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Abstract

We introduce a dynamic scheme that captures the access pat-
terns of linked data structures and can be used to predict
future accesses with high accuracy. Our technique exploits
the dependence relationships that exist between loads that
produce addresses and loads that consume these addresses.
By identifying producer-consumer pairs, we construct a
compact internal representation for the associated structure
and its traversal. To achieve a prefetching effect, a small
prefetch engine speculatively traverses this representation
ahead of the executing program.  Dependence-based
prefetching achieves speedups of up to 25% on a suite of
pointer-intensive programs.

1 Introduction

Linked data structures(LDS) such as lists and treesare usedin
mary importantapplications. The importanceof LDS is growing
with theincreasingpopularityof C++, Java, andothersystemghat
use linked object graphsand function tables. Flexible, dynamic
constructionallows linked structurego grow large and difficult to
cache. At the sametime, LDS aretraversedin a way thatprevents
individual accessefrom beingoverlapped. Thesefactorsmagnify
the n@ative performance impact offe€hip data access.

Prefetchingcanbeanimportanttool in boostingthe performancef
applicationsthatuseLDS. Historically, however, prefetchmecha-
nismshave hadtroublewith thesestructures. Not only dotheover-
laprestrictionsreducethe effectiveneswith which memorylateny
can be hidden,but LDS accesse$ave defied traditional address
predictiontechniqueghat drive prefetchingactvity. Thesetech-
niguesrely on addresstreamregularitiesto extractarithmeticpat-
ternsthat canbe usedto make predictions. Suchpatternsare not
necessarilyfoundin LDS accessequencesln this work, we pro-
poseanew solutionthatattackshoth problemsby exploiting depen-
dence information.

We saythattwo instructionsaredependent if oneproducesa value
the other consumespr affects its executionin some other way.
Technigueghat exploit dependencelsaseanalysisandspeculation
on this relationship,ratherthan the actualvaluesexchanged. To
date, most microarchitecturaltechniqueshave used value-based
speculatiortechniques.Cachesxploit temporalandspatiallocal-
ity in the setof addresseseferencedy the program,branchesre
predicted using outcomesof previous branches,and values are
speculatedisinghistoriesof previousinstructionresults. However,
recentwork [15][16][23][6] hasdemonstratethatdependenceela-
tionshipsexhibit regularitiesthat canbe exploited in waysthatthe
valuesthey exchangecannot. Thesestudieshave focusedprimarily
on memory dependences that exist betweenstoresand loads that
accesghe samelocation. Our techniqueusesload value depen-
dences, a classof dependencebetweenloadsthat produce(load
from memory) addressesand those that subsequentlyconsume
(accesdlataat) thoseaddressesLoad value dependencesapture
regularities in the addressgenerationprocessrather than in the
addresses themsels.

Dependence-based prefetching dynamically identifies loads that
accesdinked datastructures.It collectstheseloadsalongwith the
dependencerelationshipsthat connect them and constructsa
descriptionof the stepsthe programhasfollowed to traversethe
structure. Predictingthatthe programwill continueto follow these
samesteps a smallprefetchenginetakesthis descriptionandspec-
ulatively executesit in parallelwith the original program.Sinceit
executesonly the loadsthat are requiredto touch the datastruc-
ture’s elementsthis engineinitiatesLDS accesseat aratedictated
only by the (memory)lateny of eachoperation. Sincethe proces-
sor executesall instructions,the prefetchenginemay run ahead,
producing the desired prefetchindeet.

Therestof the work is organizedasfollows. We begin with a dis-
cussionof theissuesinvolvedin prefetchinglinked datastructures
in section2. In section3, we briefly introduceour benchmarisuite,
andpresenstatisticsthatmotivateour solutionfor this problem. A
detaileddescriptionof our mechanisnis presentedh sectiord, fol-
lowedby a quantitatve evaluationin section5. We relateour solu-
tion to other vark in section 6, then fdr our conclusions.

2 Prefetching Linked Data Structures

Linked datastructures(LDS) are widely usedin compilers,data-
basesandgraphicsapplications.LDS areconstructedy connect-
ing dataelementsto one anotherexplicitly; elementsin an LDS



containfields that nameall adjacentelementsby address. This

modeof connectity allows the easyconstructionand manipula-
tion of datastructuresf arbitraryshape suchastreesandgraphs.
Dynamicconstructioralsoallows LDS to grow very large, making
themdifficult to cache. Addedto this is the fact that accesse$o

successie LDS elementsandto the datathey containcannotbe
overlappedasthe processof addresgyeneratioritself requiresan

inherently serial evaluationthroughmemory Commonlyknown

asthe pointer-chasing problem, this conditioneffectively exposes
thefull lateng of eachLDS access.Thekey to hidingthislateny

is to issueLDS accessesis early as possible,overlappingthem
with other vork.

Prefetchingcan be implementedin both hardware and software.
Software schemeg[17][12][10] have potentially larger analysis
scopeand add no compleity to the processar However, we
chooseo investicgatehardwareschemedor severalreasons.Hard-
ware mechanismsrequire no a priori program information or
transformations,as well as no architecturalinterface changes.
They imposeno explicit execution overhead. Hardware tech-
nigueshave at their disposalthe executionprofile of the program,
aswell asotherinformation,like the addressesf LDS elements,
thatis availableonly atrun-time. Dynamicsolutionsalsohave the
potentialfor adaptingto programphasesgchangingconditionsin
the processorand memory system,and behaior dictatedby the
input. Finally, a hardware schememay be ableto initiate action
earlierthana programsuppliedcue,sincethelattermustbe“seen”
by the processar This canbe a useful propertywhencontending
with serialized latencies caused by pointer chasing.

Hardware prefetchergproposedo date[9][1] analyzethe address
history associatedwvith an instruction or group of instructions.
They exploit regularity in the streamto compressthe access
sequencequickly regeneratingt to produceprefetchingaddresses.
For example,addressequencethat exhibit arithmetic regularity,
suchasthe onescorrespondingo sequentiabarraytraversal,canbe
compressedo a pair of numbers:a basevalue anda stride. Not
only is this representatiomxtremely compact,it hasa nice prop-
erty that allows it to be usedasa formulato generatepreviously
unseen addresses that closely match actual program accesses.

In line with thesemethods,we may attemptto compressLDS
accesssequencesOrdinarily, a prefetchaddresdor anLDS ele-
mentcannotbe generateduntil the addressesf all previous ele-
ments in the structure are knowvn. Compressionis attractve
becauset allows for generatiorof prefetchaddressefor arbitrary
LDS elementswithout the needfor a serialevaluation. However,
compressingan LDS accessstream can be a difficult task.
Addresseof adjacentLDS elementsare not requiredto have a
regulararithmeticrelationship. Linearlayoutin anLDS is usually
the resultof allocatorstrateyy, compactinggarbagecollection,or
carefulhandoptimization,andis often compromisedas the data
structureevolves. In the absencef suchregularity, we expectthe
size of the compressedorm to be proportional(smallerbut cer-
tainly not constant)to the size of the LDS itself. This property
potentially makes compressiorof large structuresincornvenient.
Even in the event that sufiicient compressionis possible,it is
unlikely thatthe compressefbrmatcould be usedto generategre-
viously unseen addresses.

