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ABSTRACT

This thesis addresses theoretical and practical aspects of the dynamic detecting and debugging of race condi-

tions in shared-memory parallel programs. To reason about race conditions, we present a formal model that charac-

terizes actual, observed, and potential behaviors of the program. The actual behavior precisely represents the pro-

gram execution, the observed behavior represents partial information that can be reasonably recorded, and the

potential behavior represents alternate executions possibly allowed by nondeterministic timing variations. These

behaviors are used to characterize different types of race conditions, general races and data races, which pertain to

different classes of parallel programs and require different detection techniques. General races apply to programs

intended to be deterministic; data races apply to nondeterministic programs containing critical sections.

We prove that, for executions using synchronization powerful enough to implement two-process mutual

exclusion, locating every general race or data race is an NP-hard problem. However, for data races, we show that

detecting only a subset of all races is sufficient for debugging. We also prove that, for weaker types of synchroniza-

tion, races can be efficiently located.

We present post-mortem algorithms for detecting race conditions as accurately as possible, given the con-

straint of limited run-time information. We characterize those races that are direct manifestations of bugs and not

artifacts caused by other races, imprecise run-time traces (causing false races to appear real), or unintentional syn-

chronization (caused by shared-memory references). Our techniques analyze the observed behavior to conserva-

tively locate races that either did occur or had the potential of occurring, and that were unaffected by any other race

in the execution.

Finally, we describe a prototype data race detector that we used to analyze a sample collection of parallel pro-

grams. Experiments indicate that our techniques effectively pinpoint non-artifact races, directing the programmer to

parts of the execution containing direct manifestations of bugs. In all programs analyzed, our techniques reduced

hundreds to thousands of races down to four or fewer that required investigation.



Chapter 1

INTRODUCTION

1.1. Motivation

Parallel programs can be nondeterministic. The behavior of these programs often depends on the interactions

between processes, which can depend on the relative speed of process execution. These interactions become more

complex when programs communicate through a shared memory. If updates to common shared-memory locations

are not carefully synchronized, time-dependent bugs called race conditions can result. Race conditions occur when

shared data is accessed by different processes without explicit synchronization. Programs containing races can

behave in ways unexpected by their programmers. Exploiting the full power of shared-memory parallel processors

therefore requires mechanisms for determining when a program execution is free from race conditions and for

assisting a programmer in locating race conditions when they occur. This thesis addresses both theoretical and prac-

tical aspects of race condition detection.

Program executions exhibiting race conditions present problems for both programmers and debuggers. First,

a programmer may expect their program to behave deterministically, producing the expected result each time the

program is run using the same input. A nondeterministic program can exhibit different behavior from run to run,

even though the same input is used. Since nondeterministic behavior depends on the relative timing between

processes, erroneous behavior may be manifested only on rare occasions. It may not be clear from a single execu-

tion of the program that nondeterministic behavior is possible. The program might appear deterministic, producing

the expected results for many runs, but may actually be nondeterministic, having the potential of producing the

wrong results. A mechanism is therefore desirable for automatically determining whether an execution is poten-

tially nondeterministic. Nondeterminism is introduced when the order in which any two accesses to a shared vari-

able (where at least one access is a modification), or the order in which any two synchronization operations are

issued, is not guaranteed by the program’s synchronization. We call such a possibility a general race (previous

work uses the term race condition).

Second, even if the programmer expects the program to be nondeterministic, the program may lack the proper

synchronization required for it to behave as expected. In such programs, explicit synchronization is often added to

implement critical sections. Critical sections are portions of code intended to execute atomically[18]. Atomic exe-

cution is guaranteed if the shared variables read or modified by the critical section are not modified by any other

concurrently executing section of code. Without proper synchronization, these shared variables may be modified by

other processes as the code executes, violating the expected atomicity. When this type of interference occurs, a data

race is said to exist. As with general races, a mechanism is also desirable for automatically detecting data races.

1
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Finally, debugging program executions containing race conditions requires not only a tool for determining

whether an execution exhibited races, but also for locating their causes. The reported race conditions must be

related back to the program bugs that caused their existence. Making this connection requires precisely defining

race conditions to clearly understand the semantics of the reported races. Moreover, the race detector should locate

these races accurately. Accurate location requires that only those races that are direct manifestations of program

bugs be reported, and not those that may be artifacts of other races or imprecise run-time traces. We therefore

believe that debugging race conditions requires both a precise model of the semantics of race conditions and tools

for accurate race detection. This thesis addresses both of these concerns.

1.2. Summary of Results

The main contributions of this work are (1) a theory in which to reason about race conditions and prove pro-

perties about race condition detection, (2) formal characterizations of different types of race conditions and results

regarding the complexity and accuracy of dynamically detecting them, and (3) practical techniques that aid the pro-

grammer by locating those race conditions that are of interest for program debugging.

First, the foundation of this work is a formal model for reasoning about the properties of race conditions. This

model provides a sound basis on which to formulate the race-detection problem and to investigate properties of race

detection techniques. Our model is novel in that the actual, observed, and potential behaviors of the program are

characterized. The actual behavior contains complete information about the execution, the observed behavior con-

tains only information that can be reasonably recorded, and the potential behavior contains information about alter-

nate orderings in which the execution’s events could have been performed. Characterizing these behaviors is neces-

sary for formal reasoning about race conditions. Using this approach, race conditions are precisely defined, and the

reported races are related back to the behavior of the program. Moreover, this approach has the advantage that the

complexity and accuracy of race detection is made explicit. Since previous work has only been founded on intui-

tion, there has been little agreement as to precisely what constitutes a race condition, and it is unclear how the races

detected by previously proposed methods relate to program bugs. This thesis presents new results regarding the

complexity and accuracy of race detection, and shows how to accurately locate race conditions.

Second, we characterize different types of race conditions in terms of our model and explore their properties.

We characterize both data races and general races, and argue that each pertains to a different class of parallel pro-

grams. Data races pertain to nondeterministic programs that have critical sections (and therefore use synchroniza-

tion powerful enough to implement mutual exclusion). General races pertain to programs intended to be determinis-

tic (which may use any type of synchronization). In the past, the distinction between data races and general races

has not been examined. We also prove bounds on the complexity of locating both types of races. For programs

using synchronization powerful enough to implement two-process mutual exclusion, exhaustively locating all data

races, or locating any general races, is an NP-hard problem. For programs using weaker synchronization, we

present the first efficient algorithm for computing the event orderings required for race detection. Moreover, we

argue that general race detection (which always requires computing all potential behaviors) is inherently more
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difficult than data race detection (which can be performed given only the actual behavior). These results establish

complexity bounds for race detection, showing for which types of synchronization the debugging problem is

efficient or intractable.

We also uncover previously hidden issues regarding the accuracy of race detection. We use our model to

analyze previously proposed methods and show that two variations of each type of race exist. One variation cap-

tures an intuitive notion (which we call a feasible race), and the other captures a less accurate notion (called an

apparent race). Previous race detection methods locate the apparent races. The apparent races are less accurate in

the sense that they can be artifacts of other races and not direct manifestations of program bugs. Reporting race

artifacts complicates the debugging process by overwhelming the programmer with large amounts of irrelevant

information. A race can be an artifact because of several factors. First, the outcome of another race may affect its

presence so that the race would not have occurred had the other race not been present. Second, the need to keep

run-time tracing overhead low results in limited information about the execution, causing more of the artifacts to be

detected as apparent races. Finally, when the values of shared variables are used in conditional expressions or in

shared-array subscripts, the data dependences (among shared variables) between some apparent races can prevent

others from ever actually occurring. This latter factor is reminiscent of using shared memory to perform synchroni-

zation, instead of using explicit synchronization primitives. However, we show that such situations can occur even

when the programmer does not intentionally use shared variables in this way.

Finally, identifying the distinction between feasible and apparent races motivates the practical techniques

presented in this thesis. Given our foundations and results, we focus on data races and develop techniques for accu-

rate data race detection. We present two techniques, called validation and ordering, for determining which apparent

data races are direct manifestations of program bugs and not artifacts of other races. The first technique, data race

validation, attempts to determine which data races are feasible. Feasible races are those that either occurred during

the observed execution or had the potential of occurring. Each data race can either be guaranteed feasible, or sets of

data races can be identified within which at least one is guaranteed feasible. The second technique, data race order-

ing, attempts to locate those data races that are not artifacts. Non-artifact races are those that were directly caused

by a program bug and not only a result of a previous race. Partitions of data races can be identified, each of which is

guaranteed to contain at least one feasible, non-artifact race. Validation is intended to refine the results of ordering

by providing information regarding the feasibility of races in these partitions. By applying a combination of valida-

tion and ordering, the programmer can be directed to those races that are manifestations of bugs. Examining these

races first simplifies the debugging task by localizing the portion of the execution that must be considered.

We present simple algorithms for performing post-mortem validation and ordering. These algorithms analyze

the trace data by speculating on how events affected one another during execution. The discrimination power

depends on how accurately this information can be determined. These techniques scale to any level of detail that is

available, allowing the data race reports generated by previous methods to be refined, and allowing any sources of

additional information to be used (such as a static analysis of the program that is already being performed for

another purpose). Furthermore, we also believe that our techniques might be easily modified to accurately locate
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general races.

To test the effectiveness of our techniques, we have built a prototype race detector. The prototype automati-

cally instruments parallel C programs that run on the Sequent Symmetry multiprocessor, and performs data race

validation and ordering by analyzing the traces produced by this instrumentation. Experiments show that, in all of

the test programs analyzed, our techniques narrowed the large number of races that the programmer must analyze

down to four or less.

The final result of this work is both a theory in which to reason about current and future race detection

methods, and simple but effective techniques for locating those races that are direct manifestations of program bugs.

The practical applications of this work are new tools that aid the programmer in debugging programs containing

race conditions.

1.3. Thesis Organization

This thesis is organized as follows. In Chapter 2 we outline previous work related to detecting race condi-

tions. We also present an example that illustrates how race artifacts occur and why they present problems.

Chapter 3 presents our formal model for reasoning about race conditions. The model consists of three parts:

the first part is a notation for describing the execution of a shared-memory parallel program (Section 3.1), the

second part represents information that can be reasonably recorded about the execution (Section 3.2), and the third

part characterizes behavior that the execution had the potential of exhibiting (Section 3.3).

The model is used in Chapter 4 to characterize different types of race conditions: general races and data races.

Sections 4.1 and 4.2 present examples of these races and argue that each pertains to a different class of parallel pro-

grams. Section 4.3 discusses some fundamental differences between general races and data races.

Chapter 5 then proves results regarding the complexity of race detection. We formulate the race-detection

problem in terms of binary relations, and prove the complexity of deciding these relations. The implications of

these results as they impact general race and data race detection are also discussed.

Chapters 6 through 8 present techniques for accurate data race detection. A two-phase approach is presented.

Chapter 6 discusses the first phase, which is essentially identical to previous methods, and detects the apparent data

races. Chapters 7 and 8 then discuss how these races can be validated and ordered by a second phase. These

chapters each begin by proving theoretical results and end by outlining algorithms for implementing the technique.

Chapter 9 discusses our prototype race detector and the results of experiments involving test programs that

contained data races. Chapter 10 presents concluding remarks and topics for future work.

Brief explanations of notation defined in this thesis appear in the glossary.



Chapter 2

RELATED WORK

This chapter reviews previous work related to race condition detection. Race detection schemes perform

either static analysis or dynamic analysis. Static analysis examines the program text, performing a conservative

analysis and detecting a superset of all races that could be possibly exhibited by the program. In contrast, dynamic

analysis examines a particular execution of the program and detects races exhibited only by that execution.

Although this thesis addresses dynamic detection, we include a short review of static methods for completeness, and

then concentrate on dynamic methods.

We also present an example program execution that exhibits data races and show how previous data race

detection methods can report race artifacts. This example illustrates the problems caused by reporting artifacts and

justifies the need for accurate race detection techniques.

2.1. Static Analysis

Static analysis methods for race detection examine only the program text, and assume that all execution paths

through the program are possible. Under this assumption, determining whether sections of code may execute con-

currently (or in some other order) requires examining only the explicit synchronization in the program (this assump-

tion would always be correct if the program contained no conditionally executed code). Static analysis therefore

examines how the program’s synchronization might allow such potential orderings. An exception to this approach

is the work by Young and Taylor[77], which employs symbolic execution to discover more information about possi-

ble execution paths. Using this ordering information, and a conservative analysis of which shared variables may be

read and written in each section of code, data races and general races can be detected.

Taylor showed that, for Ada programs containing no branches or conditionally executed code, the problem of

computing the ordering information is NP-complete[72, 73]. Given this NP-completeness result, two different

approaches to static analysis have been developed. First, some methods traverse the space of all possible states that

the program may enter. This state space can either be constructed explicitly, by building a

graph[3, 4, 46, 47, 52, 72, 74, 75], or implicitly, by constructing a representation of the state space (such as a formal

language or a petri-net)[5, 36, 67]. In the general case, these methods have exponential time complexity, and in

some cases, exponential space complexity as well. Second, other static analysis methods perform a data-flow

analysis of the program to discover potential event orderings[6, 10, 11, 13, 57, 58, 62, 70, 71]. These methods have

polynomial time and space complexity, but are less accurate than the state-space methods, sometimes reporting

races that the program could never exhibit (and that the state-space methods would never report).

Static analysis has also been used to complement dynamic methods. Static analysis can sometimes rule out

the possibility of races between some sections of the program, precluding the need for tracing these program

5
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sections for dynamic analysis[2, 23-25, 75]. Static analysis can also compute input data that might manifest a

race[63], allowing dynamic analysis to attempt to verify the existence of that race.

2.2. Dynamic Analysis

Unlike static analysis, dynamic analysis detects the race conditions exhibited by a particular execution of the

program. Dynamic analysis is especially useful for debugging since precise information about manifestations of

particular bugs is available. Below we outline previous work on dynamic data race and general race detection. We

first discuss the similarities and differences of the various methods and then present the unique details of each.

Finally, we present an example that focuses on the simple type of analysis that is common to all methods. We show

why this analysis can report race artifacts, and discuss other aspects of previous work.

2.2.1. Common Characteristics

All previous race detection methods collect essentially the same information about the execution and concep-

tually analyze it in the same way. Below we outline this analysis. As discussed later, their main differences lie in

when this information is collected and analyzed.

Race condition detection methods instrument the program so that information about program events is col-

lected during execution. An event represents an execution instance of either a single synchronization operation (a

synchronization event) or code executed between two synchronization operations (a computation event). Two kinds

of information are recorded: (1) for each event in the execution, the sets of shared memory locations that are read

and written by the event (called the READ and WRITE sets), and (2) the relative order in which some events exe-

cute.

The main part of race detection involves analysis of the recorded relative execution order. All methods con-

ceptually represent this information with a DAG, which we call the ordering graph. Each node of the ordering

graph represents an event1. Edges are added to show the order in which events belonging to the same process exe-

cute; an edge is added from each node to the next node belonging to the same process. Edges are also added

between some pairs of synchronization nodes (involving the same synchronization variable) to indicate their relative

execution order. The purpose of these edges is to show event orderings (in the particular execution being traced)

that were caused by explicit synchronization (details appear later). No edge between two nodes implies that no

explicit synchronization constrained their execution order.

Data race detection attempts to determine whether intended critical sections executed non-atomically (or had

the potential of doing so). Non-atomicity can occur only when pairs of computation events have a data conflict (i.e.,

access common shared variables that at least one modifies) and can potentially execute concurrently. Data-
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 Some methods do not actually construct a node to represent a computation event but rather represent the event by an edge connecting the

two surrounding synchronization events[50, 65].
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conflicting events are easily located by analyzing the READ and WRITE sets. Events that had the potential of exe-

cuting concurrently can be located by analyzing the ordering graph. All previous methods search for pairs of events

that are unordered by the graph. Two events are unordered by the graph if there is no path connecting the nodes

representing the events.

General race detection attempts to determine whether the given execution was potentially non-deterministic.

An execution is potentially non-deterministic if two data-conflicting events could have executed in any order. The

key to general race detection is determining the event orderings that are guaranteed to be exhibited by any execution

of the program on the given input. The general race detection method by Emrath, Ghosh, and Padua[24, 25] com-

putes these guaranteed orderings by analyzing the execution’s explicit synchronization and transforming the order-

ing graph. An edge in the transformed graph indicates that the synchronization semantics would force the node at

the tail of the edge to precede the node at the head in any execution. Events unordered by the transformed graph are

assumed to have potentially executed in any order.

All data race and general race detection methods analyze the ordering graph in the same way: races are

reported between data-conflicting events that are unordered by the graph. These events are assumed to have either

potentially executed concurrently (in the case of data race detection) or in any order (in the case of general race

detection). This assumption follows from the observation that the ordering graph shows event orderings guaranteed

by the execution’s explicit synchronization. However, as we illustrate later in this chapter, this assumption is not

always correct, and can lead to the detection of race artifacts.

2.2.2. Differences

The main differences among the race detection methods lie in the way information is collected and analyzed.

Two approaches exist: post-mortem and on-the-fly analysis. Both post-mortem and on-the-fly methods instrument

the program to collect information required for race detection. Post-mortem methods detect races after the execu-

tion has ended by analyzing trace files produced during execution. On-the-fly methods detect races by an on-going

analysis as the program executes, without producing trace files.

Post-mortem methods use three phases. The first phase instruments the program to record during execution

the READ and WRITE sets for each event, as well as the relative execution order among synchronization events

involving the same synchronization variable. In the second phase, the instrumented version of the program is exe-

cuted, writing this information to trace files. After execution is complete, the final phase constructs and analyzes the

ordering graph to detect races. Once the instrumentation phase is complete, the last two phases can be repeated for

any number of executions. Most post-mortem methods detect data races[1, 2, 16, 50]; only one method detects gen-

eral races[23-25].

In contrast, on-the-fly methods use only two phases. As with post-mortem methods, the first phase instru-

ments the program to collect information during execution. Unlike post-mortem methods, this information is not

collected for later use, but is analyzed as execution progresses. The ordering graph and READ and WRITE sets are
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encoded in memory2 so that they can be updated and accessed quickly during execution and discarded as they

become obsolete. The only purpose of encoding this information is to reduce space overhead; race detection is still

accomplished by locating events unordered by the ordering graph. The thrust of previous work has been the

development of efficient encoding schemes. Several schemes have been proposed, but most buffer only enough

information to guarantee detection of one race involving each shared variable[17, 19-22, 37, 49, 64, 65], leaving

some races undetected (however, Choi and Min[17] propose a method, discussed further in Chapter 8, for re-

executing the program to reproduce the undetected races). On-the-fly methods have primarily been used to detect

data races[17, 19, 20, 22, 37, 51, 56, 64, 65, 69], although they can be used to detect general races for programs that

use no synchronization other than fork/join.

On-the-fly methods have the advantage over post-mortem methods that large trace files are not generated, but

have the disadvantages of incurring more space overhead during execution, not detecting some races, and discarding

information that shows how the races occurred. The execution overhead can render on-the-fly methods unusable in

some instances. Each shared variable being monitored for races incurs both space and time overhead. The space

overhead is 2−20 times the size of the variable being monitored. The time overhead is incurred by performing race

checks at each shared-memory access. All accesses to the same variable are serialized, introducing central

bottlenecks into the execution (as discussed later, this serialization also provides extra ordering information that can

be used for race detection). In systems where information about the execution is being collected for other purposes

(such as debugging), post-mortem methods can usually be applied with little additional overhead. However, when

long-running executions produce very large traces, post-mortem methods are generally unusable.

2.2.3. Details of Each Method

Conceptually, the various data race and general race detection methods differ mainly in the types of synchron-

ization primitives supported and in how edges between synchronization nodes in the ordering graph are added.

Although the on-the-fly methods also contain techniques for encoding the ordering graph in memory, we concen-

trate on the structure of the graph and how it is analyzed to detect races (further discussion of on-the-fly methods

appears in the next sub-section and in Chapter 8). Below, we briefly outline these aspects of previous methods.

Allen and Padua[2] present a post-mortem data race detection method for Fortran programs that introduce

parallelism with the doall construct, and synchronize with test and testset primitives. The doall construct is identi-

cal to a do loop except that each iteration of the loop is spawned as a separate process that executes concurrently

with all other iterations of the loop. The test(x) primitive waits until the value of the synchronization variable x is

greater than the iteration number of the enclosing doall loop. The testset(x) primitive increments the value of the

synchronization variable x. An edge is drawn in the ordering graph from a doall node to the first node representing
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2Some methods store the inverse of the READ and WRITE sets[17, 19, 37, 56].
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each iteration of the loop. Similarly, an edge is drawn from the last node of each loop iteration to the end doall

node corresponding to the end of the loop. An edge is also drawn from a node representing a testset operation to

the node representing the test operation that it allowed to proceed. They do not specify how to draw these edges

when there is more than one test or testset operation in a given loop iteration. To reduce the amount of instrumen-

tation required, they employ a static analysis of the program. Events involving data races that can be detected stati-

cally are not traced. In addition, an event that could be affected by data-racing events is not traced, since tracing

cannot prove the absence of a potential data race involving that event. Our work on data race ordering also consid-

ers how events potentially affect one another, and we contrast it with Allen and Padua’s work in Chapter 8.

Miller and Choi[50] describe a parallel program debugger that incorporates post-mortem data race detection.

They consider C programs that use fork/join and counting semaphores. An edge is drawn from a fork node to the

first node representing each child of the fork, and from the last node in each child to the corresponding join node.

To draw edges between nodes representing semaphore operations, they pair the i th V operation on each semaphore

with the i th P operation on the same semaphore. An edge is then drawn from each V node to the P node with which

it is paired.

Dinning and Schonberg[19, 20, 64, 65] describe on-the-fly techniques for detecting data races in executions of

programs using fork/join and arbitrary synchronization (such as barriers, events, Ada rendezvous, and semaphores).

As above, they (conceptually) construct an edge from each fork node to the first node in each child of the fork, and

from the last node in each child to the corresponding join node. For other synchronization operations, they distin-

guish between synchronous and asynchronous coordination. Synchronous coordination occurs when neither of the

two processes synchronizing may proceed beyond the synchronization point until both have reached it. In this case,

a doubly directed edge between the two nodes involved in the coordination is drawn (such edges may introduce

degenerate cycles, which are ignored). Asynchronous coordination occurs when one event (the sender) may

proceed immediately but the other (the receiver) may not execute beyond the synchronization point until the sender

has arrived. For asynchronous coordination, an edge is constructed from the node representing the sender to the

node representing the receiver. They do not specify how to pair senders with receivers.

Dinning and Schonberg[22] also extend their techniques to uncover some races that are hidden by critical sec-

tions. Because an edge is added between the synchronization operations implementing critical sections (such as

from a V to a P operation), the graph only allows detection of races that occurred under the particular order in

which critical sections executed. Races that would have occurred had two critical sections executed in a different

order remain hidden. To uncover these races, they propose omitting edges between synchronization operations that

implement critical sections. However, when it is not possible for two critical sections to have executed in any order,

race artifacts can be reported. They also present a static analysis, based on program slicing, for determining which

parts of the program may cause such artifacts.

Hood, Kennedy, and Mellor-Crummey[37] describe an on-the-fly technique for detecting data races in PCF

Fortran programs that use parallel do loops with send and wait primitives. Edges are added to the graph in the same
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way as the method by Dinning and Schonberg. However, the semantics of PCF Fortran dictate that exactly one

send and one wait operation must be issued for each synchronization variable. Under this restriction, pairing send

operations with wait operations is straightforward. In addition, Mellor-Crummey[49] presents a technique called

Offset-Span Labeling for programs that use only fork/join. Offset-Span labeling is a technique for encoding the

ordering graph that incurs lower space overhead than other methods.

Steele[69] and Nudler and Rudolph[56] also present on-the-fly schemes for programs that use only fork/join.

They conceptually construct the ordering graph in the same way as all other methods, and differ in the techniques

used to encode the graph in memory.

Choi and Min[17, 51] present techniques that address both the execution-time overhead of on-the-fly race

detection and the problem of undetected races. They outline a hardware-based scheme for reducing the amount of

execution-time overhead by using state information maintained by (a modified version of) the underlying cache

coherence protocol[51]. The resulting race detection method is essentially the same as that of Dinning and Schon-

berg[19, 20]. To address the problem of undetected races, they also show how to guarantee deterministic re-

execution of the program up to the point of the first detected race, allowing additional instrumentation to be added

that locates the originally undetected races[17]. Their work has some similarities to ours; a more detailed discussion

appears in Chapter 8.

