
ParaP

ynTM

Paradyn Paral le l Performance Tools

Developer’s Guide 4/13/00

Paradyn Project
Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685
paradyn@cs.wisc.edu

Release 3.0ß
Spring 2000

Developer’s Guide

Table Of Contents

.7
..9
1
1
2
4
6
8

20
0
1
1
2
7

7

0
3
5

4
5
6
7
49
.50
50
0
0
0

1
1
2

54
6

1 Overview..5
1.1 Document revision history ..5
1.2 New functionality for release 3.0 ..5
1.3 New functionality for release 2.1 ..6
1.4 Paradyn subsystems and source code structure ...

2 Paradyn Package Dependencies...
3 Paradyn Front-end..0

3.1 Data Manager ..1
3.2 Visi Manager ...1
3.3 Visi threads ..1
3.4 User Interface (UI) thread ...1
3.5 Performance Consultant thread ...1

4 Visi Library ..20
5 Paradyn Daemon..

5.1 Introduction ...2
5.2 Application processes ...2
5.3 Object file processing ..2
5.4 Shared-object processing ..2
5.5 Performance data sampling ...2

5.5.1 Shared-memory sampling ..2
5.5.1.1 Synchronization issues for shared-memory sampling27
5.5.1.2 The need for a get-remote-time() primitive29
5.5.1.3 Source code for shared-memory sampling29

5.5.2 Alarm sampling ..30
5.6 Retroactive instrumentation ..3
5.7 Dynamic Heaps ...3
5.8 Trampoline Guards ...3

6 x86 Port..36
7 Linux port...41
8 Run-time instrumentation library...4
9 MDL implementation...4

9.1 Important files ...4
9.2 Lexical and syntax analysis ..4
9.3 Semantic analysis and intermediate code generation ..
9.4 Where these classes are defined ...

10 Igen Interface Generation ..
10.1 Overview of Igen ..5

10.1.1 Synopsis ...5
10.1.2 Output ..5
10.1.3 Memory ..51
10.1.4 Upcalls ...5
10.1.5 Interface template ...5

10.2 Igen grammar ..5
11 Makefile Issues...53

11.1 Overview of Makefile organization ..53
11.2 Site-dependency issues ...
11.3 The DEPENDS file ...5
Developer’s Guide April 13, 2000 Release 2.1

Table Of Contents

6

0

11.4 Igen Files ...5
11.5 Building on Windows NT ...56

12 MPI support ...57
12.1 IRIX MPI Support ...57

12.1.1 Description of MPI job launcher and Paradyn interaction57
12.1.2 mpirun Command Parsing ...6
12.1.3 Assumptions regarding mpirun ..60
Developer’s Guide April 13, 2000 Release 2.1

List of Figures Page -iv

Developer’s Guide April 13, 2000 Release 2.1

Figure 1: Paradyn (and dyninstAPI) subsystems. ...7
Figure 2: Paradyn/dyninstAPI module structure and dependencies.7
Figure 3: Visi Manager interface ..13
Figure 4: VISIthreadGlobals struct members. ..15
Figure 5: Process class and shared objects. ..23
Figure 6: image, module, pdFunction, and instPoint classes. ..24
Figure 7: Data structures of the Paradyn daemon. ...26
Figure 8: Pseudo-code for startTimer and stopTimer operations ...28
Figure 9: Pseudo-code for shared-memory sample of a timer ...28
Figure 10: Final pseudo-code for startTimer/stopTimer operations29
Figure 11: Final pseudo-code for timer sampling ..29
Figure 12: Retroactive instrumentation example. ..33
Figure 13: Crucial MDL files ...46
Figure 14: An example demonstrating howapply() functions work.48
Figure 15: Important MDL classes. ..50

Page 5

. It is a
con-

funda-

nt is of
is the

s

,

nted
1 OVERVIEW

This guide is intended to help developers who want to understand the Paradyn source code
rough overview to help with modifications, extensions, and porting efforts. This document is
stantly being modified and extended. This document assumes that you are familiar with the
mentals of Paradyn from the technical papers, manuals, and use of the tool.

We encourage research developments based on Paradyn and hope that this docume
some help. The ultimate source of advice on Paradyn (other than the source code itself!)
Paradyn development group. Feel free to contact us atparadyn@cs.wisc.edu .

1.1 Document revision history

❏ v3.0: major revision

• Added new section on Linux-specific implementation: Section 7

• Added new section on retroactive (catchup) instrumentation: Section 5.6

• Added new section on multiple inferior instrumentation heaps: Section 5.7

• Add new section on base-trampoline re-entrancy guards: Section 5.8

❏ v2.1: minor revision

• Expanded this overview with summary of new functionality and subsystem dependencie

• Added new section on MDL implementation: Section 9

• Expanded discussion of site dependencies and build configuration in Section 11.2
(and Section 11.5 for Windows NT)

• General update and correction of typos

❏ v2.0: major revision

1.2 New functionality for release 3.0

In addition to the new features of summarized in theUser’s Guiderelease notes (Section 1.1)
new functionality for Paradyn 3.0 includes:

• ports for x86/Linux and MIPS/Irix

• multiple inferior instrumentation heaps which support basetramp locality to instrume
functions and consequent atomic single-instruction instrumentation points

• retroactive (catchup) instrumentation

• callgraph-based Performance Consultant exigency search

• instrumentation re-entrancy guards

• ...
Developer’s Guide April 13, 2000 Release 3.0ß

Page 6

,

odi-

ock

li-

mod-

ified.
the
of
les in

-
olaris.

adyn
nstruc-
which
did not
n and
s loca-
es the
cur-

arsed
yn 2.0
system
1.3 New functionality for release 2.1

In addition to the new features of summarized in theUser’s Guiderelease notes (Section 1.1)
new functionality for Paradyn 2.1 includes:

• application re-linking requirement removed for SPARC/Solaris
(Paradyn now dynamically loads its run-time instrumentation library and works with unm
fied application executables on SPARC/Solaris and x86/Windows NT)

• automatic code block identification [on Solaris platforms]
(eliminating the requirement to re-link the application program using explicit code bl
markers, now also relevant for x86/Solaris). This removes the need forDYNINSTstartcode

andDYNINSTendcode markers which were previously necessary to delimit “interesting” app
cation code, and also leads into the next new feature:

• merged processing of statically and dynamically-linked modules, allowing generalized
ule and function exclusion [on Solaris platforms].
In general, the code for handling statically and dynamically linked code on Solaris has un
This unification removes the requirement of re-linking target application programs with
DYNINSTstartcode andDYNINSTendcode markers. It also generally increases the amount
application code which is instrumented, and necessitates explicitly excluding more modu
the Paradyn configuration files.

• handling of stripped dynamic libraries [under Solaris]
The run-time linker’s dynamic symbol table (.dynsym) is now parsed allowing instrumenta
tion of stripped shared objects and stripped dynamic executable files on SPARC&x86/S

• 2-pass function relocation and expansion [on SPARC architecture]
Previously, when relocating a function which could not be instrumented in place, Par
made a single pass over the function machine code and patched targets for machine i
tions which specify a code address during this single pass. This meant that instructions
specified a destination address inside the same function (such as branch instructions)
have correct targets if any extra code needed to be inserted between the original locatio
the target address. Function relocation is now done in two passes: the first pass detect
tions at which extra instructions will need to be inserted, and the second pass relocat
function, patching address targets inside of the function accrordingly. This feature is only
rently implemented on the SPARC architecture.

• better handling of optimized code [on SPARC architecture].
A number of sequences which appear in heavily optimized SPARC code are correctly p
and instrumented by Paradyn version 2.1 which were not correctly handled by the Parad
release. To date these code sequences have only been found in heavily optimized
libraries (especiallylibc).

• more powerful, simplified MDL syntax for metric definition

• enhanced metrics for I/O in MPI programs [on the SP2]

• scalability to monitor larger numbers of processes

• easier, parameterized source build (with PVM support now a build option)
Developer’s Guide April 13, 2000 Release 3.0ß

Page 7

ons.
pplica-
pro-

t
ality

nts”
perfor-
es
ure 2.

he

t,

nted
lly,
1.4 Paradyn subsystems and source code structure

Paradyn consists of several subsystems which are listed in Figure 1.

“Paradyn” is the front-end control process which typically runs on desk-top workstati
“Paradynd” is the Paradyn daemon process that run on each host on which you run your a
tion program. “dyninstAPI“ contains the code of the dynamic instrumentation application

gram interface, ordyninstAPI1 . In a future release, the “dyninstAPI” directory will contain jus
the dyninstAPI library but today it is an intermediate stage in the separation of that function
from the Paradyn daemon. “rtinst” is the source for the librarylibdyninstRT that is linked into
each application program to support Paradyn’s dynamic run-time instrumentation. “visiClie
are separate run-time visualization programs that can be started by Paradyn to display
mance data. The remaining items (“util”, “thread”, “igen” and “visi”) are libraries and utiliti
used by parts of Paradyn and dyninstAPI: component dependencies are summarized in Fig

paradyn Paradyn front-end.

paradynd Paradyn daemon.

dyninstAPI A separate library for dynamic instrumentation, also used as part of t
Paradyn daemon.

dyninstAPI_RT dyninstAPI run-time instrumentation library (not used by Paradyn).

rtinst Paradyn run-time instrumentation library.

visiClients Visualization client programs: rthist (run-time histogram), table, barchar
phaseTable, terrain and tclVisi.

util Utility functions used by other sub-systems.

thread General purpose custom multithreading package.

igen RPC interface generator.

visi Visi interface library.

Figure 1: Paradyn (and dyninstAPI) subsystems.

1. also available fromhttp://www.cs.umd.edu/projects/dyninstAPI

Core subdirectory Component dependencies
Util Visi Igen Other

Basic Components:
libpdutil util
libpdthread thread

Figure 2: Paradyn/dyninstAPI module structure and dependencies.
Libraries and associated include files are common module dependencies, often suppleme
with process interface routines generated by Igen from interface specifications. Occasiona

direct source sharing is also employed (e.g., between the dyninstAPI and paradynd).
Developer’s Guide April 13, 2000 Release 3.0ß

Page 8

cture
1.5
dules.

s, or

of the

e and
ediate

build
ake-

rams
dated
, and

nted
lly,
Note: the terrain visi has not yet been ported to Windows NT. While the same source stru
applies, as described in the discussion which follows, differences are dealt with in Section 1

The root of the Paradyn source code tree has one directory for each one of these mo
Each module directory is divided into several sub-directories:
h: this directory contains the exported interface of the module, usually C or C++ header file

Igen interface specifications (files with suffix .I).
src : this directory contains the source code for the module and header files that are not part

exported interface.
compilation directories (<arch>-<vendor>-<os> , as provided bysysnamefrom the GNU config-

uration system, one for each supported platform): These directories contain a Makefil
machine derived files that are built as part of the compilation process, such as interm
files generated by Igen, flex, and bison, and object files.
Each module directory also contains a configuration file (make.module.tmpl) that is included

by the Makefile in the compilation directories.
The root directory of the source code tree also contains a Makefile, which can be used to

all of the components of the system, and three configuration files that are included by the M
files in the compilation directories of each module:
make.config : general definitions for all Paradyn modules, such as compilers and other prog

to use, flags, search path for include files, libraries, etc. This file generally needs to be up
for each installation, with the desired configuration options, valid paths to the programs
libraries; see Section 11 for further details.

make.library.tmpl : general definitions for modules that generate libraries.
make.program.tmpl : general definitions for modules that generate programs.

libvisi visi h exe
igen* igen h&lib

dyninstAPI:
libdyninstAPI dyninstAPI h dyninstAPI_RT
libdyninstAPI_RT dyninstAPI_RT h

Key Subsystems:
libdyninstRT rtinst h
paradynd* paradynd h&lib exe paradyn, dyninstAPI, rtinst
paradyn* paradyn h&lib h/.I exe (libpd)thread, paradynd

Visualizers:
barChart* visiClients/barchart h&lib h&lib paradyn
phaseTable* visiClients/phaseTable h&lib h&lib paradyn
rthist* visiClients/histVisi h&lib h&lib paradyn
tableVisi* visiClients/tableVisi h&lib h&lib paradyn
tclVisi* visiClients/tclVisi h&lib h&lib paradyn
terrain* visiClients/terrain lib h&lib [paradyn]

Figure 2: Paradyn/dyninstAPI module structure and dependencies.
Libraries and associated include files are common module dependencies, often suppleme
with process interface routines generated by Igen from interface specifications. Occasiona

direct source sharing is also employed (e.g., between the dyninstAPI and paradynd).
Developer’s Guide April 13, 2000 Release 3.0ß

Page 9

ars in

T dif-
here in
, how to
missed

tan-

till

ke.

sitat-

his

ys-
The build also uses a shell/command script,buildstamp , provided in the scripts directory
(which also includes a copy ofsysname).

A more complete description of the configuration and Makefiles used in Paradyn appe
Section 11.

2 PARADYN PACKAGE DEPENDENCIES

This section lists the packages needed to build Paradyn on Unix systems: some Windows N
ferences are mentioned here, but see Section 11.5 for details. For each package, we list w
the Paradyn source code the package is needed, the version of the package currently used
get the package, and some additional information. If you notice any packages that we have
listing below, please let us know.

❏ gcc/g++:

• Where used: compiling all of Paradyn.

• Version: gcc-2.95 or greater. (Currently using 2.95.1 or higher for all platforms.)

• How to get: ftp://ftp.gnu.org/gnu/gcc/gcc-2.95.tar.gz (or other suitable version).

• Comments:close to impossible to work without a good C++ compiler. We use some non-s
dard features (such as long long), which may not be supported by other compilers.

• Windows NT:Visual C++ 6.0 is used instead. Compiling Paradyn with gcc/g++ is s
untested on this platform.

❏ GNU make:

• Where used: building all modules in Paradyn

• Version: currently using make-3.74

• How to get: http://wuarchive.wustl.edu/systems/gnu/make-3.74.tar.gz

• Comments: we use includes, conditional defines, and other features specific to GNU-ma

• Windows NT:nmakeis used instead, which has a different syntax and capabilities, neces
ing a separate set of make configuration files callednmake.config , nmake.*.tmpl. These
configuration files may be deleted if you’re not working with Windows NT).

❏ Perl5:

• Where used:in the ‘tcl2c’ script to convert Paradyn Tcl files to C++; also used (though t
could be easily changed) inmake.config

• Version: perl5.xxx

• How to get: http://mox.perl.com/ and explore, or http://wuarchive.wustl.edu/s
tems/gnu/perl5.002.tar.gz

• Comments: possible to rewrite tcl2c in almost any language.

• Windows NT: currently not needed on this platform.

❏ Tcl/Tk:

• Where used: user-interface of Paradyn, tclVisi package, barChart, tableVisi, etc.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 10

z

e

ar-

 6.0.

dyn
s

a man-
of these
ad, and
s in
• Version: Tcl-8.2, Tk-8.2 (or higher).

• How to get: http://www.scriptics.com and explore.

• Comments: the use of Tcl/Tk makes Paradyn’s user interface more portable

• Windows NT: we recommend installing the “official” Tcl/Tk package from Scriptics.

❏ Xaw, Xext, Xt:

• Where used: 3D terrain visi.

• Version: Xaw-5.0, Xext-4.10, Xt-4.10 (or higher).

• How to get: http://www.x.org/ and explore.

• Comments: other versions may require re-compiling rthist.

• Windows NT: not needed on this platform.

❏ Bison, Flex:

• Where used: Igen, MDL.

• Version: bison v1.24, flex 2.5.2 (or higher).

• How to get: http://wuarchive.wustl.edu/systems/gnu/bison-1.24.tar.gz and flex-2.5.2.tar.g

• Windows NT:these are needed to buildparadynd , and you can either build them from th
sources or look around for pre-built versions for Windows NT.

❏ ONC RPC: (Windows NT only)

• Where used: Paradyn daemon, dyninstAPI, libpdutil

• Version: v1.10 or later

• How to get: ftp://grilled.cs.wisc.edu/~paradyn/etc/oncrpc112winnt.tar.gz

• Comments:the ONC RPC implementation of Sun RPC for Windows NT originates from M
tin F. Gergeleit (http://set.gmd.de/~mfg/oncrpc.html), however, the fileRPC/XDR.H needs to be
exchanged with the one in the Paradyn release to compile successfully with Visual C++

❏ rshd:

• Windows NT:if you wish Paradyn to be able to automatically start applications and Para
daemon processes on remote Windows NT systems, anrsh daemon process, such a
WRSHDNT, is required to be running on the remote system.

3 PARADYN FRONT-END

The Paradyn front-end is a multi-threaded system that consists of several modules: the dat
ager, the user interface, the visualization manager, and the Performance Consultant. Each
modules is a separate thread. The Paradyn process starts by creating each module’s thre
invoking initialization routines for each thread. After each thread is initialized, the command
the Paradyn configuration files are processed, and control is passed to the threads.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 11

aging
ance
from
s and
s, and

omated
onsi-
s) and

direc-

hread,
a-
h

nager
Para-

ut the

or this

r we
which
pond-

ta to the
o the

onding
then the
The User-Interface thread (UI) is responsible for receiving user’s commands and man
the display windows (the Paradyn Main Console Window, the Where Axis, and the Perform
Consultant Window). The Data Manager thread (DM) is responsible for handling requests
other threads for data collection, for receiving performance data from the Paradyn daemon
delivering them to the requesting threads, and for managing information about phase, metric
the resource hierarchy. The Performance Consultant thread (PC) is responsible for the aut
search for performance bottlenecks in the application. The Visi Manager thread (VM) is resp
ble for managing visualization processes (like the run-time histogram and barchart processe
for communication between each visualization process and the Data Manager.

