspondin
dynamic main thread instances, the early resolution of int
grated branches is an application that comes essentially
free. However, integration-based branch resolution is not p
fect — it cannot resolve mispredictions earlier than the int
gration stage itself. At its best, integration-based resoluti
can lower the misprediction penalty to a constant fetch-reste
ing penalty plus the pipeline distance between prediction a
renaming/integration. Technically, since branch outcomes a
pre-computed in advance, theycouldbe sent to their dynamic
eon crafty gzip vpr em3d bh
Instructions committed (M) 458.29 4264.77 3367.27 692.50 67.75 977
Base Instructions fetched (M) 710.58 7082.44 5883.09 1304.95 124.64 233

Branch mispredictions (M) 3.98 31.78 16.02 4.78 0.73 10.9
Resolution latency (cycles) 15.35 16.21 29.94 47.48 28.90 39.

Base +
DDMT

Threads forked (M) 3.06 21.76 29.27 10.41 0.69 39.4
Instructions
fetched (M)

Ctrl-driven 687.23 6949.68 5228.01 1215.61 108.51 1943.9
Data-driven 26.08 183.66 565.41 133.10 18.52 294.2

Instructions
integrated (M)

Total 6.11 28.38 312.58 41.19 3.00 29.69
Completed 4.69 24.96 273.06 32.23 2.91 16.6

Critical instr’s
integrated (M)

Total 7.12 3.60 18.11 3.49 0.31 5.52
Completed 3.66 3.13 14.63 3.07 0.31 2.43

Mispredictions
integrated (M)

Total 0.29 0.74 4.79 0.69 0.12 2.37
Completed 0.17 0.68 2.60 0.58 0.12 1.10

Resolution latency (cycles) 14.81 16.02 21.39 44.51 18.94 32.
Execution time saved (%) 1.2 0.4 12.9 5.3 11.5 7.1

TABLE 4. Using DDMT to pre-compute outcomes of branches that are likely to be mispredicted.
9

e-
nd
n
se
ys
ed

int,
e

the
in
d.

ch
n-
r,

r

ad
,
re
hat
e
s.
vi-
T
n
y
e
so

uc-
est

it
o
g
ta-

65

0
6

4

4

9

7

6

instances earlier in the pipeline, perhaps as early as the branch
predictor itself. In fact, several mechanisms for doing just that
have already been proposed [4, 8, 17]. However, without the
benefit of relying on dynamic data-dependences which are not
available that early in the pipeline, these techniques must
match pre-computations to dynamic branches in ad hoc ways
that may actually introduce mispredictions! Integration-based
resolution may not be able to lower the misprediction penalty
as much as these mechanisms, but the nature of integration
guarantees that it will not introduce any mispredictions.

5.4 Sequencing and Integration Contributions

In the introduction we claimed that data-driven sequencing,
the ability to sequencethrough critical computations faster
than a control-driven thread, is an important performance
enabling aspect of DDMT — simply prioritizing critical com-
putations while using conventional sequencing is insufficient.
We also maintained that integration is important, especially for
order-sensitive uses of DDMT like early branch resolution.
We now quantitatively support these claims by attributing the
performance of DDMT to each factor. The results are reported
in Table 5. For space reasons, we include results for atotal of
six benchmarks, three from each initial experiment.

To measure the importance of data-driven sequencing, we sim-
ulate the program using the DDT annotations asprioritization
hintsto the scheduler rather than as templates for actual DDTs.
As we suspected, critical-computation priority-scheduling in
hardware is largely ineffective and sometimes harmful. Priori-
tizing parts of critical computations that are already in the
instruction window does not increase parallelism and may
delay execution of the oldest instructions in the machine, pre-
venting them from retiring and freeing up slots for future
potentially critical computations. DDMT’s power arises from
its ability to expose parallelism by using data-driven sequenc-
ing to increase the effective scheduling window.

