
Shared-Memory Performance Profiling

Abstract

This paper describes a new approach to finding performance
bottlenecks in shared-memory parallel programs and its
embodiment in the Paradyn Parallel Performance Tools running
with the Blizzard fine-grain distributed shared memory system.
This approach exploits the underlying system’s cache coherence
protocol to detect data sharing patterns that indicate potential
performance bottlenecks and presents performance measurements
in a data-centric manner. As a demonstration, Paradyn helped us
improve the performance of a new shared-memory application
program by a factor of four.

1 Introduction

Distributed Shared Memory (DSM) alleviates some of the
difficulty of programing a parallel computer by hiding the
details of communication. The abstraction of a shared
address space, while convenient, can also hide serious com-
munication bottlenecks that cripple a program’s perfor-
mance. To effectively use shared memory, programmers
need performance tools capable of piercing this abstraction
and relating a program’s behavior to the underlying hard-
ware’s actions.

This paper describes a new technique for collecting and
displaying shared-memory performance information. The
first key aspect of this approach is to detect cache block
sharing patterns that indicate potential performance bottle-
necks. Our current system detects these patterns at low cost
using a modified cache coherence protocol for the Blizzard

fine-grain distributed shared memory system [25] running
on the Wisconsin Cluster Of Workstation (COW).1 The
other key aspect of our technique is to use the Paradyn Par-
allel Performance Tools [22] to present shared-memory per-
formance data in a data-centric manner, which relates events
on cache blocks to program data structures.

Shared memory programs communicate through refer-
ences to shared data. The underlying system (hardware,
software, or both) responds to a memory reference by com-
municating, to obtain a copy of data (which is typically
cached for subsequent references) and to maintain the glo-
bal state necessary to implement a coherent programming
model. At a load or store, the actual communication
depends on the memory system’s protocols and the pro-
gram’s dynamic state in ways that can be difficult to under-
stand or predict [9].

Nevertheless, detecting this hidden communication is
essential to isolate and eliminate many shared-memory per-
formance bottlenecks. For example, a cache block’s migra-
tory behavior may indicate false sharing, which a
programmer can eliminate by aligning and padding data
structures. Moreover, recent research has focused on new
tools, such as custom protocols and extensible memory sys-
tems, that offer programmers far greater control over shared
memory systems [3, 28]. For example, a programmer can
greatly reduce the cost of producer-consumer sharing by
increasing the cache block size or using an invalidate, rather
than update, protocol [7]. Again, understanding a program’s
access pattern is the necessary first step to improving its
shared-memory performance.

The first step in memory profiling is to detect access
patterns that indicate performance problems. Our pattern
detection mechanism is integrated in a shared memory
cache-coherence protocol, so it incurs little overhead and
requires no changes to programs. More importantly, this
mechanism associates addresses with events, so a perfor-
mance tool can present measurements at the program’s level
of abstraction. The performance tool can use these
addresses to relate memory accesses to a program’s data

1. The Wisconsin Cluster of Workstations (COW) is a collection of
40 Sun SPARCStation 20’s (with dual 66Mhz Ross Hyper-
SPARC processors) connected by a Myricom Myrinet and
100MB Ethernet.
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structures and use conventional profiling techniques to con-
nect accesses with the statements that execute them. We call
this processshared-memory performance profiling. Memory
profiling by itself cannot find all performance problems, so
we built memory profiling into the more extensive facilities
of the Paradyn performance tool.

Although this work exploits Blizzard’s custom proto-
cols, other systems can also provide mechanisms to associ-
ate shared memory communication with data. Any
hardware shared-memory platform can support a fine-grain
DSM system, like Blizzard [25] or Shasta [24], that exposes
a coherence protocol for performance debugging. Since the
underlying shared-memory hardware provides fast commu-
nication, a DSM system of this sort would incur only mod-
erate overheads. Alternatively, a platform may provide
hardware features, such as informing memory operations
that trap on cache misses [12], which can be used to associ-
ate a program’s memory references with a coherence proto-
col’s actions.

This paper illustrates the use of memory profiling
through an extended case study of tuning a new shared-
memory protein folding code [13] from researchers in the
University of Wisconsin Chemical Engineering Depart-
ment. With the help of memory profiling and Paradyn, we
improved this application’s performance by more than a fac-
tor of 4 to an efficiency of 80% on 16 nodes.