The source code for the Paradyn process is divided in several directories, including one
tory for each thread:DMthread , PCthread , UIthread , andVMthread . There is also a directory
calledTCthread , which has code to handle tunable constants. (Tunable constants are not a t
however, they are managed by the UI thread). Themet directory contains the parser for the Par
dyn Configuration Language; theVISIthread directory contains the code for visi threads, whic
are created by the VMthread when a new visualization process is started; thepdMain directory
contains the Paradyn main routine.

The following sections describe the major modules of the Paradyn front-end.

3.1 Data Manager

The Data Manager (DM) is one of the threads of the Paradyn main process. The Data Ma
handles requests from other threads for data collection, delivers performance data from the
dyn daemon(s) to the requesting thread(s), and maintains and distributes information abo
metrics and resource hierarchies for the currently defined application.

Performance data collection

The Data Manager handles requests from other threads for performance data collection. F
purpose, the DM provides the “public” proceduredataManager::enableDataRequest

(DMpublic.C). This procedure will receive, among other parameters, the metric/focus pai
want to enable, the perfStreamHandle of the calling thread, the identifier of the phase for
data is requested, and other necessary information. This procedure will then call the corres
ing procedures to enable the data collection process in the Paradyn daemon(s).

In general, all the requests to the DM from other threads, are handled in the fileDMpublic.C .

Performance data delivery from the Paradyn daemon(s)

Once the data has been successfully enabled, the Paradyn daemon(s) will start sending da
requesting threads through the DM. The DM will receive trace records and send them t
requesting thread (DMperfstream.C).

Metrics and resource hierarchies management

There are objects that can be created and destroyed and the DM has to notify the corresp
threads about all these changes. If a new resource is created, for example a new process,
Developer’s Guide April 13, 2000 Release 3.0ß

Page 12

nd-

f each

The

pe,

s”
ric is

are

r
Para-

d dis-
then
urrent

only
will
), any
ropri-

ersis-

, and
th the

aliza-
n pro-
s a visi
Paradyn daemon will make a “call back” to the DM, and then the DM will notify the correspo
ing threads (e.g. the UI). Call backs are defined in the fileDMmain.C.

DM objects

The major objects used in the DM thread are described below. The file in which the class o
object is defined is given in parenthesis.

These objects, once created, are never destroyed:
resource (DMresource.h): the static items basically manage a “database” of all resources.

non-static items gives you information about a single resource.
resourceList (DMresource.h): a “list” of all resources in the system.
metric (DMmetric.h): contains all the information related to a metric (e.g. name, units, ty

etc).
phaseInfo (DMphase.h): information about phases in the system.
These objects, once created, can be destroyed:
metricInstance (DMmetric.h): this class contains information about the particular “instance

of all metrics created during the execution of the application being analyzed. (If a met
“enabled”, we are creating a new metric instance; if the same metric is “disabled”, we
destroying it).

performanceStream (DMperfstream.h): theperformanceStream class is basically a consume
of performance data. Its main function is to provide the means to receive data from the
dyn daemon(s) and send it to the requesting threads.

paradynDaemon (DMdaemon.h): a handle to a running Paradyn daemon (paradynd). This class
provides method functions for process and daemon control as well as for enabling an
abling data collection. At this moment, if a particular paradynd is removed (e.g., exits),
Paradyn has to exit too. In other words, we can’t destroy a Paradyn daemon in the c
implementation.
All DM objects should be referred to by their handles outside of the DM thread. The

operation that clients should perform with DM handles is equality testing (this operation
always be supported by DM handle types, so clients can compare handle values directly
other information that a client needs about a DM object can be obtained by passing the app
ate handle to adataManager interface routine.

Within the DM thread, care should be taken when using pointers to objects that are not p
tent (metricInstance andperformanceStream)

DM handles are not reused over the execution of Paradyn, butmetricInstance andperfor-

manceStream handles may be invalid. For example, enabling a metric/focus pair, disabling it
then re-enabling it may result in two different metricInstance handles to be associated wi
pair.

3.2 Visi Manager

The Visi Manager is a thread in the Paradyn process. It contains information about the visu
tions in the system, and it accepts requests from other threads to start or to kill visualizatio
cesses. When the visi manager receives a request to start a new visualization, it create
Developer’s Guide April 13, 2000 Release 3.0ß

Page 13

terface

ed in

n-
r uses

-
new

ization
tion in
orma-
iated

con-
atrix

pro-
s are

es

-

its

ss
has
thread. The visi thread then starts the external visualization process, and acts as an in
between the visualization process and the Paradyn process.

Visi Manager types

The following is a description of the types used by the visi thread (these types are defin
VMtypes.h):

VMvisis : The visi manager keeps a vector ofVMvisis elements. Each element in the vector co
tains information about a visualization that has been added to Paradyn. The visi manage
this information to start the visualization process. (Note: thematrix andnumMatrices ele-
ments are not currently used.)

VMactiveVisi : The visi manager keeps a vector ofVMactiveVisi elements. There is one ele
ment in this vector for each visualization process that is currently executing. When a
visualization process is started, a new element is added to this vector, and when a visual
process exits, its corresponding element is removed. The visi manager uses the informa
each element to communicate with the visualization process. Each element contains inf
tion about the type of visualization that is running, and about the visi thread that is assoc
with the visualization process.

visi_thread_args : This struct is used when the visi manager thread creates a visi thread. It
tains information that the visi thread needs to start the visualization process. (Note: the m
element is not currently used.)

Visi Manager interface routines

Visi manager interface routines provide information about visualizations in the system, and
vide a mechanism to control visualization process creation and deletion. These routine
defined inVM.I .

VMActiveVisis Returns a vector of information about all visualization process
currently running.

VMAvailableVisis Returns a vector of information about all the different visualiza
tions that are part of Paradyn.

VMAddNewVisualization Takes information about a visualization process, and adds it to
list of VMvisis elements.

VMCreateVisi Starts a visualization process.

VMDestroyVisi Kills a visualization process.

VMVisiDied Called by a visi thread when its associated visualization proce
has exited. It cleans up any state that the visi manager thread
been keeping for this process.

Figure 3: Visi Manager interface
Developer’s Guide April 13, 2000 Release 3.0ß

Page 14

rocess.
hreads

isual-
terface
ocess
of per-
rom the
nd for-

al data
pro-

l

t
the
com-

server

al-
ib see

made
ualiza-
hen the
lls to

ehalf of
ep state
th the
anager

ta and
3.3 Visi threads

Visi threads are the only threads that are not persistent over the execution of the Paradyn p
There may exist zero, one, or more instances of a visi thread at any time. They are the only t
that can be created and destroyed at any point in Paradyn’s execution.

A visi thread is created by the visi manager thread when it receives a request to start a v
ization process. The visi thread starts the external visualization process, and acts as an in
between Paradyn and the visualization. There is one visi thread for every visualization pr
that is executing. The visi thread receives requests from the visualization to change its set
formance data, and forwards these requests to other threads in the Paradyn process. F
other threads, the visi thread receives performance data and meta data that it packages a
wards to the visualization process.

Because there can be multiple instances of a visi thread, visi threads must use thread loc
to keep any unique information that they need to interact with their associated visualization
cess. See theParadyn LibThread Programmer’s Guidefor more information about thread loca
data.

Visi thread types

Types used by the visi thread are defined inVISIthreadTypes.h . Each visi thread has an elemen
of type VISIthreadGlobals in its local data. This element contains state information about
visualization process it is associated with, and about the other threads with which it needs to
municate. Figure 4 provides a description of this struct.

The Visi thread and the Visi interface

Each visi thread is a client instance of the visi interface, and each visualization process is a
instance of the visi interface. The visi interface is defined invisi.h . The visi server routines are
implemented in Paradyn’s visualization library (visiLib). This library is then linked with visu
izations that want to receive Paradyn performance data. For a complete description of visiL
theParadyn Visi Programmer’s Guide.

The visi thread implements the visi interface client routines. These are upcalls that are
by the visualization process to the Paradyn process, and they provide a mechanism for a vis
tion process to subscribe or un-subscribe to performance data, or to start a new phase. W
visi thread receives an upcall from a visualization process, it typically makes one or more ca
other threads in the Paradyn process to satisfy the visualization’s request.

The Visi thread and the Data Manager

The visi thread makes data enable, and disable requests to the data manager thread on b
the visualization process. A data enable request is asynchronous, so the visi thread must ke
about the request until it receives an asynchronous upcall from the data manager wi
response. Once the visualization has subscribed to some performance data, the data m
thread will send this data to the visualization’s visi thread. The visi thread packages the da
sends it to the visualization process.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 15

nt rou-
ad con-

hen it
akes an

tream.
its call-
dle that

nd

-

y

ve
The visi thread is a data manager client thread, and thus implements data manager clie
tines. Since there are other data manager client threads in the Paradyn process, each thre
tains code that implements its version of the data manager client thread routine, and t
registers this routine as a callback with the data manager thread. When the data manager m
upcall to a data manager client thread, the client thread’s callback routine is called.

To communicate with the data manager, the visi thread must first create a performance s
When the visi thread makes a request to create a performance stream it also registers all
back functions with the data manager. The data manager returns a performance stream han
is used in all subsequent communications between the visi thread and the data manager.

Field Use

ump Used to call user interface RPCs.

vmp Used to call visi manager RPCs.

dmp Used to call data manager RPCs.

visip Used to communicate with the visualization process.

ps_handle Used as an identifier by the data manager, data manager calls a
callbacks typically have aperfStreamHandle argument.

fd File descriptor used to communicate with the visualization process.

buffer A buffer of performance data (the visi thread sends data to the visu
alization process a buffer full at a time).

quit Flag that tells the visi thread to exit.

start_up Flag that tells the visi thread that there is some initialization that it
needs to do.

bucketWidth Bucket width associated with the data buckets that are being sent b
the data manager to the visualization process.

currPhaseHandle Handle for the current phase.

args Arguments used to start the visualization process.

mrlist List of metric/focus pairs that the visualization process is currently
subscribed to.

request,
retryList,
numEnabled...

Stores information about any outstanding enable requests that ha
been made by the visualization.

Figure 4: VISIthreadGlobals struct members.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 16

server

ro-

I,

lls.

to per-
on-

raph
ously,

e most
Where

ble

t

cl
yn.

s, this

e call
ard

call

le
Interface routines

The visi thread acts more as a client thread in the Paradyn process, and thus only has one
routine defined inVISIthread.I :

VISIKillVisi : called by the VM thread when a request is made to kill the visualization p
cess.

The fileVISIthreadmain.C contains the VISIthread main loop, and callback routines for U
and DM upcalls.

The fileVISIthreadpublic.C contains VISIthread server routines, and visi interface upca

3.4 User Interface (UI) thread

The user interface (UI) thread handles all graphical displays in Paradyn. It has several tasks
form, including the Where Axis Window, the Tunable Constants Window, the Paradyn Main C
sole Window, the Performance Consultant Window, the Error Dialog Window, the Call G
Window, etc. For the most part, these tasks are handled via the Tcl/Tk package. Simultane
however, the UI thread must listen for Igen messages from the data manager thread; th
numerous being “new-resource” messages, which require the UI thread to add items to the
Axis display.

UI main loop

UImain() of file UImain.C is the entry point to the UI thread. After creating a number of tuna
constants, it callsinitialize_tcl_sources() to read in Paradyn’s Tcl code. The source (.tcl

files) for such code is in theparadyn/tcl directory. When compiling Paradyn, the “tcl2c” scrip
converts the .tcl files into a tcl2c.C file, which contains a function
initialize_tcl_sources() . Calling this function (as UImain does now) reads in all of our T
scripts. For this reason, the .tcl files do not need to be distributed in a binary release of Parad

UImain() soon callsmsg_bind() on XConnectionNumber() of the X display. In this way, we
can wait for X events. X provides a number of functions (such asXNextEvent()) to do this more
cleanly, but since the UI thread needs to wait not just on X events but also for Igen message
roundabout approach is needed.

The main UI loop is as follows. The routineprocessPendingTkEventsNoBlock() is called
to process any pending X events (i.e., any Tcl/Tk graphical events) without waiting. Then, w
libthread’smsg_poll() , which will wait for either an Igen message, an X event, or a keybo
event (previous calls tomsg_bind() determines whatmsg_poll waits for). We then determine
which of the 3 events occurred, and process the event accordingly. For X events we
processPendingTkEventsNoBlock() ; for keyboard events, we callStdinProc() ; for Igen
events we call the appropriate Igen waitLoop() routine.processPendingTkEventsNoBlock()

simply calls Tk_DoOneEvent() until no more Tk events are pending. In this way, we hand
mouse clicks, etc., in all of Paradyn’s windows.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 17

ed

n-
w
e.

.
s

te
en
dy of

rou-

re

s

;
e.
h

is.
o
ow
. As
ter-
Where Axis

In paradyn/src/UIthread , files dealing with the where axis arewhereAxis.h and .C ,
where4tree.h and.C , whereAxisTcl.h and.C , where4treeConstants.h and.C , rootNode.h

and .C , andabstractions.h and .C . Miscellaneous graphical routines are supplied inscroll-

bar.h and.C andtkTools.h and.C . Classes helping calculate exactly which node was click
on are insimpSeq.h and.C andgraphicalPath.h and.C .

Classabstractions (abstractions.h and .C) holds all of the where axes, and also mai
tains variables to manage the Tk window. Methodadd() is called when a new where axis (a ne
abstraction) is created.getCurrent() returns the current where axis structur
getCurrAbstractionSelections() returns the set of resources selected. ClasswhereAxis

(whereAxis.h and .C) holds information on a single where axis. VariablerootPtr is the root
node of this where axis. Classwhere4tree (where4tree.h and.C) holds information on a single
node in the where axis. MembertheChildren holds the vector of children of this node
addChild() is called when a new child is created.draw() draws the node and recursively draw
the children. Methoddraw_listbox() draws a node’s listbox; methodscroll_listbox() han-
dles scrolling it. ClassrootNode (rootNode.h and .C) defines the input class to the templa
classwhere4tree<> . File whereAxis.tcl contains the part of the where axis code that is writt
in the Tcl/Tk language. It mainly concerns the frame of the window and its menus. The bo
the where axis is drawn in C++ code using a combination of calls to internal Tk C language
tines and Xlib routines (for speed).

Performance Consultant window (Search History Graph)

In paradyn/src/UIthread , files dealing with the Performance Consultant display a
shgPhases.h and shgPhases.C , shg.h and shg.C , shgRootNode.h and shgRootNode.C ,
shgTcl.h andshgTcl.C , andshgConsts.h andshgConsts.C . Files shared with the where axi
are where4tree.h and where4tree.C as well as helper classes provided inscrollbar.h and
scrollbar.C , tkTools.h and tkTools.C , simpSeq.h and simpSeq.C , andgraphicalPath.h

andgraphicalPath.C . shgPhases.h andshgPhases.C provide classshgPhases , which man-
ages the collection of search history graphs (one per phase). Methodchange() switches displays;
draw() draws the current search history graph;addNode() adds a node to the current graph
addEdge() connects a node to its parent; and,configNode() changes a node’s semantics (i.
true, false, unknown, etc.).shg.h andshg.C provide classshg , which manages a single searc
history graph. There are many internal similarities to thewhereAxis class.rootPtr holds the root
node of this shg.draw() draws the shg.addNode() adds a node to the shg;configNode()

changes a node’s semantic meaning;addEdge() connects a node to its parent.where4tree.h and
where4tree.C manage an individual node of classshg ; it was discussed above in the where ax
shgRootNode.h andshgRootNode.C manage classshgRootNode , the template input parameter t
classwhere4tree<> . File shg.tcl constrains the part of the Performance Consultant wind
written in the Tcl/Tk language. It mainly concerns the frame of the window and its menus
with the where axis, the shg itself in the center of the window is drawn entirely with calls to in
nal Tk C routines or Xlib routines, for speed.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 18

l

lly by
us
r
aring in

Con-
cussed
s
e to a
.

bottle-
arches
ad to
he UI
ultant

control

anager.
base
ce Con-
Tunable constants

The tunable constants dialog is managed intclTunable.tcl in paradyn/tcl . Routine
tunableIntialize() sets things up; routineprocessShowTunableDescriptions() creates the
Tunable Descriptions dialog.

tclTunable.h and tclTunable.C (in paradyn/src/UIthread) provide the implementation
of a “tclTunable” command that is called from the above .tcl files to gain access to the interna
tunable constants database.

The internal tunable constants database is maintained filestunableConst.h and tunable-

Const.C (in paradyn/src/TCthread).

Status lines

The status lines (which appear in the Paradyn main console window) are managed interna
Status.h and Status.C (in paradyn/src/UIthread). Some of the code to manage the stat
lines is written in Tcl/Tk; filestatus.tcl (in paradyn/tcl) has that code. Status lines fo
nodes/processes are distinguished from generic Paradyn and application status lines, appe
a separate resizable and scrollable area of the console window.

