Shared-Memory Performance Profiling

Zhichen Xu James R. Larus Barton P. Miller
{zhichen,larus,bart}@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
1210 West Dayton Street
Madison, WI 53706-1685

Abstract fine-grain distributed shared memory system [25] running
on the Wisconsin Cluster Of Workstation (CO‘i‘N)l?he
This paper describes a new approach to finding performance other key aspect of our technique is to use the Paradyn Par-
bottlenecks in shared-memory parallel programs and its allel Performance Tools [22] to present shared-memory per-
embodiment in the Paradyn Parallel Performance Tools running formance data in a data-centric manner, which relates events
with the Blizzard fine-grain distributed shared memory system. gn cache blocks to program data structures.

This approach exploits the underlying system’s cache coherence Shared memory programs communicate through refer-

protocol to detect data sharing patterns that indicate potential to shared data. Th derlvi ¢ hard
performance bottlenecks and presents performance measuremen(g''c€S 10 sharé ata. e underlying system (hardware,

in a data-centric manner. As a demonstration, Paradyn helped usSOftware, or both) responds to a memory reference by com-

improve the performance of a new shared-memory application Municating, to obtain a copy of data (which _iS t_ypically
program by a factor of four. cached for subsequent references) and to maintain the glo-

bal state necessary to implement a coherent programming
1 Introduction model. At a load or store, the actual communication
depends on the memory system’s protocols and the pro-

Distributed Shared Memory (DSM) alleviates some of the gram’s dynamic state in ways that can be difficult to under-
difficulty of programing a parallel computer by hiding the stand or predict [9].
details of communication. The abstraction of a shared Nevertheless, detecting this hidden communication is
address space, while convenient, can also hide serious conessential to isolate and eliminate many shared-memory per-
munication bottlenecks that cripple a program’s perfor- formance bottlenecks. For example, a cache block’s migra-
mance. To effectively use shared memory, programmerstory behavior may indicate false sharing, which a
need performance tools capable of piercing this abstractiomprogrammer can eliminate by aligning and padding data
and relating a program’s behavior to the underlying hard- structures. Moreover, recent research has focused on new
ware’s actions. tools, such as custom protocols and extensible memory sys-
This paper describes a new technique for collecting andtems, that offer programmers far greater control over shared
displaying shared-memory performance information. The memory systems [3, 28]. For example, a programmer can
first key aspect of this approach is to detect cache blockgreatly reduce the cost of producer-consumer sharing by
sharing patterns that indicate potential performance bottle-increasing the cache block size or using an invalidate, rather
necks. Our current system detects these patterns at low co$fan update, protocol [7]. Again, understanding a program’s
using a modified cache coherence protocol for the Blizzardaccess pattern is the necessary first step to improving its

_ _ _ . _ shared-memory performance.
This work is supported in part by Wright Laboratory Avionics Directorate, The first st . fili is to detect
Air Force Material Command, USAF, under grant F33615-94-1-1525 e Trst step in memory profiing 1S 10 detect access

(ARPA order no. B550), NSF Grant MIP-9625558, NSF NYI Award CCR- Patterns that indicate performance problems. Our pattern
9357779, and Department of Energy Grant DE-FG02-93ER25176. Thedetection mechanism is integrated in a shared memory
U.S. Government is authorized to reproduce and distribute reprints for cgche-coherence protocol, so it incurs little overnead and
Gover_nmental purposes notW|thst‘and|ng any copyright notation thereon.requires no changes to programs. More importantly, this
The views and conclusions contained herein are those of the authors and . . .

should not be interpreted as necessarily representing the official policies ormeChamsm associates addresses with events, so a perfor—
endorsements, either expressed or implied, of the Wright Laboratory Avi- Mance tool can present measurements at the program’s level
onics Directorate or the U.S. Government. of abstraction. The performance tool can use these

addresses to relate memory accesses to a program’s data

To appear at the 6th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming. Las Vegas, Nevada, 18-

21, 1997. 1. The Wisconsin Cluster of Workstations (COW) is a collection of
40 Sun SPARCStation 20's (with dual 66Mhz Ross Hyper-
SPARC processors) connected by a Myricom Myrinet and
100MB Ethernet.

structures and use conventional profiling techniques to con2 Paradyn Basics

nect accesses with the statements that execute them. We call

this processhared-memory performance profilifgemory This section briefly describe the basic characteristics of the
profiling by itself cannot find all performance problems, so Paradyn performance tools. Readers familiar with Paradyn
we built memory profiling into the more extensive facilities can skip this section. Paradyn is a parallel performance
of the Paradyn performance tool. measurement tool that currently runs on SPARC, Alpha,

Although this work exploits Blizzard’s custom proto- Power2, PA-RISC, and x86 platforms [22]. Paradyn is based
cols, other systems can also provide mechanisms to assocRn dynamic instrumentation, a technology that allows
ate shared memory communication with data. Any instrumentation code to be inserted, changed, and removed
hardware shared-memory platform can support a ﬁne_grainfrom a running application. Beside standard performance
DSM system, like Blizzard [25] or Shasta [24], that exposes metrics such as CPU usage and blocking time, Paradyn can
a coherence protocol for performance debugging. Since thénstrument other system, hardware, or network activity visi-
underlying shared-memory hardware provides fast commu-Ple from an application program’s address space.
nication, a DSM system of this sort would incur only mod- Paradyn provides two basic abstractionmsetric and
erate overheads. Alternatively, a platform may provide focus A metric is a time-varying function that measures
hardware features, such as informing memory operationssome aspect of an application’s performance, for example,
that trap on cache misses [12], which can be used to assocePU utilization or number of procedure calls. A focus is a
ate a program’s memory references with a coherence protocomponent of a running application. Paradyn views a pro-
col’s actions. gram as a collection of resource hierarchies that represent

This paper illustrates the use of memory profiling Various elements of a program, such as code (modules, pro-
through an extended case study of tuning a new sharedcedures), machines (hosts), or synchronization (messages,
memory protein folding code [13] from researchers in the Sémaphores, locks). A collection of nodes in the resource
University of Wisconsin Chemical Engineering Depart- hierarchy forms a focus. Tool users request Paradyn to col-
ment. With the help of memory profiling and Paradyn, we !€ct metrics for the foci in which they are interested, and
improved this application’s performance by more than a fac- Paradyn dynamically instruments the program according to
tor of 4 to an efficiency of 80% on 16 nodes. this criteria.