The paper is organized as follows. Section 2 briefly
reviews the features of Paradyn. Section 3 describes our
approach to shared-memory profiling and our implementa-
tion techniques. Section 4 contains a case study that illus-
trates how Paradyn and shared memory profiling help
identify and eliminate performance problems. Section 5 dis-
cusses automating the search for performance bottlenecks.
Section 6 describes related work.

2 Paradyn Basics

This section briefly describe the basic characteristics of the
Paradyn performance tools. Readers familiar with Paradyn
can skip this section. Paradyn is a parallel performance
measurement tool that currently runs on SPARC, Alpha,
Power2, PA-RISC, and x86 platforms [22]. Paradyn is based
on dynamic instrumentation, a technology that allows
instrumentation code to be inserted, changed, and removed
from a running application. Beside standard performance
metrics such as CPU usage and blocking time, Paradyn can
instrument other system, hardware, or network activity visi-
ble from an application program’s address space.

Paradyn provides two basic abstractions:metric and
focus. A metric is a time-varying function that measures
some aspect of an application’s performance, for example,
CPU utilization or number of procedure calls. A focus is a
component of a running application. Paradyn views a pro-
gram as a collection of resource hierarchies that represent
various elements of a program, such as code (modules, pro-
cedures), machines (hosts), or synchronization (messages,
semaphores, locks). A collection of nodes in the resource
hierarchy forms a focus. Tool users request Paradyn to col-
lect metrics for the foci in which they are interested, and
Paradyn dynamically instruments the program according to
this criteria.

Figure 1 shows Paradyn’s display of two resource hier-
archies. The “Code” hierarchy appears on the left and con-
tains modules in the program. Under each module is the
procedures in the module. For memory profiling, we defined
a new resource hierarchy (“Memory”) that lists a program’s
major data structures. Under each data structure is a list of
the cache blocks (identified by their memory addresses).

Figure 1: Resource Hierarchies in Paradyn.
“Code” and “Memory” hierarchies visible.



3 Shared-Memory Performance Profiling

The first step to alleviate a performance bottleneck is to
detect it. In shared memory systems, many performance
problems arise from excessive communication due to the
interaction of a program’s data accesses and the system’s
fixed cache coherence policy. For example, when a cache
block contains values used separately by two processors,
false sharing can cause a memory access to produce four or
more messages. False sharing, like many shared-memory
bottlenecks, is often difficult to detect statically, but is
readily apparent at run time.

This section describes our technique for shared-mem-
ory performance profiling.

3.1 Pattern Detection

An obvious place to detect patterns in shared-memory
communication is from within the coherence protocol that
satisfies memory references. Most coherence protocols are
expressed as a state machine driven by operations on a
cache block. Some recent systems, including our Blizzard
platform and commercial systems such as Sequent’s
NUMA-Q system [20], implement these state machines in
software, which opens the possibility of introducing new
states and actions to recognize access patterns indicative of
performance problems. These states and actions should not
change the behavior of the coherence protocol. Instead, they
provide an efficient mechanism for recognizing patterns in
transitions of a state machine.

Our pattern detection mechanism currently detects pro-
ducer consumer, migratory, grouped, and read-only access
patterns. LetR represent a memory read,W represent a
write, subscripts distinguish cache blocks, and superscripts
distinguish processors. A block’shome node is the proces-
sor on which the block is originally allocated. This machine
performs protocol actions for the block in many directory-
based coherence protocols. The block’sowner is the proces-
sor that currently has write access.

A migratory access pattern occurs when a block is
accessed by different processors, in turn. For a given inter-
val, only one processor accesses the block, so sharing is
sequential, not concurrent. A coherence protocol sees
migratory accesses as a sequence of events of the form:

(Wi)(Ri|Wi)*(Rj)(Wj)(Rj|Wj)* where i≠ j. To detect migra-
tory sharing, our augmented protocol records a block’s last
owner at its home node. When a read or write request from
another processor arrives, the augmented protocol updates
the block’s lastOwner  field. When the home node
receives a upgrade request (a write to a read-only block) and
the number of sharers is one, the protocol compares the
requestor against thelastOwner . If they differ, then the
block appears to be migrating fromlastOwner  to the
requestor, and the augmented protocol records that the block
is migratory. The protocol clears this property iflas-

tOwner  is the same as the requestor or the number of shar-
ers is not one.

