
Page 1

 October 1995

Fuzz Revisited: A Re-examination of the Reliability
of

UNIX Utilities and Services

Abstract

We have tested the reliability of a large collection of basic UNIX utility programs, X-Window
applications and servers, and network services. We used a simple testing method of subjecting these
programs to a random input stream. Our testing methods and tools are largely automatic and simple to
use. We tested programs on nine versions of the UNIX operating system, including seven commercial
systems and the freely-available GNU utilities and Linux. We report which programs failed on which
systems, and identify and categorize the causes of these failures.

The result of our testing is that we can crash (with core dump) or hang (infinite loop) over 40% (in the
worst case) of the basic programs and over 25% of the X-Window applications. We were not able to
crash any of the network services that we tested nor any of X-Window servers. This study parallels our
1990 study (that tested only the basic UNIX utilities); all systems that we compared between 1990 and
1995 noticeably improved in reliability, but still had significant rates of failure. The reliability of the
basic utilities from GNU and Linux were noticeably better than those of the commercial systems.

We also tested how utility programs checked their return codes from the memory allocation library
routines by simulating the unavailability of virtual memory. We could crash almost half of the programs
that we tested in this way.

Content Indicators: D.2.5 (Testing and Debugging), D.4.9 (Programs and Utilities), General terms:
random testing, reliability, UNIX.

Barton P. Miller
bart@cs.wisc.edu

David Koski Cjin Pheow Lee Vivekananda Maganty
dkoski@cs.wisc.edu cjin@cs.wisc.edu vivek@cs.wisc.edu

Ravi Murthy Ajitkumar Natarajan Jeff Steidl
ravim@cs.wisc.edu ajitk@cs.wisc.edu steidl@cae.wisc.edu

Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street

Madison, WI 53706-1685

This work is supported in part by Wright Laboratory Avionics Directorate, Air Force Material Command, USAF,
under grant F33615-94-1-1525 (ARPA order no. B550), NSF Grants CCR-9100968 and CDA-9024618,
Department of Energy Grant DE-FG02-93ER25176, and Office of Naval Research Grant N00014-89-J-1222. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the
Wright Laboratory Avionics Directorate or the U.S. Government.

Page 2

 October 1995

1 INTRODUCTION

In 1990, we published the results of a study of the reliability of standard UNIX utility pro-
grams[2]. This study showed that by using simple (almost simplistic) random testing techniques,
we could crash or hang 25-33% of these utility programs. Five years later, we have repeated and
significantly extended this study using the same basic techniques: subjecting programs to random
input streams. A distressingly large number of UNIX utilities still crash with our tests.

The essence of our testing is a program called thefuzz generator that emits various types of
random output streams. These random streams are fed to a wide variety of UNIX utilities. We use
a conservative and crude measure of reliability: a program is considered unreliable if it crashes
with a core dump or hangs (loops indefinitely). While this type of testing is effective in finding
real bugs in real programs, we are not proposing it as a replacement for systematic and formal
testing. To quote from the 1990 study:

There is a rich body of research on program testing and verification. Our approach is not a substitute for formal
verification or testing procedures, but rather an inexpensive mechanism to identify bugs and increase overall system
reliability. We are using a coarse notion of correctness in our study. A program is detected as faulty only if it crashes
or hangs (loops indefinitely). Our goal is to complement, not replace, existing test procedures.

Our new study has four parts:

1. Test over 80 utility programs on nine different UNIX platforms, including three platforms
tested in the 1990 study. Seven of these platforms come from commercial vendors. These tests
are the same type as we conducted in 1990, including the use of the same random streams
used in the 1990 studyand streams newly generated for the current study. As in 1990, we
identified and categorized the bugs that caused the failures.

2. Test network services by feeding them random input streams from a fuzz-based client.

3. Test X-window applications and servers by feeding them random input streams.

4. Additional robustness tests of UNIX utility programs to see if they check the return value of
system calls. Specifically, we tested calls to the memory allocation C library routines (the
malloc() family), simulating the unavailability of additional virtual memory.
The goal of these studies was to find as many bugs as possible using simple, automated tech-

niques. These techniques are intended to expose errors in common programming practices. The
major results of this study are:

❏ In the last five years, the previously-tested versions of UNIX made noticeable improvements
in the reliability of their utilities. But . . .

. . . the failure rate of these systems is still distressingly high1.