To handlethe casein which addresgegularitiesare not available
andcompressioris not possible we make the obsenationthatthe
instructionsusedby the programto access particularsetof LDS
elements,are themseles a compactformula for generatingthe
addressesf thoseelements. The mechanisnwe presentcaptures
the processof addresgenerationitself and predictsaddresseby
mimicking this process.In addition,by creatinga separatedepen-
dence-basedepresentatiorior this importantkernel of the pro-
gram,ourtechniquecanissuerequestfor LDS elementswith little
overhead,and with no interferencefrom other parts of the pro-
gram. Thedetailsof themechanisnaredescribedn sectiond. As
motivation, we first presenta brief analysisof LDS accesbeha-
ior in a suite of programs.

3 A Study of Pointer Intensive Programs

Thetechniquewe proposemprovesperformancey hiding mem-
ory lateny associateavith LDS access. Its effectivenesswill bea
function of threefactors:(i) the numberof LDS accesse the
programandtheir contritution to the total lateny associateavith

the memorysystem,(ii) the amountof work in the programthat
canbeoverlappedvith thislateng, and(iii) ourmechanisns abil-

ity to capturethis behaior andleveragethe availablework. In this

sectionwe attemptto quantifythefirst two parameterfy present-
ing a characterizatiorof LDS accesshehaior for programsfrom

the Olden pointerintensive benchmarksuite [20]. The Olden
benchmarksare a collection of programsthatincludessmall and
mediumsizedscientificcodes(bh andem3d), processsimulations
(health and power), graph optimization routines (mst and tsp),

graphicautilities (perimeter andvoronoi), a sortingroutine (bisort)

andatoy treebenchmarKtreeadd). We usethis setof programsas
it hadbeenpreviously usedto evaluatecompilerprefetchingalgo-
rithms[12]. A summaryof the benchmarksthe sizesandtypesof

linked datastructuresused,input parameteranddynamicinstruc-
tion countsis shawvn in Table1. In orderto compresghe subse-
quentfigures,we will refer to the benchmarksy only the first

three letters of their name.d., bis for bisort).

LDS-specificmemorybehaior canbe summarizedy examining
theloadinstructionsthatacces4 DS elementspr pointer loads in
ourterminology A pointerloadis aloadwhoseinputbaseaddress
wasproducedby anotheroadinstruction. This definitionencom-
passe4. DS accessesanddistinguisheghemfrom stackandarray
loads,whoseaddressearecomputedarithmetically andloadsthat
use addresses produced by a means other than an indirection.

Thelateny associateavith pointerloadsis difficult to accountor
in away thatis not highly dependenon a particularprocessocon-
figuration; we use datacachemissrate as an alternatemetric to
give afeel for the magnitudeof the problem. Also shavn in table
1 for eachbenchmarlkarethe numberof loads(asa percentagef
all dynamicinstructions)andthe datamissratefor a 32KB, 2-way,
32B line datacache. Pointerload behaior is summarizecunder
the headingspointer loads, which gives the fraction of all loads
thatare pointerbasedand pointer load contribution, which gives
the percent of all misses caused by pointer loads.

Pointerloadsrepresent large fraction of all loadsin the Olden
benchmarksand contritute a disproportionatelyarger fraction of



Pointer Data Data Set Inst Pointer | Miss Pointer Load

Bench structures Input Parameters Size Count | Loads | Loads Rate Contrib ution
bh octree 4K bodies 720KB 866M | 29.1% | 16.3% 0.7% 53.0%
bisort binary tree 250,000 numbers 1535KB 625M 15.4% 49.1% 1.1% 99.4%
em3d lists 2000nodesarity 10 1670KB 60M | 23.5% | 59.2% | 26.6% 81.5%
health guadtree, lists 5 levels, 500 iters 925KB 169M | 36.2% | 81.1% | 17.3% 98.3%
mst array of lists 1024 nodes 20KB 256M | 14.6% | 41.3% 6.2% 83.5%
perimeter | quadtree 4K x 4K image 6445KB | 1619M | 17.1% | 16.2% 2.7% 99.7%
power multiway tree,lists| 10,000 nodes 313KB 791IM | 18.9% | 12.2% 0.2% 91.6%
treeadd binary tree 1M nodes 12300KB 196M | 20.6% | 15.8% 1.4% 97.2%
tsp binary tree, lists 100,000 cities 5120KB 338M 9.4% | 74.0% 2.8% 99.8%
voronoi binary tree 60,000 points 11100KB 333M | 14.3% | 71.2% 1.1% 41.1%

Table 1. Olden benchmark suite. Data structures used, input parameters, data set size, dynamic instruction count, loads, pointer loads
as a percentage of all loads, data cache miss rate for a 32KB cache and pointer load contribution to the miss rate.

the cachemissesaccountingfor nearlyall missesin mary of the
programs.With several exceptions notablyhealth, em3d, andmst
most of theseprogramshave gooda priori datacachebehaior.
These programsmay still benefit from prefetchingif the miss
latencies are high and enougbri exists to averlap with them.

3.1 Pointer-Load Classification

We find it usefulto further classify pointerloadsinto recurrent,
traversal, anddata loads.Membersof eachcateyory have proper-
tiesthatrestricttheir overlapwith differentkinds of work, andcan
thereforebe thoughtof as being closeror further from the pro-
gram’s critical path. Consequentlytheirimportanceto the perfor-
mance of the program, and to our mechanisaries.

Recurrent loads are a subclassof pointer loads; they produce
addressesonsumedy future instance®of themseles. Recurrent
loadsare often usedas induction variablesin loops (e.g.,p = p-
>next in alist or p = p->left in atree). It is importantto note that
although our working definition is restricted to self-recurrent
loads, loadsmayfeedthemselesindirectly (e.g.,p = p->left->right).
Indirectrecurrenfoadsarelumpedtogethemith traversal loads; a
classof loadsthat produceaddresse$or pointerloadsotherthan
themseles. Dataloadsareall pointerloadsthatareneitherrecur-

rentloadsnor traversal loads;they loaddataotherthanaddresses.

As anillustration of the definitions,we considera short piece of
codethatprocesseas list of machineinstructionseachrepresented
by a pair of linked structures.Theloop sourceandassemblycode
areshavn in figure 1(a)and(b) respectrely, thelist itself is shavn
in part(c). Instruction6, which loadsthe next field of anelement,
is arecurrent load. Instruction3 loadsthe addresof thepat struc-
tureandis atraversal load. Instruction4 loadsthe code field and
is a data load. Also shavn in figure 1(c) are threeinstancesof
each load corresponding to three loop iterations.

The importantaspectof our classificationschemeis thatit parti-
tions loadsaccordingto the type of work that can be usedto in
overlappingandhiding their lateny. We illustratethis usingtwo
examples. In the first, we try to hide the lateny of a recurrent

for (insn = f; insn; insh = insn->next)
process(insn->pat->code);

(@)

(b) 1: lw $24, insn = f
2. beq $24, $0, $Exit
$Head: 3: Iw $15, 8($24) insn->pat
4: lw $4, 0($15) insn->pat->code
5: jal process
$Else: 6: Iw $24, 4($24) insn = insn->next
7: bne $24,$0,$Head
$Exit::
next »[ next »lnext —»
(c) ot 6a oo 6b o 6c
3a 3b 30
e i

Figure 1. LDStraversal example. (a) Source and (b) machine
code that traverses a linked list. (c) List layout in memory.

load,load 6, which hasa lateng longerthanthe executiontime of

asingleiteration. Sinceloadscannotbeoverlappedwith loadsthat

dependon them, we seethat 6’s lateng canonly be overlapped
with work from the sameiteration(e.qg.,6¢c with 3cand4c), leaving

therestexposed. We cannotprefetch6c effectively becauseo do

sowould requirethat6b completeexecutionbeforeits correspond-
ing iteration. Similar restrictionsapply to traversalloads (e.g.,

load 3). In the secondcase,we attemptto hide the lateng of a

dataload,4. This canbedoneif 6 hitsin thedatacache. Namely

we prefetch6b as soonas 6a completesand usethe prefetched
valueto prefetch3c andthen4c. Thelateny of 4c is thusover-

lappedwith somework from the previousiteration. Theseexam-

plessuggesthat handlingrecurrentandtraversalloadsefficiently

is the ley to prefetching LDS.