A producer-consumer access occurs when a block is
written by one processor and subsequently read by one or
more other processors, and this process repeats. The home

node sees the events: (Wi(Ri|Wi)*(Rj)+)* where i ≠ j. As
with migratory blocks, at a write miss to a block in the read-
shared state, the augmented protocol compares the requestor
against the block’slastOwner . If identical, the block is
likely used in a producer-consumer relationship. More accu-
rate information can be obtained by checking the block’s
sharer list against the requestor.

A group access occurs when a reference to a cache
block is always followed by references to a collection of
other blocks. LetA be an abbreviation for [W|R]. With this
pattern, a home node repeatedly sees events of the form:

A i
xA j

x.... To detect this pattern, the augmented protocol
tracks, in a variablelastAccessed , the block that a pro-
cessor last accessed. Each block records three extra fields:
groupId , guess , and accessInGroup , which the
algorithm in Figure 2 uses to detect group accesses.

3.1.1 Implementation Alternatives

Augmenting a coherence protocol to collect additional
information incurs a cost in both space and time (see
Section 3.2.2). It is unrealistic to expect a parallel computer
to use an augmented protocol as its default or for architects
to build such a protocol in hardware. Fortunately, many
recent distributed shared memory (DSM) systems imple-
ment cache coherence protocols in software
[1,7,16,17,18,20,23,24], which offers advantages over hard-
ware, not the least of which is the ability to support more
than one coherence protocol. Software protocols also enable
tools, such as Paradyn, to instrument and measure a proto-
col.

A less radical alternative is informing memory opera-
tions, which either set a condition code or trap on a cache
miss [12]. These, or similar, operations can be used to detect
protocol transitions in hardware-based shared memory sys-
tems. The performance instrumentation could maintain a
shadow directory that tracks which processors have copies
of each cache block. At a cache miss in the shared address
space, the information in this directory suffices to determine

If (currentBlock.guess == lastAccessed)
{

currentBlock.groupId = lastAccessed.groupId;
currentBlock.accessInGroup = true;
lastAccessed.accessInGroup = true;

} else {
currentBlock.guess = lastAccessed;
currentBlock.groupId = address(currentBlock);
curentBlock.accessInGroup = false;

}
lastAccessed = currentBlock;

Figure 2: Algorithm to Detect Group Sharing.



which actions a coherence protocol would perform.

Another alternative, for systems with no hardware sup-
port, is to performance tune programs using a fine-grain dis-
tributed system, similar to Blizzard [23] or Shasta [24].
Although this software layer is redundant for hardware
shared-memory systems, it exposes the coherence protocol
to a performance tool. Moreover, hardware shared mem-
ory’s low latency ensures that the software overheads of the
DSM system will be moderate.

Performance counters in existing systems, for example
Sun’s UltraSPARC [27], record how many cache misses
occur in an interval. However, these counters cannot fully
support memory performance profiling, as they provide no
information about which cache blocks incurred misses.

3.2 Memory Profiling

Memory profiling associates coherence activity with a pro-
gram’s data structures and code. It forms the necessary
bridge between low-level coherence activities, which oper-
ate on cache blocks, and a programmer, who thinks at a
higher level of abstraction. Memory profiling extended
Paradyn in two ways. First, we added many new memory-
and cache-specific performance metrics. Second, we added

data-centric views for both existing and new performance
metrics.

The new performance metrics include frequency and
time for many coherence events, messages, and synchroni-
zation events. Figure 3 lists the new memory performance
metrics. Since Blizzard’s cache coherence protocols run in
an application’s address space, Paradyn collects these met-
rics with its usual instrumentation techniques.

