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Abstract
Untolerated load instruction latencies often have a significant

impact on overall program performance. As one means of miti-
gating this effect, we present an aggressive hardware-based mech-
anism that provides effective support for reducing the latency of
load instructions.

Through the judicious use of instruction predecode, base regis-
ter caching, and fast address calculation, it becomes possible to
complete load instructions up to two cycles earlier than traditional
pipeline designs. For a pipeline with one cycle data cache access,
this results in what we term a zero-cycle load. A zero-cycle load
produces a result prior to reaching the execute stage of the pipeline,
allowing subsequent dependent instructions to issue unfettered by
load dependencies. Programs executing on processors with sup-
port for zero-cycle loads experience significantly fewer pipeline
stalls due to load instructions and increased overall performance.

We present two pipeline designs supporting zero-cycle loads:
one for pipelines with a single stage of instruction decode, and
another for pipelines with multiple decode stages. We evaluate
these designs in a number of contexts: with and without software
support, in-order vs. out-of-order issue, and on architectures with
many and few registers. We find that our approach is quite ef-
fective at reducing the impact of load latency, even more so on
architectures with in-order issue and few registers.

1 Introduction
High-performance computing requires high sustained instruc-

tion issue rates, a goal which can only be achieved if pipeline
hazards are minimized. Data hazards, an impediment to perfor-
mance caused by instructions stalling for results from executing
instructions, can be mitigated by tolerating or reducing instruction
execution latencies.

For many programs, the dominating source of data hazards can
be attributed to load instructions. These operations occur fre-
quently and have longer latency than most other non-numeric in-
structions because they combine address calculation, data cache
access, and occasional accesses to lower levels of the data memory
hierarchy in a single instruction.

A significant body of work is dedicated to reducing the impact
of load latency. The techniques can be broadly bisected into two
approaches: latency tolerating techniques and latency reducing
techniques. Tolerating techniques require that independent opera-
tions be moved into unused pipeline delay slots. This reallocation
of processor resources can be performed either at compile time
using instruction scheduling or at run time using techniques such
as out-of-order issue, non-blocking loads, or multi-threading. Re-

ducing techniques decrease or eliminate some component of load
instruction latency; for example, register allocation eliminates the
entire load operation, or (loop) blocking eliminates many cache
miss latencies.

In this paper, we present a microarchitecture design capable of
reducing the latency of load instructions. Through the application
of instruction predecode, base register caching, and fast address
calculation, it becomes possible to complete load instructions up to
two cycles earlier than traditional pipeline designs. For a pipeline
with one cycle data cache access, this results in what we term
a zero-cycle load. A zero-cycle load produces a result prior to
reaching the execute stage of the pipeline, allowing subsequent
dependent instructions to issue unencumbered by load instruction
hazards. Programs executing on processors with support for zero-
cycle loads experience significantly fewer pipeline stalls due to
load instructions and increased overall performance.

We present two pipeline designs supporting zero-cycle loads:
an aggressive design for pipelines with a single stage of instruction
decode, and a less aggressive design for pipelines with multiple
decode stages. We evaluate these designs in a number of contexts:
with and without software support, in-order vs. out-of-order issue,
and on architectures with many and few registers. We find that our
approach is quite effective at reducing the impact of load latency,
even more so on architectures with in-order issue and few registers.

The remainder of this paper is organized as follows: Section 2
details the microarchitecture support required to implement zero-
cycle loads. Section 3 presents a detailed example of zero-cycle
loads in action. In Section 4, we present results of simulation-
based performance studies and Section 5 describes related work.
Finally, Section 6 presents a summary and conclusions.

2 Zero-Cycle Loads
A load, while being a single instruction, is composed of several

smaller component operations, many of which must occur in a
specific order prior to completion of the load and delivery of a
value from memory. Figure 1a illustrates the major component
operations of a load and their required order. �

As shown in Figure 1b, a traditional pipeline fetches loads in
the IF stage of the pipeline. Identifying, aligning, and reading the
register file occurs in the ID stage of the pipeline. In designs with
very fast clocks and wide issue, these operations are often split

� Many variations exist upon this basic template; for example, some
pipelines require address translation to complete before accessing the data
cache, other designs require that register file access occur after a load has
been aligned into a pipe that services load instructions. This basic template
is, however, representative of many modern pipeline designs.
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Figure 1: Zero-Cycle Loads.

across multiple decode stages. Effective address generation occurs
in the EX stage of the pipeline, and data cache access and address
translation in the MEM stage of the pipeline. This organization
creates a two cycle latency for load instructions.

With support for zero-cycle loads (Figure 1c), loads can com-
plete up to two cycles earlier than the traditional pipeline. We
accomplish this optimization with two basic mechanisms. First,
we use instruction predecode and base register caching to reduce
the time required to decode and issue a load instruction. Instruction
predecode reduces the latency to identify and align the loads in a
group of fetched instructions. Base register caching provides the
necessary high-bandwidth access to base and index register values
early in the pipeline. Second, we employ fast address calculation
[APS95] to reduce the latency of data cache access. Fast address
calculation is a stateless set index predictor that allows address
calculation and data cache access to proceed in parallel.

The combination of early issue and faster data cache access
results in a pipeline design capable producing a load result two
cycles earlier than traditional organizations. For pipelines with
a single cycle data cache access, it becomes possible to forward
a load result into the execute stage of the pipeline. If latency is
defined as the number of cycles from the beginning of the execute
stage for an operation to produce a result, successfully speculated
loads will appear to have zero latency – hence the moniker “zero-
cycle loads”.

Not all loads can execute with zero latency. Early issue in-
troduces new register and memory interlocks, and fast address
calculation will occasionally mispredict the effective address, ne-
cessitating a recovery mechanism. In the following subsections,
we more fully explore the implementation of zero-cycle loads, ex-

amining both the organizational and pipeline control impacts of its
use. Two designs are presented in detail: an aggressive design for
pipelines with only a single stage of instruction decode, and a less
aggressive design for pipelines with multiple decode stages.

2.1 Implementation with One Decode Stage
Achieving a zero-cycle load in a five stage pipeline is a very

challenging task – the load instruction must complete in only two
pipeline stages. Assuming data cache access takes one cycle, all
preceeding component operations must complete in only a single
cycle. Figure 2 shows one approach to implementing zero-cycle
loads in a pipeline with a single decode stage.