3.2 Quantifying Available Work

In the previous sectionse identifiedthe work availablefor over-
lappingwith pointerloads,especiallyrecurrentandtraversalloads,
asbeingimportantin a prefetchingsolution. We now quantifythis



available work. To do so, we measurethe distancein dynamic
instructionsbetweena pointerload andthe closest load that pro-
ducesits baseaddress. Multiple loads may producethe same
addressfor examplewhentheaddresss passedisa parametevia
the stack. Althoughchoosingthe closestioad representthe worst
casefor our mechanismit providesan unambiguousnetric. Fig-

ure2 presentgumulatize distributionsof thesedistancegor (a) all

pointer loads and (b) recurrent loads.
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Figure 2. Cumulative address-producer distance distribution.
Distance between a pointer load and the closest producer of its
base address. Distances of at most 8, 16, 32, 64, 128 (gray),
and 256 (black) dynamic instructions for (a) all pointer loads
and (b) recurrent loads.

Theresultsshavn in figure 2 aremixed. Programdike bh, bisort,
em3d, perimeter, power, and voronoi containa large numberof
recurrentloadswith long producerdistanceqover 128 dynamic
instructions). Health, mst, treeadd, andtsp have a large represen-
tation of shortdependence-distancecurrentloads,indicatingan
alundanceof tight loopsanda potentiallack of work for overlap-
ping with prefetches. However, dependence-basegrefetching
may still have a positive effect by hiding someof thelateny asso-
ciatedwith theseloads. In addition,theseprogramshave traversal
anddataloadswith somevhatlongerproducerdistancesindicat-
ing thatprefetchinghasthe opportunityto be successful.We now
presenta mechanisnthatattemptso exploit asmuchof the avail-
able work as possible to tolerate pointer load layenc

4 A Dependence-Based Prefetch M echanism

Dependence-basequtefetchingdynamically extractsthe program
kernelresponsibl€for computingaddressesf LDS elements. It
thenspeculatrely andaggressiely executesthis kernelalongside
the original program. Prefetchingis achieved as the engine
adwancesaheadof the main program. In this section,we describe
the goalsandintendedoperationof a prefetchingmechanisnthat
can predictlinked structureaccessand effectively tolerateserial-
ized latencies. We usethesegoalsto derive a setof requirements
for a dependence-baseapproach.These,in turn, drive our pro-
posed implementation.

We illustratethe desiredeffect of anLDS prefetchingmechanism
usingthe linked list exampleof the previous section. Figure 3(a)
shawvs an abstracprocessoexecutingthe programfragmentfrom

figurel. We shav thedynamicinstructionstreamwith all instruc-
tions currentlyin the processos window shaded. Let us assume
thata prefetchenginehasidentifiedload 1 asproducingthe value
that initiates the load 6 recurrenceandthat load 6 hasbeentar-
getedfor prefetch. We would lik e prefetchingto proceedn data-
flow fashion. Thatis, assoonasaninstanceof load6 completesa
prefetchfor the next instanceshouldbe issuedimmediately This
rapid sequencef prefetchess shavn in figure 3(a). The proces-
soruseshevalueloadedby 1 to fetchthesecondist element. The
prefetchenginetakes over from there, prefetchingan elementas
soonastheaddres®f thepreviouselemenbecomesvailable. We
note that, using this schemeand allowing for someroughtiming
assumptionsthe prefetch for the fourth element(6c) may be
issuedby the prefetchenginebeforethe processorven seesthe
load corresponding to thhird element.

The ability to forge aheadof the currentinstructionwindow is an
importantfeaturethat allows a potentialsolutionto attackserial-
ized latenciesmore efficiently than a typical dynamically-sched-
uled processar An out-of-ordermachine,shawvn in figure 3(a),
canapproximate the effect of the schemewve presenby scheduling
pointerloadsassoonastheirinputsareready It may, for example,
issueinstruction6 assoonasinstructionl completes.However, to
do sorequiresthatthe processoboth (i) seeinstruction6, and(ii)
understandhatit is in someway moreimportantthaninstruction3
andissueit first. Dependence-basgutefetchingeffectively meets
thesetwo requirementdy consideringonly pointerloads. First, it
prioritizes recurrentloads. More importantly it can initiate
prefetchedor loadsthat the processohasnot seen. Advancing
sufiiciently far aheadof the processoandopeningup enoughdis-
tancebetweerthe prefetchandthetarmgetload,allows dependence-
basedprefetchego cover long LDS accesdatencies. While this
doesnot constitutea solutionto the pointerchasingproblemper
se,it doesoverlapthelateny of agivenpointerloadwith all avail-
able vork starting with the production of its base address.

(a Processor Prefetch Engine (b)
PC ADDRVAL
T T 1]
2 ADDR PC
3 | fopat [ &f->next [6a] | 6w 43
4 | f->pat->code / nsn->next
5 Y
° [&F->next->next T6b] | | 3 [iw 8($) |
E insn->pat
-
vy | 6 | f->next Y Y
=T &f>next->.. [6c] | [ 4[w0(@) |
| 6 | f->next->next| pat->code

Figure 3. High-level dependence-based prefetching example.
(a) High level description of the prefetch effect we hope to
achieve. (b) The abstract internal representation of the list
required to drive this mechanism.

To achieve the effect we describeda mechanismmust: (i) identify
instructionsthatparticipatein traversal(1, 3, 4 and6 in our exam-
ple), (i) activateinstanceof theseinstructionswith the appropri-
ate input values and (iii) do so as soon as those input values



becomeavailable. We satisfytheserequirementdy exploiting the
dependenceelationshipthatexists betweertheloadsthatproduce
addresseandthosethat usethem. We usedependencinforma-
tion to rephraseour requirementsas eachaddresss loaded,we

predicttheloadsthatwill usethataddressandissueprefetchegor

themimmediately It is interestingto notethatthis processs self-

recurrentasthe completedprefetchesnay themselesbe usedto

launch nev prefetches.

We aim to provide structuresthat malke the processof finding
potentialconsumerof a given addresssimple, and usetheseto
drive the prefetchingprocess.At anabstractevel, theinformation
we needto representan be thoughtof asa graph. Figure 3(b)
shaws the graphrepresentatiorior the list traversal. This graph
encodesoth the structural definitionof the list andthe stepsthe
programtook to traverseit. The prefetchscheduldn part(a) was
generated by “unrolling” the shaded part of this representation.

With a high level understandingof how the dependence-based

prefetchingfunctions,we go into a detaileddescriptionof several
of its importantaspects.Section4.1 describediow informationis
gatheredand usedto constructa representatiorfor a particular
LDS. In section4.2, we shav how prefetchesare requestedand
servicedby the memorysystem. Section4.3 describeshow the
prefetchingprocesss throttledto minimize erroneougrefetches.
In eachsection,we provide a simpleimplementatiorof the corre-
spondingstructuresanduseour runningexample(insn = insn->next)
to demonstrateheir function. Finally, we give a shortqualitative
example in the conte of prefetching a binary tree.

4.1 Constructing an LDS Representation

In this sectionwe describenow LDS traversalis representedsing
dependencesnd how thesedependenceare identified and cap-
tured. To make therestof the discussiormoreconcretewe begin
with the representation.