Paradyn Main Control window

Most of the Paradyn main window is managed by Tcl/Tk code. FilemainMenu.tcl (in
paradyn/tcl) creates the window, its menus, etc. Routines inshg.tcl , whereAxis.tcl ,
tclTunable.tcl are invoked when the Performance Consultant, Where Axis, and Tunable
stants, respectively, are chosen from the main window’s menu. These files have been dis
previously.startVisi.tcl is invoked when “Start A Visi” is chosen from the main window’
menu.mets.tcl is invoked when Paradyn needs a metric selection from the user (in respons
visualization add request).applic.tcl maintains the dialog box for starting a new application

3.5 Performance Consultant thread

The Performance Consultant (PC) thread conducts an automated search for performance
necks. One search may be conducted per phase, for a maximum of two simultaneous se
(one global, one current). The Performance Consultant thread interacts with the DM thre
enable/disable metric/focus pairs and for information about resources, and interacts with t
thread to control the content of the Performance Consultant window. The Performance Cons
may be viewed as a stream of incoming data, a set of experiment definitions, and a search
strategy for starting and halting individual experiments.

The data stream

Data is obtained by making instrumentation enable requests of the daemon via the data m
The incoming stream of data is handled by a series of filters. A filter is defined by two
classes, dataProvider and dataSubscriber. There are three types of filters in the Performan
sultant:
Developer’s Guide April 13, 2000 Release 3.0ß

Page 19

,

*, /,
nec-

, the

theses

r-
es.
er of

for the
on a

er,

es

enable
iment.
s sub-
ck from
xper-
PCfilter (dataProvider) :
in: raw data manager data for a single metric/focus pair,
out: average metric/focus values for uniform time intervals,
subscribers: one or morePCmetricInst s.

PCmetricInst (dataSubscriber, dataProvider) :
in: PCfilter output for uniform time intervals for a set of metric/focus pairs,
out: computed from data plus specified arithmetic operator, for a particular time interval
subscribers: one or more experiments.

experiment (dataSubscriber) :
in: PCmetricInst output (a single value),
out: changeConclusion , changeTruth calls to the search node,
subscribers: none.

Experiment definition

A PCmetric is a set of data manager metrics plus an arithmetic operation (currently +, -,
max). A hypothesis is a specification of a condition to test for plus the data and computation
essary to perform the test. The computation is specified as aPCmetric plus a threshold. An exper-
iment is defined by a hypothesis plus a particular focus. Using the hypothesis definition
appropriate metric/focus pairs are enabled for thePCmetric ; once data starts flowing from the
data manager the resulting value is periodically compared to the threshold. The set of hypo
is hierarchical and is referred to as the Why Axis.

Search control

All data structures for one search are gathered in an instance ofPCsearch : PCmetricInstServer

is the data source;searchHistoryGraph is a DAG which contains all info about the tests pe
formed; and two staticPriorityQueue s, one global and one current, hold all ready search nod
The total cost of instrumentation is controlled by three thresholds: a cost limit, the total numb
active experiments, and the total number of pending enable requests.

Starting up a particular experiment

1. Get estimated cost: when a node is expanded, a request is made to the Data Manager
predicted cost for each new child node; pointers to the new PCmetric filters are stored
waiting list costServer::costRecords . When the cost is received from the Data Manag
the record is retrieved, and methodupdateEstimatedCost() is invoked for the appropriate
PCmetric filter. The PCMetric filter notifies the experiment, which invok
searchHistoryNode::estimatedCostNotification() . The shn routine places the node
onto the PC run queue.

2. Enable request(s): when a node is launched from the PC run queue, one or more
requests are made to the Data Manager for the metric/focus pairs used by that exper
None to all of these pairs may already be enabled, in which case the existing data filter i
scribed to and no new request goes to the Data Manager. As each response comes ba
the Data Manager, the PCmetric filter is notified; when all required data is enabled, the e
iment is notified and the node display is changed to active.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 20

hildren
its

imated
st, then
eue to
des are
nt or if

nd not
) and

emain

ata in
build

e-

der
e

llel
each

re is
mon is

esses.

o the
3. Change to true: when a node’s status changes from unknown to true, both parent and c
may be affected. If the parent is virtual, its truth value is just the OR of its children’s, so
truth value may change. If the node has not been expanded, it is so at this time, and est
cost is requested for each child (step 1 above). If the node has been expanded in the pa
the child nodes will already have an estimated cost; they are added back to the run qu
await step 2 above. In most cases a change from false to true is not possible, since no
deactivated when they become false: this can happen, however, if the node is persiste
the node’s parent changes.

4. Change to false: when a node’s status changes from unknown to false it is deactivated a
expanded. If it changes from true to false then it must be deactivated, plus its parent(s
children must be notified. Every node but the root must have at least one true parent to r
active, so notifying the children generally results in deactivating them.

4 VISI LIBRARY

VisiLib is a library and remote procedure call interface for accessing Paradyn performance d
real-time. VisiLib provides an open interface to Paradyn data, and allows a programmer to
external visualization processes (Visis). All performance visualizations in Paradyn are impl
mented as visis. The visi programmer uses the interface defined invisualization.h to access
performance data. VisiLib uses the Igen interface that is defined invisi.h to communicate with
Paradyn.visualization.C contains the implementation of routines defined in both these hea
files. VisiLib also defines a type (DataGrid) that is the visualization’s interface to performanc
data. A complete description of VisiLib can be found in theParadyn Visi Programer’s Guide.

5 PARADYN DAEMON

The Paradyn daemon (paradynd) is the back-end of the Paradyn tool. When running a para
program (such as MPI), there will be several daemons running at the same time, one on
node. Eachparadynd communicates, using Igen RPC calls, with the Paradyn front-end. The
no direct communication between the Paradyn daemons (except in the case where a dae
responsible for starting other daemons).

5.1 Introduction

Paradyn daemons have several responsibilities:

1. Starting and controlling the execution of application processes.

2. Reading the application’s symbol table.

3. Reading the application’s binary image to find instrumentation points.

4. Evaluating metrics, generating code, and inserting instrumentation into application proc

5. Periodically sampling performance data from the application and forwarding values t
Paradyn front-end (Section 5.5).
Developer’s Guide April 13, 2000 Release 3.0ß

Page 21

where
e dae-

mon is
ll
end is

in

file
m

f

ro-

tion
pplica-

adyn

n
g, stop-

orm of
re

ating
space

re.

ctions,

of the
Daemons are started by the Paradyn front-end usingrsh or rexec (when the Paradyn front-
end runs on a different machine/node than the application) orfork /exec (when the Paradyn front-
end runs on the same machine/node as the application; Windows NT usesCreateProcess). The
front-end passes the flavor of the daemon (e.g. PVM, MPI, etc.), the name of the machine
the front-end is running and socket address for connection as command line arguments to th
mon. The daemon then connects to the front-end. When PVM is being used, only one dae
started by the front-end. This daemon then usespvm_spawn to start the other daemons on a
nodes of the PVM virtual machine. (The code to parse arguments and connect to the front-
in main.C , and the code to start spawning other Paradyn daemons with PVM is
pvm_support.C .)

The interface between theparadynd processes and the Paradyn front-end is defined in
paradyn/h/dyninstRPC.h . In most cases theparadynd acts as a server, receiving requests fro
the Paradyn front-end, but there are also many upcalls from theparadynd to the front-end. Most
RPC calls defined in the interface are implemented indynrpc.C , where calls to other modules o
theparadynd process are made as appropriate.

Daemons start application processes usingfork/exec (Windows NT usesCreateProcess).
Daemons useptrace or /proc file system calls to insert instrumentation into the application p
cesses (Windows NT usesReadProcessMemory andWriteProcessMemory). Output data is sent
from the application to the daemon via a pipe.

The functioncontrollerMainLoop() (defined inperfStream.C) is the main loop of the
paradynd . At each iteration of this loop, the daemon checks for data coming from the applica
processes through the pipes, for requests by the front-end, and for signals received by the a
tion processes.

Before going into its main loop, each daemon received metric definitions from the Par
front-end. The representation of the metrics is provided in theparadyn/h/dyninstRPC.h file.

5.2 Application processes

The classprocess (defined inprocess.h /process.C) provides a representation for applicatio
processes. It provides machine independent abstractions for creating new process, runnin
ping, reading, writing, and intercepting signals of application processes.

Several methods of the class process have platform-dependent implementations, in the f
ptrace calls or ioctl calls to the/proc file system. This platform-dependent functions a
implemented in the operating system specific files (e.g. solaris.C , aix.C).

The classinferiorHeap , also defined inprocess.h/process.C , provides a representation
for the inferior heap in the application process, and functions for allocating and de-alloc
memory blocks. The inferior heap is a block of memory in the application process address
where the daemon writes instrumentation code. In addition, on platformsnot supporting shared-
memory data sampling (Section 5.5), the application also stores its counters and timers he

5.3 Object file processing

The Paradyn daemon reads the object file of an application process to find the symbols (fun
modules, and global data) and instrumentation points. The classimage (defined insymtab.h) pro-
vides a representation for the application’s object image. The first step in the processing
Developer’s Guide April 13, 2000 Release 3.0ß

Page 22

f the
-
lat-

d. The

n.
ara-

ss of
ned in

ls
by the
object file is to read thea.out format file and obtain the symbols, and the address and size o
code and data segments. The class symbol (defined inutil/h/symbol.h) provides a representa
tion for symbols. The fileutil/h/Object.h defines abstract classes for object files. Each p
form has its own implementation:Object-elf32.h (for Solaris 2.x), andObject-aix.h (for
AIX).

Once the symbol table is processed, the functions of the application process are define
classpdFunction provides a representation for functions. For each function, the methodfindIn-

stPoints of the classpdFunction is invoked to find the instrumentation points for that functio
The methodfindInstPoints() has one implementation for each architecture supported by P
dyn (currently sparc, mips, x86, and power). The implementations are in filesinst-sparc.C ,
inst-mips.C, inst-x86.C , andinst-power.C

ClassinstPoint provides a representation for instrumentation points, defining the addre
the point, the instructions to be relocated, and other relevant information. The class is defi
the architecture dependent files (inst-sparc.C , inst-power.C andinst-x86.C).

5.4 Shared-object processing

On Solaris platforms, Paradyn supports instrumentation of dynamic executables. Adynamic exe-
cutable is one that is created by dynamically linking shared libraries (calledshared objects).
When the Paradyn daemon processes ana.out file of a dynamic executable, many of the symbo
are undefined. These undefined symbols are from shared objects that are bound at runtime
run-time linker.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 23

object
ss run-

ject for
s exam-

d a list
an have

ses of the
an cre-
ress of
image.

me
Figure 5 shows the data structures used by the Paradyn daemon to keep track of shared
information for each process. This figure shows three process objects, one for each proce

ning on the host. Each process contains pointers to image structures. There is one image ob
each unique executable file and shared object file processed by the Paradyn daemon. In thi
ple, process 1 and process 2 are executing the samea.out files; they both contain pointers to the
samea.out image. Process 3 is executing a differenta.out file; it contains a pointer to a different
a.out image. Each process object also contains a list of pointers to shared object images an
of base addresses associated with these shared objects. Since two different executables c
the same shared object mapped into their address space at different addresses, the addres
instrumentation points of functions in shared objects may differ across processes. Rather th
ate multiple image objects for shared object files, each process keeps track of the base add
where it has the shared object mapped and then contains a pointer to the shared object’s
This way, only one image object needs to be created for each unique shared object ora.out .

Figure 5: Process class and shared objects.
Process 1 and process 2 are the same executable and sharea.out and shared object images.
Process 3 is a different executable, running on the same host, which has some of the sa

shared object images as process 1 and 2, but a differenta.out image.

a.out

shared objects
base addr
image

base addr
image

base addr
image

a.out libc.so.1 libm.so.1 libdl.so.1 libmp.so.1

a.out
shared objs

a.out

shared objs

a.out

process 1

process 2

process 3

image image image image image image

images shared
by all processes
Developer’s Guide April 13, 2000 Release 3.0ß

Page 24

consists
s
nction
- and

that
e added

space.
ry

valuate
of the
i-

ch
Figure 6 shows the relationship between theimage , module , pdFunction , and instPoint

classes in the Paradyn daemon. Each image contains a set of modules, and each module
of a set of functions. For each such function, apdFunction object is created. This class contain
information about each function, such as the function’s name, address, and size. Each fu
also contains several instrumentation points. Currently, function exit, function entry, and pre
post-call site instrumentation points are defined for each function. Paradyn creates aninstPoint

object for each of these instrumentation points.

All address information stored ininstPoint andpdFunction objects is kept relative to the
image in which it is contained. This means that when inserting instrumentation into functions
are contained in a shared object, the base address value stored in the process object must b
to the address in the instPoint to find the correct location to write to in the process’s address
As a result, newinstPoint , pdFunction , andimage objects do not need to be created for eve
process that dynamically links a particular shared object.

Metric Evaluation and Code Generation

When a user or the Performance Consultant enable a metric/focus pair, the daemon must e
the metric, generate code, and insert instrumentation into the application process. Most
code to do the metric evaluation is in filemdl.C . The metric is evaluated producing an intermed
ate code representation in the form of abstract syntax trees (classAstNode defined in file

Figure 6: image, module, pdFunction, and instPoint classes.
Each image consists of a number of modules, each module consists of functions, and ea

function consists of a number of instrumentation points.

image

instPoints

modules

pdFunctions

instPoints
Developer’s Guide April 13, 2000 Release 3.0ß

Page 25

serted
ne for

in the
. Each

n
ctions
-
-
es, and

-

tion

enta-
r or
as an
ple is
m the

o-
ast.h/ast.C). The abstract trees are then translated into machine code, which can be in
into the application processes. There are different implementations of the code generator, o
each supported architecture, in filesinst-sparc.C , inst-power.C andinst-x86.C .

Each metric/focus pair is associated with counters or timers, which are objects allocated
inferior heap and operated by the instrumentation code inserted in the application process
allocated timer or counter is represented in the Paradyn daemon by an object of classtimerHan-

dle or intCounterHandle , defined ininst.h .
The classinstInstance , defined ininstP.h , provides a representation for instrumentatio

instances (a chunk of code inserted at some instrumentation point in a process). The fun
addInstFunc() anddeleteInstFunc() , defined ininst.C , are used to insert and delete instru
mentation instances in an application process.addInstFunc() allocates base and mini-trampo
lines as needed, generates branches from the instrumentation points to the base trampolin
from trampolines to other trampolines.

Each enabled metric/focus pair is represented by an object of classmetricDefinitionNode

(defined inmetric.h). There are two types ofmetricDefinitionNodes , aggregates and non
aggregates. A metric/focus pair is always represented by an aggregatemetricDefinitionNode .
Each aggregatemetricDefinitionNode has one or more components associated with applica
processes. The components are non-aggregatemetricDefinitionNodes . A component
metricDefinitionNode can belong to one or more aggregatemetricDefinitionNode .

Each component is associated with a timer or counter, and for each component, instrum
tion is inserted into the application process to periodically sample the value of the time
counter, writing the values in a pipe that is read by the daemon. Each timer or counter h
unique identifier, that associates that timer or counter with a unique component. Once a sam
received, this identifier is used to find the corresponding component. The value is passed fro
component to its parentmetricDefinitionNode , aggregated with the values from other comp
nents, and forwarded to the Paradyn front-end.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 26

c-
or the
o cater
Figure 7 shows themetricDefinitionNode data structure and its relation to other data stru
tures. Note: the data structure hierarchy presented in Figure 7 only corresponds to that f
alarm sampling case (described in Section 5.5.2). These structures are currently evolving t
for multi-threaded programs and the dyninst API.

Figure 7: Data structures of the Paradyn daemon.

dataReqNode * instrReqNode *

intCounterHandle

or
timerHandle

instInstance instPoint AstNode

instInstance
(sampler function) instPoint * pdFunction

module

image

dataReqNode *

metricDefinitionNode

metricDefinitionNode

P

P

PP

P

PP

PP

P = one per process
* = one or more instances
Developer’s Guide April 13, 2000 Release 3.0ß

Page 27

s per-
n will
d), the
he

medi-
on

. Cer-

ple-
)

ented

be

ment’s
with
pling

First,

er (one
)
mory

s it is
sam-

s are
5.5 Performance data sampling

Performance data sampling is (along with dynamic instrumentation) one of the major task
formed by the Paradyn daemon. Typically, instrumentation code inserted into an applicatio
write performance data to various counters and timers. Periodically (up to 5 times per secon
Paradyn daemon is responsible forsamplingthese counters and timers, to be forwarded to t
Paradyn front-end for processing by the Performance Consultant and visis.

Since the actual counters and timers reside in the application’s address space, it is not im
ately obvious howparadynd canefficientlysample them. Since a Paradyn daemon always runs
the same node as the application it is controlling, efficiency and perturbation are concerns
tainly, paradynd could pause the process and extract the data usingptrace or /proc , but this
would be too slow and intrusive. In this section, we will describe the two (very different) im
mentations of sampling currently implemented inparadynd . The first (and much more efficient
is called shared-memory sampling; the second is calledalarm-sampling. Which one is used
depends on the platform; for reasons discussed below, shared-memory sampling is implem
on most platforms.

5.5.1 Shared-memory sampling

In a shared-memory samplingparadynd , a shared-memory segment (created withshmget() on
UNIX, CreateFileMapping under Windows NT) holds the counters and timers that need to
sampled. Both the application andparadynd in turn attach to this segment (usingshmat() on
UNIX, OpenFileMapping andMapViewOfFile on Windows NT). Sinceparadynd is attached to
the segment, it can sample the counters and timers simply by reading directly from the seg
memory—the application need not know or care that it is being sampled. This contrasts
alarm sampling (Section 5.5.2), which requires the application to take an active role in sam
itself.