2.1.1 Organization
Fetch Stage In the fetch stage of the processor, the instruction
cache and base register and index cache (or BRIC) are accessed in
parallel with the address of the current PC.

The instruction cache returns both instructions and predecode
information. The predecode information is generated at instruc-
tion cache misses and describes the loads contained in the fetched
instructions. The predecode data is supplied directly to the pipes
which execute loads, permitting the tasks of fetching, identifying,
and aligning loads to complete by the end of the fetch stage.

The predecode data for each load consists of three fields:
the addressing mode, base register type, and offset. The ad-
dressing mode field specifies either a register+constant
or register+register addressing (if supported in the ISA).
The base register type is one of the following: SP load, GP load,
or other load. SP load and GP load specifies a load using the stack
or global pointer [CCH

�

87] as a base register, respectively. Other
load specifies a load using a register other than the stack or global
pointer as a base register. The offset field specifies the offset of the
load if it is contained as an immediate value in the instruction.

The BRIC is a small cache indexed by the address of a load,
producing a register pair: the base register value and the index
register value (unused if a register+constant mode load).
During execution, the BRIC builds an association between the
address of loads executed and their base and index register values.
This address-to-register value association allows register access to
complete by the end of the fetch stage of the pipeline. If the BRIC
misses, an entry is replaced after the base and index register values
have been read from the integer register file.

Loads that use the stack or global pointers are executed quite
frequently [APS95] – we can increase the effective capacity of the
BRIC by using an alternate means to supply these loads with a
base register value. As shown in Figure 2, two registers are used
to cache the global and stack pointer values. When an access is
made, the type field of the predecode data is used to select the
correct base register source.

Any cached register value must be updated whenever the corre-
sponding register file value is updated. Since multiple loads may
be using the same base and index registers, a value written into the
BRIC may have to be stored into multiple locations. Consequently,
the BRIC is a complex memory structure, supporting multiple ac-
cess ports and multi-cast writes. We do not expect it to be very
large before its access time impacts processor cycle time, hence,
we consider only very small sizes – on the order of 4-64 elements.
We also consider organizations without a BRIC, a configuration
particularly useful to programs with a high frequency of global
and stack pointer accesses.

Decode Stage In the decode stage of the pipeline, the base regis-
ter and offset pair produced in the fetch stage are combined using
fast address calculation. (The fast address calculation mechanism
is represented by the box labeled FAC in Figure 2.) Fast address
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Figure 2: Pipelined Implementation with One Decode Stage.

calculation is a fast stateless set index predictor that leverages off
the organization of on-chip data cache to allow non-speculative
address calculation to proceed in parallel with data cache access.

On-chip caches are organized as wide two-dimensional arrays
of memory cells (as shown in Figure 3). This geometry minimizes
access time by reducing wire lengths. Each row of a cache array
typically contains one or more data blocks [WRP92, WJ94]. To
access a word in the cache, the set index portion of the effective
address is used to read an entire cache row from the data array and
a tag value from the tag array. Late in the cache access cycle, a
multiplexor circuit uses the block offset part of the effective address
to select the referenced word from the cache row. At approximately
the same time, the tag portion of the effective address is compared
to the tag value from the tag array to determine if the access hit in
the cache. Consequently, on-chip cache organizations require the
set index portion of the effective address at the beginning of the
cache access cycle and the block offset and tag portion later, after
the cache row and tag have been read.

As shown in Figure 3, the set index portion of the effective
address is supplied very early in the cache access cycle by OR’ing
the set index portion of the base and offset. We call this limited
form of addition carry-free addition as this operation ignores any
carries that may have been generated in or propagated into the set
index portion of the address calculation. Because many offsets are
small [APS95], the set index portion of the offset will often be zero,
allowing this fast computation to succeed. For larger offsets, like
those applied to the global or stack pointer, we can use software
support to align pointer values, thereby increasing the likelihood
that the set index portion of the base register value is zero.

In parallel with access of the cache data and tag arrays, full
adders compute the block offset and tag portion of the effective
address. Later in the cache access cycle, the block offset selects
the correct word from the cache row, and the tag is compared to the
tag value read from the tag array. If the effective address prediction
succeeds, the value read from the data cache is available by the end
of the decode stage of the pipeline. It may then be forwarded, via
bypass data paths, to a dependent instruction.

The pipeline organization in Figure 2 requires two new data
paths (per pipe). A path must be added to allow forwarding of
register values from the BRIC directly to the data cache. (This
path does not normally exist on traditional pipeline organizations
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Figure 3: Fast Address Calculation. Bold lines indicate a bus, gates
with an ‘*’ signify a replicated gate for every line of the connected bus.

as all values from the fetch/decode stages of the pipeline will first
pass through the execute stage before arriving at the data cache
ports.) In addition, the data path used to write back register values
to the register file must also be extended to supply register values
to the BRIC. All other data paths used to facilitate zero-cycle loads
(i.e., D-cache to ALU, ALU to D-cache, ALU to ALU, D-cache to
D-cache) already exist in traditional pipeline organizations.

2.1.2 Pipeline Control
As with most pipeline optimizations, the brunt of the complexity

is placed on the pipeline control circuitry. The following logic
equation summarizes the condition under which a zero-cycle load
will succeed:
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indicates if the load address hit in the BRIC.����� ���	��
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indicates if fast address calculation succeeded.
Fast address calculation succeeds when no carries are propagated
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Figure 4: Pipelined Implementation with Multiple Decode Stages.

into or generated in the set index part of the effective address
computation. (The verification circuit is shown in the lower portion
of Figure 3.)"�$&%&� ���'� $)(*�	�,+-�

indicates if a data cache port is available for
the speculative load. This signal is required because accessing the
data cache from multiple pipeline stages provides more points of
access to the data cache than ports available, necessitating port
allocation on a per cycle basis./�����(?1 + ��

�

indicates if the load hit in the data cache.�2+-3 �546�,+7%)��$&(-8
indicates whether a data hazard exists between

the base and index register values used by the zero-cycle load and
the register results of programmatically earlier instructions still
executing or waiting to execute.:;+-< �546�=+-%)��$)(?8

is analogous to
��+?3 �546�=+-%)��$)(?8

, but detects
conflicts through memory. An interlock through memory occurs
whenever an earlier store instruction with a matching effective
address (or an unknown effective address) has not completed exe-
cution.