The general race detection method described by Emrath, Ghosh, and Padua[23-25] considers programs that

use fork/join and event style synchronization (using the Post, Wait, and Clear primitives). This method attempts

to locate exactly those events whose execution order was not guaranteed by the program’s synchronization. As with

the data race detection methods described above, an ordering graph is constructed. Edges are added to this graph in

the same way as described above for fork, join, and events belonging to the same process. The method differs from

data race detection in its handling of other synchronization events (Post, Wait, and Clear). Edges are added

between nodes representing these events to show orderings that the program is guaranteed to have exhibited (on the

given input). They present both an algorithm for approximating and exhaustively computing these orderings. In

their approximation algorithm, for each Wait node, all Post nodes that might have triggered that Wait are identified.

A Post might trigger a Wait if there is no path in the graph from the Wait to the Post (which would indicate that the

Wait must have preceded the Post), and no path from the Post to the Wait that includes a Clear node. Edges are

then added from the closest common ancestors of these Posts to the Wait. In their exhaustive algorithm, every pos-

sible event ordering is considered, allowing the guaranteed orderings to be computed. The graphs resulting from

these algorithms are interpreted as showing a guaranteed ordering between two events iff they are ordered by the

graph. Two events are therefore said to not have a guaranteed execution order iff they are unordered by the graph.

However, the graph constructed by their approximation algorithm sometimes omits some guaranteed orderings, pos-

sibly causing race artifacts to be reported. In Chapter 5 we prove that the problem of exactly computing the

guaranteed orderings is NP-hard.
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Helmbold, McDowell, and Wang[35] also present algorithms for computing guaranteed orderings for pro-

grams that use general semaphores. As above, these algorithms transform the ordering graph. They achieve poly-

nomial running time by computing safe orderings, which are conservative approximations of the guaranteed order-

ings. The orderings given by the resulting graph can be used to (conservatively) detect both general races and data

races. As above, the conservative nature of these orderings can cause race artifacts to be reported.

2.3. Problem Motivation

All of the previous methods described above share similar drawbacks. Although they provide valuable tools

for determining whether or not a program execution is race-free, most provide little assistance, in general, for actu-

ally locating the program bugs responsible for the races. This problem stems from two sources. First, as illustrated

below, previous methods can generate race reports containing artifacts, with no indication of which reported races

are directly caused by program bugs. Second, this problem is further complicated by the informal treatment of

races: since the meaning of the reported races is not characterized, it is unclear how to relate the race reports back to

the behavior of the program. It is therefore difficult for the programmer to use the race reports for debugging the

cause of the races. Below, we illustrate and discuss these problems for data race detection; analogous problems also

exist for general race detection.

2.3.1. Example

To illustrate why data race artifacts can be reported, and why they present a problem, consider the program

fragment in Figure 2.1. This program creates two children that execute in parallel. Each starts by performing some

initial work on disjoint regions of a shared array, and then enters a loop to perform more work on the array. Inside

the loop, the lower and upper bounds of an array region to operate upon are removed from a shared queue, then

computation on that array region is performed. The queue initially contains records representing disjoint regions

along the lower and upper boundaries of the array, which do not overlap with the internal regions initially operated

upon. A correct execution of this program should therefore exhibit no data races.

However, assume the ‘‘remove’’ operations do not properly synchronize their accesses to the shared queue.

An ordering graph for one possible execution is shown (the internal lines only illustrate the data races and are not

part of the graph). In this execution the ‘‘remove’’ operations execute concurrently (during the first loop iteration),

causing the right child to correctly remove the second record, but the left child to incorrectly remove the lower

bound from the first record and the upper bound from the second. The left child thus proceeds to operate (errone-

ously) on region [1,39].

In this graph, no paths connect any nodes of the left child with any nodes of the right child, meaning that no

explicit synchronization constrained their execution order. The type of analysis that previous methods perform (i.e.,

scanning the ordering graph), would report three data races: two between the work events (shown by the dotted and

dashed lines) and one between the ‘‘remove’’ events (shown by the solid line).
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Figure 2.1. (a) example program that can exhibit data races, and
(b) ordering graph for one execution (annotated with data-race information)
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The race report between the ‘‘remove’’ events is not an artifact; it was directly caused by the bug (the omitted

synchronization). The non-artifact status of this race can be determined by noticing that (1) the race is feasible,

involving events that either did execute concurrently or had the potential of doing so, and (2) the race involves

events that were not performed only as a result of the outcome of another race.

However, the two race reports involving work events are both artifacts. The data race shown by the dotted

line is infeasible, since it involves events that never could have executed concurrently. For the accesses to [1,39]

and [20,29] to have executed concurrently, the left child’s ‘‘remove’’ operation would had to have executed before

the right child’s ‘‘remove’’ operation (with which it originally overlapped). If this had happened, the erroneous

record [1,40] would not have been removed (since the two ‘‘remove’’ operations would not overlap), and a different

array region would have been accessed.

Although the data race shown by the dashed line is feasible (it involves events that actually did execute con-

currently), it is nonetheless an artifact. The access to [1,39] was a result of the preceding ‘‘remove’’ executing

non-atomically, leaving the program’s data in an inconsistent state.

Even though the simple approach of analyzing the ordering graph would report three races (two of which are

artifacts), some methods have the potential of limiting the number of artifacts reported. Since on-the-fly methods

serialize all accesses to a given memory location, they have information in addition to the ordering graph about the

order in which individual shared-memory accesses occurred. As suggested by Choi and Min[17], these methods

could stop the program after the first race is detected (even though earlier races may remain undetected). However,

obtaining this extra information incurs overhead at each shared-memory access and introduces central bottlenecks

into the execution. Although this technique may prevent artifacts from being reported, this issue has not yet been

investigated. The results presented later in this thesis can be used to reason about this (or any other) approach to

prove that artifacts are never reported or to characterize those that are.

2.3.2. Discussion

Reporting the above race artifacts to the programmer can complicate the debugging process; only a single bug

exists, but three data races are reported. Previous work has not considered this problem. Race reports are further

complicated by the lack of a formal semantics for race conditions; the meaning of the race reports is unclear, mak-

ing it difficult to reason about artifacts.

If the example had been more complex, perhaps creating other children, there may have been many nodes in

the graph representing the array accesses, and many data race artifacts would have been reported. Since the artifacts

are not direct manifestations of program bugs but are caused only by other races, reporting them among the non-

artifact races obscures the location of the bug. Artifacts can result whenever the values of shared variables are used

(directly or indirectly) in conditional expressions or in expressions that determine which shared locations are

accessed (e.g., shared array subscripts or pointer expressions). We believe that race artifacts are a problem because

a large class of programs use shared data in this way. Some artifacts (such as the infeasible data race shown above)
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occur because of situations reminiscent of the programmer using shared variables to implement synchronization,

instead of using explicit synchronization constructs. However, we should emphasize that race artifacts can occur

even when the programmer does not intentionally use shared variables for synchronization, as the above example

illustrates. As the example also shows, non-artifact data races can appear anywhere in the execution, making it

difficult to locate them by inspection alone. We therefore conclude that automatic techniques for accurate race

detection, that analyze how shared data flowed through the execution (causing some events to affect the outcome of

others), are necessary.

The fact that previous work has not precisely defined the notion of a race (or a race artifact) exacerbates the

race-artifact problem. Without a formal statement of the race-detection problem, developing correct techniques for

dealing with race artifacts is complicated. Previous work has only characterized races informally[19, 24, 25] or not

at all. For example, data races have only been defined as occurring when two blocks of code access common shared

variables and ‘‘can potentially execute concurrently’’[19]. General races have been defined as occurring when

there is no ‘‘guaranteed run-time ordering’’[24] between two shared-memory accesses to the same location. Such

definitions refer to sets of alternate orderings that had the potential of occurring (those in which the accesses execute

concurrently or in an order different than originally occurred), but these sets have not been explicitly defined. By

not characterizing precisely what the race reports mean, it is not always clear what races are (and are not) being

detected, or how to use the resulting reports to debug the program.

The purpose of this thesis is to address these concerns. Our first main goal is to formally define and explore

the race-detection problem in terms of a model for reasoning about race conditions. Then, techniques for accurate

data race detection are developed and proven correct, entirely in terms of the model.



Chapter 3

MODEL FOR REASONING ABOUT RACE CONDITIONS

In this chapter we present a formal model for reasoning about race conditions. In subsequent chapters we will

formulate and reason about the race-detection problem entirely in terms of this model. Doing so not only allows us

to unambiguously characterize race conditions, but also allows our techniques to be proven correct more easily than

when reasoning purely on an intuitive level. Our model consists of three parts, representing the actual, observed,

and potential program behaviors. The actual behavior precisely represents properties of the execution, the observed

behavior represents only information that can be reasonably recorded about the execution, and the potential

behavior shows alternate orderings in which the execution’s events could have been performed. Representing all of

these behaviors is necessary for reasoning about race conditions and techniques for race detection.

3.1. Actual Behavior

The first part of our model is simply a notation for representing the actual behavior of a shared-memory paral-

lel program executing on a sequentially consistent multi-processor[39]. This part of the model contains objects that

represent a program execution (such as which statements are executed and in what order) and axioms that character-

ize properties those objects must possess. Below, we first outline the basic model, and then describe the axioms for

programs that use fork/join and general semaphores. Other types of synchronization are easily accommodated by

including the appropriate axioms.

3.1.1. Basic Model

The first part of our model is based on Lamport’s theory of concurrent systems[41, 42], which provides a for-

malism for reasoning about concurrent systems that does not assume the existence of atomic operations. In

Lamport’s formalism, a concurrent system execution is modeled as a collection of operation executions, which

represent instances of operations performed by the system. Two relations on operation executions, precedes ( )

and can causally affect ( ), describe a system execution. For two operation executions a and b, a b means

that a completes before b begins (in the sense that the last action of a can affect the first action of b), and a b

means that some action of a precedes some action of b.

We use Lamport’s theory, but restrict it to the class of shared-memory parallel programs that execute on

multi-processors with sequentially consistent memory systems[39]. Sequential consistency ensures that shared-

memory accesses behave as if they were all performed atomically and in some linear order (that is consistent with

the order specified by the program). Analogous to a system execution, we define a program execution.

15
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Definition 3.1

A program execution, P, is a triple 〈E, T , D 〉, where

(1) E is a finite set of events,

(2) T is the temporal ordering relation (defined over E), and

(3) D is the shared-data dependence relation (also defined over E).

P is an actual program execution if it represents an execution that the program at hand actually performed.

a

Definition 3.2

An event e ∈ E represents

(1) a set of execution instances of one or more consecutively-executed program statements, and

(2) the sets of shared variables1 read and written by those statements, denoted by READ (e) and WRITE (e).

a

Because we define an event to represent the statement instance and the shared variables accessed, two events

are equivalent iff they represent the same execution instance of the same statements in which the same shared vari-

ables are accessed. Because the READ and WRITE sets do not contain the values read or written (but only the ad-

dresses), two such events can be equivalent even if they access different values.

When the underlying hardware guarantees sequential consistency, any two events that execute concurrently

can affect one another (i.e., a / b ⇔ a b ∧ b a)2. A single relation is then sufficient to describe the tem-

poral aspects of a system execution. The temporal ordering relation serves this purpose; a T b means that a com-

pletes before b begins, and a /
T b means that a and b execute concurrently (i.e, neither completes before the

other begins). Another useful way of viewing events and their temporal ordering is by modeling each event, e, as

possessing a unique start time (es) and finish time (ef)[40]. The temporal ordering can then be described by a total

ordering on the start and finish times of all events, called a global-time model: a T b iff af < bs , and a /
T b

iff as < bf ∧ bs < af . We should emphasize that the T relation describes the order in which events actually exe-

cute during a particular execution: a /
T b means that a and b actually executed concurrently, it does not mean

that a and b could have executed in any order.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1We use the term shared variable to refer to one or more memory locations that reside in shared memory.

2 In Lamport’s terminology, we are considering the class of system executions that have global-time models. Throughout this thesis, we

use superscripted arrows to denote relations, and write a / b as a shorthand for ¬(a b), and a / b as a shorthand for ¬(a b) ∧ ¬(b

a).
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We also replace the relation with the shared-data dependence relation, D . The D relation shows

when one event can causally affect another through accesses to shared memory. Events in different processes can

affect each other either because of a direct data dependence involving a single shared variable or because of a chain

of direct dependences involving several different variables. A direct shared-data dependence from a to b (denoted a

DD b) exists if a accesses a shared variable that b later accesses and at least one access modifies the variable. We

also say that a direct dependence exists if a precedes b in the same process, since data can in general flow through

non-shared variables local to the process. A transitive shared-data dependence (a D b) exists if there is a chain

of direct dependences from a to b; e.g., if a accesses a shared variable that another event c later accesses, and then c

references another variable that b later references. This definition of data dependence is somewhat nonstandard

since we consider transitive dependences involving flow-, anti-, and output-dependences[26, 38], and do not expli-

citly state the variables involved.

3.1.2. Axioms

A program execution is simply a notation for describing the execution of a shared-memory parallel program.

Following Lamport, our model also contains several axioms that describe properties every program execution must

possess. Furthermore, the model so far does not describe any of the synchronization aspects of a program execu-

tion. We extend the general model by imposing some structure on the set of events, E, and by adding axioms that

describe the semantics of synchronization operations. We consider programs that use fork/join and general sema-

phores. However, other synchronization constructs can be easily accommodated by adding the appropriate axioms.

The temporal ordering and shared-data dependence relations must satisfy the following axioms:

(A1) T is an irreflexive partial order.

(A2) If a T b /
T c T d then a T d.

(A3) If a D b then b /
T a.

Axioms (A1) and (A2) force T to be consistent, and are equivalent to stating that T is defined by a total

ordering of the start and finish times of all events (i.e., a global-time model). Axiom (A3) represents the law of

causality: a cannot affect b if b precedes a in time3.

To describe the presence of synchronization operations, we distinguish between two different types of events.

A synchronization event is an execution instance of some synchronization operation. A computation event is an ex-

ecution instance of a group of statements that executed consecutively, none of which are synchronization opera-
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3 Axioms (A1), (A2), and (A3) are identical to Lamport’s. However, Lamport also includes another axiom stating that if a b c ∨ a

b c then a c. We omit this axiom since it follows directly from axioms (A1) and (A2) for the class of system executions being con-

sidered (those having global-time models).
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tions. Any arbitrary grouping of consecutively executed statement instances that does not include a synchronization

operation defines a computation event.

We assume that throughout a program execution, a (perhaps variable) number of processes exist, and that

each event belongs to some process. Ep denotes the set of events in the execution of process p, and ep,i denotes the

i th event in process p. The following axiom describes the linear ordering imposed on events belonging to the same

process:

(A4) ep,i
T ep,i +1 for all processes p and 1 ≤ i < cEp c .

We also assume that each process either exists when the program execution begins or is created during execu-

tion by a fork operation. Similarly, a process either continues to exist until the program execution ends or until the

process (and all others created by the same fork operation) is terminated by a join operation. A fork event, Forkp,i ,

is assumed to precede all events in the child processes that it creates, and all events in these child processes are as-

sumed to precede the subsequent join event in process p, Joinp,i +k:

(A5) For all child processes, c, created by each Forkp,i and terminated at Joinp,i +k ,

Forkp,i
T ec, j

T Joinp,i +k 1 ≤ j ≤ cEc c .

To describe program executions that use general semaphores, we distinguish between P events and V events.

The set of all P and V events on semaphore S is denoted by EP (S) and EV (S) , respectively. We assume that in any

program execution the semaphore invariant[34] is always maintained. For general semaphores, the semaphore in-

variant is maintained iff at each point in the execution, the number of V operations that have either completed or

have begun executing is greater than or equal to the number of P operations that have completed. For each sema-

phore S, the T relation must satisfy the following axiom:

(A6) For every subset of P events, P ⊆ EP (S) ,

c { v | v∈EV (S) ∧ ∃p∈P (v T p ∨ v /
T p) } c ≥ c P c .

This version of axiom (A6) assumes that the initial value of each semaphore is zero. An arbitrary initial value, m,

for some semaphore can be described by appropriately modifying the axiom, or by creating an artificial process that

contains m V-events that precede all other events.

3.1.3. Higher-Level and Single-Access Views

It is useful to be able to view a program execution at different levels of abstraction, since information about

the execution may be collected at that level, and because it is sometimes useful to abstract irrelevant details of part

of an execution into a higher-level event. We can reason about a program execution at any level of abstraction by

following Lamport and defining a higher-level view.
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Definition 3.3

A higher-level view of a program execution P = 〈E, T , D 〉 is another program execution P = 〈E, T ,

D 〉, where

(1) E partitions E, and ∀e ′∈E,

READ (e ′ ) =
e∈e′
∪ READ (e), and WRITE (e ′ ) =

e∈e′
∪ WRITE (e),

(2) A T B ⇔ ∀a ∈A, b ∈B (a T b), and

(3) A D B ⇔ ∃a ∈A, b ∈B (a D b). a

A higher-level view always obeys axioms (A1) − (A3). Since axioms (A4) − (A6) are defined in terms of

synchronization and computation events, they are also obeyed if each higher-level event consists of either a single

synchronization event from E or only a set of computation events from E. In such a case, each event e ′∈E inherits

its type from the type of the lower-level events comprising e ′. When the higher-level events are defined to partition

E in this way, P obeys axioms (A1) − (A6) and is then itself a valid program execution. When we refer to a

higher-level view, this assumption is always implied.

It is also useful to sometimes view the execution at a very low level of detail. For this purpose we introduce a

single-access view.

Definition 3.4

A single-access view of a program execution P = 〈E, T , D 〉 is another program execution P
S

= 〈E
S

,

TS , DS 〉, where each computation event in ES comprises at most one shared-memory access and P is a

higher-level view of PS. a

Single-access views are useful when reasoning about the order in which individual shared-memory accesses

were performed. We will make use of both higher-level and single-access views in the proofs of our results.

3.2. Observed Behavior

A program execution is a convenient notation for representing an execution of a shared-memory parallel pro-

gram. However, a program execution captures complete information about the execution in the sense that T al-

ways shows the relative execution order between any two events, and D shows the actual shared-data depen-

dences exhibited by the execution. In practice, recording such complete information is impractical, and existing

dynamic methods record only a subset of this information. We now incorporate such partial information into our

model by defining an approximate program execution, which consists of approximate counterparts to the temporal

ordering and shared-data dependence relations. The accurate data race detection techniques presented in Chapters 7

and 8 are based on approximate program executions. Our intent here is to show how information recorded for race

detection can be represented in our model, rather than to discuss details of program instrumentation.
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3.2.1. Approximate Temporal Ordering

Existing methods record the temporal ordering among only a subset of the synchronization events. For exam-

ple, the order among fork and join events and their children is recorded, but the relative order of events performed

by the children is not. Recording such an incomplete ordering has the advantage that the required instrumentation

can be embedded into the implementation of the synchronization operations without introducing additional syn-

chronization. A central bottleneck that could reduce the amount of parallelism achievable by the program is avoid-

ed. However, the lack of complete ordering information sometimes renders it impossible to determine the actual

order in which two events were performed. Arbitrarily not recording the relative execution order between any pair

of events would result in meaningless recorded information. We therefore require that the lack of ordering informa-

tion between a pair of events occurs only in certain situations. To represent this incomplete ordering, we define an

approximate temporal ordering relation, T̂ .

Definition 3.5

An approximate temporal ordering relation, T̂ , is a conservative approximation to T (i.e., T̂ ⊆ T )

that possesses the following two properties:

(1) if a T̂ b then a T b, and

(2) if a /
T̂ b then explicit synchronization did not prevent a and b from executing concurrently. a

The ordering information recorded by all existing methods possesses these properties. The first property

states that the recorded ordering must be consistent with the actual ordering. The second property stipulates when

the ordering between a and b may not be recorded. In this case, if the order between two events is not observed, it

must be because they either executed concurrently or were not prevented by explicit synchronization from doing so.

These two properties simply impose consistency constraints on the recorded ordering information, allowing mean-

ingful information regarding the actual ordering to be extracted from it.

3.2.2. Approximate Shared-Data Dependences

Although existing methods do not attempt to record shared-data dependences, dependences can be approxi-

mated given the temporal ordering and the READ and WRITE sets which are recorded for each computation event.

Definition 3.6

An approximate shared-data dependence relation, D̂ , is a conservative approximation to D (i.e., D̂

⊇ D ). a

The D̂ relation conservatively shows what the actual shared-data dependences were; it must be conserva-

tive to avoid overlooking any of the actual dependences. For example, consider two events, a and b, that access

common shared variables (that at least one modifies). If a T̂ b, then we can determine with certainty that a direct
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shared-data dependence exists from a to b. When a /
T̂ b, the direction of any direct dependence cannot be

determined (since the actual temporal ordering between a and b is unknown), and we must make the conservative

assumption that a dependence exists from a to b and from b to a. This assumption will always include the actual

dependences, although it may indicate a dependence from b to a when in fact the only dependence is from a to b.

Transitive shared-data dependences can be similarly estimated. Algorithms for computing D̂ from the READ and

WRITE sets are presented in Chapter 7.

3.2.3. Approximate Program Executions

The approximate relations described above form an approximate program execution, representing information

that can be reasonably recorded about the execution.

Definition 3.7

An approximate program execution, P̂ , is a triple 〈E, T̂ , D̂ 〉, where

(1) E is a finite set of events,

(2) T̂ is an approximate temporal ordering relation described above, and

(3) D̂ is an approximate shared-data dependence relation described above. a

Approximate executions form the link between the real execution and the model. An approximate execution,

P̂ , can actually be constructed from a trace of the execution. Characteristics of the actual program execution, P,

can then be inferred by using the properties described above.

3.3. Potential Behavior

Actual and approximate program executions describe behavior that a particular execution actually exhibited.

However, to characterize race conditions, it is necessary to also describe behavior that the execution could have ex-

hibited. Previous work has not carefully considered this issue. Race conditions have typically been defined only as

data-conflicting accesses ‘‘that can execute in parallel’’[19] or whose execution order is not ‘‘guaranteed’’[24, 25].

To address this concern, the third part of our model characterizes sets of feasible program executions, which

represent other executions that had the potential of occurring. We first discuss several possible ways in which these

sets can be defined, and then give conditions sufficient for guaranteeing the feasibility of a program execution. In

Chapters 4 and 5 we use these sets to formulate the race-detection problem and prove complexity results. In

Chapters 7 and 8 we use the sufficient conditions to develop our data race validation and ordering techniques.

3.3.1. Program Execution Prefixes

To characterize when a race condition exists between two events, a and b, in an actual program execution,

P = 〈E, T , D 〉, we must consider other program executions that also perform a and b. Characterizing such ex-

ecutions allows us to determine if a and b can potentially execute in an order different than in P. We will focus on
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program executions that are prefixes of P (defined below), as opposed to considering all possible executions of the

program that also perform a and b.

Characterizing races by focusing only on prefixes of P has two advantages. First, the existence of a race

between a and b then means that some prefix of the observed execution had the potential of exhibiting the race (i.e.,

would allow a different execution order between a and b). Trace data obtained from this execution thus provides

valuable debugging information: the trace can be browsed to understand the execution history of the race. This ap-

proach is consistent with the goals of dynamic analysis (discussed in Chapter 2) in which trace information

reflecting a particular execution is used for debugging. In contrast, if we were to also consider executions other than

prefixes, we would have no information about how the observed execution differs from one in which a and b could

have a different execution order. Second, determining whether an arbitrary execution exists that also performs a

and b appears to be an undecidable problem. Defining a race to exist if any execution could perform a and b in a

different order leads to an impractical detection problem.

Definition 3.8

A program execution P′ = 〈E′, T ′ , D ′ 〉 is a prefix of a program execution P = 〈E, T , D 〉 iff for

each process p, the sequence of events in Ep ′ (imposed by axiom (A4)) is a prefix of the sequence of events

in Ep; i.e.,

(1) Ep ′ ⊆ Ep, and ∀ ep,i ∈ Ep, ep,i
T ep,i +1 ⇒

(a) ep,i
T ′ ep,i +1, or

(b) ∀x ∈ Ep ′, ep, j /
T ′ x (i.e., ep, j is the last event in process p); or

(2) Ep ′ = ∅. a

3.3.2. Sets of Alternate Program Executions

Given the actual program execution, P, we define three sets of program execution prefixes by considering suc-

cessively fewer restrictions on each set. The first two sets are restricted to contain only program executions that are

feasible. The first set contains all feasible program executions that exhibit the same shared-data dependences as P.

The second set contains feasible executions for which no restrictions on their shared-data dependences are placed4.