Performance profiling typically associates a metric with
a control structure in a program. For example, a tool reports
CPU time or messages for a module, procedure, loop, or
statement. The complementarydata-centric view associates
metrics with data structures and often provides new insights
into a program’s interaction with the memory system. Data-
centric presentations have been used for distributed arrays
in data-parallel languages [14,15] and in cache tools for
sequential programs [8,19]. The data views that we added to
Paradyn combine fine-grained profiling (down to individual
cache blocks), scalability (large data structures and large
programs), and low overhead. To present this data, we
added a new Paradyn resource hierarchy for shared memory
(see Figure 1). Shared-memory resources currently fit in a
two-level hierarchy consisting of data structures and cache

Metric Name Description Metric Name Description

targetBarrier Count of application-level barrier ops targetBarrierWall Time at application-barriers

activeMessages Count of active messages activeMessageWall Time for active messages

bulkDataTransfers Count of bulk data transfers bulkDataTransfer-
Wall

Time for bulk data transfers

pageFaults Count of page faults pageFaultWall Time for page fault handling

memoryBlockTime Wall time spent on all coherence misses

stacheReadMisses Count of read misses on non-home nodes stacheReadMissWall Time for non-home read miss handling

homeReadMisses Count of read misses on home node homeReadMissWall Time for home read miss handling

stacheWriteRO Count of write misses on read-only blocks, non-home
nodes

stacheWriteROWall Time for write misses on read-only blocks, non-home
nodes

homeWriteRO Count of write misses on read-only block, home node homeWriteROWall Time for write misses on read-only blocks, home
node

stacheWriteInv Count of write misses on invalid blocks, non-home
nodes

stacheWriteInvWall Time for write misses on invalid blocks, non-home
nodes

homeWriteInv Count of write misses on invalid blocks, home node homeWriteInvWall Time for write misses on invalid blocks, home node

invRO Count of invalidations on read-only blocks invROWall Time for invalidations on read-only blocks

invRW Count of invalidations on writable blocks invRWWall Time for invalidations on writable blocks

Polls Count of poll operations SentMsgs Count of messages sent

SelfMsgs Count of messages sent to self Acks Count of acknowledges

MsgBytes Count of message bytes RecvMsgs Count of messages received

BufMsgs Count of messages buffered PollMsgs Count of poll messages

Figure 3: Blizzard/Paradyn Memory Performance Metrics.
New performance metrics for Blizzard cache coherence protocols.



blocks.

3.2.1 Implementation

Paradyn creates counters or timers to collect perfor-
mance metrics for a cache block or data structure and uses
dynamic instrumentation to insert code to update a counter
or timer. Paradyn’s data collection facility periodically reads
values from these counters or timers and ships them to the
Paradyn front end. For example, to measure the time to han-
dle coherence misses, Paradyn inserts code that starts a
timer when a fault occurs and stops the timer when the
application resumes. To record performance statistics for a
cache block, Paradyn allocates a counter or timer for the
block, and inserts code into the coherence protocol to
update the counter or timer at faults on the block. To moni-
tor a contiguous data structure, Paradyn updates the struc-
ture’s counter when a fault falls inside the structure’s
boundary.

A major challenge in memory profiling is handling the
large number of cache blocks in shared-memory applica-
tions. These blocks form a much larger focus than the other
ones that Paradyn typically handles. We reduced the over-
head of shipping shared memory information to the Paradyn
front end by compressing shared-memory information and
batching several messages together.

3.2.2 Memory Profiling Overhead

A second challenge is to control the instrumentation
overhead. Instrumentation in a protocol handler must dis-
criminate between a monitored and unmonitored block,
which becomes expensive as the number of monitored
blocks increases. We optimized the instrumentation code,
with a technique called “vectorization”, in which Paradyn
allocates a vector of counter/timers for all monitored cache
blocks and indexes into the vector (instead of allocating sin-
gle counters or timers and testing for individual cache
blocks). Vectorization reduced the instrumentation overhead
from a cost linearly proportional to the number of moni-
tored cache blocks to a constant cost. The vectorization test
has approximately the same cost as instrumenting three
cache blocks with the simpler approach. Further details are
reported elsewhere [11].

