
ParaP

ynTM

Paradyn Paral le l Performance Tools

Tutorial 3/14/01

Paradyn Project
Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685
paradyn@cs.wisc.edu

Tutorial

Release 3.2
March 2001

Table of Contents

Tutorial March 14, 2001 Release 3.0

1 Preliminaries ..4

2 Common tutorial - bubba_seq..5
2.1 Running an application ...5
2.2 Viewing performance data ..9
2.3 Performance Consultant diagnosis ..11
2.4 Phases ..16

3 MPI Tutorial - decomp_MPI..18
3.1 Running the MPI application ..18
3.2 Viewing performance data ..21
3.3 Performance Consultant diagnosis ..22

4 Further information..27
4.1 Contacting the Paradyn developers ...27

List of Figures

Tutorial March 14, 2001 Release 3.0

Figure 1: Paradyn Main Control window. ..5
Figure 2: Paradyn base Where Axis. ..6
Figure 3: TheDefine A Process window specifying bubba application process7
Figure 4: Paradyn Main Control window with bubba loaded and ready to run8
Figure 5: Where Axis after the bubba application process is loaded ...8
Figure 6: Selecting a Histogram visualization ..10
Figure 7: Metrics menu with “cpu” and “cpu_inclusive” selected ...10
Figure 8: Histogram of global phase with “cpu” and “cpu_inclusive” for two foci12
Figure 9: The Performance Consultant window ...13
Figure 10: The Performance Consultant bubba exigency search ...14
Figure 11: The Search History Graph showing only exigent bubba nodes15
Figure 12: BarChart visi presenting selected bubba performance data ..15
Figure 13: PhaseTable visi presenting phase durations. ...16
Figure 14: Histogram for global phase ...17
Figure 15: Histogram of current phase ...17
Figure 16: TheDefine A Process dialog for MPI ssTwod ...19
Figure 17: Paradyn Main Control window after the MPI application process is started20
Figure 18: Where Axis after the ssTwod MPI application process is started20
Figure 19: MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected22
Figure 20: Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive”23
Figure 21: The Performace Consultant bottleneck search with MPI ssTwod25
Figure 22: Search History Graph showing only exigent nodes for ssTwod26
Figure 23: BarChart visi presenting the ssTwod performance bottleneck data26

Page 4

tion,
ance
inary
es) by
g

sual-

hile
--spe-

Per-
1 PRELIMINARIES

This document1 covers the basics for using Paradyn: how to start Paradyn, run an applica
view its performance data, and run the Performance Consultant to automatically find perform
bottlenecks in the application. Several simple example application programs come with the b
distribution of Paradyn. You can obtain Paradyn and the test programs (binaries and sourc
anonymous ftp togrilled.cs.wisc.edu . For more information on obtaining and installin
Paradyn, including setting necessary environment variables, see theParadyn Installation Guide.

This tutorial is provided in two parts. The first part covers the basic use of Paradyn, its vi
izers and Performance Consultant using a simple sequential C application (bubba). This is fol-
lowed by an additional tutorials for MPI (decomp, also provided in appropriate binary
distributions), which may not be available on all systems or relevant to all Paradyn users. W
there is some redundancy between the MPI tutorial and the basic tutorial, it considers MPI
cific functionality of Paradyn and additional examples of the use of Paradyn visualizers and
formance Consultant with message-passing programs.

1. Note that some of the color figures in this document may be unclear when printed in gray-scale.
Tutorial March 14, 2001 Release 3.2

Page 5

ation
orts.
ll be

base
led
radyn

ry for
appli-

this
e

ault

on

u.
2 COMMON TUTORIAL - BUBBA_SEQ

This first tutorial section covers the basic use of Paradyn with a simple sequential applic
(bubba) provided as part of the Paradyn binary distribution for every platform Paradyn supp
This common tutorial section is an introduction to Paradyn and its capabilities, which wi
elaborated in following sections with additional functionality for MPI and PVM applications.

2.1 Running an application

2.1.1 Start Paradyn and define the application process

Paradyn can be started by entering the following command at a command prompt:2

% paradyn

Paradyn will start running and display the Paradyn Main Control window (Figure 1) and the
Where Axis window (Figure 2). The status line in the Paradyn Main Control window (labe
“UIM status”) indicates that Paradyn’s user interface manager is ready. This means that Pa
is now ready to load and run the subject application program.

To describe an application to Paradyn, selectDefine A Process from theSetup menu. This
will cause a dialog to appear that will allow you to specify the parameters that are necessa
Paradyn to start your application process. This dialog is shown in Figure 3. To describe the
cation and its environment to Paradyn, the following should be specified in theDefine A Process
dialog:

1. User: The login name on the host on which Paradyn will start the application process. In
example we left theUser field blank, which means that the login will have a value of th
user’s current login name.

2. Host: The host on which Paradyn will start the application process. A blank value will def
to the current host (the one on which Paradyn is running).

3. Directory: If the host on which the application is to be started is different from the one

2. On Windows NT, the command prompt is accessible via the “Command Prompt” item in the Start men
Alternatively, the command may be issued from the “Run...” item in the Start menu. In both cases, the
PATH environment variable must include the Folder in which the Paradyn executable (paradyn.exe)
resides in order for Paradyn to run.