If a zero-cycle load is not possible or fails due to a mispredicted
effective address, there are a number of options available for re-
covery. If the BRIC misses, the register values read in the decode
stage of the pipeline can be used to re-execute the access using fast
address calculation in the execute stage of the pipeline. If success-
ful, the load will complete in one cycle. If fast address calculation
fails, a non-speculative effective address can be computed in the
execute stage of the pipeline, with subsequent data cache access
in the memory stage. Alternatively, if an adder is available for
use in the decode stage of the pipeline, non-speculative effective
address could be performed on the register values from the BRIC,
and the failed access could be re-executed in the execute stage
of the processor. If an interlock condition exists, the load must
stall until it clears, at which point the access can proceed, possibly
employing fast address calculation if the interlock condition clears
before address generation completes. In the worse case, the BRIC
will miss, forcing re-execution in the execute stage, where fast ad-
dress calculation will fail, resulting in re-execution in the memory
stage of the processor – a worse case latency of two cycles (given
sufficient data cache bandwidth).

In some designs, it may be possible to detect a failure condi-
tion early enough to prevent a speculative access. This pipeline
will benefit from less wasted data cache bandwidth. For the one
decode stage design, we assume a BRIC miss or failure to arbi-
trate a data cache port are the only conditions that can elide a data
cache access. We have been intentionally conservative in deciding
what conditions may elide a speculative data cache accesses. This
strategy ensures that our failure detection logic is simple and fast,
which minimizes impacts on the pipeline control critical path and
processor cycle time.

2.2 Implementation with Multiple Decode Stages
The increased complexity of instruction decode created by wider

issue widths and faster clock speeds has forced many recent de-
signs to increase the number of pipeline stages between instruc-
tion fetch and execute. (Stages which we collectively call decode
stages.) For example, the DEC 21164 [Gwe94a] has three decode
stages and the MIPS R10000 [Gwe94b] has two. Adding more
decode stages increases the mispredicted branch penalty, however,
architects have compensated for this penalty by increasing branch
prediction accuracy through such means as larger branch target
buffers or more effective predictors, e.g., two-level adaptive.

Given extra decode stages, the task of implementing zero-cycle
loads becomes markedly easier. Figure 4 shows one approach
to providing support for zero-cycle loads on a pipeline with two
decode stages.

Register access is delayed to the first decode stage of the pipeline.
This modification eliminates the need for a complex address-
indexed BRIC in the fetch stage, permitting direct register file
access using register specifiers. In Figure 4, we’ve arbitrarily as-
sumed that instructions are not fully decoded until the end of the
first decode stage, thus the base and index register specifiers are
supplied by instruction predecode. In some designs, it may be pos-
sible to decode the register specifiers and access the register file
in a single cycle, eliminating the need for instruction predecode
completely.

In some pipelines, it may not be possible to access the integer
register file in the first decode stage without supplying more ports,
which greatly increases the risk of impacting processor cycle time.
A better alternative for these designs may be to adapt the BRIC
as a means for caching register values. We and others [FP91]
have found a significant amount of temporal locality in base and
index register accesses. A small cache, on the order of 4 to 8
entries provides the necessary bandwidth to register values without
increasing the number of ports on the existing integer register file.
Like the original BRIC, a miss initiates a replacement which is
available for use after the base and index registers have been read
from the integer register file. However, unlike the original BRIC,
this storage need not support multi-cast writes, since any register
value will reside in at most one cell.

The extra decode stage makes it possible to detect more interlock
conditions prior to speculative data cache access. For this design,
we assume register interlock conditions are detected early enough
to terminate the speculative access. As a result, a failure in fast
address calculation, a memory interlock condition, or a data cache
miss are the only signals that do not provide early termination of
a speculative access. These conditions cannot be detected early
because testing for them requires values that are only available
after the start of the data cache access cycle.
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Figure 5: Pointer Chasing Example with and without Zero-Cycle Loads.

By the end of the first decode stage, this design and the single
decode stage design converge. In the second decode stage, fast
address calculation is used to compute the effective address and
the data cache is accessed.

2.3 Further Design Considerations
We found in a earlier report [APS95] that fast address calculation

forregister+registermode accesses fails often. Use of this
addressing mode can be directly attributed to codes where strength
reduction of array subscript expressions [ASU86] is not possible
or fails, resulting in many large index variable offsets. We can
improve the design by not speculating loads using this addressing
mode. We instead compute the effective address during the decode
stage of the pipeline and access the data cache in the execute stage.
As a result, a register+register mode access that hits in
the BRIC will complete in only one cycle, two cycles otherwise.

Other failure conditions may manifest due to speculative data
cache access. If a fault does occur, e.g., access to an invalid page
table entry, the fault must be masked until the instruction becomes
non-speculative. Once the speculative access is verified as correct,
posting the fault proceeds as in the non-speculative case.

Our fast address generation mechanism assumes that data cache
access can start as soon as the set index part of the effective address
is available. If this is not the case, e.g., the cache is indexed with a
translated physical address or cache bank selection uses part of the

block offset, fast address calculation can not be used. (Our early
issue mechanism, however, can still be applied.)

3 A Working Example
Figure 5 illustrates the performance advantage of zero-cycle

loads. Figure 5a shows a simple C code fragment which traverses
a linked list searching for an element with a matching tag field
(often referred to as “pointer chasing”). Figure 5b shows the
assembly output for a MIPS-like target (without architected delay
slots) as produced by the GNU GCC compiler. This code sequence
was selected because it is a very common idiom in C codes, and
it is difficult to tolerate the latency of the loads with compile-time
scheduling. Moving either load in the loop would require a global
scheduling technique because both are preceded by branches. In
addition, moving the first load into a previous iteration of the loop
would require support for masking faults since a NULL pointer
may be dereferenced.