The componentesponsibldor storingdependencenformationis
the Correlation Table (CT). Eachcorrelationrepresents depen-
dencebetweena load instructionthat producesan addresgPR)
anda subsequenibadthatuses(consumesjhataddresgCN). In
addition to producerand consumeridentities (an instructions
identity is its PC),eachcorrelationalsocontainsanaddressgener-
ationtemplate(TMPL), whichis a condensedorm of theconsum-
ing loaditself. A templatecontainsanopcodeandan offsetonly.
A correlationimplicitly containsa sourceidentifier (the producer).
Destinationspecifiersare incidental since templatesare instanti-
atedfor their prefetchingeffectonly. The CT maybeimplemented
asa cacheindexed by the producerand shouldbe associatie to

some dgree, as a single producer may feed multiple consumers.

The dynamic creation of correlationsrequiresthat we identify
loads that produceaddressesidentify loads that consumethose
addressesand pair producerswith consumerseven thoughthey
might befar apartin the dynamicinstructionstream.To do so, the
processomaintainsa list of the mostrecentlyloadedvaluesand
the correspondingnstructions. This structure the Potential Pro-
ducerWindow (PPW),may beimplementechsa queueor a cache
containing load value (ADDRVAL) and producer (PR) pairs,

indexedby theloadvalueto facilitatematching. Figure4(a) shavs
the CT and PPW

(a) -
Processor |-«—»| Cache Next
A Level
) L Memory
P CT
w

BASEVAL PC  INST Processor

®)  rex T 6 wees, 4($24)!\‘
@\ ADDRVAL PR m\ CN X TMPL

f->next 6 > 6 |6 |lw 49 |CT
PPW | f->next->next| 6 @

Figure 4. CT and PPW working example. (a) Block schematic
of PPWand CT. (b) The PPWand CT captuie the recurrence
between instruction 6 and itselfign = insn->nex).

Correlationsare createdat instruction commit time. As a load
commits,its baseaddressvalueis checled against entriesin the
PPW with a correlationcreatecbn amatch. Theloadandits tamget
value are then recordedin the PPW for checkingagainst future
loads. This processs illustratedin figure 4(b), which shovs how
the self dependencef load 6 (insn = insn->next) is captured. As
load6 commits,its baseaddressvalue(BASEVAL) is lookedupin
the PPW which indicatesthat the previous instanceof 6 wasthe
last to load this addresqaction 1, circled). A new correlationis
insertedinto the CT establishinghe dependencérom 6 to itself
(action2). Finally, thevalueloadedby thecurrentinstanceof load
6 is entered into the PPW (action 3).

We closethis sectionwith two commentsregarding the depen-
dencedetectionprocess. First, we note that not all loads are
potential consumersnor are all loads producercandidateshat
mustbe enteredinto the PPW  As an optimization,we dismiss
loadsbasedoff the stackandglobal pointersaspotentialconsum-
ers since their baseaddressesre computedvia addition. As
potential producerswe consideronly loadsthat accessaddress-
sizedquantities. Thisis only aheuristicandby no meansa substi-
tutefor true typeinformation. Many loadsthatfit the sizecriteria
(e.g.,instruction4 in our runningexample)do not load addresses.
Thesefalseaddressloadsreducethe effective sizeof the PPWand
contendor CT ports. A furtheroptimizationwould involve identi-
fying (true)addresdoadsusingcompileranalysisor profiling, and
communicating this information to the processor using a hint.

Finally, we obsere that althoughthe prefetchengineis depen-
dencebased,dependenceare capturedusing values(addresses).
This organization is particularly suitable for our application.
Pointer addressesflow from producer to eventual consumer
unchangedby arithmeticmanipulation. Furthermorenumericval-
ues associatedvith addressesre rarely seenin other contexts,
allowing us to assumesafely that two instructionsthat namethe
sameaddressreactuallyrelated. More importantly usingvalues
allows usto capturedependencesccuratelyignoringintermediate
register moves and spills to and from memory Finding earlier
producers enables moreik to be oerlapped with a gen miss.



4.2 Prefetch Issueand Use

In this section,we describehow prefetchrequestareissued how

they are servicedby the memorysystem,andhow the resultsare
usedby subsequentbads. The organizationwe presents driven

by the beliefsthat dataportsare preciousandthe prefetchengine
should use them only when they are idle, and that prefetched
blocksshouldbekeptout of the datacacheuntil they areknown to

be useful. In line with theserequirementsye introducetwo new

structures. The Prefetdq RequesiQueue(PRQ) buffers prefetch
requestsuntil data ports are available to service them. The

Prefetd Buffer (PB) is a small datacachethat temporarilyholds
prefetched blocks. The PRQ and PB arawshim figure 5(a).

Prefetchrequestareissuedo thePRQwhenanaddressoadcom-
pletesin theprocessar A completedoad probesthe CT in search
of potentialconsumers.On a match,a prefetchaddresss formed
by applyingtheaddresgeneratiorformulato thevaluejustloaded
and a requestis enqueuednto the PRQ on behalf of the con-
sumer Figure5(b)illustratesthis sequencéor our runningexam-
ple. An instanceof load 6 completesand queriesthe CT (action
1). Findingtheselfcorrelationt computegheaddres®f the next

list elementusing the loadedvalue and the correlationformula
(action2). A prefetchrequestfor this addresds taggedwith the

appropriate consumer and enqueued (action 3).

a <
(a) Processor |« Cache| | next
. Level
b PRQ / Memory
P CT I:I:I:l >| PB
w
) |
(b)  PC_ADDR DATA ®

6 | &f->next->next |
/

(c)
['33‘2. <—@<_‘_|ADDR @ DATA ON
Memory Cache &f->next->next | [ 6 |
AN A PB
@ ©)

PC ADDR DATA
Load[ 6 [ &f->next->next] |

Figureb5. Prefetch example. (a) Blodk schematicof the PB and
PRQ. (b) A completedioad probesthe CT, finds a potential
consumerandenqueues prefetd requesbntothe PRQ. (c) If
a datacache port is freg the prefetd requests dequeuednd
issuedo the prefett buffer. Theprefetd buffer chedksthefirst
level cache for the blodk, issuinga requesto the secondevel
cadhe on a miss. (d) A load uses thefpttied blo&.

Prefetchrequestsaredequeuedrom the PRQandservicedby the
memorysystemwhenadatacacheportis free. ThePB attemptdo

extractthe block from thefirst level cachejssuingarequesto the
secondevel cacheon a miss. Spuriousrequestge.g.,attempting

to chasea null pointer or accessan unmappedpage)are simply

dropped. In figure 5(c), the requestmade by instruction 8 is

dequeue@ndplacedinto the PB (action4). Sincethecorrespond-
ing blockis notfoundin thefirst level cache arequestis issuedio

the net level (action 5).

Sincewe would lik e the prefetchengineto run aheadf the proces-
sor, it is importantthatcompletedprefetchedbe themselesableto
spavn otherprefetches. To facilitate this, the PB maintainsa list
of requesting consumers(CN) with each block. When a
prefetchedblock arrives, eachconsumeron the list assumeghe
role of a producey probesthe CT andpotentiallygeneratesurther
requests.An illustration of thesestepscanbe obtainedby substi-
tuting a completed prefetch for the completed load in figure 5(b).

In figure5(d), aloadinstructionpicks up a valuefrom the prefetch
buffer. The PB and the datacacheare accessedn parallel. A
cachemisswill bring the block into the cacheasusual.However,
the processor need notivif the data is\ailable in the PB.