Figure 1: Paradyn Main Control window.
Tutorial March 14, 2001 Release 3.2

Page 6

is the

will

this
e

run.
e

everal
its size,

f-
which the Paradyn process is running, then the current directory on the remote machine
home directory of the user specified in theUser entry. TheDirectory field allows you to spec-
ify a different working directory for the application process. In this example, Paradyn

change to/p/paradyn/demo/Paradyn/bubba_seq/@PLATFORM before startingbubba .3 Note
that the path specified in this field is interpreted on the host specified in theHost field, which
is not necessarily the host on which Paradyn is running.

4. Command: This entry takes the command that will start the application program. In
example we have entered“bubba ../dat/example5” , which specifies the executable fil

(bubba) with one command line argument,../dat/example5 , the input file.4

5. Daemon: This option allows you to specify which version of the Paradyn daemon to
Since this is a sequential application, thedefd daemon is selected. If the application is to b
run under Windows NT, the winntd daemon should be selected.
Once the fields of theDefine A Process window have been filled in, click on theAccept but-

ton, and Paradyn will start your application process. This step can take anywhere from s
seconds to several minutes as Paradyn examines and starts your application, depending on
the load on the machine, network connection speed, etc.

Figure 2: Paradyn base Where Axis.

3. To simplify this tutorial, the macro@PLATFORM is used as shorthand for the environment variable
PLATFORM specifying the processor-vendor-OS tuple for this host/executable. Paradyn’s input parser
currently doesn’t make the appropriate environment variable substitutions itself, therefore, you must
manually substitute the appropriate information. (Alternatively, filesystems such as AFS may permit de
inition of a symbolic link called@PLATFORM to achieve this illusion.)

4. On Windows NT, the bubba executable is called “bubba.exe.” Also, note that if you choose to use back-
slashes instead of forward slashes, they must be escaped in theCommand field on Windows NT. For
example, to run the bubba executable located one folder up from the folder specified in theDirectory
field, the command would be “..\\bubba.exe ..\\..\\dat\\example5”.
Tutorial March 14, 2001 Release 3.2

Page 7

lines,
bout
aradyn

ple,

G,

y the

a

to add
at can
entries

rarchy

ouble-
s they
odes
ating
2.1.2 Starting an application process manually

After an application has been defined, the Paradyn main window will contain more status
and the Where Axis will contain more entries. The new status lines provide information a
Paradyn and your application process. These are shown in Figure 4 (which shows the P
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application program (bubba or bubba.exe), the name of
the machine (grilled), the name of the user (self), and the name of the daemon (defd)

2. Processes: A list of the process IDs of all the processes in the application. In this exam
there is one pid (18904) corresponding to the process started on host grilled.

3. Application status: The current status of the application program (either RUNNIN
PAUSED, or EXITED).

4. grilled: Status lines for each host. Once the application starts running these will displa
status of each host (running, paused, or exited).

The new status line for the Paradyn process (Data Manager) displays the state of Paradyn’s Dat
Manager.

Now that Paradyn has had a chance to examine the program executable(s), it is able
entries to the Where Axis. The new entries in the Where Axis correspond to resources th
only be obtained when the application process has been defined and started. These new
include modules and procedures in theCode hierarchy, and machine names in theMachine hier-
archy. Figure 5 shows the Where Axis with these new resources added. The Machine hie
contains the machine “grilled.cs.wisc.edu ” under which is the process “bubba{18904} ”, and
the Code hierarchy contains several new entries corresponding to a source code modules. D
clicking on nodes with a triangle on their righthand edge expands them to show the node
contain; double-clicking on a head-node folds it into its parent node. Single-clicking on n
(including head-nodes) will be used later to select (sets of) resources for metric foci. Loc

Figure 3: The Define A Process window specifyingbubba application process
Tutorial March 14, 2001 Release 3.2

Page 8

er.

he fol-
y
from
particular nodes can be achieved by typing a search string in the labeled field and then ent
At this point, Paradyn is ready to start running the application. You can now select theRUN

button from the Paradyn Main Control window to start executingbubba , or alternatively first
define some performance measurements and/or views before running it (as described in t
lowing sections). Once execution has commenced, thePAUSE button can be used to temporaril
halt it andRUN will resume execution. Note, however, that execution can only be resumed
the current point and not from the start (without exiting and restarting Paradyn).

Figure 4: Paradyn Main Control window with bubba loaded and ready to run

Figure 5: Where Axis after thebubba application process is loaded
Tutorial March 14, 2001 Release 3.2

Page 9

and to

ed as
epares

. In
d parts

ill
a
Glo-

sented
s.

ics to

n

urces
tric

e

2.1.3 Starting an application process automatically

Paradyn can also start an application using a PCL specification file. Below shows a comm
start thebubba application using a PCL file calledbubba.pcl :

% paradyn -f bubba.pcl

The contents of the PCL file,bubba.pcl , are shown as follows:
// Paradyn configuration file for bubba (generic)

process bubba
{

//host "localhost";
dir "/p/paradyn/demo/Paradyn/bubba_seq/@PLATFORM";
command "bubba ../dat/example5";
daemon defd;

}

In the PCL file, the (optional) host, the directory, the command, and the daemon are specifi
when starting an application manually, and on start-up Paradyn automatically loads and pr
this process ready for execution and analysis.