The paper is organized as follows. Section 2 briefly Figure 1 shows Paradyn’s display of two resource hier-
reviews the features of Paradyn. Section 3 describes ou@rchies. The “Code” hierarchy appears on the left and con-
approach to shared-memory profiling and our implementa-tains modules in the program. Under each module is the
tion techniques. Section 4 contains a case study that illus{Procedures in the module. For memory profiling, we defined
trates how Paradyn and shared memory profiling help@ Néw resource hierarchy ("Memory”) that lists a program’s
identify and eliminate performance problems. Section 5 dis- major data structures. Under each data structure is a list of
cusses automating the search for performance bottleneckghe cache blocks (identified by their memory addresses).
Section 6 describes related work.

wheresKs

Selections Novigate Abstroction

Hurll:lrr_

;ltp-i_l:l_, lil-lrwllgﬂ G- =rmaer

Figure 1: Resource Hierarchies in Paradyn.
“Code” and “Memory” hierarchies visible.

3 Shared-Memory Performance Proﬁ|ing tOwner is the same as the requestor or the number of shar-
ers is not one.

detect it. In shared memory systems, many performanceyritten by one processor and subsequently read by one or

mteracuon of a program’s _data accesses and the system Sode sees the eventai(RW)* (RI)")" where i j. As
fixed cache coherence policy. For example, when a cache . . .) ;
. with migratory blocks, at a write miss to a block in the read-

block contains values used separately by two processors
. Shared state, the augmented protocol compares the requestor

false sharing can cause a memory access to produce four qr

more messages. False sharing. like man shared-memoragainSt the block’¢astOwner . If identical, the block is
ges. e 9, Y S . }fkely used in a producer-consumer relationship. More accu-
bottlenecks, is often difficult to detect statically, but is

: . rate information can be obtained by checking the block’s
readily apparent at run time.

)))) sharer list against the requestor.
This section describes our technique for shared-mem-
. A group access occurs when a reference to a cache
ory performance profiling.

block is always followed by references to a collection of
other blocks. LeAA be an abbreviation foW|R]. With this
pattern, a home node repeatedly sees events of the form:

An obvious place to detect patterns in shared-memoryAiXAjX.... To detect this pattern, the augmented protocol
communication is from within the coherence protocol that {y5cks in a variabliastAccessed | the block that a pro-
satisfies memory references. Most coherence protocols ar@essor last accessed. Each block records three extra fields:
expressed as a state machine driven by operations on §roupld , guess, and accessinGroup , which the

cache block. Some recent systems, including our BI'Zzar,daIgorithm in Figure 2 uses to detect group accesses.
platform and commercial systems such as Sequent’s

NUMA-Q system [20], implement these state machines in!f (currentBlock.guess == lastAccessed)
software, which opens the possibility of introducing new {

tates and actions to recognize access patterns indicative |of currentBlock.groupld = lastAccessed groupld;
Sla g p) currentBlock.accessInGroup = true;
performance problems. These states and actions should Not |astaccessed.accessinGroup = true;
change the behavior of the coherence protocol. Instead, theyelse {

provide an efficient mechanism for recognizing patterns in currentBlock.guess = lastAccessed;

transitions of a state machine currentBlock.groupld = address(currentBlock);
) curentBlock.accessInGroup = false;

3.1 Pattern Detection

Our pattern detection mechanism currently detects prop
ducer consumer, migratory, grouped, and read-only acceststAccessed = currentBlock;

write, subscripts distinguish cache blocks, and superscripts

distinguish processors. A block'®menode is the proces- 3.1.1 Implementation Alternatives
sor on which the block is originally allocated. This machine ~

performs protocol actions for the block in many directory- ~ Augmenting a coherence protocol to collect additional
based coherence protocols. The blodseris the proces- information incurs a cost in both space and time (see
sor that currently has write access. Section 3.2.2). It is unrealistic to expect a parallel computer

A migratory access pattern occurs when a block is to use an augmented protocol as its default or for architects

accessed by different processors, in turn. For a given inter!0 build such a protocol in hardware. Fortunately, many
val, only one processor accesses the block, so sharing i§ecent distributed shared memory (DSM) systems imple-

sequential, not concurrent. A coherence protocol seedN€nt —cache — coherence protocols in software
migratory accesses as a sequence of events of the formil:7,16,17,18,20,23,24], which offers advantages over hard-

P TR A A R TR - . ware, not the least of which is the ability to support more
(R W) (RI -
(WH(R |W) (RYW)(RIW)" where i# . To detect m|gr'$1 than one coherence protocol. Software protocols also enable
tory sharing, our augmented protocol records a block’s last

. . tools, such as Paradyn, to instrument and measure a proto-
owner at its home node. When a read or write request from ol

another processor arrives, the augmented protocol updateg ' . o .
the block’s lastOwner field. When the home node A less radical alternative is informing memory opera-
receives a upgrade request (a write to a read-only block) andions, which either set a condition code or trap on a cache
the number of sharers is one, the protocol compares thdniss [12]. The_s_e, or.S|m|Iar, operations can be used to detect
requestor against tHastOwner . If they differ, then the ~ Protocol transitions in hardware-based shared memory sys-
block appears to be migrating frolastOwner to the tems. The performance instrumentation could maintain a
requestor, and the augmented protocol records that the blocRhadow directory that tracks which processors have copies
is migratory. The protocol clears this propertylas- of each cache block. At a cache miss in the shared address
space, the information in this directory suffices to determine

which actions a coherence protocol would perform.
Another alternative, for systems with no hardware sup- metrics.

port, is to performance tune programs using a fine-grain dis-

data-centric views for both existing and new performance

The new performance metrics include frequency and

tributed system, similar to Blizzard [23] or Shasta [24]. time for many coherence events, messages, and synchroni-
Although this software layer is redundant for hardware zation events. Figure 3 lists the new memory performance
shared-memory systems, it exposes the coherence protocahetrics. Since Blizzard’s cache coherence protocols run in
to a performance tool. Moreover, hardware shared mem-an application’s address space, Paradyn collects these met-
ory’s low latency ensures that the software overheads of theics with its usual instrumentation techniques.