We denote these two sets by FSAME and FDIFF.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

4 The structure of these sets depends on the details of our definition of shared-data dependence. Although different definitions are possible

(e.g., that characterize only flow dependences), they would not alter this structure in a significant way.
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Definition 3.9

FSAME is the set of program executions, P′ = 〈E′, T ′ , D ′ 〉, such that

(1) P ′ represents an execution that the program could actually perform,

(2) E ′ = E, and

(3) D ′ = D . a

Definition 3.10

FDIFF is the set of program executions, P′ = 〈E′, T ′ , D ′ 〉, such that

(1) P ′ represents an execution the program could actually perform,

(2) P ′ is a prefix of P, and

(3) D ′ is arbitrary. a

These sets contain executions that are derived by considering all temporal orderings in which P’s events (or a

prefix of P’s events) could have been performed. Since FDIFF contains executions with different shared-data depen-

dences, it captures more of these orderings than FSAME, and is therefore a larger set. For example, Figure 3.1(a)

shows an actual program execution, P, in which a T b and a D b. The program execution P ′ shown in Figure

3.1(b) belongs to FSAME because a D ′ b even though a /
T ′ b (the dependence can still occur if a updates S

before b reads S). Figure 3.1(c) shows a program execution P ′ that belongs to FDIFF (but not FSAME) because b

reads S before a updates S, resulting in b D ′ a. Both of these program executions are feasible because the pro-

gram is capable of producing them.

Finally, like FDIFF, the third set also contains program executions with arbitrary shared-data dependences, but

they are no longer required to be feasible; they are only required to obey the synchronization axioms. We denote

this set by FSYNC. Characterizing this set is useful since it provides an approximation to FSAME and FDIFF that in-

volves only the semantics of the execution’s explicit synchronization. Moreover, since previous dynamic race con-

dition detection methods analyze only explicit synchronization, this is the set of alternate executions that they impli-

citly assume.

Definition 3.11

FSYNC is the set of program executions, P′ = 〈E′, T ′ , D ′ 〉, such that

(1) T ′ obeys the semantics of P’s explicit synchronization (axioms (A4) − (A6)),

(2) P ′ is a prefix of P, and

(3) D ′ is arbitrary. a
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Figure 3.1. (a) an actual program execution, P,
(b) a feasible program execution, P′ ∈ FSAME,
(c) a feasible program execution, P′ ∈ FDIFF, P′ ∉ FSAME, and
(d) an infeasible program execution, P′ ∈ FSYNC, P′ ∉ FSAME, FDIFF

(assuming an initial value of 0 for S)
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FSYNC is the set of executions that would have been possible had P not exhibited any shared-data depen-

dences. However, since programs in general do access shared-memory, FSYNC may contain executions the program

could never exhibit. When general races occur (whether or not they are considered bugs), FSYNC may contain in-

feasible executions. Figure 3.1(d) illustrates this situation. The program execution shown, P ′, is infeasible because

the program cannot produce event c. Because c T ′ a, event c will not read a value of 1 for S (assuming that S is

initially 0), making it impossible for the program to execute “Z=0”. In this case, even though no explicit synchroni-

zation prevented c from preceding a, such an ordering is not possible because event c would then no longer occur.

The example in Figure 2.1 illustrates a similar situation. The two events comprising the infeasible data race were

not prevented by explicit synchronization from executing concurrently; the program execution in which these events

execute concurrently therefore belongs to FSYNC, even though such an execution could never occur.

3.3.3. Sufficient Conditions for Feasibility

The above sets of alternate program executions characterize various behaviors that the execution might have

exhibited. However, to actually locate race conditions, we require some means of determining whether a given pro-

gram execution belongs to one of these sets. Below we present conditions sufficient for a program execution to be

feasible, belonging to either FSAME or FDIFF. We first develop conditions for FSAME: any program execution contain-

ing the same events as P is feasible if it also contains the same shared-data dependences as P. We then show that

even when only a subset of these dependences occur, some events can remain unchanged. Only certain types of

shared-data dependences, called event-control dependences, can actually affect the outcome of events. We finally

develop conditions for FDIFF: any program execution containing a prefix of the events in P is feasible if no event in

the prefix is event-control dependent on any event omitted from the prefix. In Chapters 7 and 8 we use both sets of

conditions in developing our techniques for data race validation and ordering. The first set is useful as it only re-

quires computing the shared-data dependences; the second is more general but requires knowledge of the event-

control dependences.

3.3.3.1. Feasible Program Executions

We first develop conditions sufficient for showing that a program execution belongs to FSAME. We must con-

sider how to guarantee the feasibility of a potential program execution, P′ = 〈E, T ′ , D ′ 〉, which performs the

same events as the actual program execution, P = 〈E, T , D 〉. Guaranteeing feasibility requires determining

how much the temporal ordering of P can be disturbed without affecting the events performed. Below we prove

that any execution exhibiting the same shared-data dependences as P is also capable of performing the same events.

Consider a single-access view, P
S

= 〈E
S

, TS , DS 〉, of the actual program execution. PS shows the data

dependences among the individual shared-memory accesses made by the execution. These single-access shared-

data dependences uniquely characterize the events performed. Because the execution outcome of each statement in-

stance depends only upon the values of the variables it reads, the single-access dependences uniquely determine the
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program state at each step in each process5. This result can be proven by showing that the program’s input and the

single-access dependences uniquely determine these values[48]. Any temporal ordering that could still allow these

dependences to occur (and that would not violate the semantics of the synchronization operations) is an ordering

that the execution could have exhibited. This result holds even if the program executes nondeterministic statements

(such as guarded commands), since the execution is still capable of performing the same events. Therefore, any

other single-access program execution, PS ′, possessing the same events and (single-access) shared-data dependences

as PS, represents an execution the program could actually exhibit, regardless of how its temporal ordering differs

from that of PS.

Similarly, this result also holds for higher-level views of the program execution. In higher-level views, com-

putation events can consist of many shared-memory accesses. In the following theorem we prove that any higher-

level program execution possessing the same events and (higher-level) shared-data dependences as P describes an

execution the program could have exhibited. Such a program execution is therefore feasible, and belongs to FSAME.

This theorem shows that it is necessary to analyze only higher-level information about a program execution to

guarantee feasibility. This result is significant because information might be efficiently recorded about the execu-

tion only at a higher level.

Theorem 3.1 (Feasible Execution Theorem)

Let P = 〈E, T , D 〉 be an actual program execution. P′ = 〈E′, T ′ , D ′ 〉 is a feasible pro-

gram execution if

(1) P ′ is a valid program execution (axioms (A1) − (A6) are satisfied), and

(2) E ′ = E, and

(3) D ′ = D .

Proof.

We will use the result mentioned above that any single-access program execution possessing the same

(single-access) shared-data dependences as those that actually occurred represents an execution the program could

exhibit[48]. This theorem extends the result to higher-level program executions. Since computation events in

higher-level program executions can consist of more than one shared-memory access, there may be more than one

single-access program execution for which P, the actual program execution, is a higher-level view. Therefore,

given a higher-level view, we do not always know which shared-data dependences actually occurred at the single-

access level. To show that P ′ is a feasible program execution, we must show that it is a higher-level view of a

single-access program execution possessing the actual single-access dependences. However, since these depen-

dences are not known, we will show that the shared-data dependences exhibited by each single-access program exe-
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

5 For this statement to hold, interactions with the external environment must be modeled as shared-data dependences.
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cution described by P are also exhibited by some single-access execution described by P ′. We will then be

guaranteed that, no matter which single-access shared-data dependences were exhibited during P, an execution ca-

pable of exhibiting those same dependences is described by P ′.

The single-access program executions that are described by P is given by the set { P
S

= 〈E
S

, TS , DS 〉 c P

is a higher-level view of PS }, and the single-access executions described by P ′ is given by { P
S
′ = 〈E

S
, TS′ ,

DS′ 〉 c P ′ is a higher-level view of PS ′ }. We must prove that each DS is equal to some DS′ . We first show

that for any pair of higher-level events, we can always find some DS′ exhibiting the same shared-data depen-

dences as any DS among the lower-level events comprising these events. We then show that this guarantees

some DS′ exists exhibiting the same dependences as any DS among all the lower-level events comprising the

actual program execution (which shows DS = DS′ ).

First, consider any PS and its (single-access) shared-data dependences among the lower-level events aS ∈ a

and bS ∈ b comprising any two higher-level events a and b. We show that a PS ′ exists exhibiting these same depen-

dences. Since each lower-level event comprises at most one shared-memory access, it suffices to show that some

PS ′ exists such that bS /
TS ′ aS whenever aS

DS bS, and aS /
TS ′ bS whenever bS

DS aS, for any aS ∈ a and

bS ∈ b.

Case (1): a T b and a T ′ b. In this case, DS can only contain shared-data dependences from some aS to

some bS, and all PS ′ have aS
T ′ bS for all aS ∈ a and bS ∈ b.

Case (2): a T b and a /
T ′ b. As with case (1), DS can only contain shared-data dependences from some

aS to some bS. Some PS ′ must exist in which bS /
TS ′ aS for all aS ∈ a and bS ∈ b, since otherwise bS

TS′ aS for

all aS ∈ a and bS ∈ b would imply b T ′ a, contradicting the assumption a /
T ′ b.

Case (3): a T b and b T ′ a. In this case, DS can contain no shared-data dependences between any aS and bS

(or else P ′ would violate axiom (A3)).

Case (4): a /
T b and a T ′ b. Since DS can contain shared-data dependences only from some aS to some

bS (or else P ′ would violate axiom (A3)), this case is analogous to case (1).

Case (5): a /
T b and a /

T ′ b. In this case, DS can contain shared-data dependences in both directions

between the aS and bS. Since the set of single-access program executions described by P ′ contains all possible tem-

poral orderings among the aS and bS that cause a /
T ′ b, some PS ′ clearly exists with the desired properties.

Finally, we show that each DS equals some DS′ . Notice that when there are events a and b that execute

concurrently, P ′ describes more than one single-access program execution. These single-access program executions

contain all possible (legal) temporal orderings (among the lower-level events aS ∈ a and bS ∈ b) that cause a and b

to overlap. The set of all single-access program executions described by P ′ can be constructed by choosing, for
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each pair of higher-level events a and b, one such temporal ordering among the lower-level events comprising a and

b. We showed above that for any DS , some DS′ exists exhibiting the same shared-data dependences among the

lower-level events comprising any pair of higher-level events. Using this result, we can always find a DS′ exhi-

biting the same shared-data dependences as any DS among all the lower-level events by independently consider-

ing each pair of higher-level events. Therefore, each DS is equal to some DS′ , which proves the theorem. a

3.3.3.2. Feasible Program Execution Prefixes

We now develop conditions sufficient for showing that a program execution belongs to FDIFF. We must con-

sider how to guarantee the feasibility of a program execution, P′ = 〈E′, T ′ , D ′ 〉, that performs only a prefix of

the events in P and that may exhibit only a subset of its shared-data dependences. Guaranteeing feasibility in this

case requires determining how different shared-data dependences might have affected the outcome of P. We

characterize those dependences, called event-control dependences, that might affect event outcome. We then

present a generalization of the feasible execution theorem that uses event-control dependences to determine which

of P’s shared-data dependences can be omitted from P ′ while still maintaining feasibility.

The feasible execution theorem shows that any program execution, P ′, exhibiting the same shared-data depen-

dences as P is capable of performing the same events as P and is therefore feasible. However, even if some of these

dependences are not allowed to occur, some of the events performed by P may still be performed. Consider a

shared-data dependence in P from event b to c. If the execution instead exhibits a temporal ordering in which c pre-

cedes b, this shared-data dependence can no longer occur, but part of the execution beyond b and c may still per-

form the same events as P. For example, in Figure 3.2(a) the dependence exists because b writes a shared variable,

S, that c later reads. From axiom (A3) we know that b either completes before or executes concurrently with c.

Consider how the execution would differ from P if b and all subsequent events in the same process are not per-

formed. Assuming that c could still be performed, the dependence from b to c cannot occur, and c may read a dif-

ferent value from S, possibly causing events performed from this point forward to differ from those performed by P.

However, this different value of S may not immediately alter the events performed but only alter the values comput-

ed. For example, in Figure 3.2(a) events c and d do not use S to determine what statements to execute or what

shared locations to access; a different value for S will not change these events. Different events may be performed

only when S is finally used to determine control flow or the shared locations referenced, such as in event e.
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Figure 3.2. (a) an actual program execution, and
(b) a feasible program execution prefix in which b is excluded
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To formally capture this notion of one event affecting the outcome of another, we define the following rela-

tion.

Definition 3.12

The event-control dependence relation, E , shows when events can affect each other, and is defined as fol-

lows:

a E b (read as ‘‘a can event-control b’’) iff

(1) a D b and a writes a shared variable whose value b uses (directly or through other variables) in a

conditional expression or to determine which shared locations to access (e.g., in a shared-array sub-

script), or

(2) a is a fork and b is the first event in a child process created at a, or

(3) b is a join and a is the last event in a child process terminated at b, or

(4) a is a V event, b is a P event on the same semaphore, and a allowed b to proceed (i.e., the semaphore

invariant would be violated without a), or

(5) a precedes b in the same process.

An approximate event-control dependence relation, Ê , is a conservative approximation to E (i.e., Ê

⊇ E ), and is defined as above except that Condition (1) is based on D̂ instead of D . a

The E relation shows the possible effects on the execution had some event a (and all subsequent events in

the same process) not been performed. Condition (1) includes those events receiving shared-data dependences that

were used to determine either control flow or the shared-memory locations referenced. Conditions (2) through (5)

include those events that would no longer be performed either because they followed a in the same process or be-

cause their presence depended on synchronization that followed a. These events are those ordered after a by T̂ .

The E relation is therefore a subset of D ∪ T̂ . In Figure 3.2(a), for example, b D c, b D e, and b E

e, but b /
E c.

We can now extend the feasible execution theorem to accomodate program executions, P′ = 〈E′, T ′ , D ′ 〉,

that may not contain all of the events or shared-data dependences as P. Consider each shared-data dependence, a

D b, exhibited by P. If both a and b are to belong to E ′, then we require that the dependence also be exhibited by

P ′ (to ensure that b can occur in P ′). If we wish to exclude a from E ′, then any event that is event-controlled by a

must also be excluded, since it may never occur when a is not present.
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Theorem 3.2 (Feasible Prefix Theorem)

Let P = 〈E, T , D 〉 be an actual program execution. P′ = 〈E′, T ′ , D ′ 〉 is a feasible pro-

gram execution prefix if

(P1) P ′ is a valid program execution (axioms (A1) − (A6) are satisfied),

(P2) P ′ is a prefix of P, and

(P3) ∀a,b ∈ E such that a D b, either

(1) a,b ∈ E ′ and a D ′ b, or

(2) a ∉ E ′ and ∀x ∈ E (a E x ⇒ x ∉ E ′ ), or

(3) b ∉ E ′.

Proof. Viewing the execution at the single-access level, it is easily argued that this theorem holds. Like Theorem

3.1 (the feasible execution theorem), the crux of proving this theorem involves showing that the result extends to a

higher-level view. Doing so is analogous to the proof of Theorem 3.1 and we omit the details. a

Figure 3.2(b) shows an example feasible program execution prefix. The prefix is constructed by excluding b

from the actual program execution shown in part (a). Since b is excluded from the prefix, e must also be excluded

because b E e, but c can remain (even though b D c) because b /
E c. This example shows how we can

guarantee that the temporal ordering in which a and d execute concurrently could have occurred.

We finally mention that our event-control dependences are similar to the hides relation used by Allen and Pa-

dua[2, 24, 25] and the semantic dependences defined by Podgurski and Clarke[60, 61]. The hides relation is defined

to show when the data computed by an event in one data race may have been used by an event in another race to

determine either control flow or the shared locations accessed. Allen and Padua propose computing the hides rela-

tion by a static analysis of the program, and use it primarily to locate data races that might have been prevented

from occurring because of a previous race. In contrast, we use the event-control dependences to locate data races

that were caused by a previous race. Podgurski and Clarke statically define a semantic dependence to exist from

one statement in a sequential program to another if the function computed by the first statement can affect the exe-

cution behavior of the second in any way. Our event-control dependence can be viewed as a type of dynamic se-

mantic dependence but generalized to parallel programs (where dependences involving synchronization as well as

data must be considered).



Chapter 4

CHARACTERIZING RACE CONDITIONS

As discussed in Chapter 1, two different types of race conditions, general races and data races, are of interest

for two different classes of parallel programs. In this chapter we present examples of each type of race and charac-

terize them in terms of our model. Given these formal characterizations, we argue that both general races and data

races are necessary for debugging, and discuss some fundamental differences between them. Moreover, the differ-

ence between the feasible and infeasible races that previous methods can report becomes apparent. We see that in-

feasible races are a consequence of the set of program executions that previous methods implicitly consider. In later

chapters, we use these characterizations to formally define and develop correct techniques for accurate race detec-

tion.

4.1. Data Races

Explicit synchronization is often added to shared-memory parallel programs to coordinate accesses to shared

data. Different classes of parallel programs typically employ different strategies for this coordination. Below we

present an example of one type of coordination (that implements critical sections) to motivate one type of race con-

dition, a data race. We then formally characterize data races in terms of our model, and uncover different varia-

tions that explain the infeasible races previous methods can report.

4.1.1. A Data Race Example

One purpose of adding explicit synchronization to shared-memory parallel programs is to implement critical

sections. Critical sections are any blocks of code intended to execute as if they were atomic[18], regardless of the

synchronization constructs used to enforce this atomicity. Atomic execution means that the final state of variables

read and written in the section depends only upon their state at the start of the section and the operations performed

by the code (and not operations performed by another process). Bernstein’s conditions state that atomic execution

of a critical section is guaranteed if the shared variables it reads and modifies are not modified by any other con-

currently executing section of code[9]. A violation of these conditions has typically been called a data

race[2, 16, 17, 50, 54, 55], access anomaly[20, 37, 51], or harmful shared-memory access[56]. We prefer the term

data race.

Figure 4.1 shows an example program for which data races are considered bugs. This program contains two

processes that process commands from bank teller terminals. Bank tellers make either deposits or withdrawals from

the given bank account (we are assuming a small bank that has only a single customer). Figure 4.1(a) shows a

correct version of the program. Since the variables balance and interest are shared among the two

32
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Process 1 Process 2

/* DEPOSIT */
amount = read_amount();
P(mutex);
balance += amount;
interest += rate*balance;
V(mutex);

/* WITHDRAW */
amount = read_amount();
P(mutex);
if (balance < amount)

printf("NSF");
else {

balance -= amount;
interest += rate*balance;

}
V(mutex);

(a): no-data-race version

Process 1 Process 2

/* DEPOSIT */
amount = read_amount();
P(mutex);
balance += amount;
interest += rate*balance;
V(mutex);

/* WITHDRAW */
amount = read_amount();
if (balance < amount)

printf("NSF");
else {

balance -= amount;
interest += rate*balance;

}

(b): data-race version

Figure 4.1. (a) C program fragment manipulating a bank account, and
(b) erroneous version that can exhibit data races
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processes, operations that manipulate them are enclosed in critical sections, implemented using P and V operations

on the semaphore mutex. Because critical sections can never execute concurrently, this version exhibits no data

races. Figure 4.1(b) shows an erroneous version that can exhibit data races. Due to a programmer oversight, the P

and V operations that should surround the withdraw code are missing. The deposit and withdraw code can there-

fore execute concurrently, causing their individual statements to effectively interleave, possibly resulting in an in-

correct balance and interest (if the atomicity of one of the intended critical sections fails). The data races in this pro-
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gram are considered bugs because the programmer’s intent was that the deposit and withdrawal code execute atomi-

cally, without interference from other processes.

4.1.2. Characterizing Data Races

We now formally characterize the existence of a data race between two events, a and b. The above example

shows that a data race exists when the atomicity of an intended critical section fails. We also consider the case

where the atomicity potentially fails, representing a potential data race. We formally characterize these situations as

follows: a data race exists between two events, a and b, if they (1) have a data conflict and (2) execute concurrently

either in P or in some feasible program execution. We uncover different variations of data races by considering dif-

ferent sets of program executions.

To allow different sets of alternate program executions to be easily considered, we define the notion of a data

race between a and b (denoted 〈a,b〉) over some given set of program executions, F, and then consider different

choices for the set F.

Definition 4.1

A data race 〈a,b〉 over F exists if

(1) a data conflict exists between a and b, and

(2) there exists a program execution, P′ = 〈E′, T ′ , D ′ 〉 ∈ F, such that a /
T ′ b. a

We first consider the case when a data race actually occurs, possibly violating the atomicity of a critical sec-

tion. This type of data race can be characterized in terms of only the actual program execution, P.

Definition 4.2

An actual data race 〈a,b〉 exists if a data race 〈a,b〉 in P exists1. a

An actual data race exists only between events that actually executed concurrently. The absence of actual

data races indicates that all intended critical sections in P behaved atomically; the presence of an actual data race

shows points in the execution where inconsistent data can be expected. However, even if P exhibits no actual data

races, there may be feasible program executions that do. Because of nondeterministic timing variations, some

events may have had the potential of executing concurrently even if they did not in P. It is also desirable to charac-

terize these situations.

Definition 4.3

A feasible data race 〈a,b〉 exists if a data race 〈a,b〉 over FDIFF (or FSAME) exists. a

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 A data race in P exists if a data race exists over {P}, the set containing only P.
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A feasible data race indicates that the execution had the potential of exhibiting an actual data race. Unlike ac-

tual data races, the existence of a feasible data race only indicates the potential for a failed critical section. Feasible

data races can be defined using either set of feasible program executions, FDIFF or FSAME.

In practice, locating feasible data races would require analyzing the program’s semantics to determine if the

program could have allowed a and b to execute concurrently. As described in Chapter 2, existing methods take a

simpler approach and analyze only the explicit synchronization performed by the execution. We can characterize

this simpler notion of a data race by using FSYNC, which is based only on orderings that the program’s explicit syn-

chronization might allow, whether or not the program could ever exhibit such orderings.

Definition 4.4

An apparent data race 〈a,b〉 exists if a data race 〈a,b〉 over FSYNC exists. a

Previous work in data race detection locates apparent data races. Apparent data races are a less accurate no-

tion of a data race than feasible races because not all program executions in FSYNC are feasible. We call an apparent

data race that is not feasible an infeasible data race. However, the notion of apparent data races is nonetheless use-

ful since it provides a simple, safe way to detect data races. Detecting apparent races is simple because analyzing

the program semantics is not required; we prove in Chapter 6 that it is safe because apparent races are detected only

when feasible races exist somewhere in the execution. The drawback of apparent races is their diagnostic precision;

some of the apparent data races may be infeasible, masking the location of the program bugs causing the races. In

Chapters 7 and 8 we present techniques for approximating which apparent data races are feasible.

We should mention that, because we are concerned with dynamic analysis, we are characterizing data races

that occur either in the actual execution or another execution performing the same events (or a prefix of the same

events). For example, a feasible data race 〈a,b〉 indicates the possibility of an actual data race in some execution

that is a prefix of P (and that performs a and b). Because we do not consider all possible executions of the program,

but only prefixes of P, the absence of a feasible data race does not imply that all executions of the program are

data-race free. A data race between events not performed by P could still have the potential of occurring.

4.2. General Races

We now consider another type of race condition that pertains to a different class of parallel programs. We

present an example of a general race, which applies to programs intended to be deterministic. Then, as with data

races, we formally characterize different variations of a general race (feasible and apparent) in terms of our model.

4.2.1. A General Race Example

Even though programs (such as the one in Figure 4.1) may contain critical sections, they are often intended to

be nondeterministic. For example, the order of deposits and withdrawals may occur unpredictably, depending on

how fast the tellers type. However, other classes of programs are intended to be completely deterministic, and a dif-

ferent type of race condition pertains to such programs. In these programs, synchronization provides determinism
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by forcing all accesses to the same shared resource to always execute (on a given input) in a specific order. On a

particular input, all executions of such programs always produce the same result, regardless of random timing varia-

tions among the processes in the program (e.g., due to unpredictable interrupts, or other programs that may be exe-

cuting on the same processors). Nondeterminism is generally introduced when the order of two accesses to the

same resource is not enforced by the program’s synchronization. The existence of two such unordered accesses has

typically been called a race condition or race[23, 24]. For a more consistent terminology, we propose the term gen-

eral race.

