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Abstract
Tree-based overlay networks (TBŌNs) have become

important for scalable data multicast and aggregation.
This infrastructure’s generality has lead to widespread us-
age in large scale and widely distributed environments
– environments in which reliability must be addressed.
This paper presents state compensation, a novel reliabil-
ity concept for TBŌN environments that avoids explicit
state replication (such as checkpoints) for failure recovery
by leveraging general properties of TBŌN computations
that allow computational state from non-failed processes
to compensate for state lost from failed ones.

In this paper, we present our state compensation mecha-
nisms, prove sufficient properties of distributed computa-
tions that make these mechanisms feasible and show how
to derive computation-specific recovery primitives from
these properties. We also present a case study of the
recovery process. The result is a general TBŌN recov-
ery model that requires no additional storage, network, or
computational resources during normal operation.

1 Introduction
As high-performance computing (HPC) trends to-

ward petascale power, supercomputers and computational
Grids with ����� and even ���	� processors are becom-
ing more common: topped by LLNL’s BlueGene/L with
131,072 processors, the systems on the June 2006 Top500
averaged 1747 processors and 31.4% (157 systems) had
at least 1024 processors [1]. As HPC systems continue to
get larger, application and tool developers face two major
challenges: scalable performance and system reliability.

TBŌNs1 for performance Tools and applications that
perform well at low scales eventually will experience
computational and I/O bottlenecks as they run at increas-
ingly larger scales. These bottlenecks lead to the sys-
tem’s scalability ceiling – the point beyond which addi-
tional computational power will not improve significantly
the system’s performance. Such scalability concerns have

1Although this term is not prevalent in the literature, we feel it offers
an intuitive and accurate description of the computational model.

lead to the emergence of tree-based overlay networks
(TBŌNs) as an important computational model for scal-
able distributed computing. A TBŌN is a hierarchal or-
ganization of processes used to implement data multicast,
gather and aggregation services. For data aggregation, fil-
ters are used throughout the TBŌN; filters may use persis-
tent state to relay information to subsequent invocations.
The flexibility of filters make them useful for obvious ag-
gregations, like min, max, count, and average, as well as
being surprisingly useful for many more complex ones.

Tree overlays (called multicast trees) had originally
been used for scalable multicast infrastructures [10]. Now
TBŌNs are becoming popular as middleware for data
gathering and aggregation services [3, 4, 7, 9, 11]. In con-
trast to these general-purpose infrastructures, several dis-
tributed tools use TBŌNs in application specific modes.
For example, Ganglia [13] and Supermon [14] use a
multi-level process hierarchies for efficient collection and
aggregation of system monitoring data.

More recently, we have shown that many algorithms
from areas like image processing, information retrieval,
and bio-informatics can use the TBŌN model for scal-
able performance [2]. Two key result of that work are: 1)
many commonly used data clustering and anomaly detec-
tion algorithms are based on an equivalence computation
in which some abstraction of equivalence is used to deter-
mine elements’ similarities, and 2) equivalence computa-
tions are a good fit for the TBŌN model – critical facts
as we will show that such computations meet the require-
ments of our reliability mechanisms.

The reliability problem As system size increases, the
mean time between failures decreases; therefore, reliabil-
ity must be addressed for effective use of large scale sys-
tems. However, to limit application perturbation, we need
mechanisms with low-overhead and resource utilization.

Concerns have been raised about the scalability of
traditional fault-tolerant techniques that rely on check-
points [6] or fail-over protocols [5]. For example, based
on a recent study, Elnozahy and Plank conclude that for
systems projected to be available by 2010, checkpoint
protocols will require dedicated resources and that poorly
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chosen checkpoint intervals may lead to overloaded net-
work and storage resources.

Given the increasing popularity of TBŌN infrastruc-
tures and the need to address reliability for petascale sys-
tems and beyond, we aim to develop scalable reliabil-
ity mechanisms for data aggregation in TBŌN environ-
ments, targeting non-transient, fail-stop process/node fail-
ures. While there has been much research on reliable mul-
ticast, we are unaware of any other work specifically fo-
cused on reliable aggregation.

Scalable TBŌN Reliability Gärtner observes that a
system cannot be reliable without spatial or temporal re-
dundancy [8]. For example, checkpointing employs both
– spatial redundancy to record program state and temporal
redundancy to repeat a portion of the system’s execution
after a rollback occurs. Our position in this paper is that
for important classes of TBŌN computations, we can get
spatial redundancy for free and use efficient operations to
roll forward a failed process’ state (potentially beyond its
state at the time of failure by incorporating state that the
failed process would have seen eventually). The result is
a scalable reliability model for TBŌN environments.

