
March 12, 2001Kperfmon-MP

Multiprocessor Kernel Performance
Profil ing

Alex Mirgorodskii
mirg@cs.wisc.edu

Computer Sciences Department

University of Wisconsin

1210 W. Dayton Street

Madison, WI 53706-1685

USA

– 2 –Kperfmon-MP March 12, 2001

Kperfmon: Overview

• Specify a resource
– Almost any function or basic block in the kernel

• Apply a metric to the resource:
– Number of entries to a function or basic block

– Wall clock time, CPU time (virtual time)

– All Sparc Hardware Counters: cache misses,
branch mispredictions, instructions per cycle, ...

• Visualize the metric data in real time

– 3 –Kperfmon-MP March 12, 2001

Kperfmon-MP: Goals

Modify uniprocessor Kperfmon to provide:

• Safe operation on SMP machines
– Thread safety

– Migration safety

• New feature: Per-CPU performance data
– More detailed performance data

– Reduce cache coherence traff ic caused by the tool

– 4 –Kperfmon-MP March 12, 2001

Kperfmon: Technology

• No need for kernel recompilation
– Works with stock SPARC Solaris 7 kernels

– Supports both 32-bit and 64-bit kernels

• No need for rebooting
– Important for 24 x 7 systems

• Use the KernInst framework to:
– Insert measurement code in the kernel at run time

– Sample accumulated metric values from the user
space periodically

– 5 –Kperfmon-MP March 12, 2001

Patch HeapPatch Heap Data HeapData Heap

Kernel SpaceKernel Space

Instrumentation
request
Instrumentation
request

ioctl()ioctl()

/dev/kerninst/dev/kerninst

KperfmonKperfmonKperfmon

Kperfmon System

KerninstdKerninstdKerninstd

Sampling
request
Sampling
request

VisisVisisVisis

– 6 –Kperfmon-MP March 12, 2001

Kperfmon instrumentation

• Counter primitive
– Number of entries to a function or a basic block

• Wall clock timer primitive
– Real time spent in a function

• CPU timer primitive
– Excludes time while the thread was switched-out

– Can count more than just timer ticks
• All HW-counter metrics use this mechanism

– 7 –Kperfmon-MP March 12, 2001

tcp_lookup()

cnt

 sethi hi(&cnt), r0
 or r0, lo(&cnt), r0
 ldx [r0], r1
retry:
 add r1, 1, r2
 casx [r0], r1, r2
 cmp r1, r2
 bne retry
 mov r2, r1
 nop
 ba,a tcp_lookup+4

Code Patch AreaCode Patch Area

Data AreaData Area
(entry)

Non-MP Counter primitive

• Atomic, thread-safe update

• Lightweight

• No register save/restore required

Relocated instruction

– 8 –Kperfmon-MP March 12, 2001

tcp_lookup()

stop timer

start timer

Code Patch AreaCode Patch Area

Data AreaData Area
(entry)

(exit)

Non-MP Wall clock timer primitive

• Inclusive (includes time in callees)