As an example of programs for which general races are considered bugs, consider parallel programs that are

constructed from sequential programs by parallelizing loops. The sequential version of a program behaves deter-

ministically, producing a particular result for any given input. Typically, the parallelized version is intended to have

the same semantics as the sequential version. Preserving these semantics can be accomplished by adding synchroni-

zation to the program that ensures all of the data dependences ever exhibited by the sequential version are also exhi-

bited by the parallel version[76]. Such programs exhibit no general races, since preserving these dependences re-

quires that all operations on any specific location are performed in some specific order (independent of external tim-

ing variations).

4.2.2. Characterizing General Races

Intuitively, a general race exists in P when a and b have a data conflict and their access order is not

‘‘guaranteed’’ by the execution’s synchronization[23, 24]. We formally characterize this situation as follows: a gen-

eral race exists if a and b are issued in a different order in some feasible program execution than they are in P. As

with data races, two variations (feasible and apparent) of a general race exist.

As we did for general races, we define the notion of a general race between a and b (denoted 〈a,b〉) over some

given set of program executions, F, and then consider different choices for the set F.

Definition 4.5

A general race 〈a,b〉 over F exists if

(1) a data conflict exists between a and b, and

(2) there exists a program execution, P′ = 〈E′, T ′ , D ′ 〉 ∈ F, such that

(a) b T ′ a if a T b, or

(b) a T ′ b if b T a, or

(c) a /
T ′ b. a

Condition (2) is true if a program execution exists in F in which either a and b occur in an order opposite as in P, or

a and b execute concurrently. These cases capture the notion that the execution order among a and b is not

‘‘guaranteed’’.
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Characterizing a general race requires that we consider general races over FDIFF (described in Chapter 3). In-

tuitively, a general race 〈a,b〉 exists when a and b could have executed in any order. Using the smaller set FSAME is

inadequate since, by definition, a general race 〈a,b〉 exists only if the shared-data dependence between a and b is

different in some feasible execution than in P; FSAME only contains executions exhibiting the same shared-data

dependences.

Definition 4.6

A feasible general race 〈a,b〉 exists if a general race 〈a,b〉 over FDIFF exists. a

As with data races, previous methods for detect general races by analyzing only the execution’s explicit syn-

chronization to determine potential event orderings. We can characterize this simpler but less accurate notion of a

general race by using FSYNC.

Definition 4.7

An apparent general race 〈a,b〉 exists if a general race 〈a,b〉 over FSYNC exists. a

We call an apparent general race that is not feasible an infeasible general race. Apparent general races have

the same properties as apparent data races; namely, they are simpler but have less diagnostic precision than feasible

races.

4.3. Differences Between General Races and Data Races

The main difference between general races and data races is the granularity at which interest is focused. This

granularity difference has two major implications. First, general races are not always data races, implying that both

notions are needed to uncover program bugs. Second, general races are inherently more difficult to detect than data

races.

A general race shows when any part of the entire program execution may be nondeterministic. A data race

shows when a section of code (intended to be a critical section) may execute non-atomically (or, equivalently, non-

deterministically). An implication of this difference is that a general race is not always a data race: two critical sec-

tions may be able to execute in either order but never concurrently. A program containing data-conflicting critical

sections may exhibit general races, if the critical sections could occur in either order. However, no data races would

ever be exhibited, since the critical sections could never execute concurrently (their atomicity would never fail).

The no-data-race version of Figure 4.1 illustrates this case — the critical sections execute atomically, but in an

unpredictable order determined by when commands are entered by the tellers. This version of the program (correct-

ly) exhibits no data races, and even though general races occur, they are not considered bugs.

This difference implies that both general races and data races are of interest for debugging. The notion of a

data race is needed to discover critical sections that were not implemented properly (i.e., those whose atomicity may

have failed). The notion of a general race is needed to discover potential nondeterminism anywhere in the program

execution. Data races alone will not suffice for these purposes, since a program can be nondeterministic even
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though it exhibits no data races. General races alone will not suffice, since general races that are not data races are

not always bugs. The examples in this chapter illustrate these points.

Moreover, these two different types of race conditions pertain to different classes of parallel programs. Gen-

eral races are typically of interest for programs in which determinism is implemented by forcing all shared-memory

accesses (to the same location) to occur in a specific order. Many scientific programs fall into this category (e.g.,

those constructed by many automatic parallelization techniques). In contrast, data races are typically of interest for

asynchronous programs. Programs using shared work-pools fall into this category. They are not intended to be

deterministic, but critical sections (that access shared data) are still expected to behave atomically.

The second difference between general races and data races is one of complexity. General races are inherent-

ly more difficult to detect than data races. For example, an actual data race captures the possibility that the atomici-

ty of a critical section may have actually failed. Unlike general races, actual data races can be easily located if the

complete temporal ordering, T , is known; computing alternate temporal orderings is unnecessary2. Locating all

actual and some feasible data races is sufficient for debugging executions of programs for which data races apply —

the absence of actual races implies that the execution (or at least its critical sections) behaved as expected. In con-

trast, for programs expected to be deterministic, it is necessary to exhaustively locate all general races — the execu-

tion is deterministic only if exhaustive analysis shows a complete absence of general races. In this sense, locating

data races is easier than locating general races.

The granularity difference between general races and data races explains this disparity. A data race can be

viewed as a general race at a different granularity, by viewing it as occurring when some computation event (the in-

tended critical section) is possibly nondeterministic, in contrast to a general race, which occurs when any part of the

entire execution is possibly nondeterministic. Since computation events contain no explicit synchronization, detect-

ing data races is simpler: the violation of Bernstein’s conditions implies that two shared-memory accesses exist

whose execution order is not ‘‘guaranteed’’. In contrast, detecting general races requires analyzing the entire

execution’s synchronization to determine which orderings are not guaranteed. In the next chapter, we prove that, in

general, computing the guaranteed orderings is an NP-hard problem.

We finally mention that Emrath and Padua[23] have also attempted to characterize different types of races,

but their work has a different scope. They only address programs intended to be deterministic, and consider four

levels of nondeterminacy of a program (on a given input). Internally deterministic programs are those whose execu-

tions on the given input exhibit no general races. Externally deterministic programs exhibit general races, but they

do not cause the final result of the program to change from run to run. Associatively nondeterministic programs ex-

hibit general races only between associative arithmetic operations, and are externally nondeterministic only because
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 In practice, actually recording this complete ordering may incur unacceptable run-time overhead. As discussed in Chapter 2, existing

methods only record a subset of T , and we later show that this subset is sufficient to detect all actual and some feasible data races.



39

of roundoff errors (different runs can produce different roundoff errors). Finally, completely nondeterministic pro-

grams are those exhibiting general races that do not fall into one of the above categories.

Our work complements these characterizations by also considering nondeterministic programs (and data

races), and by uncovering the distinction between feasible and apparent races. Moreover, our formal framework

provides a convenient mechanism for proving properties of race conditions and developing techniques for race con-

dition detection.



Chapter 5

THE COMPLEXITY OF RACE DETECTION

In the previous two chapters, we presented a formal model for reasoning about race conditions, and character-

ized general races and data races. In this chapter, we formulate the race-detection problem in terms of our model

and prove results regarding its complexity. We define the problem of detecting general races and data races in terms

of several ordering relations, which summarize the temporal orderings in the sets FDIFF, FSAME, and FSYNC. For pro-

grams using synchronization powerful enough to implement two-process mutual exclusion, we prove that deciding

each ordering relation is either an NP-hard or co-NP-hard problem. For weaker synchronization, we prove that any

ordering relation can be decided in time linear in the number of events in the program execution. We finally discuss

the implications of these results; they show for which types of synchronization race detection is either efficient or

intractable.

5.1. Formulating the Race Detection Problem

To investigate the complexity of race detection, we must formulate the problem of detecting general races and

data races, both feasible and apparent. In the last chapter, these various types of races were defined in terms of tem-

poral orderings exhibited by program executions in the sets FDIFF, FSAME, and FSYNC. We now succinctly formulate

the race-detection problem in terms of several ordering relations which summarize these temporal orderings. For

each set, two types of relations are defined. The must-have relations describe orderings that are present in all pro-

gram executions in the set. The could-have relations describe orderings that occur in at least one program execution

in the set.

To summarize the temporal orderings in a given set of program executions, F, we define the six relations

shown below. We will choose either FDIFF, FSAME, or FSYNC for the set F.

40
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Must-Have Relations
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Happened-Before a MHB

F
b ⇔ ∀ 〈E′, T ′ , D ′ 〉 ∈ F, a T b

Concurrent-With a MCW

F
b ⇔ ∀ 〈E′, T ′ , D ′ 〉 ∈ F, a /

T b

Ordered-With a MOW

F
b ⇔ ∀ 〈E′, T ′ , D ′ 〉 ∈ F, ¬(a /

T b)cc
c
c
c
c
c
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Happened-Before a CHB

F
b ⇔ ∃ 〈E′, T ′ , D ′ 〉 ∈ F, a T b

Concurrent-With a CCW

F
b ⇔ ∃ 〈E′, T ′ , D ′ 〉 ∈ F, a /

T b

Ordered-With a COW

F
b ⇔ ∃ 〈E′, T ′ , D ′ 〉 ∈ F, ¬(a /

T b)
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Three relations of each type are defined. The happened-before relations show events that execute in a specific

order, the concurrent-with relations1 show events that execute concurrently, and the ordered-with relations show

events that execute in either order but not concurrently. We indicate to which set of program executions these rela-

tions apply by including the set name (DIFF, SAME, or SYNC) below the arrow (e.g., MHB

SYNC
).

Although there are 18 ordering relations, only the CHB and CCW relations are of interest for race

detection; we include the others only for completeness. Given these relations, the problem of determining whether a

general race or data race exists between two events, a and b, reduces to deciding the following logical statements.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

General Race Data Race
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Actual not applicable a /
T b

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Feasible (a CHB

DIFF
b ∧ b CHB

DIFF
a) ∨ a CCW

DIFF
b a CCW

DIFF
b

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Apparent (a CHB

SYNC
b ∧ b CHB

SYNC
a) ∨ a CCW

SYNC
b a CCW

SYNC
b

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
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c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

5.2. Complexity of Deciding the Ordering Relations

We now prove results on the complexity of computing the ordering relations. The results depend over which

set (FDIFF, FSAME, or FSYNC) the ordering relations are defined, and what type of synchronization the execution uses.

We first consider the cases for which computing these relations is intractable. For programs using synchronization

powerful enough to implement two-process mutual exclusion (such as general semaphores), computing any of the
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 We use double arrows ( ) to denote the concurrent-with and ordered-with relations to emphasize that they are symmetric.
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must-have relations is a co-NP-hard problem and computing any of the could-have relations is an NP-hard problem.

For the ordering relations defined over FDIFF, these results hold no matter what type of synchronization the program

uses. We then consider a weaker type of synchronization, Post/Wait style synchronization2, incapable of imple-

menting mutual exclusion. For this case, we present an efficient algorithm for deciding any of the ordering rela-

tions. In the next sub-section, we discuss the implications of these results on the complexity of race detection.

Theorem 5.1

For a program execution that uses any type of synchronization powerful enough to implement

two-process mutual exclusion, the problem of deciding whether a MHB

SYNC
b, a MCW

SYNC
b, or a

MOW

SYNC
b is co-NP-hard, and the problem of deciding whether a CHB

SYNC
b, a CCW

SYNC
b, or a

COW

SYNC
b is NP-hard.

Proof.

We first present a proof for programs that use general semaphores, and then argue that it easily extends to any

type of synchronization that can implement two-process mutual exclusion. Furthermore, we present a proof only for

the happened-before relations ( MHB

SYNC
and CHB

SYNC
); proofs for the other relations are analogous. We give a reduc-

tion3 from 3CNFSAT[29] such that any Boolean formula is satisfiable (or not satisfiable) iff b CHB

SYNC
a (or a

MHB

SYNC
b) for two events, a and b, defined in the reduction. Let an arbitrary instance of 3CNFSAT be given by a

set of n variables, V = {X 1,X 2, . . . ,Xn}, and a Boolean formula B consisting of m clauses, C 1 ∧ C 2 ∧ . . . ∧ Cm,

where each clause is a disjunction of three literals (a literal is any variable in V or its negation). From such an in-

stance of 3CNFSAT, we construct a program consisting of 3n+3m+2 processes that uses 3n +m +1 semaphores (all

semaphores are assumed to be initialized to zero). The execution of this program simulates a nondeterministic

evaluation of the Boolean formula B. Semaphores are used to represent the truth values of each variable and clause.

As we will show, the execution can exhibit certain orderings iff B is satisfiable (or not satisfiable).

For each variable, Xi , construct the following three processes:

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2This type of synchronization uses only Post and Wait primitives[13, 14, 24]. All Waits on a synchronization variable block until a Post

on the same variable is issued. Unlike semaphores, a Wait does not change the value of the variable; once a Post is issued, all past and subse-

quent Waits are allowed to proceed. Although some implementations also provide a Clear primitive, which resets the synchronization variable,

we are considering the use of only Post and Wait.

3 This reduction was motivated by the ones Taylor[72, 73] constructed to prove that certain static analysis problems are NP-complete.
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P(mutexi) P(mutexi) V(mutexi)

V(Xi) V(X
hh

i) P(Pass 2)

. . V(mutexi)

. .

. .

V(Xi) V(X
hh

i)c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

where ‘‘ . . . ’’ indicates as many V(Xi) (or V(X
hh

i)) operations as occurrences of the literal Xi (or X
hh

i) in the formula

B. The semaphores Xi and X
hh

i are used to represent the truth value of variable Xi; a signaling of semaphore Xi (or X
hh

i)

represents the assignment of True (or False) to variable Xi . The above processes operate in two passes. The first

pass is a nondeterministic guessing phase in which each variable used in the Boolean formula is assigned a unique

truth value. This assignment is accomplished by allowing either the V(Xi) operations or the V(X
hh

i) operations to

proceed, but not both (semaphore mutexi ensures only one such set of operations is performed). The second pass,

which begins after semaphore Pass 2 is signaled, is used only to ensure that all processes terminate; the semaphore

operations that were not allowed to execute during the first pass are allowed to proceed.

For each clause, Cj , construct the following three processes:

P(L 1) P(L 2) P(L 3)

V(Cj) V(Cj) V(Cj)cc
c
c

cc
c
c

where L 1, L 2, and L 3 are the semaphores corresponding to the literals in clause Cj . The semaphore Cj represents

the truth value of clause Cj . This semaphore will be signaled if the truth assignments guessed during the first pass

cause clause Cj to evaluate to True.

Finally, create the following two processes:

a : skip

P(C 1) V(Pass 2)

. . . . . .

P(Cm) V(Pass 2)

b : skip c
c
c
c
c
c
c
c
c

where there are n V(Pass 2) operations (one for each variable). Event b is reached only if all clauses evaluate to

True (since each clause is a disjunct of literals, a signaling of Cj means that clause j evaluates to True).
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Since the program contains no conditional statements or shared variables, every execution of the program per-

forms the same events (and exhibits no shared-data dependences). Consider all program executions P′ = 〈E′, T ′ ,

D ′ 〉 ∈ FSYNC that perform events a and b. We claim that (1) B is not satisfiable iff, for all P ′, a T ′ b (or,

equivalently, a MHB

SYNC
b), and (2) B is satisfiable iff, for some P ′, b T ′ a (or, equivalently, b CHB

SYNC
a).

Claim 1: To show the ‘‘if’’ part, assume that a MHB

SYNC
b. That is, there is no execution in which b either pre-

cedes a or executes concurrently with a. For a contradiction, assume that B is satisfiable. Then some truth assign-

ment can be guessed during the first pass that satisfies all of the clauses. Event b can then execute before event a,

contradicting the assumption. Therefore, B cannot be satisfiable. To show the ‘‘only if’’ part, assume that B is not

satisfiable. Then there is always some clause, Cj , that is not satisfied by the truth values guessed during the first

pass. Therefore, no V(Cj) operation is issued during the first pass. Event b cannot execute until this V operation is

issued, which can then only be done during the second pass. The second pass does not occur until after event a exe-

cutes, so event a must precede event b.

Claim 2: To show the ‘‘if’’ part, assume that b CHB

SYNC
a. That is, some execution exists in which b precedes

a. Clearly, b can precede a only if B is satisfiable. To show the ‘‘only if’’ part, assume that B is satisfiable. Some

execution then exists in which the satisfying truth assignment is guessed, allowing b to precede a.

Since a MHB

SYNC
b iff B is not satisfiable, the problem of deciding MHB

SYNC
is co-NP-hard. By similar reduc-

tions, programs can be constructed such that the non-satisfiability of B can be determined from the MCW

SYNC
or

MOW

SYNC
relations. The problem of deciding these relations is therefore also co-NP-hard.

Since b CHB

SYNC
a iff B is satisfiable, the problem of deciding CHB

SYNC
is NP-hard. By similar reductions, pro-

grams can be constructed such that the satisfiability of B can be determined from the CCW

SYNC
or COW

SYNC
rela-

tions. The problem of deciding these relations is therefore also NP-hard.

The above reduction constructs processes containing semaphore operations that implement two-process mutu-

al exclusion (using, for each variable Xi , the semaphore mutexi). In addition, when truth values for the variables are

nondeterministically guessed, semaphore operations are used to signal a True guess, and are also used to signal

when a clause evaluates to True. This reduction can be carried out using any type of synchronization capable of im-

plementing these constructs. For example, synchronization that can implement mutex begin/mutex end primitives

suffices. Therefore, the results also hold for program executions using such synchronization. a



45

Theorem 5.2

For a program execution that uses any type of synchronization powerful enough to implement

two-process mutual exclusion, the problem of deciding whether a MHB

SAME
b, a MCW

SAME
b, or a

MOW

SAME
b is co-NP-hard, and the problem of deciding whether a CHB

SAME
b, a CCW

SAME
b, or a

COW

SAME
b is NP-hard.

Proof.

The proof of Theorem 5.1 suffices. Since the program constructed in the reduction contains no shared vari-

ables, all executions exhibit the same shared-data dependences (none), so FSAME = FSYNC. Therefore, B (in the proof

of Theorem 5.1) is not satisfiable iff a MHB

SYNC
b, showing that deciding MHB

SYNC
is co-NP-hard. The other cases are

analogous. a

Theorem 5.3

For a program execution that uses any type of synchronization, the problem of deciding whether a

MHB

DIFF
b, a MCW

DIFF
b, or a MOW

DIFF
b is co-NP-hard, and the problem of deciding whether a

CHB

DIFF
b, a CCW

DIFF
b, or a COW

DIFF
b is NP-hard.

Proof.

As argued in the proof of Theorem 5.1, the reduction from 3CNFSAT requires constructing a program con-

taining synchronization that implements two-process mutual exclusion. For this proof, we perform the reduction by

constructing this program without using explicit synchronization at all, but instead implement two-process mutual

exclusion using only shared variables (using Peterson’s trick[68], for example). For a given execution, P, of this

program, the set FDIFF contains all other executions that perform a prefix of the same events, regardless of how their

shared-data dependences differ from those of P. As in the proof of Theorem 5.1, we claim that (1) B is not

satisfiable iff, for any P ′ ∈ FDIFF that also performs a and b, a T ′ b (or, equivalently, a MHB

DIFF
b), and (2) B is

satisfiable iff, for some P ′ ∈ FDIFF, b T ′ a (or, equivalently, b CHB

DIFF
a). This claim is proven true by arguments

analogous to those given in the proof of Theorem 5.1. Therefore, the results hold for executions that use no explicit

synchronization at all, implying that they also hold for executions that use any type of explicit synchronization. a

Theorem 5.4

For a program execution that uses Post/Wait style synchronization4, the problem of deciding any

of the ordering relations between two events, a and b, can be solved in time in time O (n), where n

is the number of events in the program execution.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

4Recall that this style of synchronization uses only Post and Wait primitives (and not Clear).
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hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Given: An actual program execution, P = 〈E, T , D 〉, that uses only Post/Wait style synchronization, and two

events a,b ∈ E that belong to different processes.

Compute: Whether a MHB

SYNC
b, b MHB

SYNC
a, or a /

MHB

SYNC
b.

Algorithm:

1: Decide_MHB_SYNC (a, b):

2: First = the set containing the first event in each process;

3: Visitable = the set of Posts or computation events in First;

4: for each event variable, x

5: Untriggeredx = the set of Wait(x) events in First;

6: while (Visitable − {a,b}) is nonempty {

7: remove any event, ep,i , from Visitable, except a or b;

8: if ep,i is a Post(x) then
9: move all events in Untriggeredx to Visitable;

10: if ep,i +1 exists then
11: if ep,i +1 is an untriggered Wait(x) then
12: add ep,i +1 to Untriggeredx;

13: else
14: add ep,i +1 to Visitable;

15: }

16: if a ∈ Visitable and b ∉ Visitable then

17: output a MHB

SYNC
b;

18: else if b ∈ Visitable and a ∉ Visitable then

19: output b MHB

SYNC
a;

20: else

21: output a /
MHB

SYNC
b;

Algorithm 5.1. Decide the MHB

SYNC
relation for Post/Wait style synchronization

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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Proof.

We first argue that Algorithm 5.1 correctly decides the MHB

SYNC
relation5, and that the other ordering relations

can be similarly computed. We then show that its time complexity is O (n).

Algorithm 5.1 determines how a and b are ordered by MHB

SYNC
by simulating the execution to determine if a

can be reached before b or vice-versa. Execution is simulated by traversing, or visiting, events subject to the seman-

tics of Post/Wait style synchronization. Events belonging to the same process must be visited in the intra-process

order, and a Wait(x) event cannot be visited until it is triggered by a previously visited Post(x) event. The set Visit-

able contains events currently eligible for visitation. The set Untriggeredx contains those Wait(x) events that are

ready to be visited but are not yet triggered. When a Post(x) is visited, all untriggered Wait(x) events are moved

from Untriggeredx into Visitable. The algorithm visits as many events as possible while avoiding a and b. When

no more events can be visited, the ordering among a and b is determined by checking whether a and/or b are then

eligible for visitation. For example, if a is eligible but b is not, then b cannot ever proceed until after a, and the al-

gorithm outputs a MHB

SYNC
b. To argue correctness, we claim that the algorithm outputs a MHB

SYNC
b iff a precedes b

in every possible visit of all the events.

If part. If a precedes b in all possible visits, then the algorithm outputs a MHB

SYNC
b. Clearly, if a must precede

b, then the visit performed by the algorithm will eventually add a to Visitable; whether or not b is reached, it will not

be added to Visitable since it cannot be performed until after a. The algorithm will thus report a MHB

SYNC
b. The

other cases are analogous.

Only if part. If the algorithm outputs a MHB

SYNC
b, then a precedes b in all possible visits of the events. Such a

report is made iff a is in Visitable and b is not (line 15) at the end of the traversal. To establish a contradiction, as-

sume a visit exists in which b precedes a. In this were the case, b would become visitable at some point before a is

visited. Because the traversal ends when no more events can be visited, b would then belong to Visitable, contrad-

icting the assumption. The other two cases (b MHB

SYNC
a and a /

MHB

SYNC
b) are analogous.

Even though the algorithm decides only the MHB

SYNC
relation, the other ordering relations can be easily be

computed from MHB

SYNC
. For example, the MHB

SYNC
and CHB

SYNC
relations are complements of one another, so a

/
MHB

SYNC
b implies a CHB

SYNC
b ∧ b CHB

SYNC
a. Moreover, the concurrent-with and ordered-with relations

between two events can be decided by consider how the immediately preceding and following events are ordered by

MHB

SYNC
and CHB

SYNC
.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

5For simplicity, Algorithm 5.1 does not handle program executions that create and destroy processes with fork/join, but it can easily be ex-

tended to do so.
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Finally, we consider the algorithm’s running time. Since each event is visited at most once, the while loop

iterates at most n times. If the Visitable and Untriggered sets are implemented as linked lists, the set operations in-

side the loop can be performed in constant time. The overall running time is thus O (n). a

5.3. Complexity of Race Detection

The above results have implications for both general race and data race detection. The NP-hardness results

indicate which types of race detection are intractable, and Algorithm 5.1 shows which are efficient. For the intract-

able cases, the question arises of whether conservative or pessimistic approximations are possible. Below we dis-

cuss these issues, for both general races and data races.

Determining whether general races exist between two events, a and b, requires deciding the CHB (or

CCW ) relation between these events, as shown earlier in this chapter. Because deciding CHB

DIFF
is NP-hard, re-

gardless of the type of synchronization used by the execution, determining whether a feasible general race exists

between a and b is always NP-hard6. However, the complexity of deciding CHB

SYNC
, and therefore determining the

existence of an apparent general race, depends on the type of synchronization used. For executions using synchron-

ization powerful enough to implement two-process mutual exclusion, the problem is NP-hard. For weaker types of

synchronization, the problem can be efficiently solved (by Algorithm 5.1). Efficient general race detection is there-

fore possible only for executions that use weaker synchronization.