DSM system will be moderate.

information about which cache blocks incurred misses.

3.2 Memory Profiling

Memory profiling associates coherence activity with a pro-
gram’s data structures and code. It forms the necessar
bridge between low-level coherence activities, which oper-
ate on cache blocks, and a programmer, who thinks at

higher level of abstraction. Memory profiling extended

Paradyn in two ways. First, we added many new memory-
and cache-specific performance metrics. Second, we adde

Performance profiling typically associates a metric with
Performance counters in existing systems, for examplea control structure in a program. For example, a tool reports
Sun’s UltraSPARC [27], record how many cache misses CPU time or messages for a module, procedure, loop, or
occur in an interval. However, these counters cannot fully statement. The complementatgta-centric viewassociates
support memory performance profiling, as they provide no metrics with data structures and often provides new insights
into a program’s interaction with the memory system. Data-
centric presentations have been used for distributed arrays
in data-parallel languages [14,15] and in cache tools for

sequential programs [8,19]. The data views that we added to
Paradyn combine fine-grained profiling (down to individual
¥ache blocks), scalability (large data structures and large
rograms), and low overhead. To present this data, we
dded a new Paradyn resource hierarchy for shared memory
(see Figure 1). Shared-memory resources currently fit in a
g/vo—level hierarchy consisting of data structures and cache

Metric Name Description Metric Name Description
targetBarrier Count of application-level barrier ops targetBarrierWal Time at application-barriers
activeMessages Count of active messages activeMessage\Wall ~ Time for active messages

bulkDataTransfers

Count of bulk data transfers

bulkDataTransfg

rfime for bulk data transfers

pme

Wall

pageFaults Count of page faults pageFaultWall Time for page fault handling
memoryBlockTime | Wall time spent on all coherence misses
stacheReadMisses| Count of read misses on non-home nodes stacheReadMissWall Time for non-home read miss handling
homeReadMisses Count of read misses on home node homeReadMissWall ~ Time for home read miss handling
stacheWriteRO Count of write misses on read-only blocks, non-tjstacheWriteROWall | Time for write misses on read-only blocks, non-h

nodes nodes
homeWriteRO Count of write misses on read-only block, home pode homeWriteROWall

Time for write misses on read-only blocks,
node

nome

stacheWritelnv

Count of write misses on invalid blocks, non-honjestacheWritelnvWall

Time for write misses on invalid blocks, non-hom

e nod

nodes nodes
homeWritelnv Count of write misses on invalid blocks, home nofle homeWritelnvWall ~ Time for write misses on invalid blocks, lsom
invRO Count of invalidations on read-only blocks invROWall Time for invalidations on read-only blocks
invRW Count of invalidations on writable blocks invVRWWall Time for invalidations on writable blocks
Polls Count of poll operations SentMsgs Count of messages sent
SelfMsgs Count of messages sent to self Acks Count of acknowledges
MsgBytes Count of message bytes RecvMsgs Count of messages received
BufMsgs Count of messages buffered PollIMsgs Count of poll messages

Figure 3: Blizzard/Paradyn Memory Performance Metrics.
New performance metrics for Blizzard cache coherence protocols.

blocks. 3.2.2 Memory Profiling Overhead

A second challenge is to control the instrumentation
overhead. Instrumentation in a protocol handler must dis-

Paradyn creates counters or timers to collect perfor-criminate between a monitored and unmonitored block,
mance metrics for a cache block or data structure and usewhich becomes expensive as the number of monitored
dynamic instrumentation to insert code to update a countemlocks increases. We optimized the instrumentation code,
or timer. Paradyn’s data collection facility periodically reads with a technique called “vectorization”, in which Paradyn
values from these counters or timers and ships them to theallocates a vector of counter/timers for all monitored cache
Paradyn front end. For example, to measure the time to hanblocks and indexes into the vector (instead of allocating sin-
dle coherence misses, Paradyn inserts code that starts gle counters or timers and testing for individual cache
timer when a fault occurs and stops the timer when theblocks). Vectorization reduced the instrumentation overhead
application resumes. To record performance statistics for afrom a cost linearly proportional to the number of moni-
cache block, Paradyn allocates a counter or timer for thetored cache blocks to a constant cost. The vectorization test
block, and inserts code into the coherence protocol tohas approximately the same cost as instrumenting three
update the counter or timer at faults on the block. To moni-cache blocks with the simpler approach. Further details are
tor a contiguous data structure, Paradyn updates the struaeported elsewhere [11].
ture’s counter when a fault falls inside the structure’s Figures 4 and 5 report the overhead of profiling cache
boundary. blocks and data structures. The measurements are from ver-

A major challenge in memory profiling is handling the sion 3a of the protein folding application (see Section 4).
large number of cache blocks in shared-memory applica-Figures 4 and 5 show that, with vectorization, the instru-
tions. These blocks form a much larger focus than the othementation overhead of 2% is independent of the number of
ones that Paradyn typically handles. We reduced the overprofiled cache blocks. Data collection overhead is linearly
head of shipping shared memory information to the Paradynproportional to the number of counters and timers. The data

front end by compressing shared-memory information andcollection overhead is about 9% for 240 counters/timers
batching several messages together.