Figure 5c and 5d depict the code executing on a 4-way in-order
issue superscalar processor with and without support for zero-cycle
loads, respectively. In both executions, the example assumes per-
fect branch prediction, one cycle data cache access latency, and
unlimited functional unit resources. The stage specifiers contained
within brackets, e.g., [ID], denote a data cache access occurred
during that cycle. Arrows indicate where values from memory
were forwarded to other instructions. The shaded stage specifiers



indicate that the instruction was stalled in that stage for one cy-
cle. In the execution with support for zero-cycle loads, all BRIC
accesses hit and all fast address calculations succeed. Incorrectly
speculated accesses are denoted with an asterisk.

As seen by comparing the two execution examples, support
for zero-cycle loads significantly reduces the number of cycles
to execute the code sequence. Without zero-cycle load support,
each iteration requires four cycles to execute; with zero-cycle load
support, each iteration requires only a single cycle to execute, as
both load results are available by the time the two branches reach
the execute stage of the processor. Reducing the latency of the
load instructions eliminates nearly all stalls. Only one access is
misspeculated (marked with an asterisk). This access must be re-
executed in the execute stage of the processor because the earlier
load issued in the same cycle created a value used by the later load,
a violation of a RAW dependence. (This failure condition would
be indicated by the signal

��+?3 �546�=+-%)��$)(?8
.)

Although not shown in the figure, running the same code on a 4-
way out-of-order issue processor without zero-cycle load support
requires two cycles to execute each iteration. The out-of-order
issue processor cannot achieve one iteration per cycle because
the code segment contains a recurrence requiring two cycles per
iteration (one cycle for address calculation followed by one cycle
to access the data cache). On the same out-of-order issue processor
with support for zero-cycle loads, the latency reduction capability
of fast address calculation allows each iteration of the recurrence
to complete in one cycle.

4 Experimental Evaluation
We evaluated the impact of zero-cycle loads by extending a de-

tailed timing simulator to support zero-cycle loads and examining
the performance of programs running on the extended simulator.
We varied the processor issue model, level of software support, and
number of architected registers to see what effects these changes
had on the efficacy of zero-cycle loads.

4.1 Experimental Framework
4.1.1 Compiler Tools and Software Support

All programs were compiled with GNU GCC (version 2.6.0),
GNU GAS (version 2.2), and GNU GLD (version 2.3) with max-
imum optimization (-O3) and loop unrolling enabled (-funroll-
loops). The Fortran codes were first converted to C using AT&T
F2C version 1994.09.27.

We added software support to GCC and GLD to improve the
prediction performance of fast address calculation. A complete
description of our optimizations as well as the parameters used
when compiling the codes can be found in [APS95]. In short,
our software support works to align pointers and reduce the size
of load offsets, two transformations which improve the prediction
accuracy of fast address calculation. It is important to note that
these optimizations are not required, and their implementation is
quite simple, totalling less than 1000 lines of C code.

4.1.2 Simulation Tools
All experiments were performed on an extended (virtual) MIPS-

like architecture. The architecture implements a superset of the
MIPS-I instruction set [KH92], with the following extensions:

� extended addressing modes: register+register and post-
increment and decrement are included

� no architected delay slots

Our baseline simulator is detailed in Table 1. The simulator
executes only user-level instructions, performing a detailed timing

Fetch Width 4 instructions
Fetch able to fetch any 4 contiguous instructions
Interface in the same cache block per cycle
I-cache 16k direct-mapped, 32 byte blocks,

6 cycle miss latency
Branch 2048 entry direct-mapped BTB with
Predictor 2-bit saturating counters,

2 or 3 cycle misprediction penalty
In-Order Issue in-order issue of up to 4 operations
Mechanism per cycle, allows out-of-order completion
Out-of-Order Issue out-of-order issue of up to 4 operations
Mechanism per cycle, 16 entry register update unit,

8 entry store queue, loads may execute when
all prior store addresses are known

Functional 4-integer ALU, 2-load/store units, 2-FP adders,
Units 1-integer MULT/DIV, 1-FP MULT/DIV
Functional integer ALU-1/1, load/store-2/1,
Unit Latency integer MULT-3/1, integer DIV-12/12,
(total/issue) FP adder-2/1, FP MULT-4/1, FP DIV-12/12
D-cache 16k direct-mapped, write-back, write-allocate,

32 byte blocks, 6 cycle miss latency,
dual ported, non-blocking interface,
1 outstanding miss per register

Store Buffer 16 elements, non-merging

Table 1: Baseline Simulation Model.

simulation of 4-way superscalar microprocessor and the first level
of instruction and data cache memory.

The simulator supports both in-order and out-of-order issue exe-
cution models. The in-order issue model provides no renaming and
stalls whenever any data hazard occurs on registers. The out-of-
order issue model employs a 16 entry register update unit [Soh90]
to rename values and hold results of pending instructions. Loads
and stores are placed into an 8 entry queue. Stores execute when
all operands are ready. Loads may execute when all prior store
addresses have been computed; their values come from a matching
earlier store in the store queue or from the data cache. Each cycle
the register update unit retires 4 results in-order to the architected
register file. When stores are retired, the memory value is placed
into a store queue and later written to the data cache.

The data cache modeled is a dual ported 16k direct-mapped non-
blocking cache. Data cache bandwidth is limited, it can only ser-
vice two loads or stores each cycle, either speculative or otherwise.
Stores are serviced in two cycles using a 16 entry non-merging
store buffer. The store buffer retires stored data to the data cache
during cycles in which the data cache is unused. If a store executes
and the store buffer is full, the entire pipeline is stalled and oldest
entry in the store buffer is retired to the data cache.