Similarly, exactly determining the existence of feasible data races is NP-hard, regardless of the type of syn-

chronization used. However, in contrast to general races, determining the existence of apparent data races is still

NP-hard for any execution for which data races are of interest. Data races are of interest only for programs that

contain critical sections; they are not applicable to weaker types of synchronization. Since critical sections imple-

ment mutual exclusion, exact and exhaustive apparent data race detection is always NP-hard.

Even though exactly determining the existence of general races and data races is NP-hard for executions using

powerful synchronization, approximations can be efficiently computed. Emrath, Ghosh, and Padua[24, 25] present

an algorithm for computing a superset of the CHB

SYNC
relation for executions that use an extended form of Post/Wait

style synchronization that includes Clear operations7. Helmbold, McDowell, and Wang[35] present algorithms for

computing a subset of MHB

SYNC
and a superset of CCW

SYNC
for programs that use semaphores. Both of these approxi-

mations are conservative, allowing detection of a superset of the apparent general races (by using the approximation
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

6A rigorous proof would reduce the problem of deciding CHB

DIFF
to the problem of deciding whether 〈a,b〉 is a feasible general race. The de-

tails of such a proof are trivial, and are omitted here.

7Clear operations reset the value of x, causing subsequent Wait(x)’s to block until another Post(x) is issued. Even though Post and Wait

alone are insufficient to implement two-process mutual exclusion, the addition of Clear operations allows mutual exclusion to be implement-

ed[53], making exact race detection NP-hard.
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to CHB

SYNC
) or the apparent data races (by using the approximation to CCW

SYNC
). Conservative approximations are

useful for debugging since the absence of race reports indicates that the execution was race-free. However, the di-

agnostic precision of these approximations can be poor because races can be reported where none exist.

Pessimistic approximations are also possible. Pessimistic approximations are insufficient for guaranteeing

that the execution was race-free, but exactly pinpoint races when they are reported. A fundamental difference

between general races and data races lies in the usefulness of pessimistic approximations. The utility of data-race

detection for debugging lies in locating actual races, as well as a subset of the feasible and apparent races. Even if

not all feasible or apparent data races can be located in practice, locating all actual races and some feasible races is

nonetheless valuable. The absence of actual data races implies that the execution’s critical sections behaved as ex-

pected (atomically). The location of actual races pinpoints portions of the execution where inconsistent data should

be expected. In contrast, there is no corresponding notion of an actual general race. Pessimistic general race detec-

tion can pinpoint some races, but cannot guarantee that the execution was race-free. This contrast further supports

our earlier claim that general races are inherently more difficult to detect than data races.

To summarize the results of this chapter, Figure 5.1 shows the complexity of determining whether different

types of races exist between two given events. The first column pertains to executions that use synchronization

powerful enough to implement two-process mutual exclusion; the second column pertains to weaker synchroniza-

tion.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Type of Synchronization

Two-process Mutex Weaker
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Data Races

Actual O (1) not applicable

Feasible NP-hard not applicable

Apparent NP-hard not applicable
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

General Races

Actual not applicable not applicable

Feasible NP-hard NP-hard

Apparent NP-hard O (n)
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Figure 5.1. Complexity of exactly deciding whether two given events form a race
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Chapter 6

DETECTING APPARENT DATA RACES

In the previous chapters, we formally defined the problem of race detection and proved results about its com-

plexity. We now focus on techniques for the accurate detection of data races. In this chapter, we discuss apparent

data races, which are the types of data races that previously proposed methods detect. We define apparent data race

detection in terms of the temporal ordering graph, which is a variation of the ordering graph constructed by these

methods. We first conceptually define the temporal ordering graph, and then discuss apparent data race detection.

We prove that the simple approach of analyzing the graph only to detect apparent data races is safe for debugging in

the sense that no actual data races are ever missed. We also present algorithms for apparent data race detection.

Discussion of experience with an implementation of these algorithms appears in Chapter 9. Although in this and

subsequent chapters we present algorithms for post-mortem detection, applying our results does not require that the

temporal ordering graph explicitly be constructed. Our results can be used to reason about any race detection

method that can be described in terms of the graph (such as on-the-fly approaches).

6.1. Temporal Ordering Graph

As discussed in section 3.2, an approximate program execution, P̂ = 〈E, T̂ , D̂ 〉, represents information

that can be reasonably recorded about the execution. Previous methods represent T̂ with an ordering graph

(whether or not the graph is explicitly constructed). We will take a similar approach, and use a variation of this

graph to reason about data race detection.

Definition 6.1

The temporal ordering graph, G, contains two nodes per event: for every event e, the nodes es and ef

represent the start and finish of e. G contains edges representing the same information as any ordering graph

described in Chapter 2: an edge from a to b in an ordering graph is equivalent to an edge from af to bs in G.

Given a graph G, an event a is a predecessor of another event b if a path exists from af to bs , a is a successor

of b if a path exists from bf to as , and a and b are unordered if neither is a predecessor or successor of the

other. a
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We define G to contain two nodes per event as it simplifies the proofs in Chapters 7 and 81. Figure 6.1 shows

an example temporal ordering graph for the program execution shown in Figure 2.1. The events are labeled with

the letters ‘‘(a)’’−‘‘(f)’’, and ‘‘S’’ and ‘‘F’’ indicate start and finish nodes. We will use this program execution as a

running example in the next two chapters.

The temporal ordering graph can be represented by the approximate temporal ordering, T̂ : a T̂ b iff a is

a predecessor of b, b T̂ a iff b is a predecessor of a, and a /
T̂ b otherwise. The only assumption we make
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Figure 6.1. Temporal ordering graph for example shown in Figure 2.1

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1Storing two nodes per event is unnecessary in an actual implementation; only one node per synchronization event suffices. To accommo-

date such a representation, only small modifications are required to the algorithms presented in this thesis.
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about G is that any linear order of its nodes must be a global-time model that defines a temporal ordering obeying

the synchronization axioms (axioms (A4)−(A6)). Any of the ordering graphs constructed by previous methods (ex-

tended to contain two nodes per event) suffice.

6.2. Apparent Data Races

Apparent data races are those detected by analyzing only the execution’s explicit synchronization. In Chapter

4 we defined an apparent data race 〈a,b〉 to exist when a and b have a data conflict and a /
T̂ b. The apparent

data races can be located by searching the temporal ordering graph for pairs of data-conflicting events that are unor-

dered by the graph (implying that a /
T̂ b). We next prove that this approach is safe for debugging since it never

leaves actual data races undetected, and then present algorithms for apparent data race detection.

6.2.1. Safeness of Detecting Only Apparent Data Races

In general, apparent data races include all actual data races, plus additional races, both feasible and infeasible

(Chapter 2 presented an example of an infeasible apparent data race). The simple approach of detecting apparent

data races cannot distinguish among these types of races. However, below we prove that each actual data race is

also an apparent data race. The naive method of simply reporting all apparent data races to the programmer (which

is the approach of previous methods) is therefore safe in the sense that no actual data races are left undetected.

Theorem 6.1 (Actual Data Race Theorem)

Every actual data race is also an apparent data race.

Proof.

If there is an actual data race between a and b, then a /
T b. To show that there is an apparent data race

between a and b, we must show that a /
T̂ b. The assumption a /

T b is equivalent to a /
T b ∧ b /

T a.

By definition, a T̂ b ⇒ a T b (see Section 3.2), or a /
T b ⇒ a /

T̂ b, giving us a /
T̂ b ∧ b /

T̂ a which

is equivalent to a /
T̂ b. a

The above proof does not make use of the specifics of how the temporal ordering graph is constructed.

Indeed, any approximate temporal ordering, T̂ , with the property a T̂ b ⇒ a T b is sufficient to allow all

actual data races to be detected as apparent data races. Detecting all actual data races is important for debugging.

When no actual races occur, the execution’s critical sections are guaranteed to have behaved atomically; when actu-

al races are located, they pinpoint places in the execution where inconsistent data can be expected. As we will show

in the next chapter, apparent data races also have the property that their presence implies the existence of a feasible

data race somewhere in the program execution. This property also implies that when no actual data races occur, no

apparent data races will be reported.
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6.2.2. Algorithms for Detecting Apparent Data Races

We now present algorithms for post-mortem detection of apparent data races. These algorithms first prepro-

cess the temporal ordering graph to compute the event orderings given by the graph (Algorithm 6.1). After prepro-

cessing, the ordering between any two events can be determined in constant time (Algorithm 6.2). Finally, apparent

data races are detected by checking all pairs of unordered events for data conflicts (Algorithm 6.3). Although the

general techniques discussed here are not original, we present them as they form the basis of the algorithms in

Chapters 7 and 8 for data race validation and ordering. Throughout this chapter, we assume that the entire temporal

ordering graph, and the READ and WRITE sets for each computation event, are available.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Given: The temporal ordering graph, G.

Compute: The timestamp for each node.

Algorithm:

1: Compute_T̂_Timestamps (G):

2: compute a topological sort of G;

3: for each node, x, in G {

4: x.timestamp = 〈−1,...,−1〉;
5: x.timestamp[x.proc_num] = x.ser_num;

6: }

7: for each node, x, in topological order {

8: for each out-edge from x to y {

9: y.timestamp = TimestampMax(y.timestamp, x.timestamp);

10: }

11: }

12: TimestampMax (t 1, t 2):

13: for each process, i {

14: tmp[i] = max(t 1[i], t 2[i]);

15: }

16: return tmp;

Algorithm 6.1. Compute timestamps for G

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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Detecting apparent data races involves locating pairs of events, a and b, that (1) have a data conflict and (2)

are unordered by the temporal ordering graph. Locating unordered events requires analyzing G to decide whether a

path connects two given nodes. Since this determination must be made many times, it should be as efficient as pos-

sible. We therefore preprocess the graph to compute a timestamp for each node[16, 27, 28, 33, 35, 45, 50]. Times-

tamps provide a mechanism for quickly determining the ordering between two given events. Each timestamp is a

vector (of length p) of event serial numbers2. To manage timestamps, we associate the following information with

each node, n, in G.

n.timestamp — Timestamp for representing event ordering.

n.proc_num — Process number to which n belongs.

n.ser_num — Serial number of node n within its process.

The ith slot of a timestamp, n.timestamp[i], equals the serial number of the last node in process i from which a path

to n exists (or equals −1 if no such path exists). By definition, if i equals n.proc_num, then n.timestamp[i] equals the

serial number of n.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Given: Two nodes, m and n, for which timestamps have been computed.

Compute: Whether a path exists from m to n, from n to m, or whether no such paths exist.

Algorithm:

1: OrderOf (m, n):

2: if (n.timestamp[m.proc_num] ≥ m.ser_num)

3: return PRED; /* path from m to n */

4: else if (m.timestamp[n.proc_num] ≥ n.ser_num)

5: return SUCC; /* path from n to m */

6: else
7: return UNORDERED; /* no path connecting m and n */

Algorithm 6.2. Determine the connectivity between two nodes

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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2This space bound can be optimized for executions that create and destroy processes on-the-fly, by re-using process numbers[19, 33]. For

simplicity, we assume that a fixed number of processes exist during execution.
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Algorithm 6.1 computes timestamps. The timestamp of a given node, n, is the maximum over the timestamps

of all nodes that have edges into n. After initializing the timestamps, the algorithm traverses the graph in a topologi-

cal order. For each node, its outgoing edges are followed, and the component-wise maximum is taken of its times-

tamp with the timestamp at the head of the edge. The running time of this algorithm is O (ep), where e and p are the

number of edges and processes in the graph; TimestampMax, requiring O (p) time, is called once for each edge.

The topological sort can be performed in time O (n +e), where n is the number of nodes[66], and is dominated by the

rest of the computation. In the worst case, the number of edges in the graph is of order n; all existing race detection

methods add edges only between pairs of synchronization operations on the same variable, or between fork/join

nodes and their children. The worst-case running time is thus O (np). The space required to store the timestamps is

also O (np).

Once the timestamps are computed, determining whether a path exists between any two nodes in G involves

comparing their timestamps and requires only constant time, as shown in Algorithm 6.2.

Finally, Algorithm 6.3 detects apparent data races by checking all pairs of computation events that are unor-

dered by G for data conflicts. For each computation event, ep,i , this algorithm checks all events, eq, j , that are unor-

dered with ep,i . To avoid checking any pair of events twice, only events belonging to a process q > p are con-

sidered. The events in q unordered with ep,i are traversed by starting after the last event in q that is a predecessor of

ep,i . This event can be retrieved in constant time if each process in G is stored as an array of nodes. The event’s

serial number, determined from the timestamps for ep,i , gives the array index. Process q is then scanned forward

from this event until reaching the first event that is a successor of ep,i . An array representation is well suited to

post-mortem analysis since the graph is static; the arrays can be dynamically allocated before processing the traces

and remain unchanged during analysis.

The outer for loop in Algorithm 7.3 iterates O (n) times, and the inner loop O (p) times. The inner loop first

performs O (1) work locating eq, j (lines 4−5) and then scans through all events unordered with ep,i (lines 6−10). The

total work performed by the algorithm is thus O (np (1 + u
h

)), where u
h

is the average number of events per process

unordered with a given computation event. If we define U = npu
h
, the total number of unordered event pairs, the to-

tal work becomes O (np + U). In the worst case, U is of order n 2, and O (n 2) apparent data races can exist.
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Given: The temporal ordering graph, G.

Compute: Apparent data races.

Algorithm:

1: DetectApparentRaces (G):

2: for each computation event, ep,i , in G {

3: for each process q > p {

4: let eq, j be the last event in q that is a predecessor in G of ep,i;

5: j = j + 1;

6: while (ep,i and eq, j are unordered by G) {

7: if (eq, j is a computation event and ep,i , eq, j have a data conflict)

8: output apparent data race 〈ep,i ,eq, j〉;
9: j = j + 1;

10: }

11: }

12: }

Algorithm 6.3. Detect apparent data races
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Chapter 7

VALIDATING APPARENT DATA RACES

We now consider the two causes of data race artifacts, infeasible races and races caused by other races. In

this chapter we address the first cause, infeasible races. We present a technique called validation for determining

which apparent data races are feasible. We prove results showing how validation can be performed, and present

simple algorithms for post-mortem validation. Validation involves augmenting the temporal ordering graph with

additional edges representing the shared-data and event-control dependences. Each apparent data race can be

characterized as either feasible or possibly infeasible depending on whether certain paths or cycles result. In

Chapter 9 we discuss our experience with an implementation of race validation.

The results in this chapter not only form a basis for validation algorithms, they also provide a means for rea-

soning about any data race detection method that can be described in terms of the temporal ordering graph. Any

such method can be analyzed to determine when infeasible races might be reported.

7.1. Validation Results

Validation is based on augmenting the temporal ordering graph, G, with additional edges. We present two

sets of results: validation using shared-data dependences and validation using event-control dependences. First, G is

augmented with edges representing the shared-data dependences, to obtain the graph GD. Each apparent data race

〈a,b〉 is characterized as either nontangled or tangled, depending on whether a and b are unordered or ordered by

GD. Nontangled races are guaranteed to be feasible, and each tangled race belongs to a set containing at least one

feasible race. Second, some tangled data races can be proven feasible by pruning edges from GD. The graph GE is

constructed by removing those shared-data dependence edges that are not also event-control dependences. A tan-

gled data race 〈a,b〉 is feasible if a and b are then unordered by GE.

Our results are based on proving the feasibility of an apparent data race 〈a,b〉 by showing that a feasible pro-

gram execution (or feasible program execution prefix), P′ = 〈E′, T ′ , D ′ 〉, exists such that a /
T ′ b. The ex-

istence of such a feasible execution means that the program could have executed in such a way that a and b formed

a data race. Exactly determining the existence of these program executions requires precise knowledge of the

shared-data or event-control dependences exhibited by the execution. Without exhaustive execution tracing, how-

ever, the exact dependences are unknown. We therefore take a conservative approach and augment G using the es-

timates D̂ and Ê .

7.1.1. Validation using Shared-Data Dependences

We construct the graph GD by augmenting G with edges that ensure a path exists from as to bf whenever a

D̂ b. Such a path already exists when a T̂ b, so edges need be added only between events unordered by G. In-
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tuitively, these edges reflect possible orderings caused by shared-data dependences (as illustrated in the example of

Figure 2.1), similar to the way in which edges in G reflect orderings caused by explicit synchronization. For exam-

ple, if an apparent data race 〈a,b〉 exists, then a and b are unordered by G because the program’s explicit synchroni-

zation did not prevent them from executing concurrently. Similarly, if a and b are also unordered by GD, then no

shared-data dependence could have prevented them from executing concurrently either, so 〈a,b〉 must be feasible.

Figure 7.1 shows GD for our example (from Figure 6.1). Edges are added between nodes representing events

that have data conflicts and that are unordered by G. Direct shared-data dependences exist between these events

(which are exactly those involved in apparent data races). In general, edges must also be added to represent transi-

tive dependences. Algorithms for doing so are presented later in this chapter.
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Figure 7.1. Example GD (G augmented with shared-data dependences)
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Determining if a and b are unordered by GD is complicated when D̂ is so conservative that GD contains cy-

cles (if the exact dependences were known, cycles would never be introduced). We therefore classify the apparent

data races into those that belong to strongly connected components1 and those that do not.

Definition 7.1

An apparent data race 〈a,b〉 is tangled if af and bs (or bf and as) belong to the same strongly connected com-

ponent of GD, and is nontangled otherwise.

Each strongly connected component of GD defines a set of tangled data races, called a tangle. a

We next prove (in Theorem 7.1) that any nontangled apparent data race is feasible. We then show (in

Theorem 7.2) that each tangle contains at least one feasible data race.

Theorem 7.1 (Feasible Race Theorem)

An apparent data race 〈a,b〉 is feasible if it is nontangled (or, equivalently, if a and b are unordered

by GD).

Proof.

We introduce the graph GD −ACTUAL as a device for showing certain feasible program executions must exist.

GD −ACTUAL is identical to GD, except that edges representing shared-data dependences that did not actually occur do

not appear (they were conservatively added to GD so that no actual dependences were missed). Even though we do

not have enough information to construct GD −ACTUAL, it nonetheless exists. We first prove that a and b are unor-

dered by GD −ACTUAL, and then show that this implies 〈a,b〉 is feasible.

First, we prove that a and b are unordered by GD (i.e., that it contains no path from af to bs or from bf to as).

Since GD −ACTUAL contains no more edges than GD, a and b must also be unordered by GD −ACTUAL. For a contradic-

tion, assume there is a path from af to bs , or a path from bf to as , in GD. Since a and b are not tangled, only one

such path can exist. Assume the path from af to bs exists. Because a D̂ b and b D̂ a (〈a,b〉 is an apparent data

race), GD contains shared-data dependence edges from as to bf , and from bs to af . But these edges create the path

af bs af in GD, implying that af and bs belong to the strongly connected component, which cannot be true since a

and b are not tangled. Therefore, a and b are unordered by both GD and GD −ACTUAL.

Next, we prove that a and b unordered implies the existence of a feasible program execution, P′ = 〈E, T ′ ,

D 〉, such that a /
T ′ b. The existence of P ′ proves that 〈a,b〉 is a feasible data race. Because a and b are

unordered by GD −ACTUAL, there exists a linear order L of its nodes that is a global-time model defining a temporal
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1A strongly connected component is a maximal cycle; there is path from every node in the component to every other node, but no path from

a node in one component to a node in another component and back[66].
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ordering relation T ′ such that a /
T ′ b. By the definition of G, T ′ obeys axioms (A4)−(A6) (since G con-

tains no more edges than GD −ACTUAL). Furthermore, T ′ obeys axiom (A3): because GD −ACTUAL contains a path

from as to bf whenever a D b, as will precede bf in L, implying that b /
T ′ a. Finally, T ′ trivially obeys ax-

ioms (A1) and (A2) since it is defined by a linear order of an acyclic graph. Since T ′ obeys axioms (A1)−(A6),

by the feasibility theorem, P′ = 〈E, T ′ , D 〉 is a feasible program execution. a

Theorem 7.2 (Tangle Theorem)

Each tangle in GD contains at least one feasible data race.

Proof.

We first prove that the tangle must contain an apparent data race between two events unordered by

GD −ACTUAL, and then argue that this implies the race is feasible.

Let T be the set of events in the tangle, and T be the set of nodes in GD −ACTUAL representing these events. To

establish a contradiction, assume that for all apparent data races 〈a,b〉 in the tangle, a and b are ordered by

GD −ACTUAL. Since a path from af to bs and a path from bf to as cannot both exist (GD −ACTUAL is acyclic), assume

that the path from af to bs exists. No such path exists in G (a and b are unordered by G). The path in GD −ACTUAL

must therefore contain at least one shared-data dependence edge, which cannot emanate from af . This path must

contain nodes for two events, c and d, such that a path exists from af to cs , a shared-data dependence edge from cs

to df , and a path from df to bs . This path implies that a T c and d T b. Furthermore, c and d must belong to

T, since T contains a strongly connected component.

The shared-data dependence edge from cs to df represents either a direct or transitive dependence. Either

there is a data conflict between c and d (and therefore also an apparent data race), or c data conflicts with some other

event that data conflicts with d. Assume that the edge exists because of an apparent data race between c and d.

Since c and d belong to T, our contradiction assumption implies that there must be a path from cf to ds . By applying

the above argument to c and d, we conclude that the path from cf to ds must contain nodes for two events, e, f∈T,

such that there is a path from cf to es , a shared-data dependence edge from es to ff , and a path from ff to ds . Such a

path implies that c T e and f T d. Since a T c and d T b, the events e and f must be different than c and

d. By inductively applying the above argument, we find that we always need two more events, x and y, belonging to

T, that are different than all other events in T. Since T is finite, we eventually arrive at a contradiction.

If the shared-data dependence edge from cs to df represents a transitive dependence, event c must participate

in an apparent data race with some event e that has a (possibly transitive) data conflict with d. By applying an argu-

ment similar to the one above to c and e, we also arrive at a contradiction. Therefore, an apparent data race 〈a,b〉

must exist such that a and b are unordered by GD −ACTUAL.

By the argument in the proof of Theorem 7.1, there is a feasible program execution, P′ = 〈E, T ′ , D 〉,

such that a /
T ′ b, showing that the apparent data race between a and b is feasible. Therefore, at least one of the
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apparent data races in the tangle is feasible. a

Figure 7.2 shows which apparent data races can be validated by GD for our example. The apparent data race

〈e, f〉 is nontangled; ef and fs are not in the same strongly connected component, nor are ff and es . By Theorem 7.1,

〈e, f〉 is feasible. In contrast, the races 〈c,d〉 and 〈e,b〉 belong to the same tangle. By Theorem 7.2, at least one of

them must be feasible (recall that 〈c,d〉 is feasible and 〈e,b〉 is not), but GD contains insufficient information to

determine which one.
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Figure 7.2. Results of validation using GD
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7.1.2. Validation using Event-Control Dependences

We extend the above results by observing that not all shared-data dependences necessarily cause events to be

ordered. We construct the graph GE by removing those edges from GD representing shared-data dependences that

are not also event-control dependences. GE therefore contains edges that represent only event-control dependences.

By analyzing GE, tangled data races (which cannot be validated using GD) can sometimes be proven feasible.

In some cases, shared-data dependences that cause an apparent data race 〈a,b〉 to be tangled (because a and b

are ordered by GD) may not have affected the outcome of a and b. Recall that an event represents both the execu-

tion instance of a group of statements and the shared-memory locations they reference. The outcome of a and b can

thus be affected only if these dependences affect either of these two components; in Section 3.3 we defined the

event-control dependences to represent such dependences. The tangled race can be proven feasible if we can

guarantee that both a and b would have remain unchanged had these dependences not occurred. If a and b are unor-

dered by GE, then neither a nor b (nor any of their successors) can event-control any of their predecessors, so we are

guaranteed that all predecessors of a or b would have remain unchanged. In addition, if none of the successors of a

or b can event-control a or b, then we are also guaranteed that a and b themselves would have remained unchanged.

Theorem 7.3 below proves this result.

Figure 7.3 shows GE for our example. In this example, we conservatively assume that the ‘‘remove’’ events

can event-control each other, because we cannot determine otherwise. However, we assume that the work events

cannot event-control each other (see Definition 3.11), e.g., because they only wrote to the array (which could be

discovered by a simple examination of the READ and WRITE sets), or because the computed array values were not

used to determine control flow (which might be discovered from a static analysis of the program). GE therefore

contains no edges between the work events, but the edges between the ‘‘remove’’ events remain.