There are two complications that arise when implementing shared-memory sampling.
since the application may be writing to a counter or timer whileparadynd is sampling it, there
needs to be some synchronization. Second, due to the semantics of sampling an active tim
which has been started but not stopped),paradynd needs the ability to obtain the virtual (CPU
time of the application. Operating systems lacking such a primitive cannot use shared-me
sampling, and must use alarm sampling instead.

We now discuss these two complications in greater detail.

5.5.1.1 Synchronization issues for shared-memory sampling

Since instrumentation code inserted into an application may write to a counter or timer just a
being sampled (read) byparadynd , care must be taken to ensure that a consistent value gets
pled.

For counters (integers), no special precautions are needed. Ifparadynd samples an integer
while it is being modified, then either the old or new value will be sampled. Since both value
consistent, either is suitable.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 28

).

an
s
e

rval.

s exe-

h as a
ers the
tation

r
pling
lly the
ey are

values
er is
Sampling timers is more complicated. Consider the pseudo-code forstartTimer /stopTimer

operations (Figure 8), and forparadynd ’s shared-memory sampling of a timer (Figure 9

Assume that we are measuring the time spent in functionfoo() . To do this, the entry point of
foo() is instrumented withstartTimer() and the exit point is instrumented withstopTimer() .
Furthermore, assume thatfoo() is a long-running function (say 5 minutes), so a long time c
elapse between thestartTimer() and stopTimer() . If sampling occurs after the timer wa
started, but before it was stopped,t->total will not include the time that has elapsed since th
latest callstartTimer() . Line 3 in Figure 9 ensures that the sampled value includes that inte
It assumes the existence of aget-remote-time()primitive—a way for paradynd to somehow
obtain the current time of the application being measured. (The termremotecomes from the fact
that they’re different processes.)

Now that we understand the basic code forstartTimer , stopTimer , and sampling, we can
explain the need for synchronization. Imagine if a sample is taken after the application ha
cuted line 1 in Figure 8 but before it has executed any of line 2. In that case,paradynd will see the
count field non-zero, so it will execute line 3 of Figure 9, using an undefined value oft->start !

Clearly, some kind of synchronization is needed. Note that an interrupt of some sort (suc
thread context switch or a signal handler) could happen at any time, and if such code re-ent
instrumentation code, deadlock would result. In short, using locks would render instrumen
code unsafe for reentrancy. Our solution involvesprotector variables; two counters which are part
of the timer structure. ThestartTimer andstopTimer operations increment the first protecto
variable, then perform their work, then increment the second protector variable. The sam
routine reads the second protector variable, then the count, start, and total fields, and fina
first protector variable. Note that the protector variables are read in the reverse order that th
written. If the (sampled values of) the two protector variables are equal, then the sampled
of the count, start, and total fields are consistent. If not, the sample is thrown out, and the tim
re-sampled later. Figure 10 and Figure 11 show the new code forstartTimer , stopTimer , and
sampling.

 startTimer(tTimer *t) {
(1) if (t->count++ == 0) {
(2) t->start = get-current-time()
(3) }

}

stopTimer(tTimer *t) {
(1) if (--t->count == 0) {
(2) t->total += get-current-time() - t->start
(3) }

}

Figure 8: Pseudo-code for startTimer and stopTimer operations

(1) sampled-value = t->total;
(2) if (t->count > 0) {

// applic has done a startTimer but not (yet)
// a corresponding stopTimer

(3) sampled-value += get-remote-time() - t->start
}

Figure 9: Pseudo-code for shared-memory sample of a timer
Developer’s Guide April 13, 2000 Release 3.0ß

Page 29

eing
of

o-
nted

ry

nd
an are
5.5.1.2 The need for aget-remote-time() primitive

We have not found a way to implement theget-remote-time()primitive in line 3 of Figure 9
(and line 4 of Figure 11) on all platforms; this prevents shared-memory sampling from b
ubiquitous. Simply put, there isn’t a standard way in UNIX to obtain the virtual (CPU) time
another process (in this case,paradynd needs to obtain the virtual time of the application pr
cess). The/proc file system does provide a way; hence, shared-memory sampling is impleme
on Solaris (both sparc and x86). Under Windows NT, we use theGetProcessTimes function to
obtain the CPU time of another process.

5.5.1.3 Source code for shared-memory sampling

All code for shared-memory sampling resides in theparadynd directory; none is in thedynin-

stAPI directory. fastInferiorHeapMgr.[hC] contains a class for managing a shared-memo
segment (with no interpretation of its contents).superTable.[hC] , baseTable.[hC] , superVec-

tor.[hC] , and fastInferiorHeap.[hC] manage allocation and deallocation of counters a
timers from the shared-memory segment. Currently, we use more source code files th
needed; the extra levels of indirection —superTable contains severalbaseTable s, which in turn

startTimer(tTimer *t) {
(1) t->protector1++;
(2) if (t->count++ == 0) {
(3) t->start = get-current-time()
(4) }
(5) t->protector2++;

}

stopTimer(tTimer *t) {
(1) t->protector1++;
(2) if (--t->count == 0) {
(3) t->total += get-current-time() - t->start
(4) }
(5) t->protector2++;

}

Figure 10: Final pseudo-code for startTimer/stopTimer operations

(1) prot2 = t->protector2;
(2) sampled-value = t->total;
(3) if (t->count > 0)
(4) sampled-value += get-remote-time() - t->start
(5) prot1 = t->protector1;
(6) if (prot1==prot2) {
(7) use sampled-value ; report it to front-end
(8) } else {
(9) throw out the sample; re-sample later

}

Figure 11: Final pseudo-code for timer sampling
Developer’s Guide April 13, 2000 Release 3.0ß

Page 30

o-

; those
mpled

sed in
a
a-

on
ns of

d

a
code
run-
tion.

ning, or
ever be

ted.
this
eri-

been
le to
er, to

the
but not
nding
contains severalsuperVector s — are put into place now in anticipation of later support of all
cating timers and counters for multi-threaded programs.

The methoddoMajorSample() within fastInferiorHeap.C is a good place to start for
understanding shared-memory sampling. It samples as many counters and timers as it can
which it cannot sample (due to disagreeing “protector” variables—see Figure 11) are re-sa
later indoMinorSample() . ThedoMajorSample() routine is invoked byperfStream.C ’s chec-

kAndDoShmSampling() , which is called each time throughparadynd ’s main loop.

5.5.2 Alarm sampling

Since shared-memory sampling isn’t ubiquitous, we have retained the method of sampling u
earlier releases of Paradyn; we call italarm-samplingbecause sampling is triggered via
SIGALRM in the application. During initialization of the runtime library (Section 8), the applic
tion is set up so that it executes the routineDYNINSTalarmExpire() (in RTinst.c of the run-time
instrumentation library,rtinst , directory) several times per second. This in turn callsDYNIN-

STreportSamples , which callsDYNINSTsampleValues() . DYNINSTsampleValues() is an inter-
esting function; at first glance, it appears empty. However, in alarm sampling,paradynd actually
instruments this routine to callDYNINSTreportCounter() or DYNINSTreportTimer() as appro-
priate for each counter and timer that needs to be sampled. These routines in turn callDYNINST-

generateTraceRecord() to (rather inefficiently) send this information to the Paradyn daem
via a pipe. From there, alarm sampling is similar to shared-memory sampling — both portio
paradynd forward the sampled data to Paradyn by calling theupdateValue() method of the met-
ric instance (metric.C), which eventually forwards bulk data to Paradyn via thebatchSample-

DataCallbackFunc() Igen routine.

5.6 Retroactive instrumentation

[Relevant files:paradynd/src/metric.C contains most of the logic for this mechanism an
dyninstAPI/src/inst-{platform}.C files contain helper functions.]

Retroactive (catchup orketchup[sic]) instrumentation is a special mechanism to deal with
problem which arises with dynamic instrumentation. When a function is instrumented with
near the beginning of a function, and this instrumentation is inserted while the program is
ning, the possibility arises of the instrumentation being missed by the currently running func
In instrumentation where code inserted near the end relies on code inserted near the begin
where the function only runs once, the inserted code may enter an inconsistent state, or not
executed.

A good example is the timing of a function. At the beginning of the function, a timer is star
At the end, a timer is stopped. If the function is executing, the timer will not be started for
execution of the function: this is a problem if a single execution of the function runs for long p
ods of time.

The solution is to retroactively execute the snippets of instrumentation which have
missed at the time which the function is being instrumented. Unfortunately, it is impossib
know all of the prior execution history of an uninstrumented process. It is possible, howev
recreate a partial (minimal) history which corresponds to the functions currently found on
call-stack: to arrive at the current call-stack state, each function must have been entered (
exited) and made a call to its successor (but not returned from such a call). Any correspo
Developer’s Guide April 13, 2000 Release 3.0ß

Page 31

iously

e.g.,
suffi-
should
cases
This
where

exit,

clu-
exit
ned,
ation
must

ss: the
of the

rior-

ntly

n the
call

t safe
stru-

y code
de. A
due to
uld
o not
ction
.

ion 6),
t trap
nts is
entry-point and pre-call instrumentation snippets would have also been executed in a prev
instrumented execution, and therefore these snippets should be retroactively executed.

Note that it is entirely likely that additional functions have been called and already exited,
a call located earlier in a function than the call currently found on the stack, but there is in
cient residual evidence to reliably suggest that their associated instrumentation snippets
now be executed. (A complete control-flow graph for each function would allow some such
to be determined, but many cases would require missing dynamic control-flow information.)
means that the retroactively-constructed instrumentation state is necessarily incomplete
there is an instrumentation dependence other than the following cases:

• (parent) function entry precedes any internal calls to (child) functions precedes function
and

• function pre-call precedes function post-call (within the context of any function).
Fortunately, these are exactly the relations typically used in instrumentation to delimit in

sive (i.e., entry to exit, or equivalently pre-call to post-call) and exclusive (i.e., entry to
excluding internal calls) metrics for functions (or function calls). Other relations may be defi
such as between two calls or arbitrary points, however, there is insufficient residual inform
for retroactive instrumentation to be reliably used in such cases and conforming metrics
therefore not rely on associated snippets being executed.

Paradyn already contains a mechanism for causing code to be run in the inferior proce
inferior RPC. By using this mechanism when appropriate, we can preempt the execution
current function and execute required snippets of retroactive instrumentation.

The following algorithm is used to determine if it is appropriate to launch a catchup infe
RPC for a specific snippet of instrumentation:

• If the instrumentation is to be placed at the function entry point, and that function is curre
anywhere on the call stack, a catchup inferiorRPC should be launched to execute it.

• If the instrumentation is to be placed just before a call site, and that call site is in fact o
stack, a catchup inferiorRPC should be launched for it. In other words, if the PC of the
site is on the stack, but not at the top.

This check is performed in theprocess.C file in the functiontriggeredInStackFrame .
There are a few additional aspects which need to be addressed:

• On some architectures (SPARC in particular), instrumentation must be deferred if it is no
to insert code immediately. If this happens for instrumentation which depends on the in
mentation being considered for catchup, we must not do the catchup. Executing the earl
without the late code may cause more inconsistencies than executing only the late co
special case of this, is when the function at the top of the stack cannot be instrumented
the PC currently being located within a potential instrumentation footprint: not only sho
catchup instrumentation not be executed for this particular function instance, it should als
be executed for any other instances of this function found lower on the stack, as the fun
itself is currently uninstrumentable, and there is correspondingly no catch-up to be done

• On x86 architectures, where traps are used in tight instrumentation points (see Sect
inferiorRPC execution may be interrupted by the delivery of a signal raised by a curren
instruction: since processing traps is relatively time-consuming, interruption at such poi
quite likely. The usual trap handling byDYNINSTtrapHandler , which expects to be delivered
Developer’s Guide April 13, 2000 Release 3.0ß

Page 32

d PC
andle)
ted by

very
ion to
ct to

, i.e.,
decide
s are

ram to
e, we

ck for

men-
rmine
mpo-
d
ed to
r the
tion is

If the
and
feri-
data.
ure.

, and
for a
ation
since
er
nction

etric
line)
ulti-
imme-
ow-
t-call
an instrumentation-trap PC value, must recognize and ignore an inferiorRPC-adjuste
value, and resume execution of the inferiorRPC(s) before returning to re-execute (and h
the interrupted trap (and its associated instrumentation). Note that traps in code execu
calls to functions from the inferiorRPC require appropriate handling.

• The ordering of catchup instrumentation within each function and on the stack can be
important. For each set of instrumentation snippets to be inserted, a list of instrumentat
be executed via inferiorRPC must be kept: ordering should be chronological with respe
the implied program execution (derived from the call stack) to arrive at the current state
starting from the base of the stack, each subsequent frame is considered in turn to
whether to launch catchup inferiorRPCs for that frame. When the catchup inferiorRPC
launched, they must follow this order.

• The address of the PC at each stack frame must be mappable to the function in the prog
which it corresponds. In the cases where the PC is instead within our instrumentation cod
must properly find the function to which that instrumentation corresponds.

• When we are within instrumentation code on the stack, we must amend the above che
being within a call site to take into account that we usually relocate thecall instruction itself
to within the instrumentation code base-trampoline.

• Furthermore, if the pending instrumentation snippet happens to be new/additional instru
tation for the current instrumentation point, careful analysis needs to be made to dete
whether catchup execution is required. If it has been added to the existing base/mini-tra
line infrastructure at a pointafter the current location, then it will be executed normally an
catchup execution is inappropiate, otherwise a catchup inferiorRPC should be launch
execute it. For example, if the call-stack contains an instrumentation mini-trampoline fo
same instrumentation point as the pending instrumentation snippet, then catchup execu
required forprepended snippets but should not be executed forappended snippets.

• The catchup inferiorRPCs must be executed immediately, while the inferior is paused.
inferior is allowed to execute anything other than our inferior RPC, the function may exit
re-enter before the inferior RPC is launched. If this happens, it is quite possible for the in
orRPC to run while the same instrumentation is executing within the inferior on the same
This is particularly bad with our timers, which have critical sections which assert on fail
Therefore, we cannot finish the checking of instrumentation and rely on the mainparadynd

loop to launch the inferiorRPCs, we must make a special loop which launches them
which keeps the inferior process paused between inferiorRPCs. Note that it is fine
catchup inferiorRPC to be launched to start or stop a timer when interrupting a timer oper
corresponding to a distinct metric/focus instance, but not the same metric/focus instance
in that case the timers are identical. Luckily, if we find ourself interrupting one of our tim
operations, then we can be assured that we are executing an already-instrumented fu
and there is consequently no need for retroactive instrumentation.

• In the case of successful instrumentation of an on-stack function with an exclusive m
(which relocates it’s currently active call instruction to our instrumentation base-trampo
and execution of appropriate (entry and pre-call) retroactive instrumentation for it, it is
mately necessary to update the return address of the succeeding stack frame to return to
diately after the call instruction relocated in the base-trampoline instead of the n
overwritten location. This thereby ensures the usual execution of corresponding pos
Developer’s Guide April 13, 2000 Release 3.0ß

Page 33

ution

inferior
tation
ction
cular
e range

rd
 of
instrumentation, which would otherwise be missed, or worse, the resumption of exec
within a now-corrupted instruction sequence.
An example of retroactive function instrumentation is shown in Figure 12

5.7 Dynamic Heaps

Paradyn and Dyninst use a dynamic heap to store code and data for instrumentation and
RPCs in the application process. Dynamic heaps enable an arbitrary amount of instrumen
code to be placed in the application process. Also, on platforms with restricted single-instru
branch ranges (e.g., RISC processors), they can be directed to allocate memory near a parti
address in memory. These directed allocations are used to place base trampolines within th

Figure 12: Retroactive instrumentation example.
The program has been interrupted during the execution ofsubD2 (with the call-stack as

shown) with a request to instrumentsubC. In addition to instrumenting the appropriate points
in subC, to support the illusion thatsubC was already instrumented it is necessary to

retroactively execute its entry-point➊ andsubD2 -precall➋ instrumentation snippets (if they
constitute part of the instrumentation request). Italicized parts of the virtual execution reco

can’t be recovered from available state information. To ensure that following the completion
subD2 , execution will correctly continue with anysubD2 -postcall instrumentation snippets, it
is also necessary to update the return address ofsubD2 ’s stackframe➌ with that of the base-

trampoline now containing the relocated call instruction.

main()
subA()
subB() if (...)
subC()

loop
subD1() if (...)
subD2 () if (...)
subD3()

until (...)
subB()

main.entry
main.pre-call(subA)
subA.entry
subA.return
main.post-call(subA)
main.pre-call(subB)
subB.entry
subB.return
main.post-call(subB)
main.pre-call(subC)
subC.entry
subC.pre-call(subD1)
subD1.entry
subD1.return
subC.post-call(subD1)
subC.pre-call(subD2)
subD2.entry
...

Virtual instrumentation
execution record

Fr. currAddr

0. subD2+32
1. subC. subD2
2. main.subC

Call-stack

Code structure

Interrupt execution ofsubD2
 to (retro-)instrumentsubC

➌

➋

➊

Developer’s Guide April 13, 2000 Release 3.0ß

Page 34

s are

ade

ess for
amed
it also
(The
ally,
fy the
pt the

ri-

e

ory
nough
e

s in
ameter
-
y can be

hen an

seg-

use
or

rm-
re
-
ls
ped
ful.
of a single instruction branch from the corresponding instrumentation point. Dynamic heap
currently not used on AIX and NT.