A number of modifications were made to the simulator to sup-
port zero-cycle loads. To compensate for the cost of generat-
ing predecode information, I-cache miss latency was increased by
two cycles. A BRIC was added with a miss latency of three cy-
cles. During execution, stores employ fast address calculation.
Store values are placed speculatively into the store buffer (or store
queue) and then committed in the following cycle, after the fast
address calculation is verified. Speculating stores improved overall
performance by providing store addresses earlier in the pipeline,
which reduces the number of memory conflicts with zero-cycle
loads. The simulator does not attempt fast address calculation on
register+register mode loads – it instead performs effec-
tive address calculation in the decode stage of the pipeline and
accesses the data cache in the execute stage. For all experiments,



Benchmark Input Options Insts References
(Mil.) Loads Stores

Total Percent of All Loads Total Percent of All Stores
(Mil.) GP SP general (Mil.) GP SP general

Compress in 62.4 14.9 31.27 6.74 61.97 7.5 23.67 13.27 63.05
Eqntott int pri 3.eqn 878.5 211.3 5.24 3.43 91.32 12.9 2.72 63.39 33.87
Espresso cps.in 491.7 112.9 4.73 3.71 91.55 26.2 0.32 11.51 88.15
GCC 1stmt.i 122.8 28.3 11.47 30.03 58.48 20.2 3.03 42.03 54.93
Sc loada1 858.4 240.4 17.17 26.79 56.03 103.4 2.44 61.73 35.82
Xlisp li-input.lsp (queens 8) 965.2 317.4 18.91 30.44 50.64 177.9 14.24 60.21 25.54
Grep 3x inputs.txt -E -f regex.in 131.7 42.4 0.67 2.18 97.13 1.5 14.78 44.64 40.56
Perl tests.pl 193.2 51.1 12.77 37.15 50.07 32.8 9.61 49.01 41.36
YACR-2 input2 386.9 61.8 9.15 31.87 58.97 7.2 0.14 36.53 63.31

Alvinn NUM EPOCHS=50 1,238.5 363.7 1.04 1.10 97.84 125.1 0.00 3.09 96.90
Ear short.m22 args.short 340.4 76.0 1.65 1.01 97.33 44.6 0.16 1.61 98.21
Mdljdp2 mdlj2.dat MAX STEPS=150 729.3 278.4 1.49 0.12 98.37 84.9 4.88 0.58 94.52
Mdljsp2 mdlj2.dat MAX STEPS=150 875.1 222.1 3.55 0.70 95.73 75.6 9.10 2.37 88.51
Spice2g6 greycode.in .tran .7n 8n 1,252.0 452.5 32.60 18.61 48.78 76.6 1.85 34.09 64.05
Su2cor su2cor.in Short input 824.9 334.4 3.70 2.67 93.61 89.1 0.00 8.00 91.98
Tomcatv N=129 464.2 172.9 5.64 4.81 89.54 35.8 0.06 0.80 99.13

Table 2: Benchmark programs, inputs, instructions counts, and reference characteristics.

there are only two data cache access ports available each cycle.
Data cache ports are arbitrated first to non-speculative loads late
in the pipeline, then to the store buffer, and finally, if any are ports
are left over, to speculative data cache accesses.

4.1.3 Benchmarks
In selecting benchmarks, we included both integer- and floating

point-intensive codes. Table 2 details the programs we analyzed,
their inputs, instruction counts, and reference characteristics. The
integer codes are in the top group, the floating point codes in the
bottom group. Thirteen of the analyzed benchmarks are from
the SPEC92 benchmark suite. (We omitted eight of the SPEC92
floating point codes to reduce simulation time.) In addition, we
analyzed three other integer codes: Perl, a popular scripting lan-
guage running its test suite, Grep performing regular expression
matches in a large text file, and YACR-2, a VLSI channel router
routing a channel with 230 terminals.

4.2 Baseline Performance
In this section, we consider the performance impact of zero-cycle

loads on pipelines with one and two decode stages and varied BRIC
sizes. As detailed in Section 2, the pipeline implementation with
one decode stage (Figure 2) indexes the BRIC in the fetch stage
with a load address and has a 2 cycle branch penalty. The pipeline
implementation with two decode stages (Figure 4), indexes the
BRIC with a register specifier in the first decode stage and has
a 3 cycle branch penalty. Figure 6 shows the hit ratios for both
address- and register specifier-indexed BRIC of varying size. In
each experiment, the BRIC is fully associative with LRU replace-
ment. The figures show only four of the benchmarks, selected as
they are representative of the others.

The address-indexed BRIC performs well for even small sizes.
The performance is quite good for programs with a large number of
static loads, e.g., GCC and Spice, and programs with a large number
of dynamic loads, e.g., Xlisp and Spice. All the benchmarks hit
more than 80% of the time with an 8 entry address-indexed BRIC
and more than 90% with a 32 entry address-indexed BRIC. By
keeping global and stack pointer loads out of the BRIC, fewer
accesses need to use it, and of those remaining, many accesses are
within loops which have excellent temporal locality.
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Figure 6: BRIC Hit Rates.

The register specifier-indexed BRIC, used in the two decode
stage design, also performs well for all programs. Performance for
a even a four entry register specifier-indexed BRIC is very good.



Benchmark One Decode Stage, Address-Indexed BRIC Two Decode Stages, Register Specifier-Indexed BRIC
Base Speedup Base Speedup
IPC BRIC-8 BRIC-64 No GP/SP Only GP/SP Perfect IPC BRIC-4 BRIC-8 Perfect

Compress 1.01 1.23 1.23 1.22 1.10 1.40 0.99 1.21 1.22 1.38
Eqntott 1.22 1.41 1.42 1.41 1.03 1.42 1.15 1.37 1.37 1.38
Espresso 1.20 1.43 1.44 1.42 1.03 1.45 1.19 1.40 1.40 1.42
GCC 1.04 1.27 1.28 1.24 1.07 1.41 1.02 1.24 1.25 1.37
SC 1.02 1.48 1.49 1.40 1.16 1.52 1.00 1.45 1.45 1.48
Xlisp 0.99 1.54 1.56 1.48 1.23 1.56 0.98 1.47 1.47 1.48
Grep 0.95 1.95 1.98 1.94 1.01 1.98 0.95 1.96 1.96 1.97
Perl 0.90 1.27 1.28 1.24 1.10 1.33 0.87 1.28 1.28 1.33
YACR-2 1.62 1.37 1.37 1.37 1.12 1.37 1.59 1.36 1.36 1.36

Alvinn 1.02 1.44 1.44 1.44 1.02 1.45 1.01 1.44 1.44 1.45
Ear 0.84 1.29 1.30 1.29 1.01 1.33 0.81 1.29 1.30 1.34
Mdljdp2 0.83 1.30 1.31 1.29 1.01 1.35 0.82 1.29 1.30 1.35
Mdljsp2 0.78 1.17 1.17 1.17 1.01 1.25 0.78 1.18 1.18 1.25
Spice2g6 0.86 1.28 1.29 1.27 1.20 1.65 0.85 1.27 1.27 1.63
Su2cor 0.76 1.13 1.14 1.13 1.01 1.15 0.75 1.12 1.13 1.15
Tomcatv 0.97 1.21 1.22 1.20 1.02 1.27 0.97 1.21 1.21 1.27

Table 3: Zero-Cycle Load Baseline Performance.