Theorem 7.3 (Feasible Tangled Race Theorem)

An apparent data race 〈a,b〉 is feasible if a and b are unordered by GE, and a (or any successor of a

in GE) cannot event-control b and vice-versa (i.e., if GE contains no path from af to bf , or from bf

to af).

Proof.

Let Pred be the set that includes a, b, and all their predecessors in GE, and let Succ be the set of all successors

of a and b. We first show that no event in Succ can event-control any event in Pred, and then show that the data

race 〈a,b〉 is feasible by constructing a feasible program execution prefix, PP′ = 〈E′, T ′ , D ′ 〉, containing a and

b in which a /
T ′ b.

First, the absence of a path from af to bf means that no successor of a can event-control b or any predecessor

of b. Since no path exists from bf to af either, no event in Succ can event-control any event in Pred.

Next, we show that the apparent data race 〈a,b〉 is feasible, by constructing a feasible program execution

prefix, PP′ = 〈E′, T ′ , D ′ 〉, as follows.
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Figure 7.3. Example GE (G augmented with event-control dependences)
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(1) E ′ contains all the events in E, except for events either in Succ or event-controlled by events in Succ.

(2) T ′ is defined by a linear ordering of the nodes of G ′D −ACTUAL, constructed by removing all nodes (and any

incident edges) from GD −ACTUAL representing events not in E ′.

(3) ∀x,y ∈ E ′, x D ′ y ⇔ x D y.

We claim that PP ′ is a feasible program execution prefix. PP ′ obeys axioms (A1)−(A6) and therefore

satisfies condition (P1) (see Chapter 3). Axioms (A1) and (A2) are satisfied since T ′ is defined by a linear order-

ing of an acyclic graph. Axiom (A3) is satisfied because if x D ′ y then x D y, implying that a path from xs to

yf exists in GD −ACTUAL. Since T ′ is constructed from GD −ACTUAL, such a path also implies that y /
T ′ x. Axioms

(A4)−(A6) are satisfied since all linear orderings of G obey these axioms (see Chapter 6), and T̂ ⇒ Ê (so the

successors in such a linear ordering of any event excluded from G are also excluded). Condition (P2) is clearly

satisfied by the definition of E ′. Finally, (P3) is satisfied since all events that can be event-controlled by an event ex-
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cluded from E ′ are also excluded.

To show that the apparent data race 〈a,b〉 is feasible, we must show that E ′ contains a and b and that a /
T ′

b. Because only the events event-controlled by those in Succ are excluded from E ′ (which, as already shown, in-

cludes no event in Pred), a and b remain in E ′. Since a and b are the last events in their processes appearing in E ′,

there is a linear ordering of the nodes of G ′D −ACTUAL in which as appears before bf and bs appears before af (since a

and b are not synchronization events, no synchronization prevents this ordering). Such a linear ordering defines a

T ′ relation such that a /
T ′ b. Therefore, since a feasible program execution prefix, PP′ = 〈E′, T ′ , D ′ 〉,
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exists in which a /
T ′ b, the apparent data race 〈a,b〉 is feasible. a

Figure 7.4 shows which tangled data races can be validated by GE for our example. Of the two tangled data

races (〈c,d〉 and 〈e,b〉), two events, c and d, are no longer ordered by GE (nor are they event-controlled by any of

their successors in GE). By Theorem 7.3, the tangled data race 〈c,d〉 is feasible. The other events, e and b, are still

ordered by GE, so the feasibility of the race 〈e,b〉 is unknown (recall that this race is indeed infeasible). In general,

it is difficult to prove that a race is infeasible.

7.2. Algorithms for Post-Mortem Validation

We now present algorithms for performing post-mortem data race validation. First, we present algorithms for

augmenting the graph with shared-data and event-control dependence edges. Since the augmented graphs can con-

tain cycles, we then show how to generalize timestamps to apply to cyclic graphs so the orderings given by these

graphs can be quickly determined. Finally, we bring all the pieces together to perform validation. Our goal in

developing these algorithms was to require no more space than previous post-mortem methods use for simply locat-

ing apparent data races, while incurring only a modest time increase.

7.2.1. Augmenting the Temporal Ordering Graph

Augmenting G involves computing conservative approximations to the shared-data and event-control depen-

dences. These approximations can be computed by simply analyzing the READ and WRITE sets for data conflicts,

and by optionally using additional information obtained by static analysis. Below we discuss these approximations

and present algorithms for computing both the direct and transitive dependences.

Estimating shared-data dependences involves simply searching for pairs of computation events that have data

conflicts. However, event-control dependences can be approximated to varying degrees of accuracy, depending on

the amount of available information. Because Ê ⊆ ( D̂ ∪ T̂ ), only those event-control dependences that are

also shared-data dependences must be computed (G already contains edges representing T̂ ). Such a dependence

involves an event, a, that modifies a variable whose value is used by another event, b, to determine the outcome of a

conditional or the shared locations accessed (e.g., with a shared-array subscript). Because a must modify a variable

that b later reads, a first approximation to a Ê b can be computed by excluding dependences from D̂ where

WRITE (a) ∩ READ (b) = ∅. By examining the individual actions performed by a and b, better approximations can

be computed. A static analysis of the program can further refine D̂ , and even more accurate information can be

extracted from a complete address trace, but this approach may be practical only if such a trace is already being col-

lected for other purposes. The algorithms described below conservatively approximate D̂ and Ê by analyzing

only the READ and WRITE sets (which contain the shared variables accessed by each event but not the intra-event

access order).

Computing the direct dependences is the first step in this approximation. A direct dependence from a to b ex-

ists if a accesses a shared variable that b later accesses (and at least one access is an update). Edges must be added
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Given: The temporal ordering graph, G.

Compute: Augment G with direct shared-data and event-control dependence edges.

Algorithm:

1: AugmentDirect_D̂ (G):

2: for each computation event, ep,i , represented by G {

3: for each process q > p {

4: let eq, j be the last event in q that is a predecessor of ep,i;

5: j = j + 1;

6: while (ep,i and eq, j are unordered by G) {

7: if (data conflict between ep,i and eq, j) {

8: AddEdge (D̂, ep,i , eq, j , IF_NONE_EARLIER);

9: AddEdge (D̂, eq, j , ep,i , ALWAYS);

10: }

11: j = j + 1;

12: }

13: }

14: }

15: AugmentDirect_Ê (G):

16: for each computation event, ep,i , represented by G {

17: for each process q > p {

18: let eq, j be the last event in q that is a predecessor of ep,i;

19: j = j + 1;

20: while (ep,i and eq, j are unordered by G) {

21: if (WRITE (ep,i) ∩ READ (eq, j) ≠ ∅)

22: AddEdge (Ê, ep,i , eq, j , IF_NONE_EARLIER);

23: if (READ (ep,i) ∩ WRITE (eq, j) ≠ ∅)

24: AddEdge (Ê, eq, j , ep,i , ALWAYS);

25: j = j + 1;

26: }

27: }

28: }

Algorithm 7.1. Augment graph with direct dependences
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh



68

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Given: An edge type (D̂ or Ê) and two events.

Compute: Add an edge to the temporal ordering graph.

Algorithm:

1: AddEdge (depType, ep,i , eq, j , when):

2: case (when) {

3: IF_NONE_EARLIER:

4: add depType edge from start node of ep,i to finish node of eq, j ,

5: if no edge from ep,i to process q already exists;

6: ALWAYS:

7: add depType edge from start node of ep,i to finish node of eq, j ,

8: replacing any existing edge from process p to eq, j;

9: }

Algorithm 7.2. Add edges for augmenting the temporal ordering graph
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to ensure a path exists from as to bf . When a T̂ b, such a path already exists, so direct dependence edges are only

required when a /
T̂ b. Because these events are exactly those involved in apparent data races, direct depen-

dence edges can be added while apparent races are located. Algorithm 7.1, which is a modification of the apparent

data race detection algorithm of Chapter 6, adds these edges. This algorithm scans, for every event a, those events

in each process p that are unordered with a, searching for data conflicts. Instead of adding an edge for every direct

dependence found, redundant edges are omitted: an edge from a is added (by Algorithm 7.2) only to the earliest

event in process p to which a dependence exists. An advantage is that at most p out-edges are added from any node,

maintaining the O (np) space bound. The running time is the same as for Algorithm 6.3: O (np + U)), where n and p

are the number of events and processes, and U is the total number of unordered event pairs. In the worst case, U is

of order n 2, leading to a worst-case running time of O (n 2).

Computing the transitive dependences is the second step in augmenting the graph. A transitive dependence

from a to b exists if a accesses a shared variable that another event x later accesses, and then x references a different

shared variable that b finally references. Adding transitive dependences is non-trivial because simply computing the

transitive closure of the direct dependences is overly conservative. For example, any dependence from a to b (direct

or transitive) can exist only if b /
T a (axiom (A3)). A transitive dependence a D b can therefore exist only if b

/
T x ∧ x /

T a ∧ b /
T a. Because events can in general represent several shared-memory accesses, it is possi-

ble that b can precede a even though direct dependences exist from a to x to b (if x overlaps both a and b). In this

case, b T a even though b /
T x ∧ x /

T a. Adding a transitive dependence from a to b would be overly con-
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servative because no such dependence could exist. To determine when a transitive dependence might exist, the rela-

tive ordering must be analyzed of all events in a chain of direct dependences. As with direct dependences, where an

edge is necessary only when a /
T̂ b, a transitive edge representing a D̂ b is required only when a /

T̂

x ∧ x /
T̂ b ∧ a /

T̂ b. In general, for a chain of direct dependences involving n events to form a transitive

dependence, all n events must be mutually unordered.

Algorithm 7.3 adds transitive shared-data dependence edges, and Algorithm 7.4 adds transitive event-control

dependence edges. Both algorithms are identical except for the type of direct dependences for which they search (in
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Given: The temporal ordering graph, G, augmented with direct dependences.

Compute: Augment G with transitive shared-data dependence edges.

Algorithm:

1: AugmentTransitive_D̂ (G, depType):

2: for each event, orig, in G from which a direct D̂ dependence exists {

3: mark unvisited all events unordered with orig by G;

4: Visit(orig, NULL);

5: }

6: Visit (ep,i , path)

7: mark ep,i as visited;

8: add ep,i to path;

9: for each direct D̂ dependence from ep,i to process j {

10: let eq, j be the last event in q that is a predecessor of any event in path;

11: j = j + 1

12: while (eq, j is unvisited and eq, j is unordered by G with all events in path) {

13: if (data conflict between ep,i and eq, j) {

14: AddEdge(D̂, orig, eq, j , IF_NONE_EARLIER);

15: Visit(eq, j , path);

16: break out of while loop;

17: }

18: j = j + 1;

19: }

20: }

Algorithm 7.3. Augment graph with transitive shared-data dependences

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh



70

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Given: The temporal ordering graph, G, augmented with direct dependences.

Compute: Augment G with transitive event-control dependence edges.

Algorithm:

1: AugmentTransitive_Ê (G, depType):

2: for each event, orig, in G from which a direct Ê dependence exists {

3: mark unvisited all events unordered with orig by G;

4: Visit(orig, NULL);

5: }

6: Visit (ep,i , path)

7: mark ep,i as visited;

8: add ep,i to path;

9: for each direct Ê dependence from ep,i to process j {

10: let eq, j be the last event in q that is a predecessor of any of the events in path;

11: j = j + 1

12: while (eq, j is unvisited and eq, j is unordered by G with all events in path) {

13: if (WRITE (ep,i) ∩ READ (eq, j) ≠ ∅) {

14: AddEdge(Ê, orig, eq, j , IF_NONE_EARLIER);

15: Visit(eq, j , path);

16: break out of while loop;

17: }

18: j = j + 1;

19: }

20: }

Algorithm 7.4. Augment graph with transitive event-control dependences
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lines 2, 9, 13, 14). For each event, orig, these algorithms use a depth-first search to follow a path of direct depen-

dences involving only events that are unordered with all previous events along the path. The procedure Visit at-

tempts to extend the current path by finding a direct dependence from ep,i to an event eq, j that qualifies as a transi-

tive dependence from orig. To qualify, there must be a direct dependence from ep,i to eq, j (or to a preceding event

in process q) and eq, j must be unordered with all events in path (line 12). For each event considered (by lines

10−12), O (p) work is required to determine if it qualifies, since path contains up to p events (at most p events can

be mutually unordered since two events belonging to the same process are always ordered by T̂ ). Since only

events unordered with orig are ever considered, and no event is visited twice, at most O (up) work is performed for
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computing transitive dependences from orig, where u is the number of events unordered with orig. For an arbitrary

event, O (u
h
p) work is performed on the average, where u

h
is the average number of events unordered with any given

event. The total running time of the algorithm is thus O (nu
h
p) = O (Up), where U is the total number of unordered

event pairs. In the worst case, U is of order n 2, leading to a worst-case running time of O (n 2p). As with direct

dependences, at most p transitive out-edges are ever added for any event, maintaining the O (np) space bound.

7.2.2. Computing Timestamps for Cyclic Graphs

Previously, timestamps have only been used to represent connectivity in acyclic graphs[16, 33, 35, 50], as was

done in Chapter 6. However, because the augmented graphs may contain cycles, we now generalize the use of

timestamps to cyclic graphs and show how to compute them for GE. Timestamps for GD are unnecessary (even
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Given: The augmented temporal ordering graph, GE.

Compute: The timestamp for each node.

Algorithm:

1: Compute_Ê_Timestamps (G):

2: topOrder = TopologicalSort(G);

3: for each node, x, in G {

4: x.timestamp = 〈−1,...,−1〉;
5: x.timestamp[x.proc_num] = x.ser_num;

6: }

7: for each node, x, in the list topOrder {

8: tmp = 〈−1,...,−1〉;
9: for each node, y, in the same SCC as x

10: tmp = TimestampMax(tmp, y.timestamp);

11: for each node, y, in the same SCC as x {

12: y.timestamp = tmp;

13: for each out-edge from y to z

14: z.timestamp = TimestampMax(z.timestamp, tmp);

15: }

16: }

Algorithm 7.5. Compute timestamps for GE

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh



72

though it may be cyclic); identifying tangled races only requires locating strongly connected components.

Algorithm 7.5 computes timestamps for GE. To handle cycles, the graph is conceptually reduced by treating

each strongly connected component as a single meta-node; an edge emanating from any node in the component is

treated as an edge emanating from the meta-node. Because the reduced graph is acyclic, timestamps can be easily

computed (all nodes in the same component have the same timestamp). Algorithm 7.5 computes timestamps in the

same way as Algorithm 6.1 (for acyclic graphs), except that the topological order it traverses contains only one

representative node from each component, which is treated as the meta-node for that component. Algorithm 7.6
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Given: The augmented temporal ordering graph, GE.

Compute: A topological sort of the graph.

Algorithm:

1: TopologicalSort (GE):

2: locate the strongly connected components (SCCs) of GE;

3: mark each node in GE as unvisited;

4: topOrder = NULL;

5: for each process p {

6: if (the first node, n, in p has no in-edges)

7: Visit(n);

8: }

9: return topOrder;

10: Visit (x):

11: mark as visited the node x and all nodes in the same SCC;

12: for each node, y, in the same SCC as x {

13: for each out-edge from y to z {

14: if (z is unvisited)

15: Visit(z);

16: }

17: }

18: add x to the beginning of the list topOrder;

Algorithm 7.6. Compute a topological order for GE

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh



73

computes the topological order by a generalization of the standard depth-first-search approach to topological sort-

ing[66]. When the depth-first search this algorithm performs visits a node in a component, it avoids visiting any

other node in the component by marking them all visited (line 12), and then follows out-edges from all nodes in the

component (lines 13−14). The resulting topological order contains one representative node from each component.

The running time of Algorithm 7.6 is O (n + e), the same as for standard topological sorting. Each node is

visited (and each edge is followed) exactly once, and locating all the strongly connected components[66] only re-

quires O (n + e) time. Since Algorithm 7.5 operates in the same way as for Algorithm 6.1, its running time is also

the same, O (ep). However, in the worst case, e can be of order np; each node in the augmented graph can have a

dependence edge to every other process. The worst-case running time is thus O (np 2). However, O (np) edges exist

only when every event participates in at least one race; for most cases we expect e to be of order n. As with Algo-

rithm 6.1, O (np) space is required to store the timestamps.

7.2.3. Validation

We finally present algorithms for actually performing data race validation. Algorithm 7.7 contains procedures

for validation using GD (Validate_D̂) and using GE (Validate_Ê).

The time required for Validate_D̂ is simply the sum of the times to augment the graph with direct and transi-

tive dependences, locate strongly connected components, and then check each apparent race:

O (np + U) + O (pU) + O (n + e) + O (r) = O (np + pU + r), where r is the number of apparent data races. In the

worst case, r is of order n 2 and U is of order n 2, leading to a worst-case running time of O (n 2p). Similarly, the

time required for Validate_Ê is O (np + U) + O (pU) + O (ep) + O (t) = O (p (n + U + e) + t), where t is the number of

tangled data races. In the worst case, e is of order np, leading to a worst-case running time of

O (n 2p + np 2) = O (n 2p).

The space required by these algorithms for the augmented graph is O (np), for storing timestamps and edges.

This space bound is no worse than previous post-mortem methods which only detect apparent data races. However,

the worst-case time required (O (n 2p)) is greater than the worst-case time for simply locating apparent races

(O (n 2)).
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Given: The temporal ordering graph, G, and the apparent data races.

Compute: Validate the apparent data races.

Algorithm:

1: Validate_D̂ (G):

2: AugmentDirect_D̂(G);

3: AugmentTransitive_D̂(G);

4: locate the strongly connect components (SCCs) of G;

5: for each apparent data race 〈a,b〉 {

6: if (af and bs , or bf and as , belong to the same SCC)

7: output 〈a,b〉 is tangled;

8: else
9: output 〈a,b〉 is feasible;

10: }

11: Validate_Ê (G):

12: AugmentDirect_Ê(G);

13: AugmentTransitive_Ê(G);

14: Compute_Ê_Timestamps(G);

15: for each tangled data race 〈a,b〉 {

16: if (OrderOf(af ,bf) = UNORDERED)

17: output 〈a,b〉 is feasible;

18: }

Algorithm 7.7. Validate apparent data races
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Chapter 8

ORDERING APPARENT DATA RACES

In this chapter we address the second cause of data race artifacts: races that occurred only because of other

races. We present a technique called data race ordering for determining which apparent data races may have affect-

ed others. Ordering involves defining a relation over the apparent data races that shows how data flowed through

the execution. Those races that are ordered first by this relation are guaranteed to be non-artifacts, since they could

not have been affected by other races. We define data race ordering using the event-control dependences and

present results that show how to identify the first races. We then present an algorithm for post-mortem data race

ordering and contrast race ordering with related work. In the next chapter, we present the results of experiments in-

volving an implementation, which suggest that ordering is an effective tool in practice for debugging.

8.1. Ordering Results

We first use the event-control dependences to define an ordering over the apparent data races. This ordering

shows when atomicity failures caused by one race can affect the outcome of events in other races. The apparent

races that are first in this ordering cannot be affected by any atomicity failures. These first races are guaranteed to

be non-artifacts — they would have remain unchanged whether or not any other races had occurred. However,

identifying first races is complicated when only approximate information is available. We therefore show how to

partition the races, regardless of the amount of information available, so that each partition contains at least one

non-artifact race. More detailed information about the event-control dependences leads to smaller partitions and

hence better diagnostic precision.

To determine which data races may have been artifacts of others, we must consider how the presence of one

apparent data race, 〈c,d〉, is affected by another race, 〈a,b〉. By definition, 〈c,d〉 is an artifact of 〈a,b〉 iff 〈c,d〉 would

never have occurred had 〈a,b〉 not occurred either. This situation arises when 〈a,b〉 is an actual data race that results

in the atomicity failure of a or b. These atomicity failures can result in inconsistent data which is subsequently used

by the program, resulting in the 〈c,d〉 race, which would not have occurred without inconsistent data. If we locate

data races that could not have possibly been affected by atomicity failures of other races, we are guaranteed that

they are not artifacts. To locate these races, we define an ordering over the apparent data races.
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Definition 8.1

The data-race ordering relation, R , is defined over the apparent data races, and shows when one race may

have been affected by the possible atomicity failures caused by another race:

〈a,b〉 R 〈c,d 〉 ⇔ (a E c ∧ b E c) ∨ (a E d ∧ b E d).

The approximate data-race ordering relation, R̂ , is a conservative approximation to R (i.e., R̂ ⊇
R ), and is defined as above by using Ê instead of E . a

If 〈a,b〉 R 〈c,d〉, then 〈c,d〉 could possibly have been an artifact of 〈a,b〉. The somewhat surprising aspect

of this relation is that 〈c,d〉 cannot have been an artifact unless both a and b event-control c (or d). Intuitively, if

only one of a and b event-control c, then even if the atomicity of a or b failed, the shared-memory accesses causing

the failure cannot affect the outcome of c or d. The following theorem proves this observation.

Theorem 8.1 (Data-Race Ordering Theorem)

If 〈a,b〉 /
R 〈c,d〉 then 〈c,d〉 could not have been an artifact of 〈a,b〉.

Proof.

The apparent data race 〈c,d〉 is an artifact of 〈a,b〉 only if a or b executed non-atomically and this non-

atomicity affected c or d. To prove this theorem, we must reason about the portions of a and b that executed non-

atomically. We will view the execution at a lower level by letting aatom and batom be the initial portions of a and b

that executed atomically and anatom and bnatom be the remainder. Executing atomically means that each variable read

in aatom returned the value of the last write in aatom to the variable (or the initial value at the start of aatom if no such

write occurred). The remainder of a exhibited non-atomicity because b wrote a shared variable read by anatom. We

must show that a feasible program execution prefix exists in which anatom and bnatom are excluded but the apparent

data race 〈c,d〉 remains. The existence of such a feasible prefix shows that, no matter how anatom or bnatom might

have changed had a or b executed atomically, the race 〈c,d〉 would have remained unaffected. To prove the prefix

exists, it suffices to show that neither anatom nor bnatom can event-control either c or d (see the construction of PP ′ in

the proof of Theorem 7.3).

By definition, 〈a,b〉 /
R 〈c,d〉 implies that (a /

E c ∧ a /
E d) ∨ (a /

E c ∧ b /
E d) ∨ (b /

E c ∧ a

/
E d) ∨ (b /

E c ∧ b /
E d). We show that a /

E c ⇒ bnatom /
E c; analogous arguments also apply to d

and anatom. Assume that c was affected by the non-atomicity of b; i.e., bnatom
E c. This non-atomicity was

caused by a writing a shared variable that was read by bnatom. By condition (1) of the definition of event-control

dependence, a E c, which is a contradiction. Therefore, neither anatom nor bnatom can event-control c or d. a

Ideally, to locate the non-artifact races, we would like to identify the races that are ordered first by the R̂

relation (i.e., those not affected by any others). However, because R̂ is not a partial order, it is not always
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guaranteed to order any of the races first; every race can be ordered after another. This situation occurs because

R̂ is based on Ê , which can sometimes be symmetric and nontransitive. The Ê relation can be symmetric,

causing 〈a,b〉 R̂ 〈c,d〉 and 〈c,d〉 R̂ 〈a,b〉, because it is based on approximate information1. In this case,

insufficient information exists to determine whether 〈c,d〉 may have been an artifact of 〈a,b〉 or vice-versa. The Ê

relation can be nontransitive, causing 〈a,b〉 R̂ 〈c,d〉 R̂ 〈e, f〉, but 〈a,b〉 /
R̂ 〈e, f〉, because events can represent

several shared-memory references. If c and d represent large portions of the execution, they can both overlap the

other events, allowing 〈a,b〉 R̂ 〈c,d〉 R̂ 〈e, f〉. But e and f can still both precede a and b, preventing 〈a,b〉 from

affecting 〈e, f〉. To address these difficulties, we group the apparent data races into partitions such that data races be-

longing to different partitions can be partially ordered, allowing first partitions to be identified. To overcome the

problem of symmetry, we add two races to the same partition if it is unknown which may have affected the other.

To overcome the problem of nontransitivity, we simply force R̂ to be transitive by using its transitive closure to

order races.

Definition 8.2

Two apparent data races, 〈a,b〉 and 〈c,d〉, belong to the same partition iff

〈a,b〉 R̂* 〈c,d〉 ∧ 〈c,d〉 R̂* 〈a,b〉,

where R̂* = ( R̂ )*, the transitive closure of R̂ .