To quantify the contribution of integration, we repeat our
experiments but do not integrate the work performed in the
DDTs. Squash reuse integration is still performed. Intuitively,
integration plays a bigger role in the pre-execution of branches

than in the pre-execution of loads. Most of the impact of pr
executing a cache miss comes from the prefetching effect a
integration provides only modest additional gains. Integratio
is more important for fast branch resolution, however, becau
every cycle added to the misprediction penalty directly dela
the processing of future correct path instructions. Accelerat
branch resolution does not provide much (gzip) if any (eon)
benefit in the absence of integration. One Table 5 data po
em3d, seems to contradict this assertion. The effect w
observe here stems from the fact thatem3d’s branch computa-
tions contain, via data-dependences, loads that miss in
cache. The branch computations prefetch the loads which
turn expedite dependent branch execution in the main threa

The synergy of DDMT and integration extends beyond bran
resolution. In fact, it is the presence of integration that ofte
times makes certain kinds of DDTs profitable. In particula
induction unrolling relies heavily on integration, specifically
DDT-to-DDT and main thread-to-DDT integration. Conside
a DDT that unrolls 5 induction copies. If a copy of this DDT
is forked at every iteration, then each dynamic main thre
induction actually resides in 5 DDTs. Without integration
each DDT would have to compute its 5 induction steps befo
reaching the actual computation of interest — a process t
would take at least 5 cycles or more if the induction is of th
pointer-chasing variety or consists of multiple instruction
Repeating induction steps that have been computed by pre
ous DDTs not only wastes bandwidth, but it also robs the DD
of much of its execution advantage. If the amount of work i
each main thread iteration is small, induction unrolling ma
not be profitable. With integration, each DDT can leverag
the induction steps already computed by previous DDTs,
that instead of executing 5 induction steps, a DDTintegrates4
and executes 1. In fact, integration guarantees that the ind
tion chain and, as a result, the actual computations of inter
are being computed as fast as possible.Mcf illustrates this
phenomenon well.Mcf’s main DDT uses induction unrolling
to expedite the execution of loads in a tight loop. Although
only performs prefetching, this DDT requires integration t
achieve most of its effect. Without integration, overlappin
DDTs are unable to leverage each other’s induction compu
tion, reducing each DDT’s ability to tolerate latency.
Cache Misses Branch Mispredictions

mcf vpr mst eon gzip em3d
Base Instructions fetched(M) 529.39 1304.95 232.61 710.58 5883.09 124.

Load latency (cycle) 12.43 3.86 19.85 2.88 3.41 11.38
Resolution latency (cycle) 24.57 47.48 279.54 15.35 29.94 28.9

Base +
DDMT

Instructions fetched (M) 574.96 1400.95 248.32 713.32 5793.42 121.6
Load latency (cycle) 7.45 3.36 14.80 2.88 3.24 10.34
Resolution latency (cycle) 19.44 39.02 176.89 14.81 21.39 18.9
Execution time saved (%) 9.2 12.0 24.8 1.2 12.9 11.5

Base +
critical
scheduling

Instructions fetched (M) 529.42 1305.15 232.63 710.11 5880.50 124.4
Load latency (cycle) 12.41 3.80 19.85 2.88 3.41 11.37
Resolution latency (cycle) 24.64 39.16 291.70 15.07 29.22 26.9
Execution time saved (%) 0.0 -0.1 -0.1 0.2 0.4 0.3

Base +
DDMT -
Integration

Instructions fetched (M) 605.93 1406.29 248.33 721.35 6456.13 129.6
Load latency (cycle) 9.45 3.65 14.78 2.91 3.34 10.75
Resolution latency (cycle) 22.56 41.29 176.57 15.20 26.12 20.6
Execution time saved (%) 1.7 8.5 25.0 -0.3 1.4 8.8

TABLE 5. Performance contributions of data-driven sequencing and integration.
10

m

[16,
in
a-
and
en-

nce-
of
re-
te-
ed

cha-
ith
c-

-
At
e

y
m.
m,
e

y
han
ve

of
are
ut-
”
ce.

n
ks
c-
he
ad
T

n-

T
ing
un
rt
ld
d

er-
is-

ile
-

on
ce
of
6 Related Work

Long latency loads and mispredicted branches degrade perfor-
mance in large part because they and their computations are
bound into a sequential order that sometimes prevents their
execution from proceeding at its maximum rate. DDMT
“frees” critical computations from these sequential constraints,
allowing them to execute as fast as their data dependences per-
mit. This same approach to parallelism formed the basis for
the explicit dataflow architectures [2, 5, 10, 11, 14] of the
1970s. Dataflow architectures expose computation structure at
the architectural interface to enable theoretical levels of paral-
lelism and latency tolerance. Speculative data-driven multi-
threading (DDMT) attempts to bring some of the performance
aspects of these machines into the realm of sequential pro-
grams, albeit on a smaller and more task-specific scale.

Access/execute decoupling [21] is another technique for dis-
entangling computations from one another and allowing load
computations, which as a group are considered more critical,
to proceed unimpeded by unrelated processing. DDMT can be
thought of as a microarchitectural decoupling of computations
that result in cache misses.