This result is to be expected since register file accesses have a
significant amount of temporal locality [FP91].

Table 3 shows the results of detailed timing simulations. IPC’s
of the baseline simulations and speedups are shown for both the
one and two decode stage implementation. All experiments were
performed with the in-order issue processor model. The speedups
shown are the number of cycles for each program to execute with
hardware and software support for zero-cycle loads divided by the
number of cycles to execute without software and hardware support
for zero-cycle loads. For the one decode stage implementation,
speedups are shown for both large (64 entry) and small (8 entry)
address-indexed BRICs. In each experiment, the BRIC simulated
is fully associative and uses LRU replacement.

The speedups are quite impressive, for both the integer and
floating point codes. With an 8 entry address-indexed BRIC, we
found run-time weighted average speedup of 1.45 for the integer
codes and 1.26 for the floating point codes. The speedups for the
floating point codes are slightly less than the integer codes because
their executions are heavily dominated by other long latencies,
e.g., cache miss latencies or floating point computations, which
are largely unaffected by zero-cycle load support.

Performance with even a small address-indexed BRIC is quite
good. The 64 entry BRIC (column BRIC-64) only improves
slightly over the 8 entry BRIC simulations (column BRIC-8). This
result is very positive, suggesting that keeping the BRIC small to
reduce processor cycle time impact should not have a significant
effect on speedups.

The column labeled No GP/SP shows speedups for an 8 entry
address-indexed BRIC without separate registers available to cache
the global and stack pointer. In this design, the global and stack
pointer loads reside in the BRIC as well, reducing its effective ca-
pacity, i.e., the design in Figure 2 without the GP and SP registers.
The results suggest that special handling of global and stack refer-
ences only yields marginal improvements in overall performance,
more for the programs with a high dynamic frequency of global
and stack loads and stores, e.g., Xlisp or Sc. If designs omit this
option, they can still expect good performance.

We also performed experiments to determine the efficacy of the
BRIC itself. The column labeled Only GP/SP shows the speedups
for a configuration without a BRIC, i.e., only global and stack

pointer accesses can execute with zero cycle latency. As expected,
only the programs which rely heavily on global or stack pointer
accesses show any notable speedups.

The right half of Table 3 gives speedups for a pipeline imple-
mentation with two decode stages. In this configuration, the branch
misprediction penalty is increased to three cycles, and the BRIC is
indexed by a register specifier, rather than a load address. Speedups
are shown for both a 4 and 8 entry fully associative BRIC with LRU
replacement. As suggested by the hit rates in Figure 6, the 8 entry
BRIC only offers marginal improvement over the 4 entry BRIC.
Overall, the speedups are comparable to the one decode stage de-
sign. Either of the presented designs should be equally effective at
reducing load latency.

Also shown for both the one and two decode stage designs is
program performance with perfect fast address calculation predic-
tions and no BRIC misses (the columns labeled Perfect). Perfect
performance is only slightly better than actual performance, hence,
our current approach is quite effective at exploiting most of the po-
tential performance. Most of the performance loss in each case
can be attributed to fast address calculation failures.

4.3 Performance without Software Support
In practice, it may not be possible to employ software support

on some or all codes. We examined the performance of zero-
cycle loads with and without software support, the results of the
experiments are shown in Table 4. All simulations were performed
with an in-order issue processor model with two decode stages and
an 8 entry fully associative register specifier-indexed BRIC with
LRU replacement.

The first column of Table 4, labeled Impact of S/W, quantifies
the performance impact of our software support on the baseline
processor. The numbers shown are the run-time (in cycles) of the
programs with software support running on a processor without
support for zero-cycle loads over the run-time of the programs
without software support running on the same processor. In other
words, this result is the impact the user will see running a pro-
gram with zero-cycle load optimizations on a processor that does
not implement zero-cycle loads. The performance impact of our
optimizations on the baseline hardware is quite small. We also ex-
amined virtual memory performance by simulating a 64 entry TLB



Benchmark Impact Speedup
of S/W w/SW support w/o SW support

Compress 1.001 1.22 1.11
Eqntott 1.002 1.37 1.33
Espresso 1.015 1.40 1.39
GCC 1.017 1.25 1.22
SC 1.021 1.45 1.30
Xlisp 1.024 1.47 1.28
Grep 0.991 1.96 1.91
Perl 0.990 1.28 1.19
YACR-2 1.001 1.36 1.29

Alvinn 0.999 1.44 1.43
Ear 0.993 1.30 1.29
Mdljdp2 0.998 1.30 1.27
Mdljsp2 1.000 1.18 1.17
Spice2g6 0.995 1.27 1.08
Su2cor 1.006 1.13 1.12
Tomcatv 1.000 1.21 1.21

Table 4: Performance with and without Software Support.

Benchmark Speedup

In-Order Out-of-Order
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Compress 1.22 1.02 1.63 1.34
Eqntott 1.37 1.16 1.26 0.91
Espresso 1.40 1.15 1.65 1.14
GCC 1.25 1.04 1.46 1.16
SC 1.45 1.16 1.69 1.13
Xlisp 1.47 1.10 1.54 1.03
Grep 1.96 1.42 1.67 0.84
Perl 1.28 1.07 1.40 1.08
YACR-2 1.36 1.07 1.70 1.23

Alvinn 1.44 1.09 1.80 1.24
Ear 1.30 1.04 2.10 1.61
Mdljdp2 1.30 1.09 1.85 1.42
Mdljsp2 1.18 1.04 1.55 1.47
Spice2g6 1.27 1.01 1.37 1.36
Su2cor 1.13 1.13 1.68 1.40
Tomcatv 1.21 1.08 1.52 1.41

Table 5: Performance with Out-of-Order Issue.

with random replacement and found that there was no significant
increase in the number of TLB misses due to our optimizations.