3.2.1 Implementation

Counter-based Metrics Timer-based Metrics
Number of No
cache blocks | instrumentation Instrumentation With data Instrumentation With data
only collection only collection
10 129.3 131.5 (2%) 134.3 (4%, 2% 132.4 (2%) 134.6 (4%, 2%)
20 129.3 132.1 (2%) 137.4 (6%, 4% 132.2 (2%) 137.6 (6%, 4%)
40 129.3 132.2 (2%) 142.5 (10%, 8%) 132.1 (2%) 144.0 (11%, 9%)

Figure 4: Overhead of Profiling Cache Blocks with Vectorization.
6 counters or timers (i.e., 6 performance metrics) per cache block. The stache block size is 128 and the application ran on 8
processors. Times are in seconds. Numbers in parentheses are percent increase over “No Instrumentation” case.

Counter-based Metrics Timer-based Metrics
Number of No
cache blocks | Instrumentation | Instrumentation With data Instrumentation With data
only collection only collection
100 blocks 129.3 131.6 (2%) 132.6 (3%) 131.7 (2%) 132.6 (3%)
200 blocks 129.3 131.4 (2%) 132.6 (3%) 131.6 (2%) 133.0 (3%)
400 blocks 129.3 131.5 (2%) 132.8 (3%) 132.3 (2%) 133.0 (3%)

Figure 5: Overhead of Profiling cache blocks with Aggregation.
6 counters or timers (i.e., 6 performance metrics) per data structure. The stache block size is 128 and the application program
ran on 8 processors. Times are in seconds. Numbers in parentheses are percent increase over “No Instrumentation.”

Hi il

Emh_lrﬁl'-lllllllllﬁi'-ﬂ.] . 4 = I:IID_F_

Flle Aotism View =t Fio Aooms View
it ! el Fraus . Gl

R o L S - — A T T L e

D N g _Cre e | —
! W e AR G T i’ il | T
| R A iy Ca CL i
| n-l-':h-':_-ln'llnrn.#l-. LERLACALE o CL wtar s T

Figrdn _ powii] e T Malguinie e L il Pl F
| g _ oyl | o v - [CW T R
: FEYEE o Ol v s - e el el [
L e P
| [S PR AT mrard s wm e
| (g e _cwwf oy e i

e avmcAll oo el — WTH_CWiE Oy e sy
L Y I 14 R ——— [} i

[F] 3 ra b, i [B] h na

Figure 6: A Sequential Performance Bottleneck (version 1).
The bars label the resource being profiled. For example, “ranuls_,cow01.cs.wisc.edu” is the data for procaaute “ "
running on host tow01.cs.wisc.edu . The exec_inclusive " metric is the total elapsed time spent in a procedure
and the procedures it calls. ThatemoryBlockingTime " is the total time spent waiting for shared-memory delays.

HERchiil
Barchart Visualizakiom .
Flle Actiora View | | s hctons View (=
T T T T T R Tl e e : e
: | ol ki, | X o | § o i, G -
crwl | oo i i Dl g |- | o N i, [T] W
il | RS i e o] 1 -. : e | 5 cn v s, i §_ -
ewml Loy e wein, Tl] 7 . | coart 8 con i s, i sl § -
o | e svtur s i cpri, 3 [o B o, 1
fwml s i e T gl 3 -. | el oo sl G- i -
I el 1. st i, S, § . | i |k i el 18] 4
CEEL LA A e, Ll o] B . : e | B o v mb, Gnd-spmr] B -
erw] e viee i G-t 7l | e 5o i i, G-, § -
Al LR L R] - | e i st = gl
w1 o mrker il 0] LE crmew e - - m‘l!..a.ln:n.i:.l---rnt-l
ey Bk Tew (P | i i3 T o i s | CFow | 1] T

Figure 7: Blocking Time due to Coherence Misses (version 1).

(4O><6).2 Profiling an entire data structure is far less expen- rithm [13] to simulate protein association reaction (folding).
sive than profiling its blocks separately, as instrumentation The first version (version 0) of the application was written
overhead is independent of the size of a data structure anth Fortran 77 and ran on a SGI Power Challenge. Version 0
data collection cost is proportional to number of counters oralternated sequential code with parallel loopsagross
timers. Profiling a data structure with 6 metrics incurs an with directives). We converted Fortran to C wiilc , mod-

overhead of approximately 3%. ified it for the shared-memory programming model on the
Wisconsin COW (Cluster Of Workstation), and started our
4 A Case Study performance tuning (version 1).

To illustrate how memory profiling can help identify and 4.1 A Sequential Performance Bottleneck

eliminate performance bottlenecks in a shared-memory tpe first performance problem that we encountered was
application, we tuned a new parallel application with the aid ,5; the serial portions of the application consumed a signif-

of Paradyn. The application was written in the Chemical j.ant fraction of its total execution time. Much of this time

Engineering Department at the University of Wisconsin. It \ a5 spent handling coherence misses. Figure 6 shows Para-
uses a weighted-ensemble Brownian (WEB) dynamics algo-gyys gisplay of the execution times of a few important rou-

tines and the time spent handling coherence misses in each

2. More recent versions of Paradyn use a new data collection techfunction. The left bar chart in Figure 6 shows node 0,which

nique based on shared memory that further reduces data col- executes the sequential code. The right bar chart shows exe-
lection costs.

S — - Lﬁ.m
File Aotions View W

Fhicei. Ciobial

£ -

i3 ”MMWMWW
o |:

s/ I
o L . .

m i E an T 20 148 LED
Beconls

e Hibureri®ell Wholn Pregpem e [emnsthed)

rrannory [Hocking T JWhole Prsgrass. (saneoleed |

Figure 8: Memory Blocking and Barrier Wait Time (version 2).

cution and coherence miss times on another node. Thecache blocks ofxncor have a migratory access pattern
behavior of nodes other than node 0 are similar to the rightand cache blocks gsart have both migratory and pro-
bar chart. ducer-consumer patterns.