• Keeps accumulating if switched-out

timer

– 9 –Kperfmon-MP March 12, 2001

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

Non-MP CPU timer primitive

• Exclude the time spent while switched out

– Instrument context switch routines

• HW counter metrics are based on this mechanism

stop timer

start timer

pause timer

restart timer

context switchcontext switch List of paused timers
head

free free

– 10 –Kperfmon-MP March 12, 2001

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

pause timer

restart timer

context switchcontext switch List of paused timers
head

free free

Non-MP CPU timer primitive

• Exclude the time spent while switched out

– Instrument context switch routines

• HW counter metrics are based on this mechanism

– 11 –Kperfmon-MP March 12, 2001

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

pause timer

restart timer

context switchcontext switch List of paused timers
head

free free

Non-MP CPU timer primitive

• Exclude the time spent while switched out

– Instrument context switch routines

• HW counter metrics are based on this mechanism

– 12 –Kperfmon-MP March 12, 2001

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

pause timer

restart timer

context switchcontext switch List of paused timers
head

freetmr

Non-MP CPU timer primitive

• Exclude the time spent while switched out

– Instrument context switch routines

• HW counter metrics are based on this mechanism

– 13 –Kperfmon-MP March 12, 2001

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

pause timer

restart timer

context switchcontext switch
head

free

List of paused timers

tmr

Non-MP CPU timer primitive

• Exclude the time spent while switched out

– Instrument context switch routines

• HW counter metrics are based on this mechanism

– 14 –Kperfmon-MP March 12, 2001

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

pause timer

restart timer

context switchcontext switch
head

free free

List of paused timers

Non-MP CPU timer primitive

• Exclude the time spent while switched out

– Instrument context switch routines

• HW counter metrics are based on this mechanism

– 15 –Kperfmon-MP March 12, 2001

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

pause timer

restart timer

context switchcontext switch
head

free free

List of paused timers

Non-MP CPU timer primitive

• Exclude the time spent while switched out

– Instrument context switch routines

• HW counter metrics are based on this mechanism

– 16 –Kperfmon-MP March 12, 2001

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

pause timer

restart timer

context switchcontext switch
head

free free

List of paused timers

Non-MP CPU timer primitive

• Exclude the time spent while switched out

– Instrument context switch routines

• HW counter metrics are based on this mechanism

– 17 –Kperfmon-MP March 12, 2001

Kperfmon-MP: Goals

Modify uniprocessor Kperfmon to provide:

• Safe operation on SMP machines
– Thread safety

– Migration safety

• New feature: Per-CPU performance data
– More detailed performance data

– Reduce cache coherence traff ic caused by the tool

– 18 –Kperfmon-MP March 12, 2001

ld [head], R1

add R1, 4, R1

st R1, [head]

Non-MP timer allocation routine

Thread Safety

• Used on switch-out to save the paused timers

• Context switch is serial on uniprocessors
– No thread safety problems there

• Context switches may be concurrent on SMPs!
– Multiple threads are being scheduled simultaneously

– The allocation code is no longer safe

head

freetmr free free

– 19 –Kperfmon-MP March 12, 2001

MP timer allocation routine

Thread Safety

• Context switches may be concurrent on SMPs

• Use the atomic cas instruction to ensure safety

alloc:

ld [head], R1

add R1, 4, R2

cas [head], R1, R2

cmp R1, R2

bne alloc

head

freetmr free free

– 20 –Kperfmon-MP March 12, 2001

tcp_lookup()tcp_lookup()
cnt-cpu0…

rd cpu#, r0
ldx cnt[r0], r1
add r1, 1, r2
casx r2, cnt[r0]
…

Code Patch AreaCode Patch Area Data AreaData Area

(entry)

Per-CPU performance data

• Instrumentation code is shared by all CPUs

• Per-CPU copies of the primitive’s data
– Two copies are never placed in the same cache line