Figures 4 and 5 report the overhead of profiling cache
blocks and data structures. The measurements are from ver-
sion 3a of the protein folding application (see Section 4).
Figures 4 and 5 show that, with vectorization, the instru-
mentation overhead of 2% is independent of the number of
profiled cache blocks. Data collection overhead is linearly
proportional to the number of counters and timers. The data
collection overhead is about 9% for 240 counters/timers

Number of
cache blocks

No
instrumentation

Counter-based Metrics Timer-based Metrics

Instrumentation
 only

With data
collection

Instrumentation
 only

With data
collection

10 129.3 131.5 (2%) 134.3 (4%, 2%) 132.4 (2%) 134.6 (4%, 2%)

20 129.3 132.1 (2%) 137.4 (6%, 4%) 132.2 (2%) 137.6 (6%, 4%)

40 129.3 132.2 (2%) 142.5 (10%, 8%) 132.1 (2%) 144.0 (11%, 9%)

Figure 4: Overhead of Profiling Cache Blocks with Vectorization.
6 counters or timers (i.e., 6 performance metrics) per cache block. The stache block size is 128 and the application ran on 8

processors. Times are in seconds. Numbers in parentheses are percent increase over “No Instrumentation” case.

Number of
cache blocks

No
Instrumentation

Counter-based Metrics Timer-based Metrics

Instrumentation
 only

With data
collection

Instrumentation
 only

With data
collection

100 blocks 129.3 131.6 (2%) 132.6 (3%) 131.7 (2%) 132.6 (3%)

200 blocks 129.3 131.4 (2%) 132.6 (3%) 131.6 (2%) 133.0 (3%)

400 blocks 129.3 131.5 (2%) 132.8 (3%) 132.3 (2%) 133.0 (3%)

Figure 5: Overhead of Profiling cache blocks with Aggregation.
6 counters or timers (i.e., 6 performance metrics) per data structure. The stache block size is 128 and the application program

ran on 8 processors. Times are in seconds. Numbers in parentheses are percent increase over “No Instrumentation.”



(40×6).2 Profiling an entire data structure is far less expen-
sive than profiling its blocks separately, as instrumentation
overhead is independent of the size of a data structure and
data collection cost is proportional to number of counters or
timers. Profiling a data structure with 6 metrics incurs an
overhead of approximately 3%.

4 A Case Study

To illustrate how memory profiling can help identify and
eliminate performance bottlenecks in a shared-memory
application, we tuned a new parallel application with the aid
of Paradyn. The application was written in the Chemical
Engineering Department at the University of Wisconsin. It
uses a weighted-ensemble Brownian (WEB) dynamics algo-

2.  More recent versions of Paradyn use a new data collection tech-
nique based on shared memory that further reduces data col-
lection costs.

rithm [13] to simulate protein association reaction (folding).
The first version (version 0) of the application was written
in Fortran 77 and ran on a SGI Power Challenge. Version 0
alternated sequential code with parallel loops (doacross
with directives). We converted Fortran to C withf2c , mod-
ified it for the shared-memory programming model on the
Wisconsin COW (Cluster Of Workstation), and started our
performance tuning (version 1).

4.1 A Sequential Performance Bottleneck

The first performance problem that we encountered was
that the serial portions of the application consumed a signif-
icant fraction of its total execution time. Much of this time
was spent handling coherence misses. Figure 6 shows Para-
dyn’s display of the execution times of a few important rou-
tines and the time spent handling coherence misses in each
function. The left bar chart in Figure 6 shows node 0,which
executes the sequential code. The right bar chart shows exe-

Figure 6: A Sequential Performance Bottleneck (version 1).
The bars label the resource being profiled. For example, “ranuls_,cow01.cs.wisc.edu” is the data for procedure “ranuls_ ”
running on host “cow01.cs.wisc.edu ”. The exec_inclusive ” metric is the total elapsed time spent in a procedure

and the procedures it calls. The “memoryBlockingTime ” is the total time spent waiting for shared-memory delays.

Figure 7: Blocking Time due to Coherence Misses (version 1).



cution and coherence miss times on another node. The
behavior of nodes other than node 0 are similar to the right
bar chart.

From Figure 6, it is clear that when the serial part runs
on node 0 (bottom bars labeledwrn_ ), the other nodes sit
idle. This serial code consumes about 40% of the total exe-

cution time on 8 nodes, and2⁄3 of this time is due to coher-
ence misses (the lighter bar shows coherence miss time).
Another observation from this figure is that coherence
misses in the parallel phase (functions other thanwrn_ ) are
not as costly.