From Figure 6, it is clear that when the serial part runs
on node 0 (bottom bars labeladn_), the other nodes sit 4.2 Restructure the Folding Application

idle. This serial code consumes about 40% of the total exe- Examining the code showed that in the parallel phase of

cution time on 8 nodes, arig of this time is due to coher- the application, each processor moved a portion of the parti-
ence misses (the lighter bar shows coherence miss time)les. Then, the serial code sorted particles by their reaction
Another observation from this figure is that coherence coordinates and split or combine them to simulate a reac-
misses in the parallel phase (functions other thiam) are tion. Although a custom protocol could transfer data more
not as costly. efficiently, we chose to restructure the application to elimi-
To find which data structures incurred these coherencenate this serial bottleneck. The performance data guided this
misses, we associated coherence miss times with the majodesign decision. After eliminating the coherence misses, the
shared data structures in the application.The program usesorting, splitting and combining phase would still consume
three major shared data structumsicor tracks the reac- 15% of the total execution time (8 nodes), which would
tion coordinates of all particlepart stores the orientation ~ severely limit the program’s speedup.
and position of the particles, amebight stores the parti- The modified code partitions particles according to
cles’ weights. The bar charts in Figure 7 show coherencetheir reaction coordinate and parallelize the serial phase, so
miss times for the major data structures on node 0 andeach processor sorts, splits, and combines its particles. This
another node. The data structure lab&id->rxncor is change introduced an auxiliary data structtmpl that
the data structure that stores the reaction coordinates. Theacks which processor owns a particle. The program after
data structure label€@M->weight stores the weight of all restructuring is called version 2.

particles, and the bars labeled w@&M->part 0_ to GM- Parallelizing the serial phase eliminated the sequential
>part_7_ are fragments of the particle data structure. pottleneck and made computation and communication on
Figure 7 shows that references to the particle data strucdifferent nodes symmetric. Although the change improved
ture causes the most coherence misses. In addition, node Performance by a factor of 2, the program’s speedup was
misses on most parts except for the fragment lab@Me still unsatisfactory (5.9 on 16 nodes). Memory profiling
>part_ 0_ , and nodé (1<i<7) misses on the fragment showed that considerable time was still spent handling
labeledGM->part_i_ . Together, these facts suggest that coherence misses and waiting at the barriers introduced for
the fragmentGM->part_i_ bounces back and forth the new synchronization. Figure 8 shows that for 8 nodes,
between node 0 and nodeProfiling cache blocks belong- 40% of the total time was spent handling coherence misses
ing torxncor revealed the same phenomena. Further evi- (memoryBlockingTime) and about 20% of the time at bar-
dence came from the pattern detection, which showed thatiers (targetBarrierWall). To find the cause of the high mem-
ory blocking time, we examined the program’s access

ik

Fils Actions Fila Actiony View

s Candad

ot @]
gy N e ———
o |
| cai-e, 3 .-
G- pari_i_- [
[T
R
S a7
Gk kel 1
Frrmareey
i o g
R o gl
3 L3 _
[Ty
£ G ol 7

Inlg al Hack splezirs
unkinoamn palism

_Megriey MO pviees | Oreup el 0 B

T part 0 ALK

i ecn scceooed N e s

Figure 9: False Sharing in The Particle Data Structure (version 2).

In pattern visualization, the blue (darkest boxes in black&white) shows the migratory access pattern, green (medium gray in
b&w) shows producer/consumer access, and yellow (light grey in b&w) shows an unknown pattern. The blocks marked with
an “X" are a block selected by a user and the blocks accessed in the same group as the selected block. The text in the right

corner shows information about the selected block.

patterns to see how the data structures were referencediersion scales moderately up to 4 COW nodes, but its effi-
Figure 9 contains a visualization of the program’s accessciency dropped drastically after that. The restructured pro-
pattern, which shows that the cache blockpant 0 gram initially performed worse on a small number of COW
have a mostly migratory access pattern. nodes, because of the extra work to track which particle

As mentioned ear”er, a migratory access pattern Canbelong to which node. The program scaled better without
indicate false sharing_ Examination of the code confirmed the sequential bottleneck, but the false Sharing still limited
that this data structure was not cache-block aligned. Tothe overall speedup. Aligning and padding the shared data
eliminate false sharing, we aligned and padded particles tostructure improved performance considerably, but made the
ensure that each particle fell inside a single cache block. Wdoad imbalance into the limiting bottleneck. A simple static
call this version 3a. This alignment and padding drastically load balancing scheme improved performance slightly.
reduced memory blocking time and improved performance Although coherence was no longer a serious performance
by a factor of 2. Figure 10 shows the time spent at barriersbottleneck, we tried adding prefetching (version 3c), which

and coherence misses after alignment and padding. did not significantly improve performance.
To see whether performance optimizations can carry
4.3 Load Imbalance over to different platforms, we also ported version 3a of the

application back to SGI Power Challenge using the shared-
Fﬁemory programming model. The new version outperforms
the old Fortran version by 43% (see Figure 12). More

Figure 10 shows that coherence misses are no longer a pe
formance bottleneck. However, 20% of the program’s time

is still spent at barriers. The figure also shows that barnerdetailed experiments showed that the performance gain is

time 1S not evenly divided among nodes, Wh'Ch sugggsts %ainly attributable to eliminating the serial bottleneck. Pad-
load imbalance. As an experiment, we statically partitioned ding and aligning only contribute up to 3% performance

t_he partlcleg, accordl_ng o their processor's parrler waiting improvement. Since the SGI Power Challenge is an SMP
times (version 3b). Figure 11 shows that static load balanc-