All memory allocation requests in the Paradyn daemon and Dyninst mutator are m
through inferiorMalloc , defined inprocess.C . inferiorMalloc maintains the inferiorHeap
data structure, which organizes the memory that has been allocated in the application proc
Paradyn/Dyninst, and includes a list of free memory. inferiorMalloc takes a parameter n
size , the number of bytes to be allocated in the application process. For directed allocation
takes an optionalnear parameter, a pointer to which the requested memory should be close.
definition of close is platform-specific and defined at compile-time, as explained below.) Fin
inferiorMalloc takes a type parameter to specify the type of heap segment used to satis
request. (On all platforms except AIX the type parameter includes all heap segments exce
low memory heap, which is explained below.)

Ordinarily, inferiorMalloc can satisfy a request by finding suitable space in the infe
orHeap free list. When it cannot, it makes an inferior RPC toDYNINSTos_malloc in the run-time
instrumentation library (defined inRTheap.c). DYNINSTos_malloc allocates new segments of th
address space of the application process for use as heap segments by Paradyn/Dyninst.inferi-

orMalloc callsDYNINSTos_malloc in two circumstances: (1) when there is not enough mem
in the free list to satisfy the request, or (2) when the request is directed, but there is not e
free memory within the range of the near pointer.DYNINSTos_malloc takes three parameters: th
number of bytes to allocate, and low and high address boundaries.DYNINSTos_malloc is not
intended to satisfy a singleinferiorMalloc request, but rather to allocate new heap segment
the inferior process from which subsequent allocation requests can be satisfied; the size par
is thus usually much greater than that of the currentinferiorMalloc request. On directed alloca
tions, the address boundaries are the range of the address space in which the new memor
allocated. When the request is undirected, they are opened to the entire address space. W
inferior RPC toDYNINSTos_malloc returns,inferiorMalloc satisfies its current request from
the new heap segment, and adds the remainder of the new segment to the free list.

inferiorMalloc is aggressive in its use ofDYNINSTos_malloc . If DYNINSTos_malloc can-
not satisfy its first request,inferiorMalloc makes several additional calls toDYNINSTos_malloc

with increasingly relaxed parameters. For example, it will reduce the request size of the new
ment, and lift the address space boundary restriction. This retry sequence happens in thefor loop
of inferiorMalloc .

DYNINSTos_malloc has two mechanisms for allocating new memory. On platforms that
directed allocation, it callsmalloc if the near pointer is within the range of the heap of the inferi
process. Otherwise,DYNINSTos_malloc calls constrained_mmap , which in turn callsmmap.
constrained_mmap reads/proc to determine the layout of its own address space. The platfo
specific memory information returned from/proc is translated into an array of a generic structu
calleddyninstmm_t . Within this arrayconstrained_mmap searches for a hole into which mem
ory of size and location satisfying theDYNINSTos_malloc request can be allocated. It then cal
mmapto try to allocate that memory. As some platforms may restrict the location of mmap
memory,constrained_mmap makes a call to mmap for every hole it finds until one is success
If none are successful it returns an error toinferiorMalloc (which may retry
DYNINSTos_malloc using relaxed parameters). When it is successful,DYNINSTos_malloc returns
the address of the first byte in the newly allocated memory.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 35

ace

ably

ing
ess to
n an
by

gments

ontrol

-
ddress
ranges

w seg-
n-time

e

use an
Spe-

h is
iting.
pre-
g exe-
oline.
g to
RC-

Para-

ot
finite

ld
ause
in this
On all platform the run-time instrumentation library contains a static buffer of heap sp
calledDYNINSTdata . It is added to the free list used byinferiorMalloc , and will be used to sat-
isfy memory allocation requests if it is sufficiently large and, for directed allocations, suit
located. On platforms that don’t use directed allocations allinferiorMalloc requests are satis-
fied in the static heap before a dynamic heap is allocated (i.e., before a call toDYNINSTos_malloc

is made).
From DYNINSTdata a small static buffer called the low memory buffer is reserved dur

heap initialization. Its purpose is to ensure there is always enough space in the inferior proc
make a new dynamic heap allocation. The only time the low memory buffer is used is whe
inferior RPC toDYNINSTos_malloc is made. It is distinguished from the other heap segments
its heap typelowmemHeap, which no other heap segment has.

Restrictions in the range of address space that can be used to allocate a new heap se
are determined in two ways. First, the caller ofinferiorMalloc can use directed allocation to
make an explict restriction. The range of a directed allocation depends on the range of c
transfer instructions of the processor. This range is computed by theregion_lo andregion_hi

macros in the architecture header files (e.g., arch-sparc.h). If the control transfer range is unre
stricted, these macros are defined to include the entire user-accessible portion of the a
space. Second, platform-specific characteristics of the address space may preclude some
from being safe places for new heap segments. For example, it is not safe to allocate ne
ments near the top of the stack, as the stack may eventually grow into the segment. The ru
instrumentation library set these limits with two variables,DYNINSTheap_loAddr and
DYNINSTheap_hiAddr . Their values are checked byDYNINSTos_malloc and they take precedenc
over directed allocation constraints. On some platforms (e.g., Solaris) these values can vary from
process to process, and are thus initialized at run time after consultation with/proc .

5.8 Trampoline Guards

The basic trampoline structure has one dangerous flaw: it is possible to inadvertently ca
infinite recursion in the instrumentation which will cause the instrumented program to crash.
cifically, instrumentation can never safely call any other function (even in a library) whic
instrumented. Making instrumentation safe in this manner is both difficult to ensure and lim

To avoid this effect, Paradyn now includes guards in the trampoline structure which will
vent any recursion from taking place. These guards detect if the current base tramp is bein
cuted inside instrumentation, and if so skips the instrumentation contained within the tramp
The end result of this is instrumentation can call any function with impunity, without havin
worry about side effects. Currently these guards are implemented on AIX, IRIX, and SPA
Solaris. Support on other platforms will be available shortly.

To motivate our use of trampoline guards, let’s use an example. A typical metric used by
dyn is the io-wait metric, which instruments the system callwrite() with a wall timer. Inside the
instrumentation, we usefprintf() to report timer rollbacks and we assert that the timer is n
started twice without being stopped. With this setup, any timer rollback would cause an in
recursion in the process being instrumented. Specifically, the call tofprintf() would cause the
timer to be started again whenwrite() was called. This would trigger the assertion, which wou
print an error and terminate the program. Unfortunately, the act of printing the error would c
the timer to be started yet again and trigger another assert. Using the trampoline guards
Developer’s Guide April 13, 2000 Release 3.0ß

Page 36

ted in

s plat-
is true,
tation

of the
tation
piece

against
hen it

This
being
stru-
hen

ze of
ich is
the
table

ze and
case will ensure that the call tofprintf() within the timer routine will not set off any other
instrumentation.

On platforms where the guards are implemented, an additional word of memory is alloca
the processes address space. This flag (*process::trampFlagGuardAddr) is used to store
whether the current execution point is inside a base tramp or not. The value actually used i
form-dependent. When a base tramp is entered, the value of the flag is checked. If the flag
then the intrumentation is skipped. Otherwise, the flag is set to true and the instrumen
entered.

The trampoline guards have the following general structure:
<save registers>

if (flag == true) then skip to<restore registers>

<set flag to true>
<enter minitramp>
<set flag to false>
<restore registers>

Note that the guard code is added at the base trampoline level, so it is correct to speak
guard code at an instrumentation point, rather than the guard code for a piece of instrumen
code. All the mini-tramps that are called by the same base tramp are guarded by an unique
of guard code that resides in the base tramp. At the present time, there is no way to guard (
recursion) only certain minitramps. Whether a base tramp is guarded or not is determined w
is first inserted and is unchangeable.

By default, all Paradyn instrumentation is inserted with the trampoline guard enabled.
also has another strong benefit: Paradyn can now call functions without disturbing the data
reported about the inferior process. For example, if a piece of instrumentation calls an in
mented function which is particularly CPU hungry, then the CPU usage for the function w
called by instrumentation will not be reported.

6 X86 PORT

Instruction representation

The representation of x86 instructions is different from other platforms. Because the si
instructions are variable, we represent an instruction by an object of class instruction, wh
defined in the filearch-x86.h . The representation includes a type descriptor, the size of
instruction in bytes, and a pointer to the actual instruction (in the memory mapped execu
image).

When instructions are processed, we need to decode instructions in order to find the si
type information about each instruction. The instruction decoder is implemented in the filearch-

x86.C . The decoder is invoked through a method in class instruction (getNextInstruction).
Developer’s Guide April 13, 2000 Release 3.0ß

Page 37

ing of
ich is

ruc-
is no

struc-
ithin

he
ction,
most
cases
s and

s part
is not

are
ve in
oblem

s), we
ctions
r the
mon
ites,
most

at we
ction
d are
above.
to the
dle of

w the
n indi-

are no
, and
Parsing the executable image

As in other platforms, the executable is parsed one function at a time. We start at the beginn
each function and decode instructions sequentially until we reach the end of the function (wh
defined by the address of the next symbol in the symbol table).

The entry point is defined as the first instruction in the function. Call points are call inst
tions. Return points are return instructions and jumps that leave the current function. There
check for tail-call optimization on the x86.

Data mixed with code (e.g. jump tables) is a problem as they could cause us to decode in
tions incorrectly. We use some heuristics to try to identify some jump tables that may be w
the code. We look for indirect jump instructions of the form

jmp dword ptr [reg + addr]

wherereg is one of the general registers andaddran immediate address, which is the base t
jump table. If the base address is within the current function and precedes the jump instru
we may have parsed instructions incorrectly and we don’t instrument the current function. In
cases, the jump table is just after the jump instruction, or near the end of the function. In this
we can try to guess the size of the table by looking at the words following the base addres
checking if their contents is an address within the current function. If so, we assume that it i
of the jump table and keep looking at the following addresses until we find an address that
within the current function. Those locations that are found to be part of the symbol table
skipped. While this heuristic can not guarantee that we can find all jump tables, it is effecti
detecting the jump tables generated by many compilers. A more general solution to this pr
would require data and control flow analysis of the executable.

Since instrumentation points may not have enough bytes to replace with a jump (5 byte
may need to get additional instructions and add them to the smaller points. We can get instru
from before or after the point. For the entry point, we can only get extra instructions from afte
point. For return we would usually only get instructions before the return, but since it is com
to have nops orint3 instructions after a return, we can also use those instructions. For call s
we only get instructions from before the point for reasons that are explained later (although
calls are 5 bytes and don’t need extra instructions).

We must check that there are no jumps into the middle of a sequence of instructions th
add to a point. To do that, we keep a list of all known jump targets, and check the instru
sequences against this list. The target of all direct jumps found while the image is parse
added to the list, and also the addresses in the jump tables found by the heuristic described
Since we can have jumps to other functions, we add the necessary number of instructions
point here, and check later, when the point is instrumented that there are no jumps to the mid
the instruction sequence. Since there may be some indirect jumps for which we don’t kno
target, we may have problems if we use an instruction sequence that can be the target of a
rect jump. With the jump table heuristic above, we should be able to handle most cases.

Inserting instrumentation

Whenever we need to replace a sequence of multiple instructions, we must check that there
jumps into the middle of the instructions. To do that, we keep a list of all known jump targets
Developer’s Guide April 13, 2000 Release 3.0ß

Page 38

jumps
tables
arget,
t jump.

ram is
ce, we
ress of
in the
return
ons
pplica-

point
aught
a hash-
ler then
andler

oint
ump (2
e can
mp to
t), we
point.

cated
usual
from
after
ation

poline
ple, if
tram-
p is

e of
te for
.
cate it
only if
check the instruction sequences against this list. The list contains the target of all direct
found while the image is parsed, and the addresses found by the heuristic to skip jump
(described above). Since there may be some indirect jumps for which we don’t know the t
we may have problems if we use an instruction sequence that can be the target of an indirec
With the jump table heuristic, we should be able to handle most cases.

When we replace an instruction sequence with a jump, we must also check that the prog
not currently executing in the middle of the sequence. Since we are modifying that sequen
could execute the wrong code. If this is the case, we change the program counter to the add
the relocated instruction in the basetramp. We could also have a problem if we had calls
middle of an instruction sequence. The call could be active, and eventually the callee could
to an invalid location. For this reason, we avoid putting calls in the middle of instructi
sequences that are replaced with jumps. We should also check all possible contexts of the a
tion (threads and exceptions), but this is not being done yet.

When we can’t find enough instructions to replace with a jump, we must insert a break
instruction (int3). When the breakpoint is executed it generates an exception that can be c
in the application or by the Paradyn daemon. The address of the base tramp is entered into
table, that is used by the breakpoint handler to find the address of the base tramp. The hand
changes the context of the application so that it executes the base tramp. On Solaris, the h
runs in the application, while in Windows NT and Linux, it runs inparadynd .

In some cases, we can avoid the use of a breakpoint (trap), which can be slow, by inserting an
indirection. We take enough space for two jumps in the entry point (if possible). If another p
does not have enough space for a long jump (5 bytes), but has enough space for a short j
bytes), and that point is within a short distance from the entry point (less than 128 bytes), w
insert a jump to the basetramp in the second jump slot of the entry point, and insert a short ju
this slot. In this case, whenever we activate the second point (which uses the entry point slo
must also activate the entry point, even if there are no instrumentation requests for the entry

Base trampoline

The base trampoline for the x86 has some differences from other platforms. First the relo
instructions do not always go in the same place. Only the instruction at the point goes at the
slot for relocated instructions, in the middle of the base tramp code. Any extra instructions
before the point, are relocated to the beginning of the trampoline, and extra instructions from
the point are relocated to the end of the trampoline, right before the jump back to the applic
code. One of the advantages of placing the instructions in different points of the base tram
is that we can add jump instructions to a point when we need extra instructions. For exam
we have a return after a conditional jump, we can use that jump to insert a jump to the base
poline for the return. Since the jump is relocated to the begining of the trampoline, if the jum
taken the rest of the trampoline code will not be executed (which is the right thing).

The base trampoline for the x86 is not of fixed size, like in other platforms, since the siz
the relocated instructions is variable. Unlike in the other platforms, where there is a templa
the base trampoline code, in the x86 the code is generated when the trampoline is created

There is one special case when the instruction at the point is a conditional jump. We relo
to the top of the base trampoline, and change the code so that the trampoline is executed
the branch is taken.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 39

stack.
er are

ss f)
ons,
d f+3,
e the

ok

by the
Code generation

The code generated for the x86 platform uses virtual registers, that are allocated on the
They are addressed as an offset from the frame pointer register (EBP). The virtual regist
allocated on the base trampoline.

Example

Here we show the instrumentation of a function, and sample trampoline code.

f: pushl %ebp
f+1: movl %esp,%ebp
f+3: subl $0x4,%esp
f+6: movl $0x0,0xfffffffc(%ebp)
f+13: subl %eax,%eax
f+15: incl %eax
f+16: movl %eax,0xfffffffc(%ebp)
f+19: cmpl $0x3e8,%eax
f+24: jl <f+15>
f+26: subl %eax,%eax
f+28: leave
f+29: ret
f+30: nop
f+31: nop

This function has two instrumentation points: the entry point (the first instruction, at addre
and the return point (theret instruction, at address f+29). Both places have one byte instructi
that can’t be replaced by a jump. For the entry point, we can add the instructions at f+1 an
which sum to a total of 6 bytes. For the return point, we need to add instructions from befor
return. We need to add the instructions at f+28 (leave), f+26 (subl), and f+24 (jl).