To find which data structures incurred these coherence
misses, we associated coherence miss times with the major
shared data structures in the application.The program uses
three major shared data structures:rxncor  tracks the reac-
tion coordinates of all particles,part  stores the orientation
and position of the particles, andweight  stores the parti-
cles’ weights. The bar charts in Figure 7 show coherence
miss times for the major data structures on node 0 and
another node. The data structure labeledGM->rxncor  is
the data structure that stores the reaction coordinates. The
data structure labeledGM->weight  stores the weight of all
particles, and the bars labeled withGM->part_0_  to GM-
>part_7_ are fragments of the particle data structure.

Figure 7 shows that references to the particle data struc-
ture causes the most coherence misses. In addition, node 0
misses on most parts except for the fragment labeledGM-
>part_0_ , and nodei ( ) misses on the fragment
labeledGM->part_i_ . Together, these facts suggest that
the fragmentGM->part_i_  bounces back and forth
between node 0 and nodei. Profiling cache blocks belong-
ing to rxncor  revealed the same phenomena. Further evi-
dence came from the pattern detection, which showed that

cache blocks ofrxncor  have a migratory access pattern
and cache blocks ofpart  have both migratory and pro-
ducer-consumer patterns.

4.2 Restructure the Folding Application

Examining the code showed that in the parallel phase of
the application, each processor moved a portion of the parti-
cles. Then, the serial code sorted particles by their reaction
coordinates and split or combine them to simulate a reac-
tion. Although a custom protocol could transfer data more
efficiently, we chose to restructure the application to elimi-
nate this serial bottleneck. The performance data guided this
design decision. After eliminating the coherence misses, the
sorting, splitting and combining phase would still consume
15% of the total execution time (8 nodes), which would
severely limit the program’s speedup.

The modified code partitions particles according to
their reaction coordinate and parallelize the serial phase, so
each processor sorts, splits, and combines its particles. This
change introduced an auxiliary data structuretmpl  that
tracks which processor owns a particle. The program after
restructuring is called version 2.

Parallelizing the serial phase eliminated the sequential
bottleneck and made computation and communication on
different nodes symmetric. Although the change improved
performance by a factor of 2, the program’s speedup was
still unsatisfactory (5.9 on 16 nodes). Memory profiling
showed that considerable time was still spent handling
coherence misses and waiting at the barriers introduced for
the new synchronization. Figure 8 shows that for 8 nodes,
40% of the total time was spent handling coherence misses
(memoryBlockingTime) and about 20% of the time at  bar-
riers (targetBarrierWall). To find the cause of the high mem-
ory blocking time, we examined the program’s access

Figure 8: Memory Blocking and Barrier Wait Time (version 2).

1 i 7≤ ≤



patterns to see how the data structures were referenced.
Figure 9 contains a visualization of the program’s access
pattern, which shows that the cache blocks inpart_0_
have a mostly migratory access pattern.

As mentioned earlier, a migratory access pattern can
indicate false sharing. Examination of the code confirmed
that this data structure was not cache-block aligned. To
eliminate false sharing, we aligned and padded particles to
ensure that each particle fell inside a single cache block. We
call this version 3a. This alignment and padding drastically
reduced memory blocking time and improved performance
by a factor of 2. Figure 10 shows the time spent at barriers
and coherence misses after alignment and padding.

4.3 Load Imbalance

Figure 10 shows that coherence misses are no longer a per-
formance bottleneck. However, 20% of the program’s time
is still spent at barriers. The figure also shows that barrier
time is not evenly divided among nodes, which suggests a
load imbalance. As an experiment, we statically partitioned
the particles, according to their processor’s barrier waiting
times (version 3b). Figure 11 shows that static load balanc-
ing reduced barrier and coherence miss time. Since particles
move randomly, a dynamical load balancing scheme is nec-
essary in general.