❏ Even worse is that many of the same bugs that we reported in 1990 are still present in the code
releases of 1995.

❏ The failure rate of utilities on the commercial versions of UNIX that we tested (from Sun,
IBM, SGI, DEC, and NEXT) ranged from 15-43%.

❏ The failure rate of the utilities on the freely-distributed Linux version of UNIX was second-
lowest, at 9%.

1. In this paper, “failure” means a crashing with core dump or hanging (looping indefinitely).

Page 3

 October 1995

❏ The failure rate of the public GNU utilities was the lowest in our study, at only 6%.

❏ We could not crash network services on any of the versions of UNIX that we tested.

❏ Well more than half of the X-Window applications that we tested crash on random input data
streams. More significant is that more than 25% of the applications crash given random, but
legal X-event streams.

❏ We could not crash the X server on the versions of UNIX that we tested (by sending random
data streams to the server).
Section 2 describes the basic tests that we performed on UNIX utilities and the results of those

tests. We analyze and categorize the causes of each failure and compare them with the results
from three systems that also were tested in 1990. Section 3 reports on our testing of network ser-
vices and Section 4 reports on testing of X-window applications and servers. Memory allocation
library-call tests are described in Section 5. Section 6 presents concluding comments.

Page 4

 October 1995

2 BASIC TESTS

This section reports on the results of repeating our basic 1990 study. That study tested the reliabil-
ity of utilities by feeding several variations of random input streams. In the 1990 study, we tested
a large number of UNIX utilities on six vendors’ platforms (plus a limited amount of testing on a
seventh platform). Our current study included the same type of tests on nine UNIX platforms,
including seven commercial systems. Three of the systems from the 1990 study are included in
our current (1995) study.

These tests were performed on machines available on the University of Wisconsin-Madison
campus in the Fall of 1994 and machines belonging to members of the testing team. The tests
were repeated and verified in the Winter of 1994-95.

Section 2.1 describes the tools used for the basic tests and Section 2.2 describes the tests
themselves and the UNIX platforms on which they were run. The platforms include 1990-ver-
sions of three systems and the 1995-versions of all nine systems. Section 2.3 presents the results
of our testing and describes the causes of the failures detected by our tests.

2.1 Basic Fuzz Tools

Thefuzz program is basically a generator of random characters. It produces a continuous string of
characters on its standard output file. We can perform different types of tests depending on the
options given to fuzz. Fuzz is capable of producing both printable and control characters, only
printable characters, or either of these groups along with the NUL (zero) character. We can also
specify a delay between each character. This option can account for the delay in characters pass-
ing through a pipe and help the user locate the characters that caused a utility to crash. Another
option allows us to specify the seed for the random number generator, to provide for repeatable
tests.

Fuzz can record its output stream in a file, in addition to printing to its standard output. This
file can be examined later. There are options to randomly insert NEWLINE characters in the out-
put stream, and to limit the length of the output stream.

The following is an example of fuzz being used to test "eqn", the equation processor.

fuzz 100000 -o outfile | eqn

The output stream will be at most 100,000 characters in length and the stream will be recorded in
file “outfile”.

The fuzz tools also include a set of shell scripts that automate much of the testing process. If a
crash is detected (by the presence of a “core” file), a “crash” is recorded in a log file. If the test is
interrupted by the person performing the tests, a “hang” is recorded in the log file. Each crash and
hang was subsequently examined to ensure that they were valid. For example, core files can also
be generated when the program received a SIGABRT signal (typically generated by calling the
abort() library routine); such cases were not considered crashes.

2.2 Basic Tests

We tested UNIX utilities on nine operating system platforms. Seven of these systems (SunOS,
HP-UX, AIX, Solaris, IRIX, Ultrix, and NEXTSTEP) were the most recent commercial software
distributions that we had available to us at the time of the tests. Three of these commercial sys-
tems (SunOS, HP-UX, and AIX) were also tested in the 1990 study. Results from this earlier

Page 5

 October 1995

study [2] are included for comparison. Two of the systems tested are free software distributions.
The GNU tools come from the Free Software Foundation and are written by a variety of authors
world-wide. Linux is a freely distributed version of the UNIX operating system originally written
by Linus Torvalds; the system has since been extensively changed and extended by authors
world-wide. The systems tested are listed in Table 1.