Other architectures and microarchitectures usecontrol-driven
speculative threadsto accelerate sequential programs.Specu-
lative control-driven multithreading (CDMT)— commonly
known as speculative multithreading — systems include the
Multiscalar architecture [9, 22], single-program speculative
multithreading (SPSM) [6], thread-level data-speculation
(TLDS) [25], and dynamic multithreading (DMT) [1]. In
CDMT, threads are partitioned either statically (multiscalar,
TLDS, SPSM) or dynamically (DMT), forked in software
(TLDS, SPSM) or hardware (multiscalar, DMT) and initiated
in oldest-first (Multiscalar), youngest-first (DMT) or com-
piler-controlled (TLDS, SPSM) order. Speculative results are
incorporated as control of the architectural state passes from
the most recently committed thread to the least speculative
remaining thread. CDMT and DDMT are diametrically
opposed in their philosophies. CDMT exploits primarily
thread-level parallelism (TLP). For CDMT techniques to suc-
ceed, the program must bepartitioned into sequentially con-
tiguous, mutually disjointthreads that are parallel or at least
nearly so. As a group, control-driven speculative threads must
have high degrees of control-equivalence, data-independence,
and load-balance. In contrast, DDMT primarily exploits
instruction-level parallelism (ILP). Data-driven threads per-
form implicit control speculation, follow data-dependences
closely, and are automatically load balanced by an SMT pro-
cessor. DDMT does not require the presence of TLP to be
effective. DDTs have the flexibility to attack individual laten-
cies and points of performance degradation. The price for
flexibility is that instructions in data-driven threads must be re-
fetched and re-renamed by a control-driven thread.

Assisted execution [23] and SSMT [4] are techniques for
accelerating a sequential program by using idle thread con-
texts to execute auxiliary code that prefetches data, presets the
branch predictor or performs some other performance enhanc-
ing task. In contrast with DDMT, the auxiliary code isnot an
annotated part of the original program that can later be inte-
grated. It is a supporting piece of code (assisted execution) or
microcode (SSMT) generated by the compiler or by hand and
managed explicitly. Assisting and SSMT threads are auxiliary
in the true sense, able to impact performance only indirectly

but unable to contribute values directly to the main progra
thread.

Dependence based prefetching and branch pre-execution
17] and the branch-flow microarchitecture [8] are closest
spirit to DDMT. Each of these techniques extracts true dat
driven threads from a sequential program, executes them,
attempts to reuse the results to one degree or another. Dep
dence-based prefetching uses post-retirement depende
detection machinery to build a specialized representation
pieces of the dataflow graph. Given a seed value, this rep
sentation is traversed/executed on the side by a finite-sta
machine. Integration is not performed. Dependence-bas
branch pre-execution adds an ad-hoc correspondence me
nism to allow pre-computed branch results to be matched w
dynamic branch predictions. The branch-flow microarchite
ture is a different implementation of the same idea.

7 Summary and Future Work

Data-driven multithreading (DDMT)is a new speculation
model. Speculation is performed at the granularity of adata-
driven thread (DDT), a sequence of potentially non-consecu
tive dynamic instructions that represents a computation.
the point in a control-driven program at which the inputs to th
DDT become available, the DDT is microarchitecturall
forked and executed in parallel with the sequential progra
While the main thread sequentially fetches the entire progra
the DDT deals with only those instructions that constitute th
critical computation of interest. Consequently, it typicall
fetches and executes these computations much faster t
would be possible in a sequential thread. DDMT can impro
the performance of sequential programs when computations
loads that are likely to miss in the cache and branches that
likely to be mispredicted are chosen as DDTs. By pre-exec
ing these performance critical instructions, DDTs “absorb
latencies that would otherwise impact sequential performan

An interesting component of DDMT is integration, a facility
for incorporating results produced in DDTs into the mai
thread, avoiding the need for re-execution. Integration wor
by using dataflow relationships to prove that a DDT instru
tion and a main thread instruction actually correspond to t
same dynamic instruction instance and allow the main thre
to take possession of the physical register holding the DD
instruction’s result. Integration enables DDTs to perform
actual work on behalf of the main thread, including order-se
sitive tasks like the pre-computation of branch targets.

One attractive substrate for implementing DDMT is an SM
processor. This kind of processor includes register renam
and the flexible resource allocation policies needed to r
DDTs efficiently. The additional hardware required to suppo
DDMT includes a data-driven thread cache (DDTC) to ho
the DDTs, a cloaking table to implement DDT store-to-loa
forwarding, and integration logic.