. . o . 7 with a much faster network, it is less sensitive to false shar-
ing reduced barrier and coherence miss time. Since partlcler,ng The speedup curves in Figure 12 show that the best
move randomly, a dynamical load balancing scheme is nec-_

. 'speedup on COW is slightly better than the speedup on the
essary in general. ; . . .
SGI Power Challenge. This result is encouraging. It indi-
cates that with the help of proper performance measurement
4.4 Summary tools and performance tuning, a distributed shared-memory
Figure 12 summarizes our performance tuning. It machine can perform as well as a hardware shared-memory
shows speedups of the different versions, including the orig-machine.
inal Fortran version on SGI Power Challenge. The initial

Barchari Visuskzatian :In':-"r'-
File Actions View | Filn Aoiblars View |
il Froma Dhotod i [LETERpe &)
=] e |] Cn wrier i I + oom | | o v oy
e | i wyter i - i l-'ln:.ll:'l:l
rora | s s i - Hu-|1:|--|-:l-l|-1
prrald s mri sin - oo | B e i ‘I
el meh i - | B i
doire | ok b sl - o | o il 1
| Tk b sl - ok i i o
- v 11k b i - - e | DA i
Larrg L arvisortitadl . .|-_|:| a.s |._|:-. e oy Pl fy ! L .I] |'5 id

Figure 10: Barrier Time Shows Load Imbalance (version 3a)

Wmrchar

Darchiart Vismallnseisn | Duiriaart Vigniallnatbedi k-
Fils AoHane View =i Pils Astlars Wisw el "
Fraas: G . (Lo]

oo |1 0L . el | CN S I

e | R e il l m-l.rr---u..-l

e | e,y I |lu-l'5.l.:|lrr-:-|ll-|-|

oo | e et i I oA e I

v | .00 S I maihin lrlr.ﬂil

| B A il l I T i |

o | 1 s e i I mlr.umm-l

oo | B en e i I - nlﬂ.l.'lh'l:-l-;

it Mt [T] I-.l (H1] i LT .Il Ihld. [|

Figure 11: Barrier and Memory Blocking Time after Static Load Balance (version 3b)

Other people have also used the Blizzard version ofwhen custom protocols are not necessary to improve perfor-
Paradyn to find shared-memory performance bottlenecksmance.
Brian Toonen used the tool to search for and validate perfor-

mance bottlenecks in the DSM system itself [28]. Satish5 Automated Search for Bottlenecks
Chandra used the tool to monitor the performance of the

custom protocols he wrote for his HPF compiler for Bliz- Automating the search for bottlenecks can make perfor-
zard [3]. Trishul Chilimbi used the tool to tune the perfor- mance tuning less difficult. Paradyn’s Performance Consult-
mance of a database storage management system. ant searches for performance bottlenecks in different foci by

testing prewritten hypotheses. A hypothesis specifies a
4.5 Discussion potential performance bottleneck in terms of performance

metrics. It i Il imple function of performance met-
The memory performance tool successful found the netrics. 1t1s usually a simple function of performance me

o N . rics and thresholds. For example, the hypothesis

performance bottlenecks in this application. Memory profil- . .
; . . CPUBound says there is a performance bottleneck if the
ing helped isolate the shared data structure that incurred the__. . .
) : . ratio of the two performance metriaspu_time and
most coherence misses. Pattern detection helped explicate

the algorithm’s sharing pattern and isolate the false sharing.Wa”—tlme exceeds an adjustable threshold. Hypotheses

However, memory profiling by itself would not have found are organized into a tree-structured hierarchy. The Perfor-

) ance Consultant guides the search with heuristics that
all problems. Paradyn’s other performance measuremen ,
. ! : attempt to reduce search overhead and find bottlenecks
facilities helped find the sequential bottlenecks, load imbal-

. Sl quickly
ance, and excessive barrier time.
. . To automate the search for shared-memory perfor-
Custom protocols offer a powerful, but time-consuming
: . : .~ mance bottlenecks, we added new hypotheses for the
option for improving program performance. One unantici- . ! . .
X A : - shared-memory metrics and integrated them into the exist-
pated benefit of memory profiling is that it can indicate

Protein Folding Code
30.0 T - .

-~ =~ ~ Linear speedup
E—EAIign+pad+Ioad balance (Stache256), version 3b
SGI Power Challenge (Shared-memory, c)
X—X Align+pad-+prefetching (Stache256), version 3¢
V—VRestructure+align+pad (Stache256), version 3a
SGI Power Challenge (Fortran), version O

[>—F>Restructured (Stache128), version 2

20.0

(>—Onitial version (Stache256), version 1

L L T D T T L 4 o o — - -

Speed Up

10.0

O 0 | |
0.0 10.0 20.0 30.0
Number of Processors
Figure 12: Performance Tuning Result
ing hierarchy. Figure 13 shows the new hypothesis hierar-BlockingTime” bottleneck, which the Performance

chy, rooted at “Memory”. Memory bottlenecks are divided Consultant further refined to individual data structures. Parts
into read miss and write miss. Write is further subdivided of four particle data structureGil->part 0 to GM-

into misses due to writes to read-only blocks and misses duerpart 4) caused enough memory blocking time to be
to writes to invalid blocks. All hypotheses then subdivide identified as causes. Note also that two modulkersum-

into misses at home and non-home nodes. ber.c and fold4.c) were identified as bottlenecks,

which provided both data and code-centric views of the per-
(CPUboundj (™emory) (10) (Synchronization)

formance problem.
To make automated search more effective, we are

extending the Performance Consultant to make it more con-
figurable, so that we can specify search order, and search
heuristics according to the programming model used.

6 Related Work

In addition to the systems cited previously, several profiling
tools address shared memory programs.