Each utility was tested with several random input streams. These streams were varied by com-
binations of the parameters described in Section 2.1. We tested the utilities with streams generated
by the same random seeds as were used in the 1990 study and by several new random seeds.

2.3 Basic Test Results

In our current study, we tested more than 80 UNIX utilities. Each utility is available on at least
three (and typically more) of the systems that we tested. The list includes commonly used utilities,
such as shells, C compilers, and document formatters. The list also includes more obscure utili-
ties, such as “units”, the unit conversion utility. Similar utilities are grouped under the same name
in Table 3 and Table 4. When the name of a utility is different from the name given in these tables,
the specific name is listed in Table 2.

Section 2.3.1 summarizes the results of the basic testing. Section 2.3.2 examines the cause of
the failures, and Section 2.3.3 compares our current results to those of the 1990 study. The basic
tests donot include X window-based utilities. Tests on X window-based application programs are
described in Section 4.

2.3.1 Quantitative Results

The results of our tests are given in Table 3. Two immediate observations are possible from exam-

Identifying
Letter

Study Vendor Architecture Operating System

s 1990
Sun Microsystems

Sun 4/110 SunOS 3.2 and 4.0

S 1995 SPARCstation 10/40 SunOS 4.1.3

h 1990
Hewlett Packard

HP 9000/330 4.3 BSD + NFS + System V

H 1995 HP 9000/705 HP-UX 9.01

a 1990
IBM

PS/2-80 AIX 1.1

A 1995 RS6000 AIX 3.2

O 1995 Sun Microsystems SPARCstation 10/40 Solaris 2.3

I 1995 Silicon Graphics Indy IRIX 5.1.1.2

U 1995 DEC DECstation 3100 Ultrix v4.3a rev 146

N 1995 NEXT Colorstation (MC68040) NEXTSTEP 3.2

G 1995 GNU, Free Software Foundation SunOS 4.1.3 & NEXTSTEP 3.2

L 1995 Linux Cyrix i486 Slackware 2.1.0

Table 1: List of Systems Tested

Page 6

 October 1995

ining this table. First, there is a noticeable improvement in reliability from the 1990 study: the
failure rate for SunOS went from 29% to 23%, HP-UX went from 33% to 18%, and AIX went
from 24% to 20%. Second, the 1995 failure rate is still distressingly high, especially given the
ease of the fuzz testing and the public availability of the fuzz tools.

It is also interesting to compare results of testing the commercial systems to the results from
testing “freeware” GNU and Linux. The seven commercial systems in the 1995 study have an
average failure rate of 23%, while Linux has a failure rate of 9% and the GNU utilities have a fail-
ure rate of only 6%. It is reasonable to ask why a globally scattered group of programmers, with
no formal testing support or software engineering standards can produce code that is more reliable
(at least, by our measure) than commercially produced code. Even if you consider only the utili-
ties that were available from GNU or Linux, the failure rates for these two systems are better than
the other systems.

One explanation may be that the scale of software that must be supported by a large computer
company is more extensive than that of the free software groups. Companies have many more cus-
tomers and a commitment to support software on many platforms, configurations, and versions of
an operating system (especially on older versions of hardware and system software).

Generic Name(s) Irix Ultrix NEXT GNU Linux

as gas gas

awk gawk

bib/bibtex

cc gcc gcc

ccom cfe cfe cc1obj cc1

compress gzip

dbx gdb gdb gdb

ditroff/troff ptroff

eqn/deqn neqn neqn geqn

ex/vi

lex flex flex

more less

plot psplot

sh bash

soelim gsoelim

tbl/dtbl gtbl

yacc bison

Table 2: Similar Utilities.
 The utilities listed on the same line of the table have similar function, but vary by name in
the systems listed. They are not meant to be identical, but rather are listed for comparison

purposes.