After the insertion of instrumentation for the entry and return points, the function will lo
like:

f: jmp baseTramp0
f+5: *** garbage ***
f+6: movl $0x0,0xfffffffc(%ebp)
f+13: subl %eax,%eax
f+15: incl %eax
f+16: movl %eax,0xfffffffc(%ebp)
f+19: cmpl $0x3e8,%eax
f+24: jmp baseTramp1
f+29: ret
f+30: nop
f+31: nop

(Note that most debuggers will not disassemble this code correctly, they get confused
garbage at location f+5).
Developer’s Guide April 13, 2000 Release 3.0ß

Page 40
Base trampoline for the entry point:

// relocated extra instructions from before the point go here
// there are no extra instructions from before the point in this case

// pre-point instrumentation
baseTramp0: jmp <baseTramp0+5>// slot to skip pre instrumentation
baseTramp0+5: pushl %ebp // set-up stack frame for minitramps
baseTramp0+6: movl %esp,%ebp
baseTramp0+8: subl $0x80, %esp // allocate virtual registers
baseTramp0+14: pusha // save registers
baseTramp0+15: pushf
baseTramp0+16: jmp <minitramp> // jump to minitramp
baseTramp0+21: popf // restore registers
baseTramp0+22: popa
baseTramp0+23: leave // undo minitramp stack frame
baseTramp0+24: addl 0x29, DYNINSTobsCost // update observed cost

// relocated instruction at entry point
baseTramp0+34: pushl %ebp

// post-point instrumentation
baseTramp0+35: jmp <baseTramp0+51> // skip post-instrumentation
baseTramp0+40: pushl %ebp // set-up stack frame for minitramps
baseTramp0+41: movl %esp,%ebp
baseTramp0+43: subl 0x80, %esp // allocate virtual registers
baseTramp0+49: pusha // save registers
baseTramp0+50: pushf
baseTramp0+51: jmp <baseTramp0+48> // slot for jump to minitramp
baseTramp0+56: popf // restore registers
baseTramp0+57: popa
baseTramp0+58: leave // undo minitramp stack frame

// relocated extra instructions at entry point
baseTramp0+59: movl %esp,%ebp
baseTramp0+61: subl $0x4,%esp

// jump back to application code
baseTramp0+64: jmp 0x805038a <f+6>

The base tramp for the return point:

// relocate instructions before the point
baseTramp1+0: jl 0x8050393 <f+15>
baseTramp1+6: subl %eax,%eax
baseTramp1+8: leave

// pre-point instrumentation
baseTramp1+9: jmp <baseTramp0+5> // slot to skip pre instrumentation
baseTramp1+14: pushl %ebp // set-up stack frame for minitramps
baseTramp1+15: movl %esp,%ebp
baseTramp1+17: subl 0x80, %esp // allocate virtual registers
baseTramp1+23: pusha // save registers
baseTramp1+24: pushf
Developer’s Guide April 13, 2000 Release 3.0ß

Page 41

t that

ng

p,
baseTramp1+25: jmp <minitramp> // jump to minitramp
baseTramp1+30: popf // restore registers
baseTramp1+31: popa
baseTramp1+32: leave // undo minitramp stack frame
baseTramp1+33: addl 0x29,DYNINSTobsCost // update observed cost
// relocated instruction at point
baseTramp1+43: ret

// post instrumentation -- never reached in this case
baseTramp1+44: jmp <baseTramp1+63>//slot to skip post instrumentation
baseTramp1+49: pushl %ebp // setup stack frame
baseTramp1+50: movl %esp,%ebp
baseTramp1+52: subl 0x80, %esp // allocate virtual registers
baseTramp1+5: pusha // save registers
baseTramp1+44: pushf
baseTramp1+45: jmp <baseTramp1+60> // slot for jump to minitramp
baseTramp1+50: popf // restore registers
baseTramp1+51: popa
baseTramp1+52: leave // undo stack frame

// relocated extra instructions from after the point go here
// there are no extra instruction from after the point in this case

// return to user code
baseTramp1+60: jmp <f+30>

The base tramp for the return point is similar to the base tramp for the entry point, excep
the extra instructions added to the point, thejl , thesubl and theleave , which were taken from
before the point, are relocated to the beginning of the tramp. In this example, if thejl instruction
branches, no instrumentation code will be executed.

The following example shows a minitramp for astartWallTimer primitive:

minitramp: movl $0x8044f390,0xfffffffc(%ebp) // load timer address
 // in virtual register

minitramp+7: pushl 0xfffffffc(%ebp) // push argument
minitramp+10: movl $0x80585a4,%eax // load function address
minitramp+15 call *%eax // call startWallTimer
minitramp+17: addl $0x4,%esp // pop argument
minitramp+23: movl %eax,0xfffffffc(%ebp) // store result
minitramp+26: jmp <baseTramp>

The references to0xfffffffc(%ebp) a re references to a virtual register. (We are not doi
code optimizations, though there are many opportunities to optimize this code.)

7 LINUX PORT

Inferior process modification and information throughptrace and/proc

[dyninstAPI/src/linux.C]

The first major difference in Linux from Solaris is that the/proc interface doesn’t support
many of the process control features. The Linux/proc filesystem is a generally read-only setu
with most files simply providing information about the process in a text format.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 42

each
infor-

con-

ion

with
y use-

-
m the
nt pro-

-

no

m the
R’ is

If it is

user
s,

his is
Within /proc , there is a directory for each process, rather than a file on Solaris2. Each direc-
tory contains different files for different pieces of information about the process. In Solaris,
file contains the process’ memory space, and IOCTLs on that file are used to gather other
mation and control that process.

/proc/*/mem contains the process’ memory space, but it is currently read-only, due to
cerns about the possibility of overwriting kernel memory in corner cases.

/proc/*/stat contains a list of numbers in ASCII format, space-delimited. Used informat
includes the process state (that is a char), and the process CPU times.

/proc/*/maps contains a list of mapped regions in the process memory space, along
device number and inode number, if the region is a file mapped to memory. This is especiall
ful in finding shared libraries which are loaded into memory.

/proc/*/exe is a link to the executable file for the process.
See ‘man proc’ and/usr/src/linux/fs/proc for further information.
Instead of using/proc to control and modify the process, we use the olderptrace interface.
For reading from the process memory space, we first try to simply read from/proc/*/mem ,

and if this fails, we useptrace(PTRACE_PEEKTXT, ...) which reads a single word from the pro
cess at a time. Therefore, we must implement a function which reads a word at a time fro
process, realigns the words, and re-packs them into the proper memory location in the pare
cess.

For writing to the process memory space, we useptrace(PTRACE_POKETXT, ...) and write
the data one word at a time, properly realigned to the addresses in the inferior process.

To obtain the registers from the inferior process, we useptrace(PTRACE_GETREGS, ...) and
ptrace(PTRACE_GETFPREGS, ...) which write the registers to a buffer.

To change the registers in the inferior process, we useptrace(PTRACE_SETREGS, ...) and
ptrace(PTRACE_SETFPREGS, ...) which write the registers from a buffer to the inferior pro
cess.

NOTE: The registerptrace commands are only available in linux-2.0.35 and higher. We
longer support older versions of linux-2.0.x!

To obtain the actual state of the inferior process (running, stopped, etc.), we read fro
/proc/*/stat file. The third space delimited field is a character which specifies the status. ‘
running, ‘T’ is stopped, etc.

To wait on the inferior process for signals, we usewaitpid , which simply waits until the infe-
rior process receives a signal. We then check to see if the signal is one we should deal with.
not, the signal is forwarded back to the process usingptrace(PTRACE_CONT, ...) , the last
parameter of which is the signal to send to the inferior process.

To continue the inferior process, we usePTRACE_CONT again with no signal.
To stop the inferior process, we simply usekill(SIGSTOP) .
To obtain the CPU time of the inferior process, we read the values for the inferior process

and system CPU time from/proc/*/stat , and do the proper arithmetic. The values are in tick
or timeslices, which on a standard x86 Linux system occur at a rate of 100/second. T

2. Is this still true for Solaris7?
Developer’s Guide April 13, 2000 Release 3.0ß

Page 43

ticks

cess

e file

ng can

e into
on

l

ng
nux

s

rs

rob-
hin a
turn
call.
checked for, however, through a one-time piece of code which finds the system idle time in
and in seconds and figures out the ticks/second.

Handling shared libraries in the inferior process[dyninstAPI/src/linuxDL.C]

The process for handling shared libraries in the inferior process is very similar to the pro
used on Solaris. The main difference is the problem of finding theld.so library, which handles all
of the other shared libraries. On Linux 2.0.x systems, the/proc/*/maps file shows all of the map-
pings, along with device number and inode number information, but there is no way to find th
from this information directly. Therefore, there is no way to tell which file isld.so. The method
used is to search the expected directory for a file matching the pattern “ld*.so ”, finding its device
and inode number, and comparing it against each mapping. Then, the shared library handli
continue by the ELF method used in Solaris. On Linux 2.2.x and higher, however, themaps files
also contains a path to each shared library. In this case, the pattern “ld*.so ” is checked against
these, and the file is found much more easily.

Inserting a shared library into the inferior process
process::dlopenDYNINSTlib [dyninstAPI/src/linux.C]

In order to insert a shared library into the inferior process, we depend on inserting cod
the inferior to calldlopen on our library. This works well on Solaris, and for some programs
Linux. However, the version oflibc currently used on Linux (glibc 2.x) does not include the pub-
lic interface todlopen . Instead, a separate library calledlibdl.so is used. If we insert code to cal
dlopen into a program not already linked tolibdl.so, it will not work. Fortunately, the internal
_dl_open function is available in all Linux programs which are dynamically linked. By inserti
code to call this function instead, we can assure compatibility with all dynamically-linked Li
programs.

To deal with differences inglibc, we search for the__libc_version symbol, which contains
a version string. If the string matches a known version ofglibc, we work with that version. If the
string is not found, or the version is unknown, we use the 2.0.x method.

In glibc 2.0.x, _dl_open takes the same parameters asdlopen , and the process is as simple a
changing the name of the function to call.

In glibc 2.1.x, _dl_open takes an extra parameter of the modules which calleddlopen . In this
case, we need to provide this address, which is straightforward. Additionally,_dl_open uses a
special function call convention because it is internal toglibc. Instead of pushing the paramete
onto the stack, it passes all three in registers. To deal with this problem, we have to avoid theAst-

Node structure and generate a raw call and modify the registers for the parameters directly.
NB: This will probably change with each minor version change ofglibc, and this code must

be updated.

Inferior RPCs[dyninstAPI/src/process.C]

The majority of the usual method for executing inferior RPCs works fine on Linux. The p
lem is only in the checking for and dealing with the case where the inferior process is wit
system call. It is dangerous to simply change the location to which the system call will re
(which is the most simple approach), as this can corrupt the return value from the system
Developer’s Guide April 13, 2000 Release 3.0ß

Page 44

sys-
st the
will
orig-
e regis-

a pro-
aradyn

rking or

aemon
he
rting
r to
ns are

he
o the

emon.

rs are
ither
s

UsingPTRACE_SYSCALLseems promising, but this call traps at the entry and exit of the next
tem call, and so it would need to be used for every system call in the program, rather than ju
current one: this is grossly inefficient. Instead, we simply find the location the system call
return to, and set a trap (or illegal instruction, actually) there. When this is hit, we restore the
inal code, save the registers, and move the process to the code we wish to execute. Since th
ters were saveafter the system call instead ofduring it, the return value is safe.

Paradyn front-end threading package [libthread]

The threading package in Paradyn makes use ofsetjmp andlongjmp . This is not generally a
problem, except that we use a function pointer to the appropriatesetjmp and longjmp functions
on that platform. In Linux,setjmp is simply a macro tosigsetjmp , with the additional parameter
specificied. This necessitates changing the threading package to use a macro forsetjmp in the
Linux case, as a function pointer simply will not work.

8 RUN-TIME INSTRUMENTATION LIBRARY

The run-time instrumentation library (rtinst, libdyninstRT) contains auxiliary functions and
data for dynamic instrumentation. It contains functions to get wall and process time used by
cess, to start and stop metric timers, to sample timers and counters, to report values to the P
daemon, to report resources (such as message tags), and to report that a process is fo
doing and exec.

When an application process starts, it receives a signal that is caught by the Paradyn d
(this signal is set up byptrace or /proc file system calls). At this point, the daemon inserts t
initial instrumentation in the application process. The initial instrumentation consists of inse
calls in some functions and system calls to call initialization and termination functions, o
reports events of interest, such as new resources, a fork, or an exec. The following functio
instrumented:
main : call toDYNINSTinit() and the entry point ofmain , andDYNINSTexit() at the return point.
exit : call toDYNINSTexit() at the entry point.
fork : call toDYNINSTfork() at the return point
execve : call toDYNINSTexec at entry point, call toDYNINSTexecFailed() at return point.
pvm_send : call toDYNINSTrecordTag() at entry point.
DYNINSTsampleValues : call toDYNINSTreportNewTags() at the entry point.

The functionDYNINSTinit() is called at the start of the application process to initialize t
run-time instrumentation library. Its main function is to set an alarm that sends a signal t
application process periodically. The alarm handler,DYNINSTalarmExpire() , is responsible for
calling the functions to sample timers and counters and report the values to the Paradyn da
It also callsDYNINSTreportBaseTramps() to report the cost of instrumentation.

Enabled timers and counters are sampled by a call toDYNINSTsampleValues() . This is an
empty function, but it is instrumented each time a metric is enabled, so that timers or counte
sampled when this function is called. The code that is inserted calls e
DYNINSTreportTimer() or DYNINSTreportCounter() to read the timer or counter. The value
Developer’s Guide April 13, 2000 Release 3.0ß

Page 45

aemon,

alling

tags

, and

o-
docu-

an the

aradyn
ecking
k-end

emantic
namic
tarts.
to the

only
used

e can
ch as
ified at

into a

e the

gh
defini-
are reported through a pipe that is created when the application is started by the Paradyn d
or by a stream socket that is created after the application has forked.

New dynamic heap segments are allocated in the application process by c
DYNINSTos_malloc. Section 5.7 describes dynamic heaps in detail.

Other functions ofrtinst are called to report new resources, such as message
(DYNINSTreportNewTags()), and to handle fork and exec by an application (DYNINSTfork() and
DYNINSTexec()).

9 MDL IMPLEMENTATION

The Metric Description Language is used to specify what performance data to collect
where. For the language specification, see theParadyn User’s Guide. For a good high-level
description of the implementation techniques, see the paper “MDL: A Language and Compiler for
Dynamic Program Instrumentation” (Hollingsworth et. al.). The purpose of this section is to pr
vide a better understanding of the MDL code, describing features and issues that are not
mented elsewhere, and for providing a complementary and hopefully better reference th
code itself.

The MDL code consists of two parts: the front-end Paradyn process and the back-end P
daemon. The front-end MDL code does lexical analysis, syntax analysis, and some type ch
(which is part of the semantic analysis in the parlance of programming languages); the bac
does the rest of semantic analysis and intermediate code generation. The reason for the s
checking being done by both the front-end and the back-end is due to the feature of dy
instrumentation: the decision about what to instrument is deferred until after execution s
Therefore, there are certain things that the front-end cannot check and must be relegated
back-end. An example is an MDL expression containing a function call. The front-end can
check that the arguments of the call are valid MDL expressions and that the function call is
in valid syntactic context; whether the function exists in the application and is instrumentabl
only be checked by the back-end MDL. However, the idea is to push static checking as mu
possible into the front-end, so that errors can be caught early before the metrics are spec
runtime. Flex and Bison are used for lexical and syntax analysis.

The intermediate code generation is the process of translating a piece of MDL code
DAG of AstNode s (see Section 5.4). The code generation is the process of translating theAst-

Nodes into trampolines and inserting them into the application. This section does not describ
code generation of MDL, which is part of Paradyn’s dyninstAPI (see theDynamic Instrumenta-
tion API Guide). We first list the important files of the MDL implementation. We then go throu
each stage of the analyses. At the end of this section we give a short reference list of the
tions of some frequently seen C++ classes in the MDL implementation.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 46

rip-

.

o.

e

9.1 Important files

Figure 13 lists the most important files in the MDL implemetation together with brief desc
tions.

paradyn/h/dyninstRPC.I An igen file containing class definitions for all of the
MDL components such as Metric, Constraint, State-
ment, and Expression. Used by both the front-end and
the back-end.

paradyn/src/met/mdl.h Constant definitions and definitions for classes
mdl_var , mdl_env . If you see some constants with all
upper case letters while reading the MDL code,
chances are that they are#define ’d in this file. An
mdl_var is an MDL variable, and themdl_env is a
repository ofmdl_var s. You can think ofmdl_env as
the symbol table of MDL plus some methods. The
MDL variables are collected into the static data mem-
bermdl_env::all_vars . MDL variables are pushed
into mdl_env::all_vars when their scopes are
entered, and popped out when their scopes are exited
Used by both the front-end and the back-end.

paradyn/src/met/globals.h This file contains the declaration of global variables
that both the front-end and the back-end need access t
The global variables include all MDL metrics, con-
straints, and resource lists. These MDL components ar
collected during the syntax analysis phase. Used by
both the front-end and the back-end.

paradyn/src/met/metScanner.l The input file to Flex for lexical analysis. All tokens
and keywords can be found here. Only used by the
front-end.

paradyn/src/met/metParser.y The input file to Bison for syntax analysis. Contains the
entire MDL grammar, and hence is the definitive refer-
ence for the syntax and for determining whether some
features are (should be) supported. Metrics, con-
straints, statements, etc. are created as part of the
parse/grammar actions and collected into the global
repositories declared inglobals.h . Only used by the
front-end.

paradyn/src/met/mdl.C Type checking andapply() functions. See Section 9.2.
Only used by the front-end.

Figure 13: Crucial MDL files
Developer’s Guide April 13, 2000 Release 3.0ß

Page 47

under
g

he

e.

tain

Flex
curs in
in

ause

corre-

d

re-
9.2 Lexical and syntax analysis

Lexical and syntax analysis are done by the Paradyn front-end. The associated files are
the directoryparadyn/src/met . It is important to be familiar with Flex and Bison before readin
metScanner.l andmetParser.y , and it is a good idea to get familiar with these two files, or t
parts that you are interested in, before going on to others.

We do not explain the details of the files here3, as the code itself serves exactly that purpos
Here we only point out some of the interactions among the files to help navigate.

 The scanning and parsing of the configuration files starts from the routinemetMain() in
metMain.C . This routine callsopen_N_parse() that calls the Bison functionyyparse() , which

in turn triggers the scanner and parser actions inmetScanner.l and metParser.y 4. Files
meClass.C andmetParse.h are support files for the scanner and parser, for example; they con
the definition ofstruct parseStack .

A bulk of the work done by the Paradyn front-end is type checking, which is done after
and Bison have already disected and collected all the syntactic parts. In the code, this oc
metMain.C ’s mdl_apply() , afteropen_N_parse() is done. The type checking is implemented
routines with a heavily overloaded name:apply() . Many developers consider theapply() func-
tions one of the most difficult to understand parts of the MDL implementation, probably bec
there are so many of them−not only in the front-end, but also in the daemon−and eachapply()

does different things. For a good grasp of those functions, we need a clear picture of the
sponding C++ classes and their relationships. Fileparadyn/src/met/dyninstRPC.I is the place
to look for the class definitions of those syntactic components such asmdl_metric,

mdl_constraint, mdl_stmt , etc. Let’s use an example to show howapply() functions work.

paradynd/src/mdl.C The major file of the back-end of MDL. Semantic
checking and intermediate code generation. Only use
by the back-end.

paradynd/src/metric.C The definition of the classmetricDefinitionNode ,
which describes metric instances. There are two types
of node: aggregates and non-aggregates. For the agg
gates, anmetricDefinitionNode contains a vector of
othermetricDefinitionNode s, for non-aggregates, a
node contains a vector ofdataReqNode s. Only used by
the back-end.