Our approach to TBŌN reliability, state compensation,
is based on two observations: 1) there exists an inherent
information redundancy amongst the computational states
at TBŌN processes; and 2) for certain computations, state
lost due to failure may be replaced by non-identical state
with little or no effect on the computation – a concept
we call computational consistency. We combine these
observations into the following strategy: compensate for
lost process state using redundant information from non-
failed processes; recovered state need not be identical,
only computationally consistent, to the state it replaces.

To take advantage of this strategy, we require that the
persistent state stored in each communication process and
the input/output packets of the TBŌN computation have
the same representation either directly or through known
mappings. Also, the filter computation must be distribu-
tive and associative. These requirements are met by all
stateful filters we have seen in practice, most notably,
all the equivalence computations that we have evaluated.
The result is a set of failure recovery mechanisms that do
not require any additional storage, network, or computa-
tional resources during normal execution. Other features
of our reliability strategy are relaxed consistency models
based on computational consistency, and failure confine-
ment where only a small subset of the entire tree partic-
ipates in recovery. Lastly, the mechanisms are broadly
applicable: having previously shown that many useful al-
gorithms reduce to equivalence computation [2], we show
that such computations are well-suited for our methods.

In the rest of this paper, we define our TBŌN environ-
ment and its relevant fundamental properties in Section 2.

In Section 3, we make the case for state compensation
by presenting the definitions, proofs and requirements as
well as a demonstration of how the filter function itself
can often be used for this operation. We conclude with a
case study and a discussion of practical issues.

2 TBŌN Model Fundamentals
In this section, we describe the TBŌN model, relevant

notation, and two fundamental TBŌN concepts for our
recovery methods: natural information redundancies and
computational consistency.

In the TBŌN model, depicted in Figure 1, applica-
tion processes (processes from the system directly lever-
aging the TBŌN) are connected by a tree of � inter-
nal or communication processes, �������	�
�����
���������
������� .
Collectively, the root and leaf processes are called end-
points. This tree of processes, connected via FIFO chan-
nels, serve as conduits through which application-level
packets flow amongst end-points. Upstream flows prop-
agate toward the root, downstream flows away.

...

Tree of
Communication

Processes

Packet Filter

...

Filter

State

Application-level packet

Figure 1: The components of a TBŌN.

Data filters permit the placement and control of
application-level logic throughout the TBŌN infrastruc-
ture. This feature is used to perform data aggregation op-
erations on packet flows. A filter, � , can be any function
that inputs a set of packets and outputs a single (poten-
tially null-valued) packet2. Persistent filter state, used to
carry information from one filter execution to the next, in-
creases the power of the filter abstraction. ��������������� is
����� ’s state after � filter invocations.

Naturally, as packets flow upstream, output from chil-
dren become input to parents. The next pending input
from child ���! to parent ����� is labeled "$#%�$�����&�'���� (� .
For convenience, we use )*�+�����,��� to designate the set of
next pending packets from all children of ��� � . Analogous
to input, -�.0/������ � � is the filter output.

Using our notation, a filter, � is defined as:

�(-�.0/������ � ���,��� ��1 �2����� � �3�546�,7 )	�8����� � ���,��� � ����� � �:9
(1)

2The general TBŌN model does not preclude multiple filter outputs,
but in practice we have not seen the need for it.
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That is, a filter inputs the next packet from every child and
the current filter state and produces a new output while
updating its state.

As discussed in Section 1, the TBŌN model has been
used by many systems, all of which use standard data filter
operations like min, max, average, and count, and several
allow user-defined filters. Previously, we have demon-
strated more complex filter computations for distributed
clock-skew detection, time-aligned data aggregation, sub-
graph folding for scalable data presentation, and creating
data histograms [11, 12], and more recently for data clus-
tering/partitioning [2].

For stateful filters, persistent state generally cap-
tures the aggregated effect of processed inputs; new in-
puts/outputs become incremental updates to this state.
This is shown with a simple yet representative example,
the unique integer filter. This filter outputs the list of
unique values in its input stream using integer equiva-
lence. The state at each process is the history of unique
values. As inputs arrive, the filter may output the newly
calculated list of unique values or just the latest updates.
This example is particularly relevant since given large
classes of TBŌN computations reduce to integer equiva-
lence [2], if we solve the reliability problem for integer
equivalence, we do so for many computations!

Inherent Information Redundancies There exists a
natural information redundancy amongst the persistent
states of TBŌN processes in aggregation networks. This
redundancy occurs generally in TBŌN computations be-
cause the persistent state at each communication process,
a summary of the input stream filtered by that node, is nat-
urally replicated by communication processes as they suc-
cessively filter the input data as they propagate upstream.

Computational Consistency While a complete discus-
sion of computational consistency is beyond the scope of
this paper, we offer the intuition behind it. Essentially,
two computations are computationally consistent if given
the same initial state and input stream, they are guaranteed
to yield (eventually) identical output even if they transi-
tion through different intermediate states. Regarding our
recovery model, our protocols ensure that as the TBŌN
continues to process its input stream after a failure recov-
ery, the output stream eventually will return to match what
it would be had the failure not occured, though some inter-
mediate (typically expendable3) results may be omitted.