4.3 Simplifying Prefetch Throttle and Control

Allowing the prefetchengineto run arbitrarily far aheadf the pro-
cessoris undesirable. First, if the prefetchenginegetstoo far
aheadjt may overwrite usefuldatabeforethe processohashada
chanceo useit. We call this phenomenomarly prefething. Sec-
ond, prefetchingis speculatie, and by definition subjectto mis-
speculation. Should the prefetch engine choose the wrong
prefetchingpath, when traversing a tree for instance,we would
like to leep the length of thisceursion to a minimum.

Crafting a generalsolutionthatwould throttle prefetchingactivity
seemgomplicated. First, we would probablyneedto keepa run-
ning log of prefetcheamadeon behalfof every load so that later
programinstancesdo not spavn prefetcheghat duplicateearlier
ones. Secondthis mechanisnwould needto detectdiscrepancies
betweenperload accesssequencesf the processorland thoseof
the prefetchengine,andbe ableto initiate properrecovery. Fortu-
nately we have found that for our benchmarksallowing the
prefetchengineto run arbitrarily far aheads unnecessaryln fact,
prefetching a single instance ahead ofvamiload is suicient.

To reasonaboutwhy this might be so, we revisit our list example
from figure 1(c), and considerthe questionof whethera prefetch
for 6b, triggeredby the completionof 6a, shoulditself trigger a
prefetchfor 6¢. Therearetwo basiccasego considethere,andthe
answeifor bothis no. In thefirst casethereis enoughwork start-
ing with 6ato fully overlapwith the misslateny of 6b. Wethere-
fore assumehattherewill be enoughwork to hide the lateng of

6cif the prefetchis triggeredby the completionof 6b. Thereis no
adwantageto triggering the prefetchary earlier In the second
case thereis not enoughwork andthe latengy of 6b is only par-
tially hidden. Here, the programinstruction and its intended
prefetchwill completeatthe sametime, andit shouldmale no dif-

ference which one triggers the prefetch for 6c.

Of course the agumentwe just gave is not the whole story. It is
possiblefor different loop iterationsto have different execution
latenciesandit is possibleto “borrow” work from oneiterationfor



usein another Thesesituationsmay ariseif the loop contains
someconditionalcode,in which casea recurrenioad missduring

a shortiterationcanbe hiddenusingwork from a previous, longer
iteration. Anotherpossibility is for structureelementso be laid

outsequentiallyandpacledtwo or moreto acacheline. Here,the
processorwould incur a miss followed by one or more hits.

Prefetchingonly a singleinstanceaheadpreventsus from exploit-

ing situations lile these.

Despite this dravback, single instance prefetching has mary
adwantagesnot the leastof which is a greatly simplified imple-
mentation. Enforcing single-instanceprefetching can be done
using a counterattachedto eachprefetchrequest,and doesnot
requireperinstructionprefetchingstate. Secondit issuesasingle
prefetch requestper actual memory reference (allowing each
instructionto spavn prefetchedor thenext two instanceswill gen-
erate two requestsfor every actual load), a feature that keeps
prefetchingoverheadow andtrims the bandwidthrequirementsf
the correlationtable and prefetchbuffer. Finally, it limits errant
prefetch chains to a length of one.

4.4 An Example: Prefetching aBinary Tree

The purposeof this sectionis to provide a qualitative feel for the
operation of dependencebased prefetching. Specifically we
examine hov dependence-basquaefetchinghandlesan in-order
binarytreetraversal(oftenusedin reductionoperations).In-order
treetraversalis often implementedrecursvely (depthfirst) using
two inductionvariablesandthreeinstructions:onefetchesthe left
child, the secondrestoreghe addresf the currentnodeafter the
left traversalhasfinished,andthethird fetchegheright child using
therestoredvalue. Thesenstructionsareassembledhto four cor-
relationswhich are shavn in figure 6(a): (ll) left feedsleft (con-
tinue traversal down a left path), (r) right feeds left (begin
traversaldown left path),(Ir) left feedsright (only at leaf nodes),
and (sr) restore feeds right (going back up the tree).

() (b)
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Figure 6. Tree traversal and prefetching. (a) Four correlations
representing tree traversal. (b) Ideal tree prefetching (c)
Wavefront tree prefetching performed by our mechanism.

Traversal, and consequentlyideal prefetching, proceedsin the

mannershowvn in figure 6(b), prefetchesareshavn next to thetree

andshadedo matchthecorrespondingorrelation. The prefetches
in this sequenceare issuedusing only correlations(ll), (rl), and

(sr), and prefetchleft chainsleft-to-right and bottom-up. Our

mechanisnissuegrefetchesisingall correlationsasshavn in fig-

ure 6(c). Theresultingeffectis a left-to-right, top-down prefetch
order which we callvavefront.

Wavefront correctly prefetchesdown the tree but along the way
performsa lot of uselesgprefetchesvhich correspondo traversal
backup thetree. This occursbecausehe left-feeds-rightcorrela-
tion is assumedo hold at all levels of the tree, even thoughit is

only valid attheleaves. We expectthe overall effect of wavefront
prefetchingto be positive. Nearthe bottomof the tree,all nodes
arelikely to fit in the prefetchbuffer makingorderirrelevant. Near
the top, wavefrontwill producesomeearly prefetches.However,

thesewill not befollowed pastthefirst node. Wavefrontprefetch-
ing shouldtoleratesomelateng for atleasthalf the nodes(all the
left children),with addedbenefitneartheleavesof thetree. A pos-
sibleimprovementto our schemehatwould helpin treeprefetch-
ing would allow it to unlearn or turn off the left-to-right
correlation, and eliminate these uselessrequests. We do not
explore such an impr@ment in this paper

5 Evaluation

In this section,we provide experimentalevidenceof the effective-
nessof our proposednechanism.Section5.1 describe®ur exper-
imental framewvork, our benchmarkssuite and our simulation
ervironment. In section5.2, we useexecution-drven functional
simulationto evaluateour mechanisns ability to correctlypredict
LDS accessesmeasuringprediction accurag as a function of
PPWandCT sizes. We usetheseto establishan accurateyet rea-
sonablepredictor configuration. In section5.3 we measurethe
performance impact of dependencebased prefetching using
detailed timing simulations,and comparethe speedupsaginst
other simpleprefetchingmechanismsFinally, in sectionss.4and
5.5, we take a closerlook at prefetchingitself, and try to gain
insightinto our performancenumbersby measuringts efficiency,
overhead, and interaction with the memory system.

5.1 Experimental Framework

Our experimentsvereperformedusingthe Oldenpointerintensive

benchmarlsuite[20]. The benchmarksveremodifiedby handto

executeon a single processqgrand all CM-5 specific code was
removed. We compiledthe programsfor the MIPS-1 architecture
usingthe GNU GCC 2.7.2 compiler with optimizationflags-0O2

and-funroll-loops. Many of thebenchmarkgontainlengthy, allo-

cation-dominatednitialization phasesthat are not sped up by

dependence-basautefetching;we did not optimize or discount
thesen ary way. Finally, thesuggesteéput setsfor somebench-
marks were changed to produce longexceition samples.