4.4 Summary

Figure 12 summarizes our performance tuning. It
shows speedups of the different versions, including the orig-
inal Fortran version on SGI Power Challenge. The initial

version scales moderately up to 4 COW nodes, but its effi-
ciency dropped drastically after that. The restructured pro-
gram initially performed worse on a small number of COW
nodes, because of the extra work to track which particle
belong to which node. The program scaled better without
the sequential bottleneck, but the false sharing still limited
the overall speedup. Aligning and padding the shared data
structure improved performance considerably, but made the
load imbalance into the limiting bottleneck. A simple static
load balancing scheme improved performance slightly.
Although coherence was no longer a serious performance
bottleneck, we tried adding prefetching (version 3c), which
did not significantly improve performance.

To see whether performance optimizations can carry
over to different platforms, we also ported version 3a of the
application back to SGI Power Challenge using the shared-
memory programming model. The new version outperforms
the old Fortran version by 43% (see Figure 12). More
detailed experiments showed that the performance gain is
mainly attributable to eliminating the serial bottleneck. Pad-
ding and aligning only contribute up to 3% performance
improvement. Since the SGI Power Challenge is an SMP
with a much faster network, it is less sensitive to false shar-
ing. The speedup curves in Figure 12 show that the best
speedup on COW is slightly better than the speedup on the
SGI Power  Challenge. This result is encouraging. It indi-
cates that with the help of proper performance measurement
tools and performance tuning, a distributed shared-memory
machine can perform as well as a hardware shared-memory
machine.

Figure 9: False Sharing in The Particle Data Structure (version 2).
In pattern visualization, the blue (darkest boxes in black&white) shows the migratory access pattern, green (medium gray in
b&w) shows producer/consumer access, and yellow (light grey in b&w) shows an unknown pattern. The blocks marked with
an “X” are a block selected by a user and the blocks accessed in the same group as the selected block. The text in the right

corner shows information about the selected block.



Other people have also used the Blizzard version of
Paradyn to find shared-memory performance bottlenecks.
Brian Toonen used the tool to search for and validate perfor-
mance bottlenecks in the DSM system itself [28]. Satish
Chandra used the tool to monitor the performance of the
custom protocols he wrote for his HPF compiler for Bliz-
zard [3]. Trishul Chilimbi used the tool to tune the perfor-
mance of a database storage management system.

4.5 Discussion

The memory performance tool successful found the
performance bottlenecks in this application. Memory profil-
ing helped isolate the shared data structure that incurred the
most coherence misses. Pattern detection helped explicate
the algorithm’s sharing pattern and isolate the false sharing.
However, memory profiling by itself would not have found
all problems. Paradyn’s other performance measurement
facilities helped find the sequential bottlenecks, load imbal-
ance, and excessive barrier time.

Custom protocols offer a powerful, but time-consuming
option for improving program performance. One unantici-
pated benefit of memory profiling is that it can indicate

when custom protocols are not necessary to improve perfor-
mance.

5 Automated Search for Bottlenecks

Automating the search for bottlenecks can make perfor-
mance tuning less difficult. Paradyn’s Performance Consult-
ant searches for performance bottlenecks in different foci by
testing prewritten hypotheses. A hypothesis specifies a
potential performance bottleneck in terms of performance
metrics. It is usually a simple function of performance met-
rics and thresholds. For example, the hypothesis
CPUBound says there is a performance bottleneck if the
ratio of the two performance metricscpu_time  and
wall_time exceeds an adjustable threshold. Hypotheses
are organized into a tree-structured hierarchy. The Perfor-
mance Consultant guides the search with heuristics that
attempt to reduce search overhead and find bottlenecks
quickly

To automate the search for shared-memory perfor-
mance bottlenecks, we added new hypotheses for the
shared-memory metrics and integrated them into the exist-

Figure 10: Barrier Time Shows Load Imbalance (version 3a)

Figure 11: Barrier and Memory Blocking Time after Static Load Balance (version 3b)



ing hierarchy. Figure 13 shows the new hypothesis hierar-
chy, rooted at “Memory”. Memory bottlenecks are divided
into read miss and write miss. Write is further subdivided
into misses due to writes to read-only blocks and misses due
to writes to invalid blocks. All hypotheses then subdivide
into misses at home and non-home nodes.