3 State Compensation
For computations that fit our model of computational

consistency, we can define recovery operations based on
state merging (merging computational states from TBŌN
processes) to compensate for state lost due to failure. In

3Data from missing output is contained in the final output stream.

this section, we outline our recovery model and define
state composition, the focal compensation operation of
this paper. We then prove the key properties of TBŌN
computations that lead to state composition and derive
composition operations based on these properties.

Our strategy to recover from failure is: 1) detect a fail-
ure, 2) reconstruct the process tree to accommodate the
failure, 3) generate compensatory state for any lost state,
4) reintegrate the regenerated state into the tree and, 5)
resume normal operation. Failure detection and tree re-
construction issues are orthogonal to our recovery model
and not discussed in this paper. We now describe Steps 3
and 4, the use of filter state operations to regenerate and
re-integrate lost state into the TBŌN.

State Composition State composition is motivated by
situations where we want to reconstruct the state of a
failed parent from those of its children. The idea is similar
to the piecewise deterministic concept which states that a
computation can be pieced into sequences of determinis-
tic execution each starting with a non-deterministic event,
typically a message receipt, and that these messages can
be logged for exact replay of the computation upon fail-
ure [15]. In state composition, the (effects of a) process’
input messages are captured in the filter states of its chil-
dren which are used to replace the parent’s state after a
failure. Using a binary tree (without loss of generality)
and � as the composition operator, composition becomes:

����� ��������� 4 �����2�$���� (��� ����� ������� �3� (2)

That is, given a TBŌN in which ����� is the parent of ���! 
and ����� , the composition of ���  and ����� ’s states is a
compensatory state for ��� � . By the nature of a TBŌN,
downstream processes will have filtered more input than
upstream processes. Additionally, different processes at
the same level in the tree may execute at different rates. So
for Equation 2, � �
	�� � and � does not have to be equal to
	 . When filter states from children are composed, the gen-
erated state represents that of a parent synchronized with
its children. Informally, two processes are synchronized
if there are no pending messages between them. In other
words, the regenerated filter state at the parent reflects the
parent having filtered all the input data that its children
have filtered. This means that state composition also
compensates for the messages lost due to failure!

This approach, however, works only when the filter
computation is idempotent; that is, repeated application of
the same input has the same effect as one application. This
is because the state histories used in composition contain
the entire input history, including messages that have been
filtered in the upper levels of the tree. For non-idempotent
computations, composition results in over-valuation – ef-
fectively, every message already filtered above the point
of failure will be filtered again resulting in incorrect out-
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put. A potential approach for non-idempotent computa-
tions is discussed in Section 4.

We say filter state for a particular filter is composable
if the filter state of some other group of processes in the
network can be used to regenerate that state, and the gen-
erated state is computational consistent with the original
state. We observe that composability exists when the out-
put of a filter is a copy of its updated filter state, and the
filter function, � , becomes the composition operation.

Theorem 3.1 Given the definition from Equation (1):
�(-�.0/����������3�
������1 � �������$�3� 4 �,7 )	�8�������$���
����� �$��� ����9 , if
-�.0/��������$��� ������1 � �������:� , then � can generate compen-
satory states for ���,� using its children’s states.

Proof Let ����� be a process with children, ���  and ����� ,
and � be a composable filter. By the definition of TBŌN
computations, outputs from children become inputs to
parents; in this case ��-�. /��$���! (� , -�. /��$��� �	�'� = )	�+�$��� ��� .
Since we assume that the filter state of the children pro-
cesses are a copy of their output, -�.0/������  ���� ���3�������! ��
and -�.0/��������2��� ���3��������� � .

By substitution, we can redefine the filter function of
��� � in terms of the filter state of its children:

�(-�.0/����������3�����3�����������'�54 �,7��
���3� �����! ��3������� �$��� �	�'�*� � 9
That is, by applying � to the filter state of ��� � ’s children,
we can compensate for the filter state of ����� . We can
substitute

�
, the null value, for the initial state of the filter

since the states from the children are aggregates of the
entire input history and subsume the parent’s filter state.

For the class of filters where filter states are not copies
of its output values, composability exists if filter states
can be mapped to the output: given a filter � , there exists
a mapping � such that, -�.0/������,��������7 ����� �$��� ��� 9 . A
simple extension to the proof of Theorem 3.1, where the
inputs to � are the outputs of � applied to the filter state
shows this property also leads to composability.

To understand � ’s derivation in practice, recall that,
generally, filter state is an aggregate of the input history,
and outputs are the incremental updates caused by new
inputs. � could then be the derived from the operations
used by the filter to calculate the incremental difference
between its previous and current states. For equivalence
computations, the outputs are typically set data structures,
and � becomes the set difference operator.