A first partition is one containing data races that are not ordered by R̂* after a race in any other partition.

a

Because R̂* is transitive, and races that cause R̂ to be symmetric belong to the same partition, the above

definition does indeed partition the races, and races belonging to different partitions are partially ordered by R̂* .

At least one first partition therefore always exists2. Theorem 8.2 below proves that each first partition is guaranteed

to contain at least one race that is both feasible and not an artifact of any other race. We first prove the following

lemma, and then prove the theorem.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1Even R can be symmetric, if 〈a,b〉 and 〈c,d〉 race on multiple shared variables. This case is also caused by approximate information,

since the relative order of shared-memory accesses within events is unknown.

2Although information is lost by using the transitive closure of R̂ , it is unclear how the (non-transitive) R̂ can instead be used to

define a partitioning and identify the non-artifact races. We leave investigating how information about non-transitivity may be used to improve

accuracy to future work.
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Lemma 8.1

If 〈a,b〉 is an infeasible apparent data race, then there exists another apparent data race, 〈c,d〉, such

that 〈c,d〉 R 〈a,b〉.

Proof.

As in Chapter 7, we employ GE −ACTUAL, the temporal ordering graph augmented with event-control depen-

dence edges representing actual event-control dependences. If 〈a,b〉 is infeasible, then no feasible program execu-

tion prefix exists in which a and b can execute concurrently. The non-existence of such a prefix can occur only if

successors of a in GE −ACTUAL event-control b or predecessors of b, or vice-versa. Assume the former. GE −ACTUAL

must therefore contain a path from af to bf . We show that this path implies another apparent data race exists.

The path from af to bf implies that a T̂ x 0
E b for some event x 0. Since x 0

E b, there exists a chain

of events, x 0,x 1, . . . , xn (xn=b), such that x 0 ( DD ∪ T̂ ) x 1 ( DD ∪ T̂ ) . . . ( DD ∪ T̂ ) xn. Since

a /
T ′ b, not all events in this chain can be ordered by T̂ , so xi

DD xi +1 for some i. An apparent data race

therefore exists between xi and xi +1. By condition (1) of the definition of E , xi
E b for 1 ≤ i < n. Since xi

E

b and xi +1
E b, we have 〈xi , xi +1〉 R 〈a,b〉. a

Theorem 8.2 (Partition Theorem)

Each first partition contains at least one apparent data race that is both feasible and not an artifact

of any other data race.

Proof.

Consider the single-access program execution, PS (see the proof of Theorem 3.1). Each computation event in

PS represents at most one shared-memory access, and the R relation defined over the single-access apparent data

races, RS , is a partial order. Now consider any first partition of the apparent data races in P, and the correspond-

ing single-access races in PS. Since these single-access races are partially ordered by RS , at least one of them,

〈as ,bs〉, appears first in the ordering. By Theorem 8.1 and Lemma 8.1, these first races are both feasible and not ar-

tifacts of any other race. The events as and bs are the first events contained in a and b that participate in a data race

(or else they would not appear first in the RS ordering). The higher-level events, a and b, containing as and bs

thus contain a feasible data race that is not an artifact of any other race. a

Figure 8.1 shows the data race orderings and first partition for our example; the graph GE, which contains

event-control dependence edges, is shown. In this example, each partition contains only one race, and only one par-

tition is first. In this particular case, data race ordering alone was able to locate the only non-artifact race in the exe-

cution. In general, however, the first partitions contain more than one race. Data race validation can be applied in-

side each first partition to gain more information about the nature of its races. Chapter 9 discusses how validation

and ordering can be used by the programmer for debugging.
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〈e,b〉 R̂ 〈e, f〉

Figure 8.1. Results of data race ordering
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8.2. Algorithm for Post-Mortem Ordering

We now show how the first partitions can be identified. Algorithm 8.1 considers each apparent data race,

〈a,b〉, to determine whether it belongs to a first or non-first partition. This determination is made by checking the set

firstPartitions, which contains partitions that are ordered first among the races considered so far. If 〈a,b〉 is found to

belong to one of these partitions, then it is added (line 7). If 〈a,b〉 is affected by a race that is currently first, then it

cannot belong to a first partition and is discarded (line 12). If 〈a,b〉 affects a race in a partition that is currently first,

then that partition cannot actually be first and is discarded (line 17). Finally, if 〈a,b〉 is not found to be affected by

any race currently ordered first, then a first partition containing only 〈a,b〉 is added to firstPartitions (line 21).
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Given: The apparent data races and the data-race ordering relation R̂* .

Compute: The first partitions.

Algorithm:

1: LocateFirstPartitions:

2: firstPartitions = ∅;

3: for each apparent data race 〈a,b〉 {

4: newPartition = True;

5: for each partition P in firstPartitions {

6: let 〈x,y〉 be any data race in P;

7: if (〈x,y〉 R̂* 〈a,b〉 ∧ 〈a,b〉 R̂* 〈x,y〉) {

8: add 〈a,b〉 to the partition P;

9: newPartition = False;

10: break;

11: }

12: else if (〈x,y〉 R̂* 〈a,b〉) {

13: newPartition = False;

14: break;

15: }

16: else if (〈a,b〉 R̂* 〈x,y〉) {

17: remove P from firstPartitions;

18: }

19: /* else 〈x,y〉 /
R̂* 〈a,b〉 */

20: }

21: if (newPartition = True)

22: add the new partition {〈a,b〉} to firstPartitions;

23: }

24: output firstPartitions;

Algorithm 8.1. Locate first partitions

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

In Algorithm 8.1, the outer for loop (line 3) iterates over all apparent races, and the inner for loop (line 5)

iterates over all partitions currently in firstPartitions. The inner loop simply determines how 〈a,b〉 and 〈x,y〉 are or-

dered by R̂* , which can be performed in constant time (discussed below). In the worst case, every apparent race

considered can be added to its own first partition, causing the size of firstPartitions to steadily grow. In this case,

firstPartitions would contain i partitions after the i th iteration of the outer loop. The total running time would then
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be O (
i =1
Σ
r

i ) = O (r 2), where r is the number of apparent data races (recall that r can be of order n 2). However, this

worst-case bound results only when the outer for loop (line 3) happens to iterate over the non-first races early and

not reach the first races until later. In this case, many non-first races are added to firstPartitions only to be subse-

quently removed when the first races are finally considered. In cases where all the first partitions are discovered

early by the algorithm, the running time is O (rf ), where f is the number of first partitions.

Achieving the O (r 2) time bound requires computing a representation of the R̂* relation that can be evaluat-

ed in constant time. Computing R̂* can be reduced to computing Ê* , the transitive closure of Ê , by noticing

that R̂* can be equivalently defined using Ê* :

〈a,b〉 R̂* 〈c,d 〉 ⇔ (a Ê* c ∧ b Ê* c) ∨ (a Ê* d ∧ b Ê* d).

The R̂* relation can be evaluated in constant time if timestamps representing Ê* are available. These times-

tamps can be computed by Algorithm 7.5 if the event-control dependence edges in GE are first adjusted. If the

direct dependence edges are moved so that they enter start nodes instead of finish nodes, transitivity then follows

from paths formed by chains of direct dependence edges. For example, direct dependences from a to b to c would

be represented by direct dependence edges from as to bs and from bs to cs , resulting in a path from as to cs

representing the transitive closure. The cost of adjusting the graph is O (e), since each direct dependence edge must

be moved; the timestamps can be computed in time O (ep) by Algorithm 7.5. Computing R̂* by transforming the

graph in this way allows the flexibility of ordering the races either before or after validation. In addition, the con-

vention of constructing dependence edges from start node to start node is attractive when only data race ordering is

being performed. In such a case, augmenting the graph with transitive edges can be avoided entirely.

8.3. Related Work

We now discuss the only other work that addresses the issue of locating first data races. Choi and Min[17]

consider an on-the-fly approach for detecting data races in which they locate a subset of the races called the Race

Frontier. Below we describe their work and contrast it with ours.

The Race Frontier approach is a modified on-the-fly scheme to identify one event in each process that partici-

pates in a race. If the first racing event in a process is nontangled, then that event belongs to the Frontier. If the first

such event is tangled, then the Frontier contains the tangled race that occurred before any other race in the tangle.

To determine which events occur first, additional information provided by the on-the-fly approach is used; a race

check is performed at each shared-memory access, allowing the order of all accesses to the same location to be

determined.

The Race Frontier provides a valuable tool for debugging data races on-the-fly. Events up to (but not includ-

ing) the Race Frontier are not affected in any way by the racing events, allowing them to be easily re-executed for

debugging. By breakpointing each process, during re-execution, immediately before reaching the Race Frontier,
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program replay can be guaranteed deterministic. Deterministic replay allows the portion of the execution that

caused the races to be easily repeated for debugging. The execute/replay cycle can be repeated until all races in the

execution have been debugged.

Choi and Min’s work contrasts with ours in two important ways. First, a single-access view is hard-wired into

their work. Identifying the Race Frontier requires detailed information about the order of individual memory

accesses. This information is obtained as a by-product of the on-the-fly approach, which serializes all accesses to

the same location (introducing central bottlenecks that potentially reduce parallelism). In contrast, our results apply

to single-access or higher-level views in which any level of information is available, allowing them to be applied to

any data race detection method.

Second, they do not directly address the issue of race artifacts. Instead, they prove that events up to the Race

Frontier are guaranteed to be reproduced during replay. In contrast, one of our goals was formalizing the notion of a

race artifact and locating non-artifact races. Because the Race Frontier is not affected in any way by racing events,

it never contains artifacts, but it is overly pessimistic. Theorem 8.1 shows that races affected by racing events are

not always artifacts. We can sometimes determining that races are not artifacts even when they did not temporally

occur first (and are therefore beyond the Race Frontier).



Chapter 9

EXPERIENCE WITH VALIDATION AND ORDERING

In the previous chapters we presented results and algorithms for data race validation and ordering. We now

discuss our experience with an actual implementation. We first outline both the run-time and post-mortem phases of

our data race analyzer, which is targeted to parallel C programs on the Sequent Symmetry multiprocessor. We then

discuss our experiments. The goal of accurate race detection is to report only those races that are direct manifesta-

tions of bugs, in the hope that these races will lead to discovering the bugs. The thrust of our experiments was to

ascertain how effectively validation and ordering achieve this goal when given varying amounts of run-time infor-

mation. The purpose of this study was to understand our techniques; run-time and post-mortem efficiencies were

not the main concern. We recorded information at two different levels of detail. The finer level of detail records the

complete temporal ordering and closely approximates the actual shared-data and event-control dependences. The

coarser level detail records no more information than previous post-mortem methods and computes coarser approxi-

mations to the dependences.

We analyzed several programs containing data races, some previously developed by others (which represent a

cross-section of practical programs) and some developed specifically to test our techniques (which represent more

pathological cases). We collected statistics on the number of apparent data races that were successfully validated,

and the number and size of the first partitions that were reported. We found that validation and ordering produced

excellent results when given the finer level of trace information, completely pinpointing the non-artifact races. The

coarser level of trace information produced comparable results except when tangled data races occurred. Validation

and ordering therefore seem to be effective tools for reducing the number of races that require consideration for de-

bugging.

9.1. Implementation

Our system for post-mortem detection locates data races for shared-memory parallel C programs on the

Sequent Symmetry. As mentioned in Chapter 2, post-mortem race detection employs three phases: program instru-

mentation, program execution, and post-mortem analysis. The program instrumentation phase instruments C pro-

grams to record run-time trace information at two different levels of detail. The post-mortem analysis phase per-

forms validation and ordering using both levels of this trace information. As discussed in a later section, analyzing

races with both levels of information allows us to assess the overall effectiveness of validation and ordering, and to

estimate how much information is required for them to perform well. Below, we discuss the levels of detail at

which we collect run-time information, including how the program is instrumented to record this information and

how it is used by the post-mortem analyzer.
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9.1.1. Program Instrumentation

The program instrumentation consists of both a source-code instrumentation phase (to record the READ and

WRITE sets) and instrumented libraries (to record the temporal ordering of synchronization events). There are two

aspects of this instrumentation that determine at what level of detail information is recorded: granularity and com-

pleteness. The granularity at which information is collected is governed by the size of computation events. Record-

ing the READ and WRITE sets for small computation events provides detailed information about the intra-process

order of shared-memory accesses; larger events provide less detailed information. The completeness of the collect-

ed information depends on how much temporal ordering information is recorded. The complete temporal ordering

( T ) contains exhaustive information about the event order; an approximate temporal ordering ( T̂ ) contains

only partial information. Our instrumentation scheme records two levels of detail. We record both complete and

approximate temporal orderings, but fix the granularity by tracing READ and WRITE sets at the coarsest possible

level. Each execution of the program records both forms of temporal ordering, allowing both levels of trace to be

simultaneously obtained.

We fix the level of granularity by making the size of computation events maximal. Such a maximal event

represents all computation performed between two synchronization operations (in the same process). This granular-

ity represents the worst choice in terms of precision, since the READ and WRITE sets contain no information about

the order in which shared-memory accesses are performed inside an event. By chosing a coarse granularity, the

results we obtain about the effectiveness of validation and ordering will be conservative; a finer granularity would

only provide more information. Moreover, previous post-mortem schemes have made the same choice. To record

the READ and WRITE sets, the GNU C compiler (version 1.38) was modified to instrument each variable oc-

currence in the program. Each occurrence of a variable ‘‘x’’ is translated into the following expression:

*(tmp=&x, TRACE(tmp,accessType,sizeof(x)), (typeOfx *)tmp)

where ‘‘TRACE(tmp,accessType,sizeof(x))’’ is a call to a procedure that determines if x resides in

shared memory, and if so, writes to a trace file the address of x, the access type (read, write, or read/write), its size,

and the line number in which it appears; ‘‘(typeOfx *)’’ casts the type of the expression to the same type as x.

In addition to scalar variables, array accesses and pointer dereferences are similarly translated1.

We collect two different levels of trace information by simultaneously recording both approximate and com-

plete temporal orderings (at the selected granularity). These orderings are recorded by instrumenting the pps and

c libraries, which contain primitives for process creation and synchronization (with spin locks and barriers). The

approximate ordering ( T̂ ) is recorded by associating a counter with each lock (or barrier). The counter is incre-
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1Although this tracing strategy does provide information about the intra-event order of shared-memory accesses, the post-mortem analyzer

makes no use of this information.
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mented and traced at each synchronization operation performed on the lock, allowing the order of all operations on

that lock to be determined. Following previous approaches[35, 50], we pair each unlock operation with the subse-

quent lock on the same variable, and mutually pair all related barriers; we then have a T̂ b if a is paired with b.

Recording such an approximate ordering has the advantage that the required instrumentation can be embedded into

the implementation of the lock without introducing additional synchronization. A central bottleneck that could

reduce the amount of parallelism achievable by the program is avoided. The complete temporal ordering ( T ) is

recorded by maintaining a global counter that is incremented and traced at each synchronization operation per-

formed by the program. Although this complete ordering allows the relative order between any two events to be

determined (at the selected granularity), maintaining the global counter introduces a central bottleneck.

9.1.2. Post-Mortem Analysis

The post-mortem analysis phase reads the trace files that are produced by the program instrumentation during

execution (each process creates one trace file that contains a record for every shared-memory access and synchroni-

zation operation it issues). The analyzer constructs and augments the temporal ordering graph, locates apparent data

races, and finally performs validation and ordering. Using the two levels of trace information, we construct two ver-

sions of the augmented graphs, one containing close estimates of the shared-data and event-control dependences and

the other containing less precise estimates. Because the less precise estimates are computed only from the READ

and WRITE sets and the approximate temporal ordering, they are based on the same level of information that previ-

ous methods record. The analyzer performs validation and ordering on both versions, and collects statistics (dis-

cussed later) about the number of races that are successfully validated and ordered. Below we discuss how these es-

timates are computed.

Given the complete temporal ordering, the post-mortem analyzer computes close approximations of the actual

dependences. As discussed in Chapters 3 and 7, the READ and WRITE sets and the temporal ordering (complete or

approximate) can be used to compute conservative estimates of the dependences. For example, if a and b have a

data conflict, and a T b, then we know with certainty that a shared-data dependence exists from a to b. When a

/
T b, insufficient information is known to determine the direction of the dependence, because the order in

which a and b perform their individual shared-memory accesses is not recorded at our coarse level of granularity.

We therefore make the conservative assumption that dependences exist from a to b and from b to a. However, this

approximation can contain (conservative) errors only between events involved in actual data races. This level of

trace information thus provides close estimates of the dependences. We later argue that, in some cases, recording

this level of information may also be practical.

Given the approximate temporal ordering, the post-mortem analyzer computes coarser approximations of the

dependences. These coarser approximations are computed in the same way as above, except that only the approxi-

mate ordering is used. These approximations represent a more practical case based only on information that can be

reasonably recorded (and that is recorded by previous post-mortem methods).
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9.2. Test Programs

We analyzed two sets of parallel C programs, listed in Figure 9.1. The first set of programs (the unmodified

programs) were developed by colleagues for other studies and were analyzed as is, without modification. With the

exception of join (which uses shared memory for some of its synchronization), all of these programs were previous-

ly debugged by their authors and thought to be data-race-free. However, analysis uncovered executions of each pro-

gram that exhibited one or more data races. These programs represent a sample of realistic programs that might be

found in practice. In contrast, the second set of programs (the modified programs) were originally data-race-free but

were modified by us to exhibit data races. In each program, a single synchronization operation was removed, and an

off-by-one error was introduced into a shared-array subscript. These modifications were made to allow more com-

plex patterns of data races to be investigated. These programs represent more pathological cases, which allow our

techniques to be evaluated more thoroughly. Each of the test programs was run using four processors.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Name Description # source lines Synchronization
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Unmodified:

chol Choleski factorization 2000 fork/join, spin locks

join Join two relations 6000 fork/join, spin locks
shared memory,
barriers

pnet Network flow solver 4800 fork/join, spin locks

shpath Shortest path finder 370 fork/join, spin locks
barriers

tycho Cache simulator 6400 fork/join
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Modified:

parq Parallel queue 550 fork/join, spin locks

workq Shared work queue 300 fork/join, spin locks
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Figure 9.1. Test programs containing data races
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The test programs span a variety of applications from symbolic to numeric computation. chol performs

Choleski factorization on sparse matrices, and was run with a 20×20 matrix as input. join implements a hash-join

algorithm for a relational database, and was run with randomly generated relations containing 5000 records each

with 16 attributes. pnet solves minimum-cost network flow problems, and was run with a 10-node network consist-

ing of 50 arcs. shpath implements a parallel version of Dijkstra’s shortest path algorithm, and was run on graphs

with 50 nodes that were assigned random inter-node costs. tycho is a cache simulator, and was run with an address

trace consisting of 1024 memory references. parq implements a parallel queue[30]; child processes loop, queueing

and dequeueing records from the queue. Each child queued and dequeued 300 records. workq implements the

shared work queue example of Figure 2.1. Each child process dequeues a record indicating a region of a shared ar-

ray to work upon, forks children to perform the work, and then continues by dequeueing another record. The chil-

dren simply read and write all elements of the array region. A total of 300 records were initially added to the queue.

9.3. Empirical Results

To test the effectiveness of validation and ordering, we analyzed several executions of each program. Our ex-

periments were aimed at determining how well these analyses perform, and how useful the results are in understand-

ing the bugs causing the races. To assess the performance of validation and ordering, we first investigate their abili-

ty to locate non-artifact races using the close approximations of the dependences. We obtain a bound on how accu-

rately non-artifact races can be pinpointed when given precise information. In some cases, recording this informa-

tion may be possible, allowing the bound to be achieved in practice. In other cases, this bound allows us to under-

stand how well validation and ordering perform when less complete information must be recorded. We then investi-

gate how much diagnostic precision is lost when given only the coarser approximations of the dependences. As dis-

cussed earlier, these approximations are obtained solely from the recorded approximate temporal ordering and the

READ and WRITE sets. By comparing the results given these two different levels of detail, we can assess the effec-

tiveness of our analyses, and estimate how much information is required for accurate results in practice. Finally, we

explore how the results of validation and ordering might be used for debugging the data races.

9.3.1. Using Close Approximations

The effectiveness of validation and ordering is measured by how precisely and completely they locate non-

artifact races. Non-artifacts are precisely located if each first partition typically contains few races, allowing the

programmer to be lead directly to non-artifact races. Non-artifacts are completely located if most non-artifact races

are ordered first, causing few program bugs to be hidden. Below we consider how well validation and ordering per-

form when given a close approximation of the actual dependences. Doing so allows us to determine whether our

techniques are fundamentally useful at all, and establishes an upper bound on the diagnostic precision that can

achieved. Figures 9.2 and 9.3 summarize the results for both sets of our test programs. These figures contain results

of using both the close approximations (labeled with ‘‘f’’) and the coarser approximations (labeled with ‘‘b’’).
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chol join pnet shpath tychoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Race Detection

Apparent races 23 19 64 631 4

Actual races 1 (4%) 6 (32%) 64 (100%) 631 (100%) 4 (100%)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Validation

Nontangled races 23 (100%) 19 (100%) 64 (100%) 631 (100%) 4 (100%)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Ordering

(f) 2 1 1 3 2
First partitions

(b) 1 1 1 3 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Average partition (f) 2 (9%) 1 (5%) 1 (2%) 1 (<1%) 1 (25%)

size (b) 2 (9%) 1 (5%) 1 (2%) 1 (<1%) 1 (25%)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Total number of (f) 3 (13%) 1 (5%) 1 (2%) 3 (<1%) 2 (50%)

first races (b) 2 (9%) 1 (5%) 1 (2%) 3 (<1%) 2 (50%)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Figure 9.2. Results of post-mortem analysis for unmodified programs
Numbers are averages over all executions of each program

and have been rounded off to the nearest integer.

Results of analysis with close approximations (marked with ‘‘f’’) and

coarser approximations (marked with ‘‘b’’) are shown.

Percentages indicate the fraction of apparent data races.
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Below we only consider the precision and completeness of the results obtained with the close approximations. We

will discuss the results obtained with the coarser approximations in the next sub-section.

To assess the precision of validation and ordering, we measured the number of races validated and the aver-

age size of each first partition. Figure 9.2 shows the results for the unmodified test programs. In executions of these

programs, no tangled races were discovered, allowing every apparent race to be validated. In addition, all first parti-

tions contained only one or two races. Figure 9.3 shows the results for the modified test programs. Executions of

these programs exhibited many tangled races. Even in the presence of these tangles, validation was able to prove

that 46−91% of the races were feasible. In addition, the first partitions contained only 1−4 races, all of which were

validated.
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To assess the completeness of validation and ordering, we investigated the first races to see if they reflected

most of the race-causing bugs. Examination of our test programs showed that the number of first races correlated

well with the number of such bugs. For example, in chol, a single first race was reported, and we found that the pro-

gram contained a single bug (a missing synchronization operation). In shpath, two first races were reported,

reflecting two different program bugs (incorrect shared-array indexing). In addition, we closely examined selected

executions of parq and workq and found that each first partition always contained only non-artifact races, even

though many race artifacts typically occurred in the executions. parq exhibited four first races, representing two in-

stances of each bug introduced. In contrast, workq exhibited only one first race, and is the only test case in which

one of the introduced bugs was hidden because a non-artifact race was never ordered first.

These results suggest that validation and ordering are fundamentally capable techniques, locating races with

high precision and completeness. The tens to hundreds of apparent races were precisely narrowed down to a few

feasible races guaranteed to not be artifacts of other races. Moreover, the first partitions typically contained races

that completely covered the race-causing bugs in the execution. Even though not all non-artifact races were ordered

first, the first partitions usually contained at least one race caused by each program bug.

9.3.2. Using Coarser Approximations

To assess the effectiveness of validation and ordering in practice, we now consider how well they locate non-

artifacts when less complete run-time information is available. The coarser approximations are derived from no

more information than that recorded by previously proposed post-mortem methods (the ordering graph and the

READ and WRITE sets). For executions of the unmodified programs (which exhibited no tangled races), the results

varied little with the level of information available. However, for executions of the modified programs (which exhi-

bited many tangled races), validation and ordering were less accurate with the coarser approximations. Below we

discuss these results and notice that tangled data races explain the disparity. In the next sub-section we explore why

the unmodified programs exhibited no tangled races while almost all races in the modified programs were tangled.