As a demonstration, we applied the Performance Con-
sultant to version 2 of the program. The search results are
shown in Figure 14. The blue (dark gray, in black&white)
nodes are problems that the Performance Consultant suc-
cessfully identified. The first is an “ExcessiveMemory-

BlockingTime” bottleneck, which the Performance
Consultant further refined to individual data structures. Parts
of four particle data structures (GM->part_0_  to GM-
>part_4_ ) caused enough memory blocking time to be
identified as causes. Note also that two modules (renum-
ber.c  and fold4.c ) were identified as bottlenecks,
which provided both data and code-centric views of the per-
formance problem.

To make automated search more effective, we are
extending the Performance Consultant to make it more con-
figurable, so that we can specify search order, and search
heuristics according to the programming model used.

6 Related Work

In addition to the systems cited previously, several profiling
tools address shared memory programs.

StormWatch [4] is tool that visualizes coherence proto-
col actions and links it to a program’s behavior. StormWatch
provides three linked, graphic views: trace, communication,
and source, which reflect the multiple levels of abstraction
in an application’s behavior. There are two major differ-
ences between our work and StormWatch. First, Storm
Watch is a postmortem tool that analyzes traces. Our mech-
anisms use dynamic instrumentation, which is less costly
and more scalable. Second, StormWatch provides a more
detailed, protocol-specific view of a program’s execution,

Figure 12: Performance Tuning Result
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while Paradyn is a general purpose performance tool.

Martonosi et al observed that monitoring memory per-
formance in a multiprocessor is similar to enforcing cache
coherence [21]. They have also noticed the importance of
categorizing miss counts according to the code and data
structures that incurred the misses. Their work focused on
exploiting unused issue slots in protocol processors to mon-
itor performance. We dynamically instrument the protocol
code. In addition, their monitoring mechanisms only col-
lected memory statistics, such as cache misses and laten-
cies, and did not detect patterns.

Others have extended cache-coherence protocols to
detect and optimize migratory sharing behavior. Cox et al
evaluated adaptive protocols for bus-based and directory-
based systems [5]. Stenstrom et al presented an adaptive
protocol to take advantage of migratory behavior of a
shared-memory application [26]. Our pattern detection
serves a different role—to detect particular access patterns,
but not optimize their communication—which makes our
implementation simpler and cheaper. Moreover, our mecha-
nisms detect patterns other than migratory behavior.

7 Conclusion

This paper describes a new approach to shared-memory per-

formance profiling. This approach consists of detecting
sharing patterns and data-centric presentation of the mem-
ory performance data. Pattern detection reports memory
access patterns that indicate the possibility of excessive
communication. Our pattern detection is implemented as an
augmented coherence protocol, so it incurs little additional
overhead. Although our current implementation is Blizzard-
specific, the approach of detecting sharing pattern by
observing coherence events is applicable to many systems.

Memory profiling uses a data-centric view of perfor-
mance to help a programmer find and understand the perfor-
mance problems with shared-memory accesses. To organize
a large volume of information, we present the shared-mem-
ory resources in a two-level hierarchy: data structure and
cache blocks belong to a data structure. The data structure
view helps relate performance problems to high-level pro-
gramming language constructs. The cache block view helps
isolate specific problems, such as false sharing. Moreover,
integration of memory profiling with Paradyn’s existing
control-oriented view provides a complete view of a shared-
memory program’s performance. This approach is feasible
because Paradyn’s dynamic instrumentation reduces the
overhead of monitoring by installing instrumentation only
when and where it is necessary.

As a test case, we applied these mechanisms to identify

Figure 14: Results of Running the Performance Consultant (version 2)
The blue (darker boxes in black&white) shows the bottlenecks that were identified by the Performance Consultant.
“ExcessiveMemoryBlockingTime” is an overall bottleneck, and was further refined to individual data structures

(GM->part_0_ , GM->part_1_ , GM->part_2_ , GM->part_3_ andGM->part_4_ ) and modules (renumber.c
andfold4.c ). The yellow (light grey in b&w) nodes show false search nodes.



and eliminate performance problems in a shared-memory
application. With Paradyn, we improved the application’s
performance by more than a factor of four. The case study
demonstrates how these mechanisms can help identify
shared-memory performance problems. In addition, the
example also shows that, with the help of proper perfor-
mance measurement tool to optimize communication, a dis-
tributed shared-memory machine can be as scalable as a
hardware shared-memory system.
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