vn Detecting Code Reuse Attacks 18

What are code reuse attacks?

Goal: piece together gadgets of original code
such that their execution effects some
malicious intent.

Motive: defeat current protections that prevent

code Injection or execution from the stack or
the heap.

Assumption: program has vulnerabillity that
allows stack to be overwritten.

Technique: chain together gadgets with
control transfers:

» returns (“return-oriented programming”)
» jumps (“jJump-oriented programming”)

Using Dyninst Components TRYLAS

Gadgets constructed from a
conventional program binary

xchg %eax, secx
fdiv $st(3),%st
— Jjmp *-0xf (%esi)

—add %edi, 3ebp
— Jmp *-0x39 (%ebp)

—mov 0Oxc(%esi) ,b %$eax

QERSITP

5} .\O«:\

A

L \A5)

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Verify program state during program execution at system calls

1 Verify program counter

Check that PC points to instruction in original program:
identify basic block that contains this address, disassemble

= OxB7FE3424 and verify that the address is on instruction boundary.
: . Stack
2 Verify callstack bffE£510 pointer
p: procedure h: current b/fcdft4
associated with frame height c?f frame bffff544
é ! C b7f45d43
s,.= (fxstat, 0xb7f45d3c, -12) — b/ftcdff4
! bffff524
i: last instruction T
executed in context
associated with bffff67c
frame
a Check that frame has b Check that caller = current frame

How do we detect an attack?

mov %eax, (%esp) valid stack frame height:

Valid program counter

» Prevent attacks that rely on code outside
the valid code sections of the binary

» Prevent attacks that use unaligned
Instructions.

Valid callstack

» Prevent attacks from executing instructions
that have not been reached via valid inter-
and intraprocedural control flow transfers.

Valid system call

» Prevent attacks from executing system
calls that are not valid in the context of the
current PC and callstack.

calculate expected stack height for
| € p; verify that based on this height, the
return address in the caller frame is

call *0x4 (%es1i)

represents a valid control flow
transfer in the program:
verify that there exists an edge in the

— add %edi, Sebp
— Jmp *-0x39 (%ebp)

> sysenter

pop %ebx P

Example based on exploit presented in Bletsch et al., 2011.

valid (follows a call instruction). callgraph from p € S, 0 p € S atl € Sy,

‘ Calculate the return address (RA) in the each caller; here, the last RA = Oxbffffo67c.
This is not a valid return address (is not a valid instruction that follows a call). This invalid
stack frame indicates non-conformant program execution, and we terminate the process.

3 If system call is exec, verify the system call and its first argument

Check that this is a valid call to exec and valid program being passed to exec:

use backward slicing and symbolic evaluation to calculate the expected system call number and first
system call argument at instruction i; compare these with the current values in $eax and %ebx.

» Create or attach to process using ProcControlAPI; register callbacks at system
call entry.

» Parse program binary using ParseAPI; construct CFG.

» On each callback, verify program state using InstructionAPI, StackwalkerAPI,
ParseAPI, and DataflowAPI, as described above.