3. Those who do not need to know the details of MDL implementation, yet have to consultmetParser.y

for MDL grammars, may wonder what the symbols $$, $1, $2, etc. mean inmetParser.y . $$ represents
the left-hand-side of the rule, and $i represents theith component on the right hand side of the rule, withi
starting from 1. The type of those $-symbols isstruct parseStack as specified by the line#define

YYSTYPE struct parseStack in bothmetScanner.l andmetParser.y.

4. In fact, Flex functions are called by Bison functions.

Figure 13: Crucial MDL files
Developer’s Guide April 13, 2000 Release 3.0ß

Page 48

ntactic
ng a
-
are the
Below is a metric called “procedureCalls” taken fromconfig/paradyn.rc .

metric procedureCalls {
name “procedure_calls”;
units operations;
unitStyle unnormalized;
aggregateOperator sum;
style EventCounter;
flavor = { winnt, unix, cow, pvm, mpi };

constraint procedureConstraint /Code/* is replace counter {
prepend preInsn $constraint[0].entry
(* procedureCalls++; *)

}
constraint moduleConstraint /Code is replace counter {

foreach func in $constraint[0].funcs {
prepend preInsn func.entry (* procedureCalls++; *)

}
}
base is counter {

foreach func in $procedures {
append preInsn func.entry constrained
(* procedureCalls++; *)

}

}
}

We draw a tree (Figure 14) to show the action of the parser. The tree also reflects the sy
structure in this metric, with the relationship of the parent and children of the “nodes” bei
containing relationship (e.g, procedureCalls metriccontains a base statement and two con
straints). We number each node to make the exposition clearer. Shown in parentheses
actual C++ classes implementing the components.

Figure 14: An example demonstrating howapply() functions work.

prepend... (mdl_instr_stmt)

(* procedureCalls++; *) (mdl_icode)

procedureCalls++; (mdl_expr)

procedureCalls (mdl_metric)

base... (mdl_stmt)

foreach... (mdl_for_stmt)

append... (mdl_instr_stmt)

(* procedureCalls++; *) (mdl_icode)

procedureCalls++; (mdl_expr)

procedureConstraint (mdl_constraint) moduleConstraint (mdl_constraint)

foreach... (mdl_for_stmt)

prepend... (mdl_instr_stmt)

(* procedureCalls++; *) (mdl_icode)

procedureCalls++; (mdl_expr)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
Developer’s Guide April 13, 2000 Release 3.0ß

Page 49

ting

then

d

radyn.

nts,
aemon.
itions

e code

ple of
time,

uc-

ration
hat are

gener-

e
d be at
int are
eption
t all.

gener-

tion
The wayapply() member functions work is essentially a pre-order visit of the tree star
from the root.mdl_metric::apply() (node 1) gets called, which would call theapply() mem-
ber function on the statements in the base part of the metric (node 2),
mdl_for_stmt::apply()(node 3) , which in turn callsmdl_instr_stmt::apply()(node 4) ,
and thenmdl_icode::apply()(node 5) , etc. After the subtree rooted atnode 2 is done, the
subtree rooted atnode 7 is visited, and so on until the whole tree is “applied”, an
mdl_metric::apply()(node 1) returns.

While visiting the tree, different checks are done insideapply() depending on which object
the function is invoked. For instance, whenmdl_v_expr::apply() is invoked on the expression
procedureCalls++ , it checks thatproceduceCalls is of valid type (integers or counters).

At run-time, the sequence ofapply() member functions starts from themdl_apply() in met-

Main(), in the filemetMain.C .

9.3 Semantic analysis and intermediate code generation

Semantic analysis and intermediate code generation are done by the back-end of Pa
This part of MDL comprises a few files underparadynd/src , with the major one beingmdl.C .
The twomdl.C ’s (one in the front-end, one in the daemon) use the same class definitions inpara-

dyn/h/dyninstRPC.I . In other words, the C++ classes for MDL metrics, constraints, stateme
etc. encapsulate a superset of the functionalities needed for both the front-end and the d
Because of this, we can see some dummy function definitions in either file, since all defin
must be present to pass the compiler, even though they may not actually be used.

Due to the above reason, and also for symmetry, the semantic analysis and intermediat
generation of the daemon are also implemented with the hierarchies ofapply() member func-
tions. Again, the code is executed in the same pre-order-visit tree-like fashion as in the exam
Section 9.2, with the exception of replace constraints as we will explain in a moment. This
we generate intermediate code instead of mere checkings inside eachapply() . For instance, for
the expressionprocedureCalls++ (node 6 in Figure 14),mdl_v_expr::apply(AstNode*) is
called, and we generate anAstNode* as a result of evaluating this expression. After node 1 is s
cessfully applied, ametricDefinitionNode is generated.

In the front-end, the syntax analysis is done on every syntactic component in the configu
file, yet the intermediate code and trampolines are only generated for those components t
actually used. For our example, if the metricprocedureCalls is not enabled with a focus, it
would not get processed by the back-end, and no intemediate code or trampolines would be
ated for it. Furthermore, the two replace constraints (see theParadyn User’s Guidefor a descrip-
tion of replace constraints)procedureConstraint and moduleConstraint would be applied
only if their match paths (/Code/* and /Code respectively) match the focus. If neither on
matches the focus, neither would be applied; if one matches the focus (note that there woul
most one match), the instrumentation statements inside the matching replace constra
applied, and the instrumentation statements in the base of the metric are not. This is one exc
in ourapply() tree visit in our example: some subtrees may not be visited, hence applied, a

When the back-end receives a request to enable a metric-focus pair, it uses the MDL to
ate intermediate code in the form of a DAG ofAstNode s. TheAstNode s specify what code to
generate for the metric-focus pair. For each metric-focus pair ametricDefinitionNode is cre-
ated (increateMetricInstance() in paradynd/src/metric.C). ThemetricDefinitionNode

contains the DAG ofAstNode s and the information about where the generated instrumenta
Developer’s Guide April 13, 2000 Release 3.0ß

Page 50

,

tags
very

lls, but
of RPC

eader
code (trampolines) should be inserted. After themetricDefinitionNode is successfully created
the trampolines are generated and inserted into the application executable, seeAstNode::gener-

ateCode() andAstNode::generateCode_phase2() (code generation is part of dyninstAPI).

9.4 Where these classes are defined

The classes below are important to the MDL implementation. Although tools like ctags/e
can be used to pinpoint their definitions, they are listed here just for reference. (This is a
short list, hope to add some more).

10 IGEN INTERFACE GENERATION

10.1 Overview of Igen

Igen automates the creation of remote interfaces. Interfaces are like remote procedure ca
the endpoints (client and server) can be threads or processes. Igen supports generation
calls using either threads or XDR (or PVM?) as transport.

10.1.1 Synopsis

igen -xdr | -thread | -pvm [-header | -code] <spec>.I

10.1.2 Output

The<spec>.I file specifies the interface template to use to generate the source and h
files. All generated files will use <spec> in their name:

<spec>.C – bundlers for the types that can be passed.
<spec>.CLNT.C – client side code for users of the interface.
<spec>.SRVR.C – server code for providers of the interface.
<spec>.h , <spec>.CLNT.h , <spec>.SRVR.h – class headers.

Class Where it is defined

AstNode dyninstAPI/src/ast.h

dataReqNode paradynd/src/metric.h

function_base dyninstAPI/src/symtab.h

instPoint dyninstAPI/src/instPoint-power.h
dyninstAPI/src/instPoint-sparc.h
dyninstAPI/src/instPoint-x86.h

resource paradynd/src/resource.h

metricDefinitionNode paradynd/src/metric.h

Figure 15: Important MDL classes.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 51

t
ceives

may
eallo-

hen
force
which
iptor

e. The

calls,
l.

aration
pe and
e type

ce mes-
t with

For
hread
ignature
ed by
Note that member functions declared in<spec>.SRVR.h are not generated by Igen, excep
for the class constructor and mainLoop. These functions are called by the server when it re
a request from the client. These functions must be provided by the programmer.

10.1.3 Memory

Igen frees all memory that it allocates, with one exception. Return types in the client code
be a structure or an array class. The memory allocated for these return types will not be d
cated by Igen.

10.1.4 Upcalls

Upcalls from the server to the client are supported, however, they will only be seen w
the client is waiting for a response from a synchronous call to the server. There is a way to
the client to attempt to handle an upcall. The client has a member function awaitResponce
will handle any upcall requests that exist, but awaitResponce will block. The file descr
should be checked to see if it is ready for reading before calling awaitResponce.

10.1.5 Interface template

 An interface looks like:
 $remote <interfaceName> {

$base <int>;
$version <int>;
$virtual [$async | $array] <member function definitions>
$virtual $upcall [$async] <member function definitions>
$cmember type variable;
$smember type variable; }

The $array keyword causes igen to genarate an array class and use this as the array typ
class has a member specifying the size of the array and a pointer to the data.

The $virtual keyword causes the igen generated functions to be declared virtual. For up
the client function is declared virtual. For non-upcalls, the server function is declared virtua

The $smember and $cmember keywords cause igen to put the type and variable decl
into the client or server class. $smember specifies that the server class is to include the ty
variable as a public data member. $cmember specifies that the client class is to include th
and variable as a public data member.

The $base keyword defines the first message tag to use for creating request and respon
sage types. Since TAGS should be unique to an application, this value should not confilc
other interfaces that might get linked into the same process.

The integer after the keyword $version indicates the protocol version of this interface.
XDR based protocols this version is verified when the client and server rendevous. For t
based interfaces, Igen relies on the fact that changes to an interface generally change the s
of at least one function in the interface, and that version incompatabilities should be resolv
the C++ linker in that case.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 52

s the
erface-
ns are

rface
nous,

wait
f the

nded
The member functions are the basis of the interface. A provider of an interface define
member functions in the class <interfaceName>. Igen generates a shadow class <int
Name>User with the same member functions. The <interfaceName>User member functio
really RPC style stubs that invoke the remote member functions.

The $upcall keyword permits interfaces to support upcalls. Upcalls are a way for an inte
to indicate to its user that an "interesting" event has occured. Upcalls are by default synchro
but can be made asynchronous by adding the keyword $async after the keyword $upcall.

The $async keyword placed before a function definition prevents igen from generating a
for reply after make the remote procedure call. No reply will be made by the receiver o
remote procedure call.

10.2 Igen grammar

[Words in lowercase are nonterminals; words with punctuation in them (e.g., $), surrou
by quotes, and in all CAPITALS are terminals.]

completeDefinition -> parsableUnitList
| error

parsableUnitList -> parsableUnitList parsableUnit
| lambda

parsableUnit -> interface_spec
| typeSpec

interfacePreamble -> interfaceName { interfaceBase interfaceVersion
interface_spec -> interfacePreamble definitionList } ;
interfaceName -> IDENTIFIER
interfaceBase -> $base UNSIGNED_INT_LITERAL ;
interfaceVersion -> $version UNSIGNED_INT_LITERAL ;
forward_spec -> ‘forward’ IDENTIFIER ;
definitionList -> definitionList definition

| lambda
optUpcall -> $virtual

| $async
| $virtual $async
| $upcall $async
| $virtual $upcall $async
| lambda

optFree -> $free
| lambda

optRef -> &
| lambda

definition -> optFree optUpcall optConst typeName pointers optRef
IDENTIFIER (arglist) ;
Developer’s Guide April 13, 2000 Release 3.0ß

Page 53

generic

rm.

Para-
first
| $cignore[^$]*$cignore
| $signore[^$]*$signore

optIgnore -> $ignore[^$]*$ignore
| lambda

optAbstract -> ‘abstract’
| lambda

classOrStruct -> optAbstract ‘class’
| ‘struct’

typeSpec -> classOrStruct IDENTIFIER optDerived {
fieldDeclList optIgnore } ;

optDerived -> : IDENTIFIER
| lambda

fieldDeclList -> fieldDeclList fieldDecl
| lambda

fieldDecl -> optConst typeName pointers IDENTIFER ;
typeName -> IDENTIFIER

| IDENTIFIER : : IDENTIFIER
| IDENTIFIER < typeName pointers >

optConst -> ‘const’
| lambda

pointers -> * pointers
| lambda

funcArg -> optConst typeName pointers
| optConst typeName pointers IDENTIFIER
| optConst typeName & IDENTIFIER
| optConst typeName &

nonEmptyArg -> funcArg
| nonEmptyArg , funcArg

arglist -> nonEmptyArg
| lambda

11 MAKEFILE ISSUES

11.1 Overview of Makefile organization

The filesmake.config , make.program.tmpl , andmake.library.tmpl (located at the root of the
Paradyn source code tree) are the basis for compiling the Paradyn system. They define
rules and Makefile dependencies, and are flexible enough that mostMakefile s for Paradyn sys-
tem components are kept short and simple. The shadow filesnmake.config , etc., are similar and
only required bynmakeon Windows NT; they are also simpler, supporting only that one platfo

A Makefile for a given platform (such as SPARC/Solaris) and given program (such as
dyn, Paradynd, or Igen) is typically organized as follows. Several Makefile variables are
defined; for example, you will see lines such asUSES_TCLTK=true andUSES_FLEX=true in the
Developer’s Guide April 13, 2000 Release 3.0ß

Page 54

ler

to
 path.
ari-

,

bles

,
ich

that

GNU
s.

rary,
t-

and
the
Paradyn platform Makefiles5. Then the Makefile executes the lineinclude ../../make.config ,
which reads in the filemake.config . This file defines default dependencies, default compi
flags, library paths, include directories, and so on. At many points,make.config will check to see
if certain Makefile variables (such asUSES_TCLTKandUSES_FLEX) are defined; if so, it performs
additional tasks.

For example, ifUSES_TCLTKis defined, thenmake.config sets theTCL2Cmakefile variable to
the appropriate path (for when thetcl2c script is run), adds the path to the Tcl/Tk include files
the compiler flags, and adds the path to the Tcl/Tk libraries to the compiler’s library-search

After make.config is read in, the Makefile may make a few changes to the Makefile v
ables, asmake.config has assigned them. For example, the lineCXXFLAGS += -O3would make
C++ compile its files with the highest level of optimization (because the Makefile variableCXX-

FLAGS is in turn used by GNU make when compiling C++ files).
Next, a Makefile should have the lineinclude ../make.module.tmpl . This file is the plat-

form-independent part of the module build (just as theMakefile is the platform-specific part). Its
function is to set Makefile variables that will be used by../../make.program.tmpl , which is
included next. The most important of these Makefile variables areTARGET(which specifies the

name of the final binary that the linker should write to)6, SRCS(which specifies the source files)
LIBS (which specifies additional libraries not automatically defined bymake.config), andSYS-

LIBS (similar toLIBS , but intended for non-Paradyn libraries). Note that these Makefile varia
are usually appended to, as opposed to overwritten.

For example, we see the lineLIBS += -lpdutil -lpdthread in themake.module.tmpl for
Paradyn, instead of the lineLIBS = -lpdutil -lpdthread . This is important, because typically
make.config will already have defined some initial values for these Makefile variables, wh
should be appended to, rather than overwritten.

Makefiles for libraries (such as VisiLib) follow a similar approach; the major difference is
at the last step../../make.library.tmpl is included instead of../../make.program.tmpl .

Note that there are features used in the make configuration files that are specific to the
version of make (we currently use version 3.74) and may not be understood by other make

11.2 Site-dependency issues

While the top-levelMakefile is (Unix) system-independent), the filemake.config will need to
be edited to conform to your system’s configuration. For example, the path to your Tcl/Tk lib
the path to your flex library, and the path to X-Window’s include files will likely differ from se
tings we have used. You should edit themake.config file and make the following changes:

• The destinations for installing Paradyn libraries and programs are specified,relative to the
core of the Paradyn source distribution, by LIBRARY_DEST and PROGRAM_DEST. Note that
while alternate locations may be specified, modification of the standard Paradyn build
install directory structure is not recommended. Whenever make is performed from

5. Note that most Makefile tests concern whether something is defined (ifdef), and thereforeany non-
empty definition is equally considered: be careful to comment-out or undefine undesired definitions
rather than ineffectively settingUSES=false (which will still be considered defined!). For consistency,
true is the prefered definition when one is required.