The third and fourth columns of Table 4 show the speedups
attained with support for zero-cycle loads for programs with and
without software support. (The third column is reproduced from
Table 3.) Program performance, even without software support,
is quite good. Programs with many global and stack variables
accesses, e.g., Xlisp and SC, benefit most from software support.

4.4 Performance with Out-of-Order Issue
An aggressive out-of-order issue execution model provides a

built-in mechanism for tolerating load latency. Unconstrained by
dependencies, the issue mechanism in an out-of-order issue pro-
cessor is able to run ahead of executing instructions looking for
independent operations with which to tolerate latencies. If branch
prediction performs well and there is sufficient parallelism, other
latency tolerating or reducing techniques should not be required.
To determine the effectiveness of this execution model at negating
the benefits of zero-cycle loads, we performed experiments com-
paring the performance of zero-cycle loads running on a processor

with and without out-of-order issue capability. The results are
shown in Table 5. All simulations were performed on a pipeline
with two decode stages using an 8 entry full associative register
specifier-indexed BRIC with LRU replacement. All programs are
compiled with software support.

As seen by comparing the speedups on an in-order issue proces-
sor (in column In-Order, reproduced from Table 3) with speedups
on an out-of-order issue processor (in column Out-of-Order), over-
all speedups are notably less for the processor using out-of-order
issue. This result confirms that the out-of-order issue model is
tolerating load latency. However, the resulting speedups are not
all insignificant, especially for many of the integer codes. These
codes likely have less parallelism available to tolerate load instruc-
tion latencies, thus they benefit from the latency reduction offered
by fast address calculation.

The rightmost two columns of Table 5 compare the performance
of an in-order issue processor with and without zero-cycle load
support to an out-of-order issue processor without zero-cycle load
support. The column labeled

���	( �'+������)���	( �'+� "!�#
gives the run-

time (in cycles) of programs on the in-order issue processor divided
by the run-time on the out-of-order issue processor (neither with
zero-cycle load support). This metric quantifies the cycle count ad-
vantage when running on an out-of-order issue processor. Clearly,
the programs take fewer cycles to run on the out-of-order issue
processor than on the in-order issue processor. The column la-
beled

����(?�'+ ���
�%$ �'& �>����( �'+  "!(#

repeats the experiments, except
the in-order issue processor has support for zero-cycle loads. For
the integer codes, the performance of the two processors is now
much closer – both out performing each other in some cases, with
slightly better performance on the out-of-order issue processor.

This result is striking when one considers the clock cycle and
design time advantages typically afforded to in-order issue pro-
cessors. It may be the case that for workloads where untolerated
latency is dominated by data cache access latencies (as in the case
of the integer benchmarks), an in-order issue design with support
for zero-cycle loads may consistently out perform an out-of-order
issue processor.

4.5 Performance with Fewer Registers
A number of architectures in wide-spread use today have few

architected registers, e.g., the x86 or System/370 architectures. To
evaluate the efficacy of zero-cycle loads for these architectures,
we performed experiments on our extended MIPS architecture, but
with only 8 integer and 8 floating point registers (one-quarter the
normal supply). The results of the experiments are shown in Table
6. All simulations were performed on a pipeline using in-order
issue with two decode stages. All programs are compiled with
software support.

The left side of Table 6 shows how a program is affected by
reducing the number of architected registers in each register file
from 32 to 8. The total number of loads increased by as much as
177%, primarily the result of extra accesses needed to spill and
reload temporary variables. The increases are notably larger for
programs with larger basic blocks, e.g., the floating point codes,
since they typically use more temporary space. Also shown (in the
column labeled Distribution of Extra Loads) is the breakdown of
how much (as a percent of total extra loads) each form of addressing
contributes to the overhead.

The column labeled
���	( �'+�)�*,+�- �/. �)����(?�'+10�+2- ��. quantifies the

performance impact of fewer architected registers. It shows the
run-time (in cycles) of programs compiled to use 32 registers run-
ning on the baseline in-order issue simulator divided by the run-
time of the 8 register version of the program running on the same
processor. For many of the programs, the performance impact of



Benchmark Loads Speedup
Percent Distribution of Extra Loads

More Loads Global Stack General
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Compress 23.34 32.41 44.13 23.45 0.85 1.05 1.32
Eqntott 39.82 92.41 7.59 0.00 0.77 0.86 1.40
Espresso 57.11 9.02 47.90 43.08 0.81 0.96 1.45
GCC 24.02 5.74 36.26 58.01 0.90 1.01 1.28
SC 4.67 0.00 72.46 27.54 0.99 1.13 1.43
Xlisp 0.98 100.00 0.00 0.00 0.99 1.20 1.46
Grep 5.46 0.00 48.86 50.96 0.97 1.01 2.03
Perl 26.46 24.26 32.29 43.45 0.86 1.14 1.38
YACR-2 99.06 0.00 63.14 36.86 0.87 1.23 1.67

Alvinn 31.79 0.76 99.24 0.00 0.95 1.18 1.34
Ear 112.36 16.45 34.15 49.40 0.78 0.94 1.50
Mdljdp2 81.41 7.66 45.52 46.82 0.69 0.94 1.36
Mdljsp2 110.21 30.35 69.65 0.00 0.77 0.90 1.33
Spice2g6 9.93 13.96 86.04 0.00 0.95 1.16 1.28
Su2cor 47.20 2.26 97.74 0.00 0.79 0.86 1.13
Tomcatv 177.22 1.62 98.38 0.00 0.52 0.56 1.16

Table 6: Performance with Few Registers.

having more registers is quite large, more so in general for the
floating point codes.

Next, we considered 8 register designs with limited and full sup-
port for zero-cycle loads. The limited support design only provides
cycle zero latency to global and stack pointer accesses. Implement-
ing this support is less costly than full support for zero-cycle loads.
(This design is essentially the one in Figure 2 without a BRIC.) This
design should perform well considering the predominance of stack
and global accesses in the 8 register executions. The speedups in
the column labeled

����( �'+ )�*,+2- ��. �)���	( �'+ 0�+2- ��. ��������� show this
implementation’s performance with respect to an architecture with
32 registers and no support for zero-cycle loads. For most pro-
grams, limited support for zero-cycle loads more than compen-
sates for the lack of registers in the architecture. In most cases, the
performance of the register limited architecture is better than its
32 register counterpart. Not only does the zero-cycle load support
perform well on the extra accesses due to spills and reloads, but
it also performs well on the stack and global pointer accesses that
both processors must execute. For a few of the floating point codes,
e.g., Tomcatv, the improvements rendered still do not approach the
performance of the 32 register architecture. These codes suffer
from an excessive number of dynamic loads and stores, which sat-
urate available data cache bandwidth and limit overall performance
improvements.