For our simulations,we usethe SimpleScalasimulator[2]. We
modela 4-way superscalamout-of-orderprocessowwith a corven-
tional five stagepipeline that allows a maximum of 32 in-flight
instructions. The branchunit usesa hybrid schemewith an 8K-
entry selectortable choosingbetweenthe outcomesof an 8K-
entry, 10 bit historygshareschemeandan8K-entry 2-bit predictor
Tamgetsare storedin 2K entry 4-way BTB. The processohas4
integer ALUs, 4 floating point addersandsingleintegerandfloat-
ing point multiply/divide units. ALU operationscompletein sin-
gle cycle, multiply and divide have 3 and 20 cycle latencies.
Floatingpoint operationgake 2 cyclesfor addition,4 for multipli-
cationand 24 for division. The adderis pipelined. The memory



systemconsistof 32KB, 32-byteline, 2-way set-associate first-
level instructionanddatacachesanda 512K, 64-byteline, 4-way
set associatie sharedsecondlevel cache. The first level data
cachecan be accessedn a single cycle, the secondlevel cache
lateny is 12 cyclesto the first word and an additionalcycle for
eachword thereafter Lateny to mainmemoryis 70 cycles. The

As we claimedearlietr a dependence-basedpresentatiomasthe
ability to predictpointerload addresserearlyperfectly Oncethe
addresgeneratiorprocesgproducer)for a given pointerload has
beenidentified, addressedor all future instancesof the same
instruction can be accuratelypre-computed. The nearly perfect
prediction accuracieswe achieve testify to the stability of the

processor uses 2 read/write ports and a 16 entry load-store queuedependenceelationships.Therelatively small structuregequired

Our prefetchingconfigurationincludesa 128entry PPW anda 256
entry CT. Prefetchrequestswvait on a 32 entry PRQ,andareser-
viced only on cycleswheneitherof the datacacheportsis avail-

able. We usea 32 entry, 1KB fully associatie PB with 4 read/
requesiportsandan accesdateny of 1 cycle. The PB shareshe
off-chip databus with the instructionanddatacachesgontention
on the los is modeled.

5.2 Address Prediction Accuracy

We measurehe ability of our mechanisnto capturedependences
andusethemto predictfuture LDS addressesAt this point, we
are not interestedin timing or even the utility of the prefetches
themseles. We simply countthe fraction of all dynamicpointer
loadsfor which, atthetime they werereadyto issue,a correlation
waspresentn the CT thatboth: (i) namedthe pointerload asthe
consumerand (ii) would have producedhe correctaddress.Fac-
tors that determinepredictionaccurag are the maximumdetect-
ableload dependencelistance which preventsthe detectionand
predictionof pointerloadswith longerdependencesndthework-
ing setsizeof the correlationghemseles. The maximumdetect-
able dependencdistanceis determinedby the size of the PPW
while the correlationworking set that can be efficiently repre-
senteds givenby thenumberof entriesin theCT. This partof the
evaluationallows usto estimatetheimplementatiorresourceshat
shouldbe devotedto thesecomponentsn orderto achiese reason-
ablepredictionaccuracies.Figure 7 shavs (a) addressprediction
accurag asafunctionof PPWsizegivenaninfinite CT, and(b) as
a function of CT sizewith a fixed 64-entryPPW We evaluatea
fully-associatve CT to eliminate aliasing fetcts.
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Figure 7. Address prediction accuracy. Percentaye of
accunately predictedpointerload addresses(a) Aninfinite CT
and PPWsizesof 1,4,16,and 64 (bladk). (b) A 64-entryPPW
and CT sizes of 4,16,64 and 256 (ljac

to achieve high accurag, 64 PPW entriesand 256 correlations,
implies that the correlationarking set is small.

5.3 Speedups

We now measurethe performanceimpact of dependencdased
prefetching. The basemachinefor the experimentis describedn
section5.1. We implementtwo flavors of the dependence-based
prefetchingscheme. Thefirst is the onewe have beendescribing
all along. The secondis augmentedwith a coarseconfidence
mechanismthat turns off prefetchesif the correspondingstatic
load hashit in thefirst level datacache8 or moretimesin a row.
Thesespeedupsre shovn in aslight anddark gray bars,respec-
tively in figure8. We comparehesespeedupsagainstanaive form
of prefetching,namelya systemthat hastwice the on-chip data
cacheanduses64, ratherthan32, bytelines. Speedupsssociated
with this double data cache configuration arenshm black.
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Figure 8. Performance impact of dependence-based

prefetching.  Speedupsof dependencebased prefetding

without (It gray) and with (dk gray) a coarse confidence
scheme compaedto a systenthat prefethesby doublingthe
line size and thus werall size of the data cdee (blak).

Dependence-basaqatefetchingimproves the performanceof sev-
eral benchmarksignificantly while having a slight negative per-
formanceimpactin only onecaseyoronoi. The averagespeedup
for a 1KB prefetchbuffer is 10%, significantly outperformingan
extra 32KB of datacache. More significantspeedupsireobtained
for health em3d mst andperimeter

Em3d,health andmstarelist-basedprogramswith relatively poor
cachebehaior. Dependence-basguiefetchingeasilycapturedist
traversalbehaior and overlapsthe elementaccesdatencieswith
the available work. Performancamprovementfor thesebench-
marksis roughly proportionalto the amountof work in a single
loop iteration. Mst's lists areusedto implementbucketsin a hash
tableandthe loopsthattraversethemaretight andunableto hide
much lateng. Performancémprovementin mstis dueto mary
partially hiddenmisses. Eachiterationof em3ds mainloop con-
tainsa smallerloop of dependenfloating point loads(datapointer
loads). Thiswork in eachiterationis sufiicientto hidethe lateng
of the recurrentloop induction accessand additional benefitis
gainedby prefetchinghefloatingpoint dataattachedo eachnode.
Theouterloop in healthcontainsquite a bit of computationput it



is the tight inner loops that are responsiblefor the majority of
misses. The benefitwe seein this programis dueto theterriblea
priori miss rate and a high dose of partiallye®d latencies.

Perimeter uses a quadtree and benefits from the wavefront
prefetchingeffect explainedin section4.4. Bisort, treeaddandtsp
use binary treesas their primary datastructure,and also benefit
from the sameeffect. Perimeterseesa larger improvementthan
the othersbecausemorework is availablefor overlappingat each
recursve step. Treeaddhassolittle work ateachrecursve step,in

fact,thatthe only benefitcomesfrom the wavefronteffect nearthe
leavesof the tree. Whenfollowing the correcttraversal,the pro-
cessoris issuingrequestsas fastasthe prefetchengine. Bh and
power are multiway-treebasedprograms but both start out with

extremely good cache beliar.

\oronoi usespointers,but mostof its mostof its cachemissesare
causedby array and scalarloads. Most prefetchesssuedduring
executionare uselessand, combinedwith a low initial missrate,
contritutelittle otherthanbus contention. Theresulting2% slow-
down promptedour experimentwith the confidencemechanism.
The addition of confidence eliminates these unnecessary
prefetchesandlifts our impacton voronoi backinto the positive
range. However, it alsoeliminatesmostof theusefulprefetchesn
treeadd cutting our gains on that benchmark. Experimentation
with more elaborateconfidencemechanismsgs warranted but is
outside the scope of thisonk.

54 A Closer Look at Prefetching

In this section,we attemptto gain someinsightsinto the perfor-
manceof dependence-basgdefetchingby takinga closerlook at
prefetchingactivity. We beagin by presentinga breakdevn of all

cacheblocks prefetchediy our mechanismalongtwo axes:block
origin (i.e.,level in thememoryhierarcly) andblock utility. These
breakdavns areshavn perbenchmarkn figure9. Thebaronthe
left representdlocksthatwereresidentin thefirst level cachethe
one on the right thosethat were fetchedfrom the secondlevel

cacheand potentiallymain memory The bottom,darker, portion
of eachbarrepresentshe fraction of blocksthatwereused. The
combinedheightsof the two barsadd up to 100%, but we split

them for clarity
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Figure 9. Prefetched block breakdown. Blocks prefetdhiedfrom
the first level (left) and secondlevel (right) caches. Useful
blocks (bottom, dark), and unused btedtop, light).