Our experiments show that DDMT can be used to reduce p
formance degradations due to cache misses and branch m
predictions. In the latter case it improves performance wh
alsoreducingthe total number of instructions fetched and exe
cuted by the machine. Overall, data-driven pre-executi
shows promise as a unified general-purpose performan
engine, able to attack any source of latency without the use
any problem-specific microarchitectural gadgets.
11

-
-

-

-

-

a-

d

-

-
u-

-

.
,

or
i-

In
e

s.
c-

rt
f

y-

l
n
-

.
-

l-

th
r

r-

of
There are several avenues for future work. Our implicit con-
trol DDT model is simple and disallows runaway threads. One
of its drawbacks is its inability to abort a DDT computation
that diverges from the main thread. This capability appears
important to limiting DDT overhead, and models that incorpo-
rate explicit control should be investigated.

In this paper, we present a DDMT implementation based on a
simultaneous multithreading (SMT) microarchitecture — a
choice made for reasons of both implementation simplicity
and pending availability. However, other architectures and
microarchitectures that support multiple threads and even
speculative control-driven threads are on the horizon as well.
Mapping DDMT or pre-execution onto these is certainly pos-
sible and the interaction between control- and data- driven
speculative multithreading is interesting.

Finally, the thread selection algorithm we present shows prom-
ising success, but it is preliminary. Better data-driven threads
will enhance the performance impact of DDMT. Certainly, an
implementation of our or any other algorithm in hardware
would ease the acceptance of DDMT by moving the technique
into the purely microarchitectural realm.

Acknowledgements

This work was supported in part by National Science Founda-
tion grants MIP-9505853 and CCR-9900584, donations from
Intel Corp. and Sun Microsystems, the University of Wiscon-
sin Graduate School and an Intel Ph.D Fellowship. The
authors thank the anonymous referees for their reviews and
Adam Butts, Milo Martin, Dan Sorin, and Craig Zilles for their
comments on various incarnations of this manuscript.

References
[1] H. Akkary and M. Driscoll. A Dynamic Multithreading Proces-

sor. In Proc. 31st International Symposium on Microarchitec-
ture, pages 226–236, Nov. 1998.

[2] Arvind and R. Nikhil. Executing a Program on the MIT Tagged-
Token Dataflow Architecture.IEEE Transactions on Comput-
ers, 39(3):300–318, Mar. 1990.

[3] D. Burger and T. Austin. The SimpleScalar Tool Set, Version
2.0. Technical Report CS-TR-97-1342, University of Wiscon-
sin-Madison, Jun. 1997.

[4] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Simul-
taneous Subordinate Microthreading (SSMT). InProc. 26th In-
ternational Symposium on Computer Architecture, May 1999.

[5] J. Dennis and D. Misunas. A preliminary architecture for a basic
dataflow processor. InProc. 2nd International Symposium on
Computer Architecture, pages 126–132, Jan. 1975.

[6] P. Dubey, K. O’Brien, K. O’Brien, and C. Barton. Single-Pro-
gram Speculative Multithreading (SPSM) Architecture: Com-
piler-Assisted Fine-Grained Multithreading. InProc. 1995
Conference on Parallel Architectures and Compilation Tech-
niques, pages 109–121, Jun. 1995.

[7] J. Emer. Simultaneous Multithreading: Multiplying Alpha’s
Performance. Microprocessor Forum, Oct. 1999.

[8] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow Analy-
sis of Branch Mispredictions and Its Application to Early Reso-
lution of Branch Outcomes. InProc. 31st International
Symposium on Microarchitecture, pages 59–68, Dec. 1998.

[9] M. Franklin. The Multiscalar Architecture. PhD thesis, Univer-
sity of Wisconsin-Madison, Madison, WI 53706, Nov. 1993.

[10] J. Gurd, C. Kirkham, and I. Watson. The Manchester prototype
dataflow computer.Communications of the ACM, 28(1):34–52,

Jan. 1985.
[11] R. Iannucci. Toward a Dataflow/von Neumann Hybrid Archi

tecture. InProc. 15 International Symposium on Computer Ar
chitecture, pages 131–140, May 1988.

[12] A. Moshovos and G. Sohi. Streamlining Inter-Operation Com
munication via Data Dependence Prediction. InProc. 30th In-
ternational Symposium on Microarchitecture, pages 235–245,
Dec. 1997.