2.2 Viewing performance data

Before you run the application process, you may want to start a visualizer (orvisi)5. For this appli-
cation, we will start a time-histogram visualization to view CPU utilization for the application
this section, we describe how to start a visualizer, and how to choose the set of metrics an
of the program that a visualizer will display.

2.2.1 Starting a visualizer

To start a visualizer, select theVisi option from the Paradyn main window menubar. This w
open theStart A Visualization dialog that allows you to choose a type of visualization and
phase for the data. Figure 6 shows this dialog with a Histogram visualization selected for the
bal Phase (Section 2.4 will discuss phases). Other visualizations allow metric data to be pre
in tabular and barchart form, etc., though all visualizers may not be available on all platform

Once the visualization selection has been made, click on theStart button and Paradyn will
display a metrics dialog. This dialog, shown in Figure 7, allows you to select the set of metr

be displayed by the visualization.6 In this example, we have selectedcpu (CPU time) and
cpu_inclusive(CPU inclusive). Thecpumetric if applied to a function will exclude time spent in
any function it calls, whereas thecpu_inclusivemetric includes time spent in the selected functio
and the functions that are called by it.

To choose the parts of the program for which the metric will be collected, you select reso
by clicking on nodes in the Where Axis. A focus is a location in the application for which me
data can be collected. For example, if you select the nodebubba{18904} from the Machine hier-
archy, you limit data collection to the processbubba{18904}. If you selectp_makeMG and
a_reversepmove from the Code hierarchy, you limit data collection to functionp_makeMGand

5. Visualizers do not have to be started now, but doing so before the program starts running will guarante
that you will get data for the complete execution of the application.

6. The metrics dialog shows all metrics defined for the current platform(s).
Tutorial March 14, 2001 Release 3.2

Page 10

ss and

e

-

a_reversepmove . Figure 5 shows the Where Axis with these nodes selected.
Paradyn combines selections from each of the resource hierarchies to create afocus, each

selection further restricts the scope of data collection. If you had made the previous proce
module selections, then you limit data collection to activity in the functionsp_makeMG and
a_reversepmove in the processbubba{18904} . This selection corresponds to two foci: th
first focus is when the process 18904 is running in functionp_makeMG; the second focus is when
process 18904 is running in functiona_reversepmove .

If no Where Axis nodes are selected then Paradyn uses the defaultWhole Program .
Once you have made your selections, click on theAccept button on the metrics menu. Para

Figure 6: Selecting a Histogram visualization

Figure 7: Metrics menu with “cpu” and “cpu_inclusive” selected
Tutorial March 14, 2001 Release 3.2

Page 11

e the
if the

ation

nd re-
nt to

and

-histo-
erfor-
These

search
ecific

ing for
ate the
ecified
When

dow.

s are

rch is
dyn will then try to enable data collection for your selection. The selection is expanded to b
cross-product of metric-focus pairs from the list of metrics and foci selected. For example,
metrics CPU and CPU_INCLUSIVE, and the resource nodesbubba{18904} and p_makeMG
were selected, then Paradyn would try to enable four metric-focus pairs:

• CPU time for process 18904 when it is running in functionp_makeMG.

• CPU time for process 18904 when it is running in functionp_makeMG.

• cpu_inclusive time for process 18904 when it is running in functionp_makeMG.

• cpu_inclusive time for process 18904 when it is running in functionp_makeMG.
If at least one metric-focus pair was successfully enabled, Paradyn will start the visualiz

process and start sending performance data values to the visualization.7 If there are any metric-
focus pairs that could not be enabled, Paradyn will display a message listing those pairs, a
display the metrics menu for you to modify your selection. If this occurs, and you do not wa
try enabling any other metric-focus pairs, you can choose theCANCEL button on the metrics
menu.

The time-histogram shown in Figure 8 is the result of selecting the metrics “cpu”
“cpu_inclusive” from the metrics menu andbubba{18904} and p_makeMG and
a_reversepmove from the Where Axis.

Once the time-histogram is created, click on theRUN button from the Paradyn main window
to start the application process. Performance data will then be sent by Paradyn to the time
gram. The time-histogram contains several menu options for changing the display of the p
mance data and for changing the set of performance data that is currently being displayed.
options are described in detail in theParadyn User’s Guide.

2.3 Performance Consultant diagnosis

The Performance Consultant is the part of Paradyn that performs an automated hierarchical
for performance bottlenecks. It automatically enables and disables instrumentation for sp
metric-focus pairs as the search progresses. The Performance Consultant starts look
course-grained performance problems and then iteratively tries to refine the search to isol
performance bottleneck to a specific aspect of the application’s execution. This aspect is sp
as a point in a three dimensional search space defined by a Why Axis, Where Axis, and
Axis.

2.3.1 The Performance Consultant window

The Performance Consultant is started by selecting thePerformance Consultant option from the
SetUp menu on the Paradyn main window. Figure 9 shows the Performance Consultant win
We briefly discuss the parts of the Performance Consultant window below:

1. Searches Menu: Allows you to view search history graphs from different phases. (Phase
discussed later in Section 2.4.)

2. Status line: The status line at the top of the window indicates the phase for which the sea
defined (in this example, the search is defined for theGlobal Phase).