cnt-cpu1

cnt-cpu31

– 21 –Kperfmon-MP March 12, 2001

timer-cpu0

Data AreaData Area

timer-cpu1

Migration Between Primitives

• Wall ti mer started on CPU0, stopped on CPU1

• Counters and CPU timers are not affected

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

context switchcontext switch

CPU0

– 22 –Kperfmon-MP March 12, 2001

timer-cpu0

Data AreaData Area

timer-cpu1

Migration Between Primitives

• Wall ti mer started on CPU0, stopped on CPU1

• Counters and CPU timers are not affected

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

context switchcontext switch

CPU0

– 23 –Kperfmon-MP March 12, 2001

timer-cpu0

Data AreaData Area

timer-cpu1

Migration Between Primitives

• Wall ti mer started on CPU0, stopped on CPU1

• Counters and CPU timers are not affected

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

context switchcontext switch

CPU0

– 24 –Kperfmon-MP March 12, 2001

timer-cpu0

Data AreaData Area

timer-cpu1

Migration Between Primitives

• Wall ti mer started on CPU0, stopped on CPU1

• Counters and CPU timers are not affected

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

context switchcontext switch

CPU0

CPU1

– 25 –Kperfmon-MP March 12, 2001

timer-cpu0

Data AreaData Area

timer-cpu1

Migration Between Primitives

• Wall ti mer started on CPU0, stopped on CPU1

• Counters and CPU timers are not affected

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

context switchcontext switch

CPU0

CPU1

– 26 –Kperfmon-MP March 12, 2001

timer-cpu0

Data AreaData Area

timer-cpu1

Migration Between Primitives

• Wall ti mer started on CPU0, stopped on CPU1

• Counters and CPU timers are not affected

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

context switchcontext switch

CPU0

CPU1

– 27 –Kperfmon-MP March 12, 2001

Solution: virtualization

• Implement wall ti mers on top of CPU timers!

Data AreaData Area

tcp_lookup()tcp_lookup()

(entry)

(exit)

start timerCPU0

timer-cpu0

timer-cpu1

– 28 –Kperfmon-MP March 12, 2001

Solution: virtualization

• Implement wall ti mers on top of CPU timers!

Data AreaData Area

tcp_lookup()tcp_lookup()

(entry)

(exit)

start timerCPU0

timer-cpu0

timer-cpu1

– 29 –Kperfmon-MP March 12, 2001

Solution: virtualization

• Implement wall ti mers on top of CPU timers!

Data AreaData Area

tcp_lookup()tcp_lookup()

switch-out

(entry)

(exit)

start timer

context switchcontext switch

CPU0

timer-cpu0

timer-cpu1

pause timer
record curr.

time

– 30 –Kperfmon-MP March 12, 2001

Solution: virtualization

• Implement wall ti mers on top of CPU timers!

Data AreaData Area

timer-cpu1

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

start timer

context switchcontext switch

CPU0

CPU1

timer-cpu0

pause timer
record curr.

time

add time
switched-out
restart timer

– 31 –Kperfmon-MP March 12, 2001

Solution: virtualization

• Implement wall ti mers on top of CPU timers!

Data AreaData Area

timer-cpu1

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

context switchcontext switch

CPU0

CPU1

timer-cpu0

add time
switched-out
restart timer

pause timer
record curr.

time

– 32 –Kperfmon-MP March 12, 2001

Solution: virtualization

• Implement wall ti mers on top of CPU timers!

Data AreaData Area

timer-cpu1

tcp_lookup()tcp_lookup()

switch-out

switch-in

(entry)

(exit)

stop timer

start timer

context switchcontext switch

CPU0

CPU1

timer-cpu0

add time
switched-out
restart timer

pause timer
record curr.

time

– 38 –Kperfmon-MP March 12, 2001

Conclusion

• Techniques for correct MP profili ng:
– Atomic memory updates to ensure thread safety

– Virtualized timers to handle thread migration

• Per-CPU data collection is important
– Provides detailed performance information

– Introduces fewer coherence cache misses

– 39 –Kperfmon-MP March 12, 2001

Future Work

• New metrics
– Locality of CPU assignments

– Per-thread performance data

• Formal verification of instrumentation code
for migration/preemption problems

• Ports to other architectures and OS’es

– 40 –Kperfmon-MP March 12, 2001

http://www.cs.wisc.edu/paradynhttp://www.cs.wisc.edu/paradynhttp://www.cs.wisc.edu/paradyn

The Big Picture

– 41 –Kperfmon-MP March 12, 2001

The Big Picture

•• Demo: Wednesday, Room 6372Demo: Wednesday, Room 6372

•• Available for download on requestAvailable for download on request
–– mailto:mailto: mirg mirg@@cscs..wiscwisc..eduedu

–– Public release in AprilPublic release in April