The experiments in column
����(?��+�0�+2- ��. �>����(?��+�0�+�- ��. �%$ �%&

show the performance found with full support for zero-cycle loads
on the register-limited architecture. The speedups are shown with
respect to the program running on the register-limited architecture
without support for zero-cycle loads. As expected, the speedups
are better than those found on the 32 register architecture due to the
excellent performance of the many extra stack and global accesses.

5 Related Work
The application of early issue as a means of reducing load la-

tency has been gainfully applied in a number of previous works
[BC91, EV93, GM93]. The approach used in each of these works
is quite similar. An address predictor mechanism, which is a vari-
ant of the load delta table [EV93], generates addresses early in
the pipeline, allowing loads to be initiated earlier than the exe-
cute stage. The load delta table tracks both the previous address

accessed by a particular load and one or more computed stride
values used to predict a load’s next effective address. Consider-
ing the frequency of strided accesses and accesses with no (zero)
stride, the load delta table is an effective approach to predicting
load addresses. Our address predictor, fast address calculation, is
stateless, eliminating the need for a load delta table. As a result,
additional interlocks are not introduced when strides are computed
and written into the load delta table. The implementation cost of
our approach is also reduced. Our approach features the tightest
level of pipeline integration, yielding fewer register and memory
interlocks and better potential performance. Tighter pipeline inte-
gration, however, does limit the extent to which load latency can
be reduced (two cycles in our design). To have an effect on longer
load latencies, like those occurring during data cache misses, a
load delta table approach may be more effective if used instead
or in conjunction with our approach. This observation is further
supported by the possibility that the load delta table may perform
better on codes where fast address calculation performs poorly
(e.g., poorly structured numeric codes).

The C Machine [DM82] used a novel approach to implement
zero-cycle access to stack frame variables. At cache misses, mem-
ory operand specifiers within instructions were replaced with direct
stack cache addresses. When the partially decoded instructions
were executed, operands in the stack cache could be accessed as
quickly as registers.

In [AVS93], the knapsack memory component is presented.
Software support was used to place data into the power-of-two
aligned knapsack region, providing zero-cycle access to these vari-
ables when made with the architecturally-defined knapsack pointer.
Zero-cycle access was limited primarily to global data.

Jouppi [Jou89] proposed a pipeline that performed ALU opera-
tions and memory access in the same stage. The pipeline employs
a separate address generation pipeline stage, pushing the execu-
tion of ALU instructions and cache access to the same pipeline
stage. This organization increases the mispredicted branch penalty
by one cycle. It also removes the load-use hazard that occurs in
the traditional 5-stage pipeline, instead introducing an address-use
hazard. The address-use hazard stalls the pipeline for one cycle if
the computation of the base register value is immediately followed
by a dependent load or store. The R8000 (TFP) processor [Hsu94]



uses a similar approach. Our approach can be viewed as essentially
an extension of this pipeline design. Memory access is pulled back
one more stage, to the stage prior to the execute stage. Because we
employ fast address calculation, we can do this without increasing
the number of address-use hazards.

In [APS95], we presented the design and evaluation of fast
address calculation. In this work, we extended the latency reduc-
tion capability of our original approach by combining it with a
mechanism for early issue. Comparing the baseline results of this
paper with those in [APS95], we have roughly doubled the perfor-
mance improvement for the integer codes and nearly quadrupled
the improvement for the floating point codes. These improvements
follow from the increased latency reduction of loads from one cy-
cle (with fast address calculation along) to zero cycles (with early
issue and fast address calculation) in combination with better over-
all support for speeding up register+register mode loads,
an addressing mode which the floating point codes rely on more
heavily.

6 Summary and Conclusions
Two pipeline designs supporting zero-cycle loads were pre-

sented: an aggressive design for pipelines with a single stage of
decode and a less aggressive design for pipelines with multiple de-
code stages. The designs make judicious use of instruction cache
predecode, base register caching, and fast address calculation to
produce load results two cycles earlier than traditional pipeline
designs. The design with multiple decode stages was markedly
simpler because more of the component operations of a load could
be performed after fetching the load instruction.

We evaluate these designs in a number of contexts: with and
without software support, in-order vs. out-of-order issue, and on
architectures with many and few registers.

Overall, we found the speedups afforded by zero-cycle loads,
for either pipeline design, were excellent. For the one decode stage
design with in-order issue, we found a cycle-weighted speedup of
1.45 for the integer codes and 1.26 for the floating point codes.
Speedups were good for even small BRIC sizes. Software support
was generally effective, more so on the integer codes, and even
without software support, speedups were still quite good.

Speedups on the out-of-order issue processor were significantly
less due to the latency tolerating capability of the execution model.
However, some programs still showed notable speedups, likely
because the executions lacked sufficient parallelism to tolerate all
load latency, and thus benefited from the latency reduction ca-
pability of fast address calculation. An in-order issue processor
with zero-cycle load support compared favorably in performance
to an out-of-order issue processor for programs with significant
untolerated load instruction latency.

With fewer registers, the frequency of loads and their impact of
program performance increases significantly, especially for float-
ing point codes. Providing an 8 register architecture with zero-
cycle load support for only global and stack pointer references,
resulted in performance comparable to a 32 register architecture.
This result suggests limited support for zero-cycle loads is one
avenue available to improving the performance of legacy architec-
tures with few registers. With full support for zero-cycle loads,
speedups were quite good, slightly better than for the 32 register
architecture due to excellent prediction performance for the many
extra global and stack accesses present.

We feel the consistent and impressive performance advantage
of zero-cycle loads, especially for improving the performance of
in-order issue processors or architectures with few registers, makes
this approach an attractive choice for future processor designs.
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