7. Metric data isn’t sampled or displayed before the application starts running or while it is paused.
Tutorial March 14, 2001 Release 3.2

Page 12

ssages

es cor-
ments

t the
e win-

-
to the
rch. A
global
ed the
re 10

itera-
sultant
g the
search
3. Search Text Output: This area is used by the Performance Consultant to print status me
about the state of the search

4. Search History Graph: This is a graphical representation of the state of the search. Nod
respond to different points in the search space, and arcs correspond to different refine
that have been made. Figure 9 shows only the initial node,TopLevelHypothesis .

5. Buttons: These allow you to start or pause the search.

6. Search History Graph Key: The bottom portion of the window describes how to interpre
color of the nodes and edges in the search history graph, and how to navigate around th
dow.

2.3.2 Starting the search

The search can be started by clicking on theSearch button in the Performance Consultant win
dow. As the Performance Consultant search proceeds, status information will be printed
window, and the search history graph will be updated to reflect the current state of the sea
Performance Consultant search is either defined over the entire run of the application (the
phase), or over a specific phase of the application’s execution. In this example we select
Search button in the Performance Consultant window to start a global phase search. Figu
shows the Performance Consultant window during the bottleneck search.

By watching the Search History Graph, we can see how the Performance Consultant
tively refines its search to isolate the bottleneck. The first hypothesis the Performance Con
tests is whether there is a bottleneck in the whole program, if this is true, then it starts refinin
search. Each level in the search history graph represents a refinement that was made in the

Figure 8: Histogram of global phase with “cpu” and “cpu_inclusive” for two foci
Tutorial March 14, 2001 Release 3.2

Page 13

olate the
earch
a leaf
u can
s string
ation
ottom-

by yel-
otheses
se (pink
.
d with

ue (the
the

and
process. Refinements are only made on hypotheses that test true, and are used to further is
bottleneck to a particular part of the application’s execution. In general the results of the s
can be obtained by following the blue nodes from the root of the search history graph to
node. Also, by clicking the right mouse button on any node in the search history graph, yo
see a text string representation of the hypothesis associated with any node in the graph. Thi
is displayed in the information line below the search history graph. For example, the inform
line below the search history graph in Figure 11 shows the hypothesis associated with the b
most nodes in the graph.

Figure 10 shows the search history graph during the search for a bottleneck inbubba . You can
see that there have been refinements on both the Why and Where axis (these are indicated
low and purple edges in the search history graph). Also, there are nodes representing hyp
that have tested true (blue nodes), nodes representing hypotheses that have tested fal
nodes), and nodes representing hypotheses that have not yet been decided (green nodes)

Figure 11 shows the search history graph after the search has progressed further, an
only the nodes representing true hypotheses shown. The first hypothesis evaluated to tr
blue coloredTopLevelHypothesis node at the top of the graph). The first refinement was on
Why axis and resulted in finding that there was a cpu bottleneck in the application (theCPUb-
ound node is true). Next, the synchronization bottleneck was isolated to the function main

Figure 9: The Performance Consultant window
Tutorial March 14, 2001 Release 3.2

Page 14

refine-
ly. The
edure
ck in
the

data
ocess
t, we
machine grilled.cs.wisc.edu. The fact that these two nodes are siblings indicates that these
ments were done at the same time. These two nodes were then further refined concurrent
result after several such refinements is that the bottleneck is isolated to a specific proc
(p_makeMG). This means that the Performance Consultant found that there is CPU bottlene
procedurep_makeMG. At this point, the Performance Consultant was unable to further refine
bottleneck. However, it will continue to evaluate true nodes in the graph.

2.3.3 Investigating the Performance Consultant’s diagnosis

Typically, after running the Performance Consultant, you would like to see the performance
corresponding to the bottleneck in the application. To do this, you can start a visualization pr
to display performance data. In this example, after running the Performance Consultan
started a barchart visualization by choosing BarChart from the listStart A Visualization menu
(like Figure 6). The barchart is shown in Figure 12: it shows that almost all of thecpu time for
bubba can be attributed to procedurep_makeMG.

Figure 10: The Performance Consultantbubba exigency search
Tutorial March 14, 2001 Release 3.2

Page 15
Figure 11: The Search History Graph showing only exigentbubba nodes

Figure 12: BarChart visi presenting selectedbubba performance data
Tutorial March 14, 2001 Release 3.2

Page 16

pes of
d

s the
ance
hase
perfor-

n after
ze data
arse the
r until
n per-
at the

lay an
time

icking

..
data at
.

2.4 Phases

In this section we briefly discuss Paradyn’s notion of phases.
Phases are contiguous time-intervals within an application’s execution. There are two ty

phases: aglobal phaseand zero or morelocal phases. The global phase includes the entire perio
of execution, from the start of the application program until the current time. This phase i
default for the Performance Consultant or any visualization. A local phase restricts perform
information to a particular time interval. A local phase can be started at any time; the local p
ends when a new local phase is started. This means that, at any given time, you can select
mance data from the global phase and from the current local phase.

One use of phases in Paradyn is to change the granularity of performance data collectio
the application process has been running for some time. Because Paradyn uses fixed-si
structures to store performance data, the granularity of performance data becomes more co
longer the application runs. For some applications, the interesting behavior may not occu
several hours into its execution when the granularity of performance data is large. To obtai
formance data at a finer granularity, you can start a new local phase. The data collection
start of the new phase will be at the finest granularity supported by Paradyn.