Thedarkportionof thebarsontheright representthe usefulwork
performedby dependencbasedorefetching Thisis thefractionof
blocksthatwere prefetchedrom the secondevel cacheandused.
This cateyory accountdor nearly half of all prefetchedblocksin
all benchmarksxcept for treeadd and dominatesthose bench-

marks for which the greatestperformanceimprovement was
obsenred,em3d health mst andperimeter Thefactthis cateory
is so dominantmeansthat dependencé&asedprefetchingis both
accurateand efficient. The only applicationfor which this block
distribution doesnot hold true is treeadd which hasvery little
work ateachrecursve step. Theresultis that,exceptnearthe bot-
tom of thetree,the prefetchenginecanonly repeathework of the
processarit cannot prefetch ahead.

The left barin eachseriesrepresentshe prefetchingoverheadin

somesense.Thesearethe prefetchedlocksthatwerefoundin the
first level cacheandcopiedinto the prefetchbuffer. Theseblocks
arenot entirely uselesssinceoncein the prefetchbuffer they may
spavn othermoreusefulprefetches.Moving cacheblocksinto the
prefetchbuffer hastwo otherpositive effectswhich areillustrated
by the factthattheseblocksareactuallyusedvia the buffer. One
possibilityis thatthe block may have beensubsequentlgisplaced
from the first level cache,in which casethe prefetchbuffer is

assumingherole of pointerloadvictim buffer. Thesecondossi-
bility is that the prefetchbuffer was usedbecausehe datacache
portswerebusy, in which casethe prefetchbuffer actsasa band-
width amplifier  We do not separatehe contrikution of the two

effects here.

55 Memory System Performance Metrics

From the memorysystemstandpointwe quantify both the (hope-
fully) positive aspectsaandthe overheadin the form of additional
bandwidthconsumed. We begin by measuringthe lateng toler-
atedby prefetchedblocks. Here,datacachemissratesdo nottell
thewhole storysincethe lateng of mary pointerloads,aswell as
otherloadsthatacces®n pointerloadcachédines,maybepartially
hidden. Instead, we presenitwore telling metrics.

Prefetchcoverage measureshe fraction of would-beload misses
servicedby the prefetchmechanism.Theheightof eachbarin fig-
ure 10(a) is the sum of the percentageof would-beload misses
whoselateny was fully toleratedby prefetching(dark, bottom
portion),andthosewhoselateny wasonly partially hidden(light,
top portion). For eachbenchmarkthe bar on the left represents
pointerloads,andthe bar on theright all loads. Sincethe baron
the right samplesmore loads than the one on the left, we may
expectits overall heightto be shorter However, if enoughnon-
pointer loadsbenefitfrom prefetching,by virtue of beingon the
samecacheline asa pointertargetfor instancethenthe effective-
nessfor loadsin generalwill be higherthanfor pointerloadsin
particular As we predictedin section3.2, the shortdependence
distancegdo not provide muchwork for overlapping,and conse-
quently mary loadmissesareonly partially masled. However, for
the benchmarkshat shoved the greatestspeedupsas mary as
75% of all would-be load misseswasome latengcreduction.

Prefetchcoverageis only a histogram;it doesnot say how much
lateny wastoleratedfor eachservicedload nor whatthatlateng
is in relationto the otherloads. For this reasonwe alsomeasure
reduction averageload wait time, which representshe overall
improvementin memorysystemperformance. Normalizedaver-
ageload latenciesare shawvn in figure 10(b), again with pointer
loadson theleft (in gray) andall loadson the right (black). Not
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Figure 10. Memory performance improvement metrics. (a)
Percentage of would-beload missesservicedby the prefetd
buffer. Fully hidden misses(bottom of eat bar), partially
hiddenmissegtop), pointerloads(left bar) andall loads(right
bar). (b) Normalizedaverage latencyfor pointer loads (left,
gray) and all loads (right, bldg.

coincidentally the sharpestimprovementscorrespondto those
benchmarksfor which dependencéasedprefetching performs
best. For these the averageload wait time was cut by 25%. On
several others, bisort and tsp, a significant decreasein load
responsdime is not translatednto a much higher executioneffi-

cieng. For thesebenchmarksmostof the useful prefetchesare
associatedvith traversalanddataloadsthatdo not executealong
the critical path. Voronoi is the only programthat experiencesan
increase in load latepc

We quantify the overheadof dependence-basegrefetchingin
termsof increasan the numberof accessew the on chip andsec-
ondlevel datacachesaswell asto mainmemory Theseincreases
areshown in figure 11. The dominatingoverheadalthoughit is
certainlytolerable,is the increasedandwidthdemandon the first
level datacacheports. Thisincreaseanaverageof 15%acrosghe
benchmarksis aproductof our decisionto checkprefetchrequests
for residencen thefirst level cache beforesendingthemoff-chip.
This policy greatly reducesthe turn-aroundtime for prefetch
requeststhat are already cacheresident,and more importantly
allows dependenusefulrequestgo issuemuchmorequickly. We
reiteratethat this overheadis not seenby the processosincethe
ports are used for prefetching only wherythee otherwise idle.
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Figure 11. Memory bandwidth overhead. Memorybandwidth
usage increases:first level data cadhe (It gray), secondlevel
cache (dk gay) and main memory (blk

Anotherbenefitof checkingblocksfor datacacheresidencédefore
issuinga requesbff-chip is a substantiateductionin second-leel
cachebustraffic. Theincreasewe obsere in secondevel cache

accessesan averageof 4%, is slight andreinforcesour belief that
our mechanismis very efficient andaccurate. The lack of a more
substantiaincreasemeansthat most prefetchesareindeeduseful
and simply take the place of subsequenteadsresulting from

would-befirst level misses. The4% increaseandthe 2% increase
in memorybus traffic is dueto our mechanisns inability to pre-

ciselymimic thetraversalof non-lineardatastructuressuchasthe

onesin bh andvoronoi, andthe resultingearly prefetches.These
figuresshav thatevenin the caseof serializedlatenciesmemory
bandwidth can be readily traded fir lateng.

6 Reated Work

Much work hasbeendonein the areaof dataprefetchingbothin
softwareandhardware. Compileroptimizationsthatimprove data
locality [13] like blockingandloop interchangeangreatlyreduce
the needfor prefetching. However, thesefundamentallyrely on
compile-timeknowledgeof the datasetlayout andits interaction
with the cache. Linked structuresare not often laid out by the
compiler andareincompatiblewith theseoptimizations. Software
pipelining [10] tolerateshigh lateng loadsin loopshy increasing
the distancebetweenthe load and instructionsthat useits value.
While not requiring specificlayoutinformation, software pipelin-
ing relieson the ability to quickly generateaddressefor arbitrary
structureelements. LDS accessundermineshis critical require-
ment. Generalpurposesoftware prefetching[17][11] tolerates
load lateny by schedulinga matching speculatie non-faulting
load[21] farin adwance. Pointerchasingrequiresthatthe address
for a speculatie LDS load be generatedising a chainof depen-
dentloads. Thecritical pathof this chainandits relationshipto the
original load greatly limits the schedulingscopeof the prefetch,
and consequentlghe amount of lategchat can be hidden.