[13] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The Case for a Single-Chip Multiprocessor. InProc.
7th International Conference on Architectural Support for Pro
gramming Languages and Operating Systems, pages 2–11, Oct.
1996.

[14] G. Papadopoulos and D. Culler. Monsoon: An Explict Token
Store Architecture. InProc. 17th International Symposium on
Computer Architecture, pages 82–91, Jul. 1990.

[15] E. Rotenberg, S. Bennett, and J. Smith. Trace Cache: A Low L
tency Approach to High Bandwidth Instruction Fetching. In
Proc. 29th International Symposium on Microarchitecture, pag-
es 24–35, Dec. 1996.

[16] A. Roth, A. Moshovos, and G. Sohi. Dependence Base
Prefetching for Linked Data Structures. InProc. 8th Conference
on Architectural Support for Programming Languages and Op
erating Systems, pages 115–126, Oct. 1998.

[17] A. Roth, A. Moshovos, and G. Sohi. Improving Virtual Func
tion Call Target Prediction via Dependence-Based Pre-Comp
tation. In Proc. 1999 Internation Conference on
Supercomputing, pages 356–364, Jun. 1999.

[18] A. Roth and G. Sohi. Register Integration: A Simple and Effi
cent Implementation of Squash Re-Use. InProc. 33rd Annual
International Symposium on Microarchitecture, Dec. 2000.

[19] A. Roth and G. Sohi. Speculative Data-Driven Multithreading
Technical Report CS-TR-00-1414, University of Wisconsin
Madison, Mar. 2000.

[20] A. Roth and G. Sohi. Speculative Data Driven Sequencing f
Imperative Programs. Technical Report CS-TR-00-1411, Un
versity of Wisconsin, Madison, Feb. 2000.

[21] J. Smith. Decoupled Access/Execute Computer Architecture.
Proc. 9th International Symposium on Computer Architectur,
Jul. 1982.

[22] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Processor
In Proc. 22nd International Symposium on Computer Archite
ture, pages 414–425, Jun. 1995.

[23] Y. Song and M. Dubois. Assisted Execution. Technical Repo
#CENG 98-25, Department of EE-Systems, University o
Southern California, Oct. 1998.

[24] S. Srinivasan and A. Lebeck. Load Latency Tolerance in D
namically Scheduled Processors. InProc. 31st International
Symposium on Microarchitecture, pages 148–159, Nov. 1998.

[25] J. Steffan and T. Mowry. The Potential for Using Thread Leve
Data-Speculation to Facilitate Automatic Parallelization. I
Proc. 4th International Symposium on High Performance Com
puter Architecture, Feb. 1998.

[26] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm
Exploiting Choice: Instruction Fetch and Issue on an Imple
mentable Simultaneous Multithreading Processor. InProc. 23rd
International Symposium on Computer Architecture, pages
191–202, May 1996.

[27] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Mu
tithreading: Maximizing On-Chip Parallelism. InProc. 22nd In-
ternational Symposium on Computer Architecture, pages 392–
403, Jun. 1995.

[28] S. Wallace, B. Calder, and D. Tullsen. Threaded Multiple Pa
Execution. InProc. 25th International Symposium on Compute
Architecture, pages 238–249, Jun. 1998.

[29] W. Yamamoto and M. Nemirovsky. Increasing Superscalar Pe
formance Through Multistreaming. InProc. 1995 Conference
on Parallel Architectures and Compilation Techniques, Jun.
1995.

[30] C. Zilles and G. Sohi. Understanding the Backward Slices
Performance Degrading Instructions. InProc. 27th Internation-
al Symposium on Computer Architecture, pages 172–181, Jun.
2000.
12

	Mispredicted branches and loads that miss in the cache cause the majority of retirement stalls ex...
	In DDMT, critical computations are annotated so that they can execute standalone. When the proces...
	We simulate an implementation of DDMT on top of a simultaneous multithreading (SMT) processor and...
	1 Introduction
	2 Working Example
	3 Data-Driven Thread Selection
	3.1 Measuring Utility of Data-Driven Threads
	3.2 Extracting Threads from a Program Trace

	4 Hardware Implementation
	4.1 Life Cycle of a Data Driven Thread
	4.2 Integration

	5 Performance Evaluation
	5.1 Methodology
	5.2 Targeting Cache Misses
	5.3 Targeting Branch Mispredictions
	5.4 Sequencing and Integration Contributions

	6 Related Work
	7 Summary and Future Work