To start a new phase, first create a phase table visualization by choosingPhase Table from the
Start A Visualization menu. A phase table is shown in Figure 13. Next, click on theStart A
Phase menu option from the phase table’s menu bar. This will cause the phase table to disp
end time for the previous phase (phase_0 in the example), and a phase name and phase start
for the newly created current phase (phase_1 and11m 54s in the example).

Once a new phase is started, you can create visualizations to display data from it by cl
on theCurrent Phase button in the lower right corner of theStart A Visualization window.
Figure 14 and Figure 15 are time-histograms for the global and current phases respectively

Note that the current phase histogram starts at phase_1’s start time (11:54) and displays
a finer granularity than the same performance data displayed by the global phase histogram

Figure 13: PhaseTable visi presenting phase durations.
Tutorial March 14, 2001 Release 3.2

Page 17
Figure 14: Histogram for global phase

Figure 15: Histogram of current phase
Tutorial March 14, 2001 Release 3.2

Page 18

t yet

base
led
radyn

ry for
e the

this
e

ault

on
is the

mple,

The
ire
be
e

run.

everal
3 MPI TUTORIAL - DECOMP_MPI

This tutorial section covers the use of Paradyn with a simple MPI application (ssTwod) provided
as part of the Paradyn binary distribution for platforms where MPI is supported. MPI is no
supported by Paradyn on all platforms: see theParadyn User Guide for details.

3.1 Running the MPI application

3.1.1 Start Paradyn and define the MPI application process

The first step is to run Paradyn. This is done by entering the following command:

% paradyn

Paradyn will start running and display the Paradyn Main Control window (Figure 1) and the
Where Axis window (Figure 2). The status line in the Paradyn Main Control window (labe
“UIM status”) indicates that Paradyn’s user interface manager is ready. This means that Pa
is now ready to loaded and run the subject application program.

To describe an application to Paradyn selectDefine A Process from theSetup menu. This
will cause a dialog to appear that will allow you to specify the parameters that are necessa
Paradyn to start your application process. This dialog is shown in Figure 16. To describ
application and its environment to Paradyn, the following should be specified in theDefine A
Process dialog:

1. User: The login name on the host on which Paradyn will start the application process. In
example we left theUser field blank, which means that the login will have a value of th
user’s current login name.

2. Host: The host on which Paradyn will start the application process. A blank value will def
to the current host (the one on which Paradyn is running).

3. Directory: If the host on which the application is to be started is different from the one
which the Paradyn process is running, then the current directory on the remote machine
home directory of the user specified in theUser entry. TheDirectory field allows you to spec-
ify a directory to change to before Paradyn starts the application process. In this exa
Paradyn will change to~/decomp_MPI/@PLATFORM before startingssTwod .

4. Command: This entry takes the unix command that will start the application program.
syntax for this command for launching MPI jobs will vary by platform. For IRIX, the ent
command-line including thempirun command and all of its appropriate arguments should
entered. For AIX, the POE job launcherpoe can be entered or omitted. In this example w
have entered“mpirun -np 4 ssTwod” , which specifies the executable file (ssTwod) with one
command line argument: the number of processes (4).

5. Daemon: This option allows you to specify which version of the Paradyn daemon to
Since this is an MPI application, thempid daemon is selected.
Once the fields of theDefine A Process window have been filled in, click on theAccept but-

ton, and Paradyn will start your application process. This step can take anywhere from s
seconds to several minutes, depending on the size of the application.
Tutorial March 14, 2001 Release 3.2

Page 19

lines,
bout
aradyn

IX

N-

y the
shown

a

to the
tained
ules and

w pro-
3.1.2 Start the MPI application process manually

After an application has been defined, the Paradyn main window will contain more status
and the Where Axis will contain more entries. The new status lines provide information a
Paradyn and your application process. These are shown in Figure 17 (which shows the P
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application program (ssTwod), the name of the machine
(eden), the name of the user (self), and the name of the daemon (mpid)

2. Processes: Typically Paradyn will indicate the process ids in this field. In the case of IR
MPI, this field is used to indicate that paradyn has identified the job as an IRIX MPI job.

3. Application status: The current status of the application program (either READY, RU
NING, PAUSED, or EXITED).

4. Hosts: Status lines for each host. Once the application starts running these will displa
status of each host (running, paused, or exited). In Figure 17 only the hostname eden is
as we are running only on one host.

The new status line for the Paradyn process (Data Manager) displays the state of Paradyn’s Dat
Manager.

Now that Paradyn has had a chance to look over your program, it is able to add entries
Where Axis. The new entries in the Where Axis correspond to resources that can only be ob
when the application process has been defined and started. These new entries include mod
procedures in theCode hierarchy, and process IDs in theMachine hierarchy. Figure 18 shows the
new Where Axis with these new resources added. The Process hierarchy contains four ne
cesses (one for each MPI process).

At this point, Paradyn is ready to start running the application. You can now select theRUN
button from the Paradyn Main Control window to start executingssTwod , or alternatively first

Figure 16: TheDefine A Process dialog for MPI ssTwod
Tutorial March 14, 2001 Release 3.2

Page 20

he fol-
y
from
define some performance measurements and/or views before running it (as described in t
lowing sections). Once execution has commenced, thePAUSE button can be used to temporaril
halt it andRUN will resume execution. Note, however, that execution can only be resumed
the current point and not from the start (without exiting and restarting Paradyn).