For executions of the unmodified test programs, Figure 9.2 shows that the results of validation and ordering

were excellent even when more limited run-time information was used. First races were precisely located, with

each first partition containing no more races than when more precise information was used (except for chol, where

the partitions were only slightly larger). In one case, one fewer first partition was identified; the coarser approxima-

tion to E ordered a race non-first that the closer approximation determined was not an artifact. However, the sin-

gle bug in chol was still reflected in the first races reported. The absence of tangled races explains these results. In-

vestigation of the executions showed that the large number of races is caused not by a large number of bugs in the

program but by looping; different instances of the same points in the program race many times. When such races

are nontangled, it is always possible to determine how they affect each other. For example, consider two races,

〈a,b〉 and 〈c,d〉, where a and c (and b and d) represent different instances of the same portions of the program. If the

races are nontangled, because for example a T̂ c and b T̂ d, then sufficient information always exists to order
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parq workqiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Race Detection

Apparent races 7522 2890

Actual races 777 (10%) 263 (9%)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Validation

Tangled races 7424 (99%) 2890 (100%)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Tangles 1 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Average tangle size 6438 (87%) 2890 (100%)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(f) 777 (10%) 386 (14%)
# races validated using GD (b) 99 (1%) 0 (0%)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(f) 6072 (81%) 945 (33%)
# races validated using GE (b) 900 (12%) 15 (<1%)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Total number of (f) 6849 (91%) 1330 (46%)

validated races (b) 999 (13%) 15 (<1%)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Ordering

(f) 1 1
First partitions

(b) 1 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
(f) 4 (<1%) 1 (<1%)

Average partition size
(b) 2604 (32%) 2860 (99%)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Total number of first (f) 4 (<1%) 1 (<1%)

races validated (b) 98 (<1%) 15 (<1%)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Total number of (f) 4 (<1%) 1 (<1%)

first races (b) 2604 (32%) 2860 (99%)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Figure 9.3. Results of post-mortem analysis for modified programs
Numbers are averages over all executions of each program

and have been rounded off to the nearest integer.

Results of analysis with close approximations (marked with ‘‘f’’) and

coarser approximations (marked with ‘‘b’’) are shown.

Percentages indicate the fraction of apparent data races.
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them: either 〈a,b〉 R̂ 〈c,d〉 or 〈a,b〉 /
R̂ 〈c,d〉, and 〈c,d〉 /

R̂ 〈a,b〉 (because c /
Ê a and d /

Ê b). If all

races involving the same program sections are nontangled, they will always belong to different partitions, allowing

the first partitions to be accurately identified.

However, for executions of the modified test programs, Figure 9.3 shows that validation and ordering were

less accurate. The first partitions contained 32−99% of the races, many of which were left unvalidated. Even

though the first partitions were still complete (they covered all race-causing program bugs), the low accuracy dimin-

ishes the usefulness of completeness. Moreover, validation was only able to validate up to 13% of the races. The

presence of tangled races explains these results. Investigation showed that many of the tangled races (which were

actually feasible) were left unvalidated because the coarse approximation to E provided almost no more informa-

tion about the event-control dependences than the approximation to D . Because many events that accessed a

shared variable both read and modified the variable, analysis of the READ and WRITE sets to estimate E pro-

duced little useful information, resulting in Ê ∼∼ ( D̂ ∪ T̂ ). In such a case, when two races 〈a,b〉 and 〈c,d〉

are tangled, insufficient information is available to determine which affected the other; they will always belong to

the same partition. When large tangles exist that include the non-artifact races, the first partitions will encompass

the tangles and themselves become large.

These results suggest that validation and ordering perform very well given our coarse approximations when

no tangled races occur, but can perform poorly in the presence of tangles. However, even when tangled races occur,

validation was able to sometimes to prove feasibility of some races in the first partitions. We later argue that this in-

formation is useful for debugging, even though the large partitions may render it impossible to discover all race-

causing bugs.

9.3.3. The Nature of Tangled Data Races

The disparity between the results under the two levels of trace information is explained by the presence or ab-

sence of tangled races. To understand why some test programs exhibited many tangled races while others exhibited

none, we investigate the way each program uses synchronization. Understanding the nature of tangled races may

provide some insight into when validation and ordering can be expected to perform well. The unmodified programs

exhibited no tangled races because of their simple synchronization patterns. The modified test programs used more

complex patterns that lead to tangles. Figures 9.4 and 9.5 show code fragments that illustrate the essence of these

patterns. Figure 9.4 shows two example code fragments from the unmodified programs; code executed by each

child process is shown with an ordering graph for one execution (only two processes, and one node per event, is

shown for clarity). Figure 9.5 shows an example fragment from one of the modified programs; this program divides

its children into groups of two which execute different code (an ordering graph for a four-process execution is

shown).
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child()

{

for (...) {

work on shared data;

}

}

fork

join

workwork

child()

{

for (...) {

work on shared data;

s_lock(&globalLock);

work on shared data;

s_unlock(&globalLock);

}

}

fork

join

work

work work

work

s_locks_lock

s_unlock s_unlock

(a)

(b)

Nontangled data races

Figure 9.4. Child processes that exhibit only nontangled data races
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child1and2()

{

for (...) {

work on shared data;

s_lock (&lock1);

work on shared data;

s_unlock (&lock1);

}

}

fork

join

work

work

s_lock

s_unlock

child3and4()

{

for (...) {

work on shared data;

s_lock (&lock2);

work on shared data;

s_unlock (&lock2);

}

}

work

work

s_lock

s_unlock

work

work

s_lock

s_unlock

work

work

s_lock

s_unlock

Tangled data races

Figure 9.5. Child processes that exhibit tangled data races
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Figure 9.4 illustrates two examples why the unmodified programs never exhibited tangled races. After fork-

ing children to perform work, one program (tycho) performed no synchronization within the children, resulting in

only a single computation event in each child (Figure 9.4(a)). When races occurred between children, they involved

only a single pair of computation events, which can never be tangled. Although the other programs do perform syn-

chronization within the children, it is often on the same synchronization variable, resulting in an edge between their

nodes (Figure 9.4(b)). The children iterate while executing lock/unlock pairs on common spin locks (or barriers) to

implement mutual exclusion. When a synchronization edge is added from iteration i in one child to iteration j in the

other, all events in iterations prior to i (in one child) become ordered with all events in iterations subsequent to j (in

the other child). These orderings effectively prevent tangles from ever occurring.

Figure 9.5 illustrates the more complex synchronization patterns exhibited by the modified programs. In

workq, groups of children cooperate in pairs to perform work on common shared variables. Because different

groups of children (erroneously) perform synchronization on different locks, no synchronization edges are added

between their synchronization nodes. Since the off-by-one errors introduced into shared-array subscripts caused

many events to have data conflicts, tangles could then result. The program parq exhibited similar synchronization

patterns, but for a different reason. In parq, children perform synchronization on the same lock, but because we

randomly removed a lock operation, one child performed only unlock operations. Incoming synchronization edges

which could order events were therefore never present in this child.

In summary, only nontangled races occur when child processes either perform no synchronization or

cooperate and synchronize only with each other. Tangled races occur when children perform unrelated tasks and

synchronize on different variables.

The absence of tangled races in any of the unmodified programs leads us to believe that validation and order-

ing will provide useful debugging tools in practice. Although diagnostic precision can become poor when tangled

races exist, useful information can sometimes still be obtained from validation (discussed next). Additional investi-

gation of tangled data races and how they may be untangled is left to future work.

9.3.4. Debugging with Validation and Ordering

The last part of our experiments reflects the ultimate goal of accurate race detection: debugging the cause of

the data races. As discussed in Chapter 2, debugging requires first locating those races that are direct manifestations

of bugs and then understanding how the program allowed them to occur. Below we discuss how the results of vali-

dation and ordering can be used to locate and understand these races.

Debugging data races first requires locating non-artifact races. When each first partition contains only one

race, the race is guaranteed to be non-artifact. However, because a first partition can be large, analysis may not al-

ways precisely locate non-artifact races. When a first partition contains several races, ordering provides insufficient

information to determine which are not artifacts (although at least one non-artifact is guaranteed to exist). In such a

case, validation can provide additional information about the races contained within. If the partition contains a
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feasible race, we can still attempt to reason about the execution and understand how the race occurred. Feasibility

guarantees that the race involves events that had the potential of executing concurrently, a necessary condition for a

non-artifact. Even if the race is an artifact, it is only due to the racing events accessing common shared locations

because of inconsistent data caused by a previous race. Because the race is feasible, synchronization errors in the

program may be discovered, and some knowledge about other races in the partition may be gained. If all races in

the partition are tangled, we still may be able to gain information by analyzing the extent of the tangle.

In each the unmodified test programs, the first partitions contained few races, and investigating these races

lead directly to the bugs in the programs. However, in the modified programs, when the first partitions contained

many races, not all of them could be investigated. We found that validation provided useful information in this

case. Investigating the first races that were successfully validated lead to the synchronization bug in both programs,

even though some of these races were artifacts. Although this approach is not guaranteed to always provide useful

information, it did appear to be helpful in this case. Because these races were sometimes artifacts, we were not al-

ways able to locate the off-by-one subscript errors by examining them.

Once races have been identified, the program must then be analyzed to understand how they occurred. Inves-

tigation of the unmodified programs made it clear that more information than simply the location of non-artifact

races is required. For example, for all of the unmodified programs, each first partition contained only one or two

races. Even when presented with such precise information it was difficult to understand how the program could

have allowed the race to occur. At a minimum, examining the execution history prior to the race was necessary. By

modifying the post-mortem analyzer to output the temporal ordering graph, we were able to understand the history

sufficiently to understand the bugs causing the race. In practice, however, we feel that race debugging requires both

accurate race detection (to locate program points where debugging should begin) and the facilities of a parallel pro-

gram debugger.

9.4. Summary

The experiments presented in this chapter suggest that validation and ordering can provide useful tools for de-

bugging data races. The potentially large number of apparent data races can be refined to provide a starting point

for debugging. When the complete temporal ordering was recorded, a close approximation of the actual depen-

dences could be computed, allowing validation and ordering to pinpoint non-artifact races with high precision and

completeness. In practice, however, the cost of recording the complete ordering may be unacceptable, requiring in-

stead the recording of the approximate ordering. In this case, only a coarser approximation to the dependences can

be attained. When no tangled races exist, we found that even this coarse approximation allowed non-artifacts to be

precisely located. When tangled races occurred, the first partitions became large, but validation sometimes provided

useful information for discovering synchronization errors. Clearly, more temporal information yields more accurate

results. A practical implementation should record as much ordering information as possible. For programs in which

a global clock can be efficiently maintained, the complete ordering can be recorded. In other programs, a subset of

the complete ordering in which local clocks are occasionally synchronized might be possible. In the worst case,
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when only the approximate ordering can be recorded, non-artifacts can still be pinpointed when tangled races do not

occur.

Even though validation and ordering were able to pinpoint non-artifact races, the bugs in our test programs

were often too subtle to be understood from the location of the races alone. Given the location of a non-artifact

race, the programmer must reason about the execution to understand how the race was allowed to occur; accurate

race detection solves only part of the debugging problem. At the very least, understanding the nature of a race re-

quires browsing the execution history prior to the race. Ideally, the facilities of a parallel program debugger would

be desirable for this task. We conclude that effective race debugging can only be accomplished by integrating accu-

rate race detection and parallel program debugging into a single tool.



Chapter 10

CONCLUSIONS AND FUTURE WORK

10.1. Conclusions

This thesis addresses the problem of dynamic race condition detection from the bottom up. We address both

theoretical and practical issues, providing a model for reasoning about race conditions and techniques for detecting

races that are direct manifestations of bugs. We also experimented with these techniques on a collection of parallel

programs and found that they help to accurately pinpoint these races. Overall, the goal of this research was to pro-

vide formally based results and techniques to support race condition detection and debugging. To put the contribu-

tions of this research into perspective, Figure 10.1 shows one possible classification of the spectrum of knowledge

about race condition detection, indicating the areas that have received attention by us and by previous work. We

conclude by summarizing our work in these areas.

To reason about race conditions, we develop a model that characterizes actual, observed, and potential

behaviors of the program. Characterizing these behaviors is necessary for understanding race conditions. This

model is an advancement over previous work, which has only characterized race conditions intuitively or not at all.

We then use the model to characterize two different types of race conditions, general races and data races, and

prove results about the complexity of detecting them. In the past, the distinction between these races has not been

explored. This distinction is important because these races appear in different classes of parallel programs and re-

quire different detection techniques. We also prove new results about the complexity of race detection. We prove

that, for programs using synchronization powerful enough to implement mutual exclusion, detecting all general

races and data races is an NP-hard problem. However, for debugging, we argue that it is useful to know whether an

execution is free from actual data races, which can be efficiently determined. No such analogue exists for general

races. We also prove that, for programs using weaker synchronization, all general races can be efficiently located.

We prove this result by presenting the first efficient algorithm that computes ordering relations (necessary for gen-

eral race detection) for such synchronization.

To address the issue of accurate race detection, we use the model to characterize which races are of interest

for debugging (the feasible, non-artifact races) and contrast them with those reported by simple race detection

schemes (the apparent races). Feasible, non-artifact races are direct manifestations of bugs. We then focus on tech-

niques for accurate detection of data races. We present results showing how two techniques, validation and order-

ing, can prove that some apparent data races are feasible and not artifacts of other races. Validation involves first

adding edges to the temporal ordering graph to represent shared-data or event-control dependences and then analyz-

ing the resulting event orderings. Ordering involves partially ordering groups of data races to show how they affect

each other. We also develop algorithms for performing validation and ordering in a post-mortem fashion. To test

the effectiveness of these techniques and explore how they can be used for debugging, we analyzed a collection of
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test programs. Some of these programs were previously debugged and thought to be data-race free; others were

modified by us to exhibit races. We found that the previously developed programs exhibited simple patterns of data

races, which validation and ordering were able to precisely pinpoint. The programs that we modified exhibited

more complex patterns, which were less accurately located.

The final result of this work is both a theory in which to reason about current and future race detection

methods, and simple, effective techniques for locating races that are direct manifestations of bugs. The locations of

these races provide a starting point for program debugging.
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10.2. Future Research

Many issues remain unexplored by this thesis. Further research includes both short-term work that refines and

extends our results, and long-term work that explores the practical applications of this research to the problem of

parallel program debugging. Below we list and discuss these issues.

10.2.1. Short-Term Work

Short-term work includes extending our results to general races, refining some of our results for data races,

and reducing the overhead of post-mortem analysis.

One main area of future work involves general races. Issues include developing an efficient algorithm for

detecting apparent general races in executions using weaker synchronization, and extending the results of accurate

data race detection to general races. No efficient algorithm currently exists for general race detection in executions

that use synchronization incapable of implementing mutual exclusion (but more powerful than only fork/join). In

Chapter 5 we presented the first efficient algorithm (Algorithm 5.1) deciding ordering relations for such synchroni-

zation. Preliminary investigation shows that this algorithm can be extended to efficiently detect apparent general

races for weaker synchronization. Once apparent general races can be detected, the results of Chapter 8 might be

easily extended to order them. Extending these results is important because accuracy may be more critical for de-

bugging general races than data races. Data races that are not actual races introduce no unexpected results in the ex-

ecution (no critical sections fail), but any general race indicates a chance that the racing memory accesses were not

issued in the intended order.

Other areas of future work involve data race validation and ordering. The most important validation issue

concerns unifying the use of shared-data and event-control dependences. Currently, event-control dependences are

used to validate only tangled data races; sometimes GE is unable to validate races that are not tangled. For example,

an apparent race 〈a,b〉 is nontangled if no path exists in GD from af to bs (or from bf to as). Such a race may not be

validated using GE if a path exists from af to bf (because a successor of a event-controls b), even though no path ex-

ists from af to bs . A single validation scheme based only on event-control dependences would be desirable.

For data race ordering, utilizing information about the non-transitivity of R̂ may improve accuracy. Prel-

iminary research shows that a race in a first partition that does not affect some other race in the same partition can

sometimes be safely removed. However, it is unclear in what order races should be removed or even how to

efficiently determine which races are eligible.

Another ordering issue involves speculating on whether non-artifact races might be hidden inside non-first

partitions. Although ordering seems to report small first partitions, non-artifact races may still exist that are not re-

ported, causing some program bugs to be hidden. In Chapter 9, we found that in the program workq only one first

race was reported but two race-causing bugs existed (see Chapter 9). A possible approach is to report ‘‘second’’

(and subsequent) partitions, allowing the programmer to determine if they contain races of interest.
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Other areas of work pertain to reducing the overhead of post-mortem analysis. A criticism of post-mortem

detection is that the potentially large trace files must be examined in their entirety, resulting in lengthy analysis. Im-

provements in our algorithms for data race detection and ordering might address this criticism. First, we may be

able to use information about race ordering to avoid scanning the entire trace. If ordering can be performed during

apparent race detection, portions of the trace that cannot possibly contain first races need not be analyzed. Second,

to reduce the space overhead of post-mortem analysis, alternatives to using timestamps should be investigated.

Work on the incremental maintenance of ordering graphs[31, 32], which avoids timestamps, might provide some in-

sights. Third, to reduce the time overhead, the analysis itself might be parallelized. One obvious opportunity is to

parallelize the detection of apparent races, but validation and ordering would also benefit.

10.2.2. Long-Term Work

The short-term issues described above concern immediate refinements of accurate race condition detection.

However, long-term work involves applying race detection to its ultimate purpose: locating and fixing race-causing

bugs. As discussed in Chapter 9, we believe that debugging races requires more than just being directed to the

source lines involved in the race; some mechanism is required for analyzing the execution context of the race. One

possibility is to simply summarize the recorded temporal ordering, letting the programmer reason about how the

program could have exhibited the ordering (we took this approach when trying to understand the bugs in our test

programs). However, in general, we feel that the facilities of a debugger are necessary to analyze the execution his-

tory more closely, for example, allowing the programmer to examine the values of variables, and set breakpoints

and re-execute.

Two main problems must be addressed to successfully solve this debugging problem. First, the information

required for accurate race detection must be efficiently recorded. Although naive tracing strategies such as the one

used in our prototype race analyzer suffice for experimentation, they are not acceptable for practical use. Run-time

overhead must be kept low to allow long-running executions to be analyzed. Second, race detection must be in-

tegrated into current debugging technology to allow debugging of programs that contain race conditions. For exam-

ple, existing schemes for replaying shared-memory parallel programs either assume the program is race-free (result-

ing in incorrect re-execution when races exist), or record the order of essentially every shared-memory access

(which conflicts with the solution to our first problem). Below we discuss some ideas regarding these two problems.

Program instrumentation records the information necessary for race detection, such as the temporal ordering

and the READ and WRITE sets. As discussed in Chapter 2, recording the complete temporal ordering can introduce

a central bottleneck into the execution. However, the complete temporal ordering allows the actual dependences to

be closely approximated; only a coarser approximation can be computed when the approximate temporal ordering is

recorded. In Chapter 9 we found that validation and ordering produce excellent results given the closer approxima-

tion but produce less accurate results (when tangled races exist) given the coarser approximation. These results sug-

gest the temporal ordering should be recorded as completely possible, perhaps by using a hardware clock, software

clocks that are occasionally synchronized, or a combination of these ideas.
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Furthermore, naively recording the READ and WRITE sets can incur substantial overhead. We often observed

the naive strategy used in our prototype increase execution times by one to three orders of magnitude, and occasion-

ally produce trace files of over 100 megabytes. Reducing overhead primarily requires reducing the amount of trace

data generated, and is essentially a data compression problem: the shared-memory locations accessed by an event

must be efficiently summarized. One approach is to write a compressed trace by using simple data compression

schemes or methods for summarizing regular access patterns[7, 8, 12]. Another approach is to employ two passes.

The first pass would record an incomplete, coarse trace containing only enough information to replay a portion of

the execution[43, 44, 50]. The second pass would then re-execute parts of the execution to record the more detailed

READ and WRITE sets. This approach has the advantage that overhead is incurred only for parts of the execution

for which the programmer desires race detection (e.g., detection in parts after a first race may not be desired). A dif-

ferent approach might be to use a hybrid post-mortem/on-the-fly scheme. On-the-fly schemes have the advantage

that data conflicts between events can be located during execution without producing traces. Such a scheme might

be helpful to pinpoint the source lines involved in a race while only compressed READ and WRITE sets (which

would lose this information) are being traced.

The second problem that must be addressed for successful debugging is integrating the race detector and the

debugger. Previous work on the efficient debugging of shared-memory parallel programs has not considered race

detection in depth. Program replay is one example of an area where race detection and debugging can cooperate.

Naive replay schemes simply trace the value of every shared-memory access and restore that value during re-

execution[59]. More efficient schemes record and reproduce only the temporal ordering[15, 44], but these schemes

fail in general to produce correct replay for executions containing actual data races. Since supporting replay re-

quires run-time information similar to that needed for race detection, integrating race detection and replay might al-

low re-execution of programs that contain race conditions, without incurring the overhead of tracing every shared-

memory access.

Another area where race detection and debugging might be integrated is the use of data and control depen-

dences to understand the program behavior. For example, debugging using flowback analysis attempts to follow

data and control dependences backwards through the execution to understand the causal relationship between

events[16, 50]. Such an analysis uses static information obtained by semantic analysis of the program to first locate

potential dependences, and dynamic information obtained by coarse execution traces to locate actual dependences.

Similarly, accurate race detection uses dynamic information (the READ and WRITE sets) to approximate actual

dependences to understand how events affect each other. Because of the similarity in the type of information col-

lected and the type of analyses performed, these two techniques might be profitably unified.

It is clear that debugging shared-memory parallel programs containing race conditions is a difficult task. The

results for understanding race conditions, and the techniques for accurate race detection, that we have presented in

this thesis provide part of the solution. However, more research and experience with the debugging of parallel pro-

grams that contain race conditions is required before a truly practical tool can be developed.



A GLOSSARY OF ARROWS

This glossary contains brief explanations of notation defined in this thesis. We use labeled arrows (e.g., T

and D ) to indicate relations that describe the actual program execution, hatted arrows (e.g., T̂ and D̂ ) to in-

dicate relations that describe the approximate program execution, primed arrows (e.g., T ′ and D ′ ) to indicate

relations that describe a feasible program execution, and arrows subscripted with ‘‘S’’ (e.g., TS and DS ) to in-

dicate relations that describe a single-access program execution. Section numbers in parentheses indicate where the

term is defined.

P = 〈E, T , D 〉 Actual Program Execution (§3.1)

Precise information about the execution.

P̂ = 〈E, T̂ , D̂ 〉 Approximate Program Execution (§3.2)

Execution information based on recorded trace data.

P′ = 〈E, T ′ , D ′ 〉 Feasible Program Execution (§3.3)

An execution that had the potential of occurring.

P
S

= 〈E
S

, TS , DS 〉 Single-access Program Execution (§3.1)

A view of the execution in which each event represents at most one shared-memory access.

T Temporal ordering relation (§3.1).

a T b means that a precedes b; a /
T b means that a and b execute concurrently.

T̂ Approximate temporal ordering relation (§3.2).

a T̂ b means that a was recorded as preceding b; a /
T̂ b means the relative execution order was

not recorded, because explicit synchronization did not prevent a and b from executing concurrently.

T ′ Feasible temporal ordering relation (§3.3).

A temporal ordering that the execution could have exhibited.

TS Single-access temporal ordering relation (§3.1).

The temporal ordering among the individual shared-memory accesses.
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D Shared-data dependence relation (§3.1).

a D b means that a accessed a shared variable that b later accessed (which at least one modified).

D̂ Approximate shared-data dependence relation (§3.2).

Conservative approximation to D ( D̂ ⊇ D ), based on the recorded temporal ordering and

READ and WRITE sets.

D ′ Feasible shared-data dependence relation (§3.3).

Shared-data dependences that the execution could have exhibited.

DS Single-access shared-data dependence relation (§3.1).

The shared-data dependences between the individual shared-memory accesses.

E Event-control dependence relation (§3.3).

a E b means that a affects the outcome of b (b may have changed had a occurred differently).

Ê Approximate event-control dependence relation (§3.3).

Conservative approximation to E ( Ê ⊇ E ), based on a refinement of D̂ and perhaps informa-

tion obtained by static analysis.

R Data-race ordering relation (§8.1).

〈a,b〉 R 〈c,d〉 means that the race 〈c,d〉 may have been an artifact of the race 〈a,b〉.

R̂ Approximate data-race ordering relation (§8.1).

Conservative approximation to R ( R̂ ⊇ R ), based on Ê .

R̂* Transitive approximate data-race ordering relation (§8.1).
R̂* = ( R̂ )*, the transitive closure of R̂ .

RS Single-access data-race ordering relation (§8.1).

Data-race ordering on single-access data races; RS is a partial order.
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