Luk and Mowry [12] proposedand evaluateda greedycompiler
algorithmfor schedulingsoftwareprefetchegor linked datastruc-
tures. They shawved this schemeto be effective for certainpro-
grams,citing instruction overheadand the generationof useless
prefetchesas performancedegradationfactorsfor others. Their
algorithm uses type information to identify recurrent pointer
accessesncludingthoseaccessetlia arraysandmayhave adwvan-
tagesin tailoring a prefetchschedulgo a particulartraversal. Our
hardware scheme,on the other hand, doesnot incur instruction
overheadand can prefetchnon-pointerdatathatresidesin linked
structures.In addition,it providesdynamicdetectionandsuppres-
sion of unnecessarprefetches.We expectthat this samemecha-
nism canbe integratedwith a compilerbasedprefetch-generation
scheme to impnge resource consumption.

Luk andMowry [12] presentec casefor history-pointemprefetch-
ing, which augmentslinked structure nodes with prefetching
pointerfields, and data-linearizationin which LDS are program-
matically laid out at runtimeto allow sequentiaprefetchmachin-
eryto capturetheirtraversal. While thesescheme$ave potential
for speedupthey alsoincur seriousoverheadsn the form of runt-
ime storageandadditionalcodeneededo maintainhistory point-
ers and linear data layout, respectiely. Both are difficult to
automate.



Anotherclassof softwaresolutionsto this problemutilizes cache-
consciousiataplacemeni5], theruntimeallocationor reoiganiza-
tion of LDS nodes. Clusteringtechniquespack adjacentLDS
nodesinto a single (if possible)or consecutie cachelines and
improve the spatial locality and arithmetic regularity of LDS
access.Coloringtechniquesliminateconflictsthatoccurin com-
mon traversals. Data-placementtechniquescan dramatically
improve performanceevenwhenlittle or no work is availablefor
lateny overlapping. However, they incur a potentially high re-
organizationoverheadmakingthemmostly suitablefor relatively
static structures. In addition, they are not predictive and do not
hide lateng resultingfrom capacitymisses. Finally, they require
knowledgeof the cacheparameters.Dependence-basguefetch-
ing will maskcapacitymisseswhen otherwork is available,and
incurs no e&plicit overhead.

A similar volumeof researcthasbeendonein hardware prefetch-
ing [3], anddynamictechniquedor addresgrediction[7]. Most

of these,such as streambuffers [9], referenceprediction table

(RPT)[4] and the subsequentTango [19] analyze address
sequencefor single instructionsarithmetically and are designed
to deal primarily with stridedaccesgatterns. Josephand Grun-

wald [8] describeMarkov predictorswhich representachemiss

sequencef the form of a probabilistictransitiontable. Markov

predictorsarecapableof capturingcomple patternsput arenone-
thelessaddresdasedandrequirestorageproportionalto the num-

ber of distinct entries in the miss stream.

Mehrotra and Harrison [14] proposedsimple extensionsto the
RPT aimed at capturing recurrentaccesspatterns. They aug-
mentedthe RPT with a RecurrenceRecognitionUnit (RRU), a
finite statemachineableto recognizesinglelevel recurrencessuch
astheonesusedin list traversal. The RRU is anefficiently imple-
mentedmechanismthat leveragesstructuresusedfor arithmetic
prefetching,and capturedist accessthe mostcommonLDS tra-
versal. Likethe RPT, the RRU analyzesaddresstreamson a per
instructionbasis,anddoesnot capturedependencbetweermulti-
ple instructionsthat arisein tree and graphtraversals. Depen-
dence-basegrefetchingcancaptureandprefetchall pointerloads.
However, it has a potentially higher implementation cost.

Theuseof datadependencbetweerinstructionsasaninformation
primitive and unit of prediction was introducedby Moshovos,
Breach,Vijaykumar and Sohi [15], and later refined by Chrysos
andEmer[6]. In theinitial work, dependencpredictionwasused
to synchronizeloads, avoiding misspeculatiordue to unresohed
dependencesTysonandAustin [23] andMoshososandSohi[16]

broadenedhe scopeof useof dependenceformation. They pro-

poseto dynamicallyandtransparentlyornvertaddress-baseattiv-

ity to dependence-basedactvity, to reduce memory
communicatiorlateng. We are not aware of ary work that uses
instruction dependence speculation to prefetch.

Other relatedworks include the static accessfeecutedecoupling
proposedby Smith [22] and subsequentynamic dependence-
baseddecoupling[18]. Dependence-baseaatefetchingspecula-
tively decoupleghe LDS traversalportion from the remainderof

the program, bt does so selegtly based on address dependence.

7 Summary and Future Directions

We introduce a dependencédasedmechanismthat dynamically
capturesandrepresentpointeraccesehaior, andusesthe rep-
resentatiorfor prefetchinglinked datastructureLDS). Depen-
dence-basednalysisdoesnot rely on regularitiesin the address
stream, capturing addressgenerationactiity explicitly. As a
result,it successfullypredictsLDS accesssequencesghat exhibit
little or no arithmeticpatterns. We show thata dependencéased
mechanismcan captureand correctly predict nearly all of the
accesseperformedoy anactualLDS traversal. A prefetchscheme
usingthis mechanisncan boostperformanceof pointerintensve
programs by 1% to 25%. &\male the follaving contrilutions:

(i) We characterizgointerloadsandshaw that,in a suiteof
pointerbasedprograms theseare responsiblefor a sig-
nificant and often disproportionatefraction of the data
cachemisses. We categorize pointerloadsinto data,tra-
versal,andrecurrentioadsand describehow the latengy
associatedvith membersof eachcategory may be toler-
ated.

(i) We presenia new dependence-basedechanisnthatcan
correctly predict future LDS accessedy capturingand
mimicking the LDS traversalbehaior of the executing
program. Our schemeis basedon the identification of
dependencerelationshipsbetween loads that produce
LDS elementaddressesand loads that consumethem.
We shav that thesedependenceelationshipsare stable
andhave asmallworking set,leadingto high addrespre-
diction accuracies.

(iii) We showv thata dependence-baseepresentatioenables
aggressie, greedy prefetching of linked structures.
While not strictly overcomingpointerchasing this mode
of executioncanoverlapa large fraction of the available
work with serialized latencies.

Theimplementationwe proposes a singlepointin anunexplored
designspace. Mary otherdesignsarepossible for exampleones
thatprefetchdirectly into the cache. Thereis potentialwork in the
interpretation of the dependencegraphs and prioritization of

prefetchoperations.The CT may be usedto actiely classifyload

instructionsaccordingto the numberandtype of outgoingdepen-
dences. This classificationschemecan drive prefetchingdeci-
sions,aswell asschedulingpolicies. In section4.4, we described
theproblemsassociateavith treetraversal,andoutlineda potential
solution involving the dynamicdisablingof one dependence.A

dynamicimplementatiorof sucha mechanismor anextendedver-

sion that can prune arbitrary prefetch requestsand improve

resourcecontentionand PB pollution, is a possibility as is the
designof an efficient schemeto allow the prefetchengineto run

further ahead.

Futurework we find mostexciting, however, dealswith the explo-
ration of novel microarchitecturatechniquessnabledby dynami-
cally collected dependencénformation. Capturinglinked data
structureaccessand usingit for prefetchingis a first stepin this
direction. Pointerdependenceareeasyto find sincetheaddresses
flow from producerto eventualconsumerunchangedhroughreg-



istersandspills to andfrom memory Thereareotherdatastruc-
tures,sparsamatricesandindex treesfor instancewhosetraversal
doesnot yield addressequencewith arithmeticproperties. The
natureand organizationof mechanismghat can captureand effi-
ciently representand exploit theseaccessbehaiors is an open
question. Finally, otherusesof dependencénformation may be
possiblejn areasunrelatedo prefetchingin particularor memory
system management in general.
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