Figure 17: Paradyn Main Control window after the MPI application process is started

Figure 18: Where Axis after the ssTwod MPI application process is started
Tutorial March 14, 2001 Release 3.2

Page 21

ing
oose

ill
a
lobal

19,
e, we

es by
ata

sses
le

ss and

ocess
in

radyn
ross-
trics

ric-

e

3.2 Viewing performance data

Before you run the application process, you may want to start a visualizer1. For this application,
we will start a time-histogram visualization to view CPU utilization and synchronization block
time for the application. In this section, we describe how to start a visualizer, and how to ch
the set of metrics and parts of the program that a visualizer will display.

3.2.1 Starting a visualizer

To start a visualizer, select theVisi option from the Paradyn main window menubar. This w
open theStart A Visualization dialog that allows you to choose a type of visualization and
phase for the data. Figure 6 shows this dialog with a Histogram visualizer selected for the G
Phase (Section 2.4 discusses phases).

Once the visualization selection has been made, click on theAccept button and Paradyn will
display a metrics menu appropriate for this MPI application. This menu, shown in Figure
allows you to select the set of metrics to be displayed by the visualization. In this exampl
have selectedsync_wait_inclusive(inclusive synchronization blocking time) andcpu_inclusive
(inclusive CPU time).

To choose the parts of the program for which the metric will be collected, select resourc
clicking on nodes in the Where Axis. A focus is a location in the application for which metric d
can be collected. For example, selecting the nodesssTwod{298489_eden} and ssT-
wod{298574_eden} from the Process hierarchy, limits data collection to these two proce
(298489 and 298574). Selectingtwod.f from the Code hierarchy, limits data collection to modu
twod.f . Figure 18 shows the Where Axis with these nodes selected.

Paradyn combines selections from each of the resource hierarchies to create afocus, each
selection further restricts the scope of data collection. If you had made the previous proce
module selections, then you limit data collection to activity in moduletwod.f only in processes
298489 and 298574. This selection corresponds to two foci: the first focus is when pr
298489 is running in moduletwod.f ; the second focus is when process 298574 is running
moduletwod.f .

If no Where Axis nodes are selected then Paradyn uses the defaultWhole Program .
Once you have made your selections, click on the Accept button on the metrics menu. Pa

will then try to enable data collection for your selection. The selection is expanded to be the c
product of metric-focus pairs from the list of metrics and foci selected. For example, if the me
CPU_inclusive andsync_wait_inclusive , and the resource nodesssTwod{298489_eden} , ssT-
wod{298754_eden} , and twod.f were selected, then Paradyn would try to enable four met
focus pairs:

• CPU_inclusive time for process 298489 when it is running in moduletwod.f .

• CPU_inclusive time for process 298574 when it is running in moduletwod.f .

• sync_wait_inclusive time for process 298489 when it is running in moduletwod.f .

• sync_wait_inclusive time for process 298574 when it is running in moduletwod.f .

1. Visualizers do not have to be started now, but doing so before the program starts running will guarante
that you will get data for the complete execution of the application.
Tutorial March 14, 2001 Release 3.2

Page 22

ation
metric-
nd re-
nt to

rics
om

ed for
hy of

-histo-
erfor-
These

erfor-
-focus
ed per-

bottle-
t in a

ltant
If at least one metric-focus pair was successfully enabled, Paradyn will start the visualiz
process and start sending performance data values to the visualization. If there are any
focus pairs that could not be enabled, Paradyn will display a message listing those pairs, a
display the metrics menu for you to modify your selection. If this occurs, and you do not wa
try enabling any other metric-focus pairs, you can choose theCANCEL button on the metrics
menu.

The time-histogram shown in Figure 20 is the result of selecting the met
“sync_wait_inclusive” and “cpu_inclusive” from the metrics menu without any selections fr
the WhereAxis (thus there are 2 WholeProgram results), plus an additional result display
the “sync_wait_inclusive” metric and the exchng2_ function (selected from the Code hierarc
the WhereAxis).

Once the time-histogram is created, click on theRUN button from the Paradyn main window
to start the application process. Performance data will then be sent by Paradyn to the time
gram. The time-histogram contains several menu options for changing the display of the p
mance data and for changing the set of performance data that is currently being displayed.
options are described in detail in theParadyn User’s Guide.

3.3 Performance Consultant diagnosis

The Performance Consultant is the part of the Paradyn tool that performs a search for p
mance bottlenecks. It automatically enables and disables instrumentation for specific metric
pairs as the search progresses. The Performance Consultant starts looking for course-grain
formance problems and then iteratively tries to refine the search to isolate the performance
neck to a specific location in the application’s execution. This location is specified as a poin
three dimensional search space defined by a Why Axis, Where Axis, and When Axis.

3.3.1 The Performance Consultant window

The Performance Consultant is started by selecting thePerformance Consultant option from the
SetUp menu on the Paradyn main window. Figure 9 shows the initial Performance Consu
window. We briefly discuss the parts of the Performance Consultant window below:

Figure 19: MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected
Tutorial March 14, 2001 Release 3.2

Page 23

rch is

ssages

es cor-
ments

t the
indow.

-
to the
rch. A
global
1. Searches Menu: Allows you to view search history graphs from different phases.