Page 7

 October 1995

Utility
SunOS HP-UX AIX Solaris Irix Ultrix NEXT GNU Linux

90 95 90 95 90 95 95 95 95 95 95 95

adb ● ● ● ●❍ ✕ ✕ ●❍ ✕ ✕ ✕ ✕ ✕

as ● ●

awk

bc ● ✕

bib ● ✕ ✕ ✕ ✕ ✕ ✕

calendar ✕ ✕

cat

cb ● ❍ ❍ ● ● ✕ ✕

cc ●

ccom ✕ ✕ ❍ ● ✕

checkeq ✕ ● ✕ ✕ ✕

checknr ✕ ✕ ✕ ✕

col ● ❍ ● ● ● ● ● ❍ ● ✕

colcrt ✕ ✕ ● ✕ ✕ ✕

colrm ✕ ✕ ✕ ✕ ✕

comm

compress ✕

cpp

csh ❍ ❍ ❍ ✕

ctags ✕ ✕ ✕ ✕ ● ● ❍

ctree ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

dbx ● ✕ ✕ ●

dc ● ● ● ✕

deroff ● ● ● ● ● ● ● ✕ ✕

diction ✕ ● ● ● ✕ ✕ ✕ ● ● ✕ ✕

diff

ditroff ● ● ✕ ● ● ● ● ●

eqn ● ● ● ● ❍ ● ● ● ✕

ex ● ✕

Table 3: List of Utilities Tested and Results of Those Tests
● = crashed, ❍ = hung, ✕ = not available

Page 8

 October 1995

expand ✕ ✕

f77 ✕ ✕ ✕ ✕ ✕ ✕

fmt ● ✕

fold ✕

ftp ● ● ● ● ● ● ● ● ● ✕

graph ✕ ✕ ✕ ✕ ✕

grep

head ✕

indent ●❍ ❍ ● ❍ ✕ ● ❍ ● ❍ ●

join ● ● ● ●

latex ✕ ✕ ✕ ✕ ✕ ✕

lex ● ● ● ● ● ● ● ● ●❍ ●

lint ✕ ✕ ✕

look ❍ ● ❍ ✕ ❍ ✕ ● ● ✕

m4 ● ● ●

mail ✕

Mail ✕ ✕ ✕ ✕ ● ✕ ✕

make ●

more ✕

nm

nroff ● ● ●❍ ● ● ● ●

pc ✕ ✕ ✕ ✕ ✕

plot ❍ ✕ ● ✕ ✕ ✕ ●❍ ✕ ❍ ✕ ✕

pr

prolog ●❍ ●❍ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

psdit ✕ ✕ ✕ ✕

ptx ● ● ● ● ● ✕ ✕

refer ● ● ❍ ✕ ●❍ ✕ ● ●

rev ✕ ✕ ✕ ✕

Utility
SunOS HP-UX AIX Solaris Irix Ultrix NEXT GNU Linux

90 95 90 95 90 95 95 95 95 95 95 95

Table 3: List of Utilities Tested and Results of Those Tests
● = crashed, ❍ = hung, ✕ = not available

Page 9

 October 1995

The elitist explanation is that there is no substitute for excellent programmers. The people
who write and support the GNU utilities are typically skilled at their profession and are in it for
the fun and intellectual challenge (that is not to say that such people do not exist in corporate soft-

sed

sh

soelim ✕ ✕

sort

spell ● ● ● ● ● ● ● ✕ ✕

spline ✕ ✕ ✕ ● ✕

split

strings ✕ ●

strip

style ✕ ● ● ● ✕ ✕ ✕ ● ✕ ✕

sum

tail

tbl

tee

telnet ● ● ● ● ● ● ● ● ✕

tex ✕ ✕ ✕ ✕ ✕ ✕

tr

tsort ● ● ● ● ✕

ul ● ● ● ● ✕ ● ● ● ● ● ✕ ●

uniq ● ● ● ● ● ● ●❍

units ● ● ● ● ● ● ● ● ✕ ✕

vgrind ✕ ✕ ● ✕ ✕

wc

yacc

tested 77 80 72 74 49 74 70 60 80 75 47 55

crash/hang 22 18 24 13 12 15 16 9 17 32 3 5

% 29% 23% 33% 18% 24% 20% 23% 15% 21% 43% 6% 9%

Utility
SunOS HP-UX AIX Solaris Irix Ultrix NEXT GNU Linux

90 95 90 95 90 95 95 95 95 95 95 95

Table 3: List of Utilities Tested and Results of Those Tests
● = crashed, ❍ = hung, ✕ = not available

Page 10

 October 1995

ware groups!). The users of the GNU utilities are, in many cases, of a like mind; if a bug exists,
they will often find and fix it themselves. Having ubiquitous source code is certainly an advantage
in this situation.