To complete recovery, compensatory state must be inte-
grated into the new or preexisting process that adopts the
orphaned processes. This is achieved simply by propagat-
ing the inputs states to the composition operation as inputs
to the filter at the take-over process. If the take-over pro-
cess is a new communication process, then its initial filter
state before processing the inputs will be

�
as in the dis-

cussion above. If a process with prior children is chosen,

then it’s initial state before composition will be the state it
had at the time it was preempted for recovery.

4 Case Study and Discussion
In this section, we solidify the concept of state com-

pensation with a case study of recovery performance and
a discussion of some practical matters.

As discussed in Section 2, many compelling algorithms
reduce to the integer equivalence computation. Therefore,
this computation should be sufficient to demonstrate the
generality of our recovery mechanism. In this compu-
tation, the TBŌN calculates the list of unique values in
the input stream. On each execution, the filter outputs
the unique values not previously seen in the input stream.
Now consider the scenario shown in Figure 2 in which the
root of the given sub-tree has failed. In this case, the com-
putational state at the failed process, along with the in-
transit messages from it’s children, are lost. Since the inte-
ger equivalence filter exhibits all the properties discussed
in the Section 3, namely input/output and filter state of the
same form, associativity, distributivity and idempotence,
we can compose the state of the orphaned children using
the integer equivalence filter as the composition operation.
The resulting state, �	� ��
�������
 � , can now be integrated into
the process assuming the role of the failed one, and the
resulting TBŌN is guaranteed to produce the same results
that would have been produced by the original system had
it not experienced a failure.

We briefly discuss the filter that implements a
subgraph-folding algorithm (SGFA) [12] to show how our
simple case study extends to complex filters. The SGFA
merges subgraphs into a single one by calculating equiv-
alent subgraphs and removing redundancies. The filter
state at each TBŌN process is the graph resulting from
the merger of previous input, and the output is updates to
this merged graph caused by new inputs. Just as in in-
teger equivalence, the filter states (graphs) from a failed
node’s children can be passed through the SGFA filter to
compensate for state lost from a parent’s failure.

Our recovery process can be implemented as follows:
after a failure is detected, the process chosen to be the
new parent of the orphaned processes sends a message to
the orphaned processes, which signals that they are being
adopted by this process. After the new parent/child rela-
tionships are established, the children delete any buffered
packets that were destined for their original parent (since
the effect of these packets are captured by state compo-
sition) and propagate the current filter state for all active
streams to the new parent as outputs. When these states
are read as inputs by the filter in the new parent, the state
that compensates for the lost state becomes integrated into
the state of the new parent. After propagating a stream’s
filter state for composition, a child process can resume
normal input processing for that stream.

4



3,7

2,7 3,6

2 6

2,3,6,7

{2,7}        {3,6} 

Figure 2: To compensate for the lost filter and channel
state after failure of the subtree’s root, computationally
consistent state obtained by composing the failed process’
children’s states is used.

We can model recovery performance as:
	�����-���� 	�� �
	*/���#��
� � ����� ����������� -

where � is the number of orphans being adopted, � is the
latency to send a single message, � is filter state size, � is
bandwidth, � is computation time for a single filter ex-
ecution, and - is a “catch all” for incidental overhead,
like calculating the list of orphans and message process-
ing. In practice, � is typically less than 64, so ��� the
time to send the NEW PARENT messages is low. Even
for systems with commodity network interconnections,
with filter state size typically on the order of megabytes;
����� , state transmission times, can also expected to be low.
For complex filters, incidental overhead should be negli-
gible compared to filter execution time which we expect
to dominate recovery. At any rate, it is reasonable to ex-
pect very low recovery latencies – a big win given that our
overhead during normal execution is nil, and the trade-off
is typically quick recovery vs. low runtime overhead.

Discussion Currently, orphaned sibling processes all
must be adopted by the same parent. We are studying
the notion of “state splitting,” which would allow us to re-
distribute filter state more flexibly – allowing us to assign
new parents to orphaned processes more flexibly as well.

We also are investigating other state merging operations
to complement state composition. For example, state de-
composition operations can generate compensatory states
for a failed child by “extracting” the composition of its
siblings’ states from that of its parent. We believe state
extraction will also prove useful to precisely calculate the
(effect of) lost messages and compensate for lost channel
state in non-idempotent computations . This will avoid
over-valuation by only compensating for lost messages,
not those that have been filtered above the failure point.

Finally, this work focuses on the reliability of TBŌN
infrastructures; we do not address application process fail-

ures outside of the TBŌN since there may be other appli-
cation state that needs to be recovered. Our techniques
complement traditional approaches like explicit check-
points that may be needed to tolerate such failures.
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