6. Some modules require to (sometimes) build/install multipleTARGETS or an alternativeALT_TARGET.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 55

tories
s run
uild

uilt.

c-

s.

ing
rt
g
t the

ell
rams.

en
onds

, you

nding
piler

rar-
es here

ace to

e use
tan-
toplevel source (core) directory, a check is made to determine whether these direc
already exist, an attempt is made to automatically create them. If this fails, or make i
directly from module subdirectories without these directories existing (and writable), the b
will likely be unsuccessful, as it relies on installing and using components as they are b

• Search forBACKUP_CORE, and replace its path with either “../.. ” or the location of the root of
the Paradyn distribution (PARADYN_ROOT). Most sites will not need to use this variable; it spe
ifies alternate locations to search in the event that the primaryTO_COREvariable doesn’t find
that it was looking for. Search themake.config file for uses ofTO_COREandBACKUP_COREto
get an understanding of how they are used as (primary and secondary) directory prefixe

• Search forINCLUDE_PVM_SUPPORTand make sure that this line is commented-out (by add
an initial ‘#” character to the line) if you don’t wish to build Paradyn with PVM suppo
included. (Actually onlyparadynd contains (optional) PVM dependence.) Incorporatin
PVM support requires that PVM include and library files are installed and assessible a
locations (or names) specified byPVM_INCDIR, PVM_LIBDIR and PVM_LIB. Note that
PVM_ROOTand PVM_ARCHneed to be appropriately defined in the environment of the sh
doing the build, and these same environment variables are used when running PVM prog

• Search for the lineTCLTK_DIR and replace the path with the location where Tcl/Tk has be
installed on your system. Also check that the names of your Tcl and Tk libraries corresp
to those listed inTCLTK_LIBS : on some systems the libraries may be calledtcl8.0 andtk8.0

instead of simplytcl andtk . More specifically, the directory$(TCLTK_DIR)/lib should con-
tain libtcl.a andlibtk.a (or the equivalent names specified byTCLTK_LIBS).

• Search forFLEX_DIR and change its value to the location where the flex library (libfl.a or
libfl.lib) has been installed on your system.

• Depending on where the X-Windows include files have been installed on your system
may need to tell the compiler where to find them. Search forUSES_X11and observe the con-
tents of what’s already there. There are checks for different platforms and correspo
changes. For some platforms, nothing is done because in our configuration, the com
doesn’t need to be told where the X-Windows include files are, where the X-Windows lib
ies are, and so on. Depending on your system setup, you may need to make some chang
to X11_LIB , X11DIR and possibly others.

• Check that utilities, such asYACC(bison) andPERL(version 5 or later) are available with the
names (and perhaps paths) specified.

• A private make.config.local file is read (if it exists) aftermake.config itself, and can be
used to override general make configuration defaults. This is generally an appropriate pl
(optionally) defineBUILD_MARK andBUILD_NUM (build identifiers), etc.

• The nmake.config file for Windows NT’s nmakeis similar (and generally simpler) and
should be modified as described above. One additional configuration option relates to th
of Unix shell utilities (such as those freely available from Cygnus) or roughly-equivalent s
dard Windows NT commands: currently ifnmakeis run from a shell (and theSHELL environ-
ment variable is duly defined) then the more functional Unix utilities are used.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 56

a
the

y that

r
t of

e

pati-

ule,

(an

talled
our

can
11.3 TheDEPENDS file

The first time a program is compiled for a given platform (e.g.,paradynd/sparc-sun-

solaris2.4), the equivalent of the commandmake depend is automatically issued. It creates
file DEPENDSin the platform directory which contains header file dependencies for all of
source code files; these dependencies will automatically be included bymake.program.tmpl .
You can manually recreate this file (a good idea if you change the source code in such a wa
you modify what.h files are included in one or more.C files) by typingmake depend .

If the Makefile variableEXPLICIT_DEPENDS is not defined, then the make system will (fo
consistency) perform amake depend every time a source file changes. This can take a good bi
time, so you may wish to defineEXPLICIT_DEPENDS in a platform-specific Makefile to avoid this
(or you could define it inmake.config to make it the default). Simply put the line
EXPLICIT_DEPENDS=true in the appropriate location (beforemake.program.tmpl is included).

Note that automatic generation ofDEPENDSfiles is not supported under Windows NT. Th
DEPENDS files must be manually updated as dependencies change.

11.4 Igen Files

Paradyn, VisiLib and Paradynd use Igen-language files (with the.I suffix) to define the remote
procedure call interface between them. Whenever you change.I files, it is important to re-com-
pile all Paradyn components which use them. To do this, type “make clean ” followed by make in
the appropriate platform directories for these programs.

11.5 Building on Windows NT

We are using the Visual C++ 6.0 compiler and Microsoftnmakeprograms to build Paradyn on
Windows NT. Because the configuration and Makefiles used on other platforms are not com
ble withnmake, there are a different set of configuration files for Windows NT callednmake.con-

fig , nmake.module.tmpl , nmake.library.tmpl and nmake.program.tmp l. Each file is the
equivalent of the similarly named configuration file for the Unix platforms. To compile a mod
go to the Windows NT platform directory in the module (i386-unknown-nt4.0) and typenmake

(or nmake install). There is no top-level Makefile (thecore/Makefile will not work with
nmake), though thescripts directory contains both Unix shell (make-nt.sh) and command
(make-nt.bat) scripts that will try to compile everything.

The following packages are needed to build Paradyn: bison, flex, Tcl/Tk, and ONC RPC
implementation of Sun RPC). One of the include files in the ONC RPC package,RPC/xdr.h ,
needs to be modified to compile with the Visual C++ compiler. (We have these packages ins
underp:/paradyn/packages/winnt , and this path should be updated as appropriate for y
system. A gzipped tarfile of ONC RPC v1.12 with theRPC/xdr.h file already modified is avail-
able fromftp://grilled.cs.wisc.edu/paradyn/etc/oncrpc112winnt.tar.gz).

To run the Paradyn daemon on Windows NT, the dynamic link libraryoncrpc.dll must be in
some directory that is listed on yourPATHenvironrment variable, so that the Paradyn daemon
use Sun RPC calls to communicate with the Paradyn front-end.
Developer’s Guide April 13, 2000 Release 3.0ß

Page 57

dyn
steps

roce-
in the

radyn
ows
s indi-

-

d

12 MPI SUPPORT

12.1 IRIX MPI Support

Paradyn currently supports IRIX-native MPI for IRIX 6.5, SGI MPI 3.2.0.0. Currently Para
supports creating MPI jobs, but not attaching to them. We have provided descriptions of the
taken to execute MPI jobs on IRIX through the use of the MPI job launcher mpirun and the p
dure used to allow Paradyn to interact with mpirun and attach to each process participating
job.

12.1.1 Description of MPI job launcher and Paradyn interaction

The following tables detail the manner in which MPI jobs are launched and the procedure Pa
follows to start and attach to IRIX-native MPI applications. In the diagrams, black/solid arr
indicate process creation, red/dashed arrows indicate communication and blue/dotted arrow
cate process control. Long dashed lines indicate machine boundaries.

Table 1: IRIX MPI Job Launch Procedure

User starts mpirun from Host A, specifying 2 MPI
application processes to be run on each of 2
remote hosts.

The mpirun process communicates with the local
array daemon to allocate a global Array Session
Handle (ASH) and proceeds to ask the array dae
mon to forward MPI application commands to the
appropriate hosts based on the command-line
arguments. Each process created by the forwarde
command inherits the global ASH.

Each application process will dynamically load the
IRIX MPI library and execute the init section of
the library. In doing this, the application process
effectively becomes an MPI daemon. The MPI
daemon communicates with the mpirun process
based on the MPI_ENVIRONMENT environment
variable.

mpirun

mpirun

MPI Application

Host M

Host A Host B

MPI Application

mpirun

MPI Daemon MPI Daemon

Host M

Host A Host B
Developer’s Guide April 13, 2000 Release 3.0ß

Page 58

-

d

r-
Each MPI daemon communicates with the mpirun
process to determine how many application pro-
cesses to fork. Note that both the mpirun process
and the MPI Daemons persist for the entire execu
tion of the MPI job.

Table 2: Paradyn IRIX MPI Job Launch Procedure

The user enters a complete mpirun command in a
Paradyn command file or in the Paradyn (Setup,
Define a New Process) command field. Paradyn
parses the command line and inserts paradynd an
its appropriate arguments into the command line
before the MPI application. Paradyn executes the
modified mpirun command line on the specified
target machine.

Based on command-line arguments, mpirun dete
mines which hosts are participating in the job and
starts a Paradyn daemon (paradynd) process on
each host. Using the arguments supplied from the
command line, the paradynd communicates with
the Paradyn front-end.

Table 1: IRIX MPI Job Launch Procedure

mpirun

App App App App

MPI Daemon MPI Daemon

Host M

Host A Host B

Paradyn

mpirun

mpirun

paradynd paradynd

Paradyn

Host P

Host M

Host A Host B
Developer’s Guide April 13, 2000 Release 3.0ß

Page 59

m

i-
Each paradynd forks and uses the /proc filesyste
to attach to the child process. The child process
proc flags are set such that the child process will
stop at the exit of the fork system call and any
forked processes will inherit these same flags.
Note that this stops both the forking process and
any processes created by the fork. Then the child
process of each paradynd executes the MPI appl
cation, which in turn becomes the MPI daemon
and communicates with the mpirun process.

Each MPI daemon communicates with the mpirun
process to determine how many application pro-
cesses to fork. As the MPI Daemon forks, para-
dynd attaches to each new child of the MPI
Daemon.

Table 2: Paradyn IRIX MPI Job Launch Procedure

mpirun

paradynd paradynd

Paradyn

MPI DaemonMPI Daemon

Host P

Host M

Host A Host B

mpirun

paradynd paradynd

Paradyn

MPI DaemonMPI Daemon

App AppApp App

Host P

Host M

Host A Host B
Developer’s Guide April 13, 2000 Release 3.0ß

Page 60

e of
t list,
plica-

xam-
nd nor

t fol-
num-
s are
ma.

local

contin-
d, the

plica-

l glo-
ing
con-
n com-

forward
host2
enti-

omma
again

achine

ese is
uting

f the
ify-
found
12.1.2 mpirun Command Parsing

The mpirun command for IRIX 6.5, SGI MPI 3.2.0.0 consists of mpirun and a sequenc
global flags followed by 1 or more entries. Each entry is composed of an optional hos
optional local flags, a task number, an MPI application name, and any arguments to the ap
tion. Multiple entries are delimited with a colon.

Paradyn parses the mpirun command line by first identifying the mpirun command and e
ining any global flags. When an argument is encountered that is neither the mpirun comma
a global flag, Paradyn identifies this argument as the first argument of the first entry.

If the entry begins with a number (process number argument) or local flags, the argumen
lowing these arguments must be the application. However, if the entry does not start with a
ber or local flags, then the first argument must the beginning of a host list. As host list entrie
delimited by commas, the end of the host list is identified by the absence of a trailing com
After the host list, the following arguments are evaluated to identify the process count or any
flags. The application follows the process count or local flags.

Once the application argument is identified, Paradyn insertsparadynd and all the appropriate
arguments necessary for the Paradyn daemon to communicate with the front-end. Paradyn
ues parsing until it finds a colon or reaches the end of the command. If a colon is encountere
entry parsing is applied to the next entry.

In the following example, mpirun, in verbose mode, starts 2 processes executing MPI ap
tion app1 with argumentarg1 on the local host and 3 processes executingapp2 on bothhost2

andhost3.

mpirun -v -np 2 app1 arg1 : host2, host3 3 app2

Paradyn identifies “-v” as a global argument, however since there are not any additiona
bal arguments following it, the next argument must be the start of the entry list. The follow
argument “-np” is identified as a local flag with an argument. Both of these arguments are
sumed. The next argument must be the application name, so Paradyn inserts the daemo
mand and all the daemon arguments before the application name. Paradyn then scans
until it reaches the colon. The argument after the colon is the beginning of a new entry. As
is neither a number nor a local flag, it is evaluated as a host list. Since a trailing comma is id
fied after the host argument, host3 is also identified as a host name. There is no trailing c
after host3, thus “3” is identified as a process count and the paradyn daemon command is
inserted before the following application.

Based on the above mpirun example, the mpirun command executed on the target m
would resemble:

mpirun -v -np 2 paradynd -p46479 -mhostP -l0 -zmpi -runme app1 arg1 :\
host2, host3 3 paradynd -p46479 -mhostP -l0 -zmpi -runme app2

12.1.3 Assumptions regarding mpirun

There are several assumptions made regarding the use of mpirun on IRIX. The first of th
that the host executing Paradyn must be able to rsh to the machine which will be exec
mpirun. Paradyn will not be able to start mpirun if this is not possible. Additionally, the use o
mpirun command-line option “-f[ile]” is not permitted as it would prevent Paradyn from mod
ing the command line to insert the daemon. Furthermore, the Paradyn daemon must be
Developer’s Guide April 13, 2000 Release 3.0ß

Page 61

“para-
job
ce-
up-
within the users PATH on the machine executing mpirun and must be appropriately named
dynd.” Finally, Paradyn does not distinguish between IRIX-native mpirun and other MPI
launchers. If you are running mpirun on a machine running IRIX, Paradyn will follow the pro
dure for starting IRIX-native MPI. Note that at the time of this writing, work is in progress to s
port MPICH on Linux (and possibly also other platforms).

■

Developer’s Guide April 13, 2000 Release 3.0ß

	Developer’s Guide
	1 Overview
	1.1 Document revision history
	1.2 New functionality for release 3.0
	1.3 New functionality for release 2.1
	1.4 Paradyn subsystems and source code structure
	Figure�1: Paradyn (and dyninstAPI) subsystems.
	Figure�2: Paradyn/dyninstAPI module structure and dependencies.
	Libraries and associated include files are common module dependencies, often supplemented with pr...

	2 Paradyn Package Dependencies
	3 Paradyn Front-end
	3.1 Data Manager
	Performance data collection
	Performance data delivery from the Paradyn daemon(s)
	Metrics and resource hierarchies management
	DM objects

	3.2 Visi Manager
	Visi Manager types
	Visi Manager interface routines
	Figure�3: Visi Manager interface

	3.3 Visi threads
	Visi thread types
	Figure�4: VISIthreadGlobals struct members.

	The Visi thread and the Visi interface
	The Visi thread and the Data Manager
	Interface routines

	3.4 User Interface (UI) thread
	UI main loop
	Where Axis
	Performance Consultant window (Search History Graph)
	Tunable constants
	Status lines
	Paradyn Main Control window

	3.5 Performance Consultant thread
	The data stream
	Experiment definition
	Search control
	Starting up a particular experiment
	1. Get estimated cost: when a node is expanded, a request is made to the Data Manager for the pre...
	2. Enable request(s): when a node is launched from the PC run queue, one or more enable requests ...
	3. Change to true: when a node’s status changes from unknown to true, both parent and children ma...
	4. Change to false: when a node’s status changes from unknown to false it is deactivated and not ...

	4 Visi Library
	5 Paradyn Daemon
	5.1 Introduction
	1. Starting and controlling the execution of application processes.
	2. Reading the application’s symbol table.
	3. Reading the application’s binary image to find instrumentation points.
	4. Evaluating metrics, generating code, and inserting instrumentation into application processes.
	5. Periodically sampling performance data from the application and forwarding values to the Parad...

	5.2 Application processes
	5.3 Object file processing
	5.4 Shared-object processing
	Figure�5: Process class and shared objects.
	Process 1 and process 2 are the same executable and share a.out and shared object images. Process...
	Figure�6: image, module, pdFunction, and instPoint classes.
	Each image consists of a number of modules, each module consists of functions, and each function ...
	Metric Evaluation and Code Generation
	Figure�7: Data structures of the Paradyn daemon.

	5.5 Performance data sampling
	5.5.1 Shared-memory sampling
	5.5.1.1 Synchronization issues for shared-memory sampling
	Figure�8: Pseudo-code for startTimer and stopTimer operations
	Figure�9: Pseudo-code for shared-memory sample of a timer
	Figure�10: Final pseudo-code for startTimer/stopTimer operations
	Figure�11: Final pseudo-code for timer sampling

	5.5.1.2 The need for a get-remote-time() primitive
	5.5.1.3 Source code for shared-memory sampling

	5.5.2 Alarm sampling

	5.6 Retroactive instrumentation
	Figure�12: Retroactive instrumentation example.
	The program has been interrupted during the execution of subD2 (with the call-stack as shown) wit...

	5.7 Dynamic Heaps
	5.8 Trampoline Guards

	6 x86 Port
	Instruction representation
	Parsing the executable image
	Inserting instrumentation
	Base trampoline
	Code generation
	Example

	7 Linux port
	Inferior process modification and information through ptrace and /proc [dyninstAPI/src/linux.C]
	Handling shared libraries in the inferior process [dyninstAPI/src/linuxDL.C]
	Inserting a shared library into the inferior process process::dlopenDYNINSTlib [dyninstAPI/src/li...
	Inferior RPCs [dyninstAPI/src/process.C]
	Paradyn front-end threading package [libthread]

	8 Run-time instrumentation library
	9 MDL implementation
	9.1 Important files
	Figure�13: Crucial MDL files

	9.2 Lexical and syntax analysis
	Figure�14: An example demonstrating how apply() functions work.

	9.3 Semantic analysis and intermediate code generation
	9.4 Where these classes are defined
	Figure�15: Important MDL classes.

	10 Igen Interface Generation
	10.1 Overview of Igen
	10.1.1 Synopsis
	10.1.2 Output
	10.1.3 Memory
	10.1.4 Upcalls
	10.1.5 Interface template

	10.2 Igen grammar

	11 Makefile Issues
	11.1 Overview of Makefile organization
	11.2 Site-dependency issues
	11.3 The DEPENDS file
	11.4 Igen Files
	11.5 Building on Windows NT

	12 MPI support
	12.1 IRIX MPI Support
	12.1.1 Description of MPI job launcher and Paradyn interaction
	Table�1: IRIX MPI Job Launch Procedure
	Table�2: Paradyn IRIX MPI Job Launch Procedure

	12.1.2 mpirun Command Parsing
	12.1.3 Assumptions regarding mpirun