2. Status line: The status line at the top of the window indicates the phase for which the sea
defined (in this example, the search is defined for theGlobal Phase).

3. Search Text Output: This area is used by the Performance Consultant to print status me
about the state of the search.

4. Search History Graph: This is a graphical representation of the state of the search. Nod
respond to different points in the search space, and arcs correspond to different refine
that have been made.

5. Buttons: These allow you to start or pause the search.

6. Search History Graph Key: The bottom portion of the window describes how to interpre
color of nodes and edges in the search history graph, and how to navigate around the w

3.3.2 Starting the search

The search can be started by clicking on theSearch button in the Performance Consultant win
dow. As the Performance Consultant search proceeds, status information will be printed
window, and the search history graph will be updated to reflect the current state of the sea
Performance Consultant search is either defined over the entire run of the application (the

Figure 20: Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive”
Tutorial March 14, 2001 Release 3.2

Page 24

ed the
re 21

itera-
sultant
g the
search

olate the
earch
a leaf
u can
s string
ation

node

ated by
pothe-
lse (pink
.
d with

ue (the
the
ation
o-

n
were

hat the

syn-

ue to

data
ocess
t, we

f the

e

phase), or over a specific phase of the application’s execution. In this example we select
Search button in the Performance Consultant window to start a global phase search. Figu
shows the Performance Consultant window during the bottleneck search.

By looking at the Search History Graph, we can see how the Performance Consultant
tively refines its search to isolate the bottleneck. The first hypothesis the Performance Con
tests is whether there is a bottleneck in the whole program, if this is true, then it starts refinin
search. Each level in the search history graph represents a refinement that was made in the
process. Refinements are only made on hypotheses that test true, and are used to further is
bottleneck to a particular part of the application’s execution. In general the results of the s
can be obtained by following the blue nodes from the root of the search history graph to
node. Also, by clicking the right mouse button on any node in the search history graph, yo
see a text string representation of the hypothesis associated with any node in the graph. Thi
is displayed in the information line below the search history graph. For example, the inform
line below the search history graph in Figure 22 shows the hypothesis associated with the
representing thesync_wait_inclusive time for functionfnd2ddecomp_ .

Figure 21 shows the search history graph during the search for a bottleneck inssTwod . You
can see that there have been refinements on both the Why and Where axis (these are indic
yellow and purple edges in the search history graph). Also, there are nodes representing hy
ses that have tested true (blue nodes), nodes representing hypotheses that have tested fa
nodes), and nodes representing hypotheses that have not yet been decided (green nodes)

Figure 22 shows the search history graph after the search has progressed further, an
only the nodes representing true hypotheses shown. The first hypothesis evaluated to tr
blue coloredTopLevelHypothesis node at the top of the graph). The first refinement was on
Why axis and resulted in finding that there was a synchronization bottleneck in the applic
(the ExcessiveSyncWaitingTime node is true). Next, the synchronization bottleneck was is

lated to a specific function in the application (MAIN__)2 and to a specific type of synchronizatio
object (Message). The fact that these two nodes are siblings indicates that these refinements
done at the same time. These two nodes were then further refined in parallel. The result is t
bottleneck is isolated to the specific procedureexchng2_ , and to a specific message tag (group3,
message tag1). This means that the Performance Consultant found that there is excessive
chronization waiting time associated with message tag1 in procedureexchng2_ . At this point, the
Performance Consultant was unable to further refine the bottleneck. However, it will contin
evaluate true nodes in the graph.

3.3.3 Verifying the Performance Consultant’s results

Typically, after running the Performance Consultant, you would like to see the performance
corresponding to the bottleneck in the application. To do this, you can start a visualization pr
to display performance data. In this example, after running the Performance Consultan
started a barchart visualization by choosing Barchart from the listStart A Visualization menu
(like Figure 6). The barchart is shown in Figure 23. It shows that a significant amount o
sync_wait_inclusivetime for the whole program can be attributed to procedureexchng2_ (the

2. The MIPSpro F90 compiler on Irix transforms Fortran routine names by making them entirely lowercas
and appending a trailing underscore. The program routine itself becomesMAIN__. Other Fortran compil-
ers make different name transformations.
Tutorial March 14, 2001 Release 3.2

Page 25

isolate

pink bars for each focus). It also shows that thesync_wait_inclusivetime is pretty evenly distrib-
uted across all processes, so it would be unlikely that the Performance Consultant would
the synchronization bottleneck to a proper subset of the processes.

Figure 21: The Performace Consultant bottleneck search with MPI ssTwod
Tutorial March 14, 2001 Release 3.2

Page 26
Figure 22: Search History Graph showing only exigent nodes for ssTwod

Figure 23: BarChart visi presenting the ssTwod performance bottleneck data
Tutorial March 14, 2001 Release 3.2

Page 27

Documentation Overview March 14, 2001 Release 3.2

4 FURTHER INFORMATION

This tutorial has not covered all of the features in Paradyn. It was intended to guide you
through a few start-to-finish sessions with Paradyn, using the more common features. Note that
some of the functionality shown in this tutorial differs from earlier versions of Paradyn, which are
no longer supported. For a complete description of the features in Paradyn, and information on
how to prepare applications for use with Paradyn, see theParadyn User’s Guide.