StormWatch [4] is tool that visualizes coherence proto-
col actions and links it to a program’s behavior. StormWatch
provides three linked, graphic views: trace, communication,

Stache) (writeRO) ((Writelnv_)

(Home) (Stac\he) ((Home) (" Stache)

Figure 13: Performance Bottleneck Hypothesis Hierarchy,
with Memory Hiearchy Expanded

As a demonstration, we applied the Performance Con-

and source, which reflect the multiple levels of abstraction
in an application’s behavior. There are two major differ-
ences between our work and StormWatch. First, Storm

sultant to version 2 of the program. The search results aré/Vatch is a postmortem tool that analyzes traces. Our mech-
shown in Figure 14. The blue (dark gray, in black&white) @nisms use dynamic instrumentation, which |s_Iess costly
nodes are problems that the Performance Consultant suc@d more scalable. Second, StormWaich provides a more
cessfully identified. The first is an “ExcessiveMemory- detailed, protocol-specific view of a program’s execution,

Sasarchex
Currerd Smarch: Globsl Maos
L sr mwrya bismery Bockrs Trs nsfed ine der (Coede Slschirm sy /G- part 1 Trocess My Objpcd __
Ewp wewera blwveory Blschie Tivsm lrsfed Ins lor (el Mdechim Rbmeey Ok cpard 0 WPy s 5y Ol
B it b M i) Db Vi L Bt (T T Pl s, PR iy TP i,) L |
Es rmuﬁmﬁmqmu Iraned I A § s 8o aTlesT 0 UG Rdies bl sy s 880 ywes Clgea 3
o — iniits R GAd+pun 0 ORS a1 JliCREspart 3_ [} Ghéoprt 3|
ST
tairkl pd_msoule Cidd- ey 5 Aelaoed |
[— k- g ¥ - o X
i) T s’ T [-
Al g 1 | | -’ T [
Ghboapmt 5 0| | O aiwp 4 L
Tkl it B VAL g’ N g
Gt T || et v i A
Ghi-ctmgl 1 b | Gt T - st 7|
| Ghd gl T LN
O g 3 L
Obdoaligd 4_ W)
L] L]
Gkl rlig i]
Ghd-rirg T P
Paues |
— S ———

Figure 14: Results of Running the Performance Consultant (version 2)
The blue (darker boxes in black&white) shows the bottlenecks that were identified by the Performance Consultant.
“ExcessiveMemoryBlockingTime” is an overall bottleneck, and was further refined to individual data structures
(GM->part_ 0_ ,GM->part_ 1 ,GM->part_2_ ,GM->part 3 andGM->part_4) and modulesrénumber.c
andfold4.c). The yellow (light grey in b&w) nodes show false search nodes

while Paradyn is a general purpose performance tool. formance profiling. This approach consists of detecting
Martonosi et al observed that monitoring memory per- sharing patterns and data-centric presentation of the mem-
formance in a multiprocessor is similar to enforcing cache Ory performance data. Pattern detection reports memory
coherence [21]. They have also noticed the importance ofaccess patterns that indicate the possibility of excessive
categorizing miss counts according to the code and dat&Ommunication. Our pattern detection is implemented as an
structures that incurred the misses. Their work focused onaugmented coherence protocol, so it incurs little additional
exploiting unused issue slots in protocol processors to mon-Overhead. Although our current implementation is Blizzard-
itor performance. We dynamically instrument the protocol specific, the approach of detecting sharing pattern by
code. In addition, their monitoring mechanisms only col- observing coherence events is applicable to many systems.
lected memory statistics, such as cache misses and laten- Memory profiling uses a data-centric view of perfor-
cies, and did not detect patterns. mance to help a programmer find and understand the perfor-
Others have extended cache-coherence protocols tdnance problems with shared-memory accesses. To organize
detect and optimize migratory sharing behavior. Cox et ala large volume of information, we present the shared-mem-
evaluated adaptive protocols for bus-based and directoryOry resources in a two-level hierarchy: data structure and
based systems [5] Stenstrom et al presented an adapti\/@aChe blocks belong to a data structure. The data structure
protocol to take advantage of migratory behavior of a View helps relate performance problems to high-level pro-
shared-memory application [26]. Our pattern detection gramming language constructs. The cache block view helps
serves a different role—to detect particular access patternsisolate specific problems, such as false sharing. Moreover,
but not optimize their communication—which makes our integration of memory profiling with Paradyn’s existing
implementation simpler and cheaper. Moreover, our mecha-control-oriented view provides a complete view of a shared-

nisms detect patterns other than migratory behavior. memory program’s performance. This approach is feasible
because Paradyn’s dynamic instrumentation reduces the

overhead of monitoring by installing instrumentation only
when and where it is necessary.

This paper describes a new approach to shared-memory per- As a test case, we applied these mechanisms to identify

7 Conclusion

and eliminate performance problems in a shared-memory{11]
application. With Paradyn, we improved the application’s
performance by more than a factor of four. The case study
demonstrates how these mechanisms can help identif)ﬁz]
shared-memory performance problems. In addition, the
example also shows that, with the help of proper perfor-
mance measurement tool to optimize communication, a dis-
tributed shared-memory machine can be as scalable as g3l
hardware shared-memory system.

[14]

ACKNOWLEDGMENTS

Thanks to Sang Tae Kim and Atipat Rojnuckarin for provid-

ing the application code and the insight and effort for tuning [15
its performance. Ari Tamches, Mark Callaghan, and Guhan
Viswanathan provided insightful discussions. Ari Tamches,
Marcelo Gongalves, Karen Karavanic, Tia Newhall, Oscar [16]
Naim and Ling Zheng helped understand Paradyn, loannis
Schoinas and Babak Falsafi helped with Blizzard, and
Satish Chandra helped with Teapot. Mark Hill suggested [17]
using software DSM on hardware-only systems. Thanks to
Trishul Chilimbi, Brian Toonen, and Satish Chandra for
feedback about this tool.