4.1 Contacting the Paradyn developers

There are various ways to get in touch with the Paradyn developers. We are happy to try and
answer questions and appreciate feedback.

■

e-mail: paradyn@cs.wisc.edu

The project e-mail address. Use this address for technical questions or requests.

Web: http://www.cs.wisc.edu/~paradyn

The project home page. From this page, you can find out how to get a binary or source version
of Paradyn. You can also get updates and news on the current release of Paradyn.

FTP: ftp://grilled.cs.wisc.edu/paradyn/

The project ftp site. In the “paradyn” directory, you will find subdirectories containing the bi-
nary and source versions of the Paradyn release. Make sure to look at the README files!

FAX: +1 (608) 262-9777

Postal: Paradyn Project
c/o Prof. Barton P. Miller
Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street
Madison, WI 53706-1685
U.S.A.

	Tutorial
	1 Preliminaries
	2 Common tutorial - bubba_seq
	2.1 Running an application
	2.1.1 Start Paradyn and define the application process
	Figure�1: Paradyn Main Control window.
	Figure�2: Paradyn base Where Axis.
	1. User: The login name on the host on which Paradyn will start the application process. In this ...
	2. Host: The host on which Paradyn will start the application process. A blank value will default...
	3. Directory: If the host on which the application is to be started is different from the one on ...
	4. Command: This entry takes the command that will start the application program. In this example...
	5. Daemon: This option allows you to specify which version of the Paradyn daemon to run. Since th...

	Figure�3: The Define A Process window specifying bubba application process

	2.1.2 Starting an application process manually
	1. Application name: The name of the application program (bubba or bubba.exe), the name of the ma...
	2. Processes: A list of the process IDs of all the processes in the application. In this example,...
	3. Application status: The current status of the application program (either RUNNING, PAUSED, or ...
	4. grilled: Status lines for each host. Once the application starts running these will display th...
	Figure�4: Paradyn Main Control window with bubba loaded and ready to run
	Figure�5: Where Axis after the bubba application process is loaded

	2.1.3 Starting an application process automatically

	2.2 Viewing performance data
	2.2.1 Starting a visualizer
	Figure�6: Selecting a Histogram visualization
	Figure�7: Metrics menu with “cpu” and “cpu_inclusive” selected
	Figure�8: Histogram of global phase with “cpu” and “cpu_inclusive” for two foci

	2.3 Performance Consultant diagnosis
	2.3.1 The Performance Consultant window
	1. Searches Menu: Allows you to view search history graphs from different phases. (Phases are dis...
	2. Status line: The status line at the top of the window indicates the phase for which the search...
	3. Search Text Output: This area is used by the Performance Consultant to print status messages a...
	4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor...
	5. Buttons: These allow you to start or pause the search.
	6. Search History Graph Key: The bottom portion of the window describes how to interpret the colo...
	Figure�9: The Performance Consultant window

	2.3.2 Starting the search
	Figure�10: The Performance Consultant bubba exigency search
	Figure�11: The Search History Graph showing only exigent bubba nodes

	2.3.3 Investigating the Performance Consultant’s diagnosis
	Figure�12: BarChart visi presenting selected bubba performance data

	2.4 Phases
	Figure�13: PhaseTable visi presenting phase durations.
	Figure�14: Histogram for global phase
	Figure�15: Histogram of current phase

	3 MPI Tutorial - decomp_MPI
	3.1 Running the MPI application
	3.1.1 Start Paradyn and define the MPI application process
	1. User: The login name on the host on which Paradyn will start the application process. In this ...
	2. Host: The host on which Paradyn will start the application process. A blank value will default...
	3. Directory: If the host on which the application is to be started is different from the one on ...
	4. Command: This entry takes the unix command that will start the application program. The syntax...
	5. Daemon: This option allows you to specify which version of the Paradyn daemon to run. Since th...
	Figure�16: The Define A Process dialog for MPI ssTwod

	3.1.2 Start the MPI application process manually
	1. Application name: The name of the application program (ssTwod), the name of the machine (eden)...
	2. Processes: Typically Paradyn will indicate the process ids in this field. In the case of IRIX ...
	3. Application status: The current status of the application program (either READY, RUNNING, PAUS...
	4. Hosts: Status lines for each host. Once the application starts running these will display the ...
	Figure�17: Paradyn Main Control window after the MPI application process is started
	Figure�18: Where Axis after the ssTwod MPI application process is started

	3.2 Viewing performance data
	3.2.1 Starting a visualizer
	Figure�19: MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected
	Figure�20: Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive”

	3.3 Performance Consultant diagnosis
	3.3.1 The Performance Consultant window
	1. Searches Menu: Allows you to view search history graphs from different phases.
	2. Status line: The status line at the top of the window indicates the phase for which the search...
	3. Search Text Output: This area is used by the Performance Consultant to print status messages a...
	4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor...
	5. Buttons: These allow you to start or pause the search.
	6. Search History Graph Key: The bottom portion of the window describes how to interpret the colo...

	3.3.2 Starting the search
	Figure�21: The Performace Consultant bottleneck search with MPI ssTwod
	Figure�22: Search History Graph showing only exigent nodes for ssTwod

	3.3.3 Verifying the Performance Consultant’s results
	Figure�23: BarChart visi presenting the ssTwod performance bottleneck data

	4 Further information
	4.1 Contacting the Paradyn developers