]

(18]

REFERENCES (18]
[1] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation

and Performance of Munirl3th ACM Symp. on Operating [20]

Systems Principle©ct. 1991.

[2] S. Chandra, B. Richards and J. R. Larus. Teapot: Language
Support for Writing Memory Coherence Protoc@$GPLAN
Conf. on Programming Languages Design and Implementation
(PLDI), Philadelphia, PA, May 1996.

[3] S. Chandra and J. R. Larus. Optimizing Communication in HPF
Programs for Fine-Grain Distributed Memorgth ACM
SIGPLAN Symp. on Principles and Practice of Parallel
Programming Alexis Park Resort, Las Vegas, Nevada, June
18-21, 1997.

[4] T. M. Chilimbi, T. Ball, S. G. Eric, J. R. Larus. StormWatch: A
Tool for Visualizing Memory System Protocols.
Supercomputing’95San Diego, CA, December, 1995.

[5] A. L. Cox and R. J. Fowler. Adaptive Cache coherency for
Detecting Migratory Shared Dat20th Annual Int'l Symp. on
Computer Architecturéylay 1993.

[6] F. Dahlgren, M. Dubois, and P. Stenstrom. Combined
Performance Gains of Simple Cache Protocol Extensiirbs.
Annual Int'l Symp. on Computer Architectufgoril 1994, [25]

[7] B. Falsafi, A. R. Lebeck, S. K. Reinhardt, I. Schoinas, M. D.
Hill, J. R. Larus, A. Rogers, and D. A. Wood. Application-
Specific Protocols for user-level Shared Memory.
Supercomputing’94November, 1994.

[8] A. Gupta, M. Martonosi, and T. Anderson.
Analyzing memory system bottlenecks in
Performance Evaluation Revie2@, 1, June 1992.

[9] M. D. Hill, J.R. Larus, S.K. Reinhardt, and D.A. Wood. [27]
Tempest: A Substrate for Portable Parallel Programs. 28]
COMPCON95, San Francisco, March 1995.

[10] J.K. Hollingsworth and B.P. Miller, “Dynamic Control of
Performance Monitoring on Large Scale Parallel Systems”
Int'l Conf. on Supercomputingokyo, July 1993.

(21]

(22]

(23]

(24]

MemSpy: [26]
programs.

J.K. Hollingsworth, B. P. Miller, M. J. R. Gongalves, O. Naim.
Z. Xu and L. Zheng. MDL: A Language and Compiler for
Dynamic Program Instrumentation. Tech.l Report, Comp.
Science Department, UW-Madison.

M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith.
Informing Memory Operations: Providing Memory
Performance Feedback in Modern Processp8sd Annual

Int’l Symp. on Comp. ArchitecturBhiladelphia PA, May 1996.

G. A. Huber and S. Kim. Weighted-Ensemble Brownain
Dynamics Simulations for Protein Association Reactions.
Biophysical JournalVol. 70, January 1996.

R.B. Irvin and B.P. Miller, “A Performance Tool for High-
Level Parallel Programming Languages” Rrogramming
Environments for Massively Parallel Distributed Systems,
Birkaeuser Verlag, Basel, K.M. Decker and R.M. Rehmann,
eds., 1994.

R.B. Irvin and B.P. Miller, “Mapping Performance Data for
High-Level and Data Views of Parallel Program Performance”,
Int'l Conf. on Supercomputindhiladelphia, May 1996.

K. J. Johnson, M. F. Kaashoek, and D. A. Wallach. CRL: High
Performance All-Software Distributed Shared Memdryth
ACM Symp. on Operating System Principles (SOSBpper
Mountain, Colorado, December 1995.

P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating SysterttSEE Computer29, 2,
February 1996.

J. Kuskin et al. The Stanford FLASH Multiprocessotst2
Annual Int'l Symp. on Comp. Architectupril 1994,

A. R. Lebeck and D. A. Wood. Cache profiling and spec
benchmarks: A case studfeEE Computer27, 10, October
1994.

T. Lovett and R. Clapp. STING: A CC-NUMA Computer
System for the Commercial Marketplac3th Annual Int'l
Symp. on Comp. Architectyr@hiladelphia PA, May 1996.

M. Martonosi, D. Ofelt and M. Heinrich. Integrating
Performance Monitoring and Communication in Parallel
Computers. ACM Sigmetrics Conf. on Measurement &
Modeling of Comp. Systepi@hiladelphia, PA, May, 1996.

B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K.
Kunchithapadam, and Tia Newhall. The Paradyn Performance
Tools.|IEEE Computef8, 11, November 1995.

S. K. Reinhardt, J. R. Larus, D. A. Wood. Typhoon and
Tempest: User-Level Shared Memodst Int'l Symp. on
Comp. ArchitectureApril 1994,

D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A
Low Overhead, Software-Only Approach for Supporting Fine-
Grain Shared Memorggth Int’l Conf. on Architectural Support

for Programming Languages and Operating Sys. (ASPLOS),
1996

I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R.
Larus, D. A. Wood. Fine-grained Access Control for
Distributed Shared Memory. IrPr 6th Int'l Conf. on
Architectural Support for Prog. Languages and Operating Sys.
(ASPLOS)Oct. 1994.

P. Stenstrom, M. Brorsson, and L. Sandberg. An Adaptive
Cache Coherence Protocol for Optimized Migratory Sharing.
20th Annual Int'l Symp. on Comp. Architectukéay 1993.

Sun MicroelectronicdJIitraSPARC User's Manuall996.

Y. Zhou, L. Iftode, K. Li, J. P. Singh, B. R. Toonen, |. Shoinas,
M.D. Hill and D. A. Wood. Relaxed Consistency and
Coherence Granularity in DSM Systems: A Performance
Evaluation. 6th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programmind-as Vegas, June 1997.