The free software also has a personal touch that improves communication between the authors
and the users. Users have an incentive for reporting bugs. Usually the GNU utilities have an indi-
vidual’s name associated with them. If you have a bug report, you send it to a person (who typi-
cally answers you and shows a personal interest in your report). Large companies usually require
you to submit a bug report to an anonymous address, something likeOSbugs@BigCom-
pany.com. Responses to such mail are slow and the user may never see or hear about the reso-
lution of the bug. The structure of the corporate software development, testing, and release
process is such that it may be a year before a repair is made available. The long delays can also be
discouraging to the programmer. By the time that a bug-fix is deployed, the programmer has long
forgotten the problem; there is no gratification in solving a particular person’s problem.

Distributing source code may also be a factor in quality of the GNU and Linux systems. Users
are more able and encouraged to be involved in identifying the cause of problems. Computer ven-
dors may be under-estimating the value of widely distributing their source code.

The lessons learned by traditional manufacturing industries, such as steel and automobiles,
may need to be learned by the computer industry: flexibility and responsiveness is a major key to
long term survival.

2.3.2 Causes of Crashes/Hangs

As in the 1990 study, we examined each program that crashed or hung to identify the cause of the
failure. Source code was available to us for utilities on SunOS, Solaris, Ultrix, HP-UX, GNU, and
Linux; source code was not available on NEXTSTEP, AIX, or Irix. For each program failure on a
system for which we had source code, we categorized the cause; these results are reported in
Table 4. The letters in the table entries describe the systems to which the entry applies. The identi-
fying letters are given in the first column of Table 1. For the most common failures, we describe
details of the causes.

Pointer/Array

Errors in the use of pointers and array subscripts dominate the results of our tests. These are errors
any novice programmer might make, but surprising to find in production code. In all these cases,
the programmer made implicit assumptions about the contents of the data being processed; these
assumptions caused the programmer to use insufficient checks on their loop termination condi-
tions. The presence of these errors argues (minimally) for garbage-collected languages and full-
time array bounds checking to help a sloppy programmer detect these problems.

Most of the pointer errors found in the 1995 study were simple: increment the pointer past the

Page 11

 October 1995

end of an array. The error in “ctags” is representative (file “ctags.c”):

char line[4*BUFSIZ];
...

sp = line;
...
do {

*++sp = c = getc(inf);
} while ((c != ’\n’) && (c != EOF));

Note that the termination condition in the above loop does not include any tests based on the size
of array (line) being used.

Array subscripting errors were also a common cause of failures in this study. Most of these
errors appeared in routines that were using character input or were scanning an input line. An
example of an error during input appears in “cb” (file “cb.c”):

char string[200];
...
while ((cc = getch()) != c) {

string[j++] = cc;
...

}

The termination condition on the above loop checks the input operation, but ignores the size of the
buffer into which the data is being read (string). Another common type of error happens during
string processing, where (again!) the termination condition of the loop does not contain a check
on the size of the array. The following example comes from “bibtex” (file “strpascal.c”):

void
null_terminate(s)
char *s;
{

while (*s != ’ ’) s++;
...

}

Dangerous Input Functions

The second most common cause of errors was the use of dangerous input functions, such as the
notorious gets() function. The problem is that gets() has no parameter to limit the length of the
input data. Besides causing reliability problems, use of gets() was also the flaw that permitted a
major breach in Internet security[3,4]. By using gets(), the programmer is making implicit
assumptions about the structure of the data being processed.

The manual page from the Solaris 2.3 system wisely contains the following warning:
When using gets(), if the length of an input line exceeds the size of s, indeterminate behavior may result. For this
reason, it is strongly recommended that gets() be avoided in favor of fgets().

The fgets() function includes an argument to limit the maximum length of the input line.
The C library input/output routines are not integrated into the language; they appear only as a

collection of procedures to be called. Newer languages, like C++, can do a better job by integrat-
ing the input operation into the definition of a new type or class (using the “>>” operator). But the
definition of the “>>” operator for character strings doesnot include information about the length

Page 12

 October 1995

Utility
Cause

Array/
Pointer

Input
Functions

Signed
Characters

Divide by
Zero

EOF
Check

Others
No Source

Code

adb sShHO

as a N

bc N

bib S

cb haU AN

cc N

ccom ON

checkeq A

col O SU sha AIN

colcrt A

csh sha

ctags O L N

dbx L s

dc G IN

deroff sShaOU N

diction ShHU N

ditroff s SHOU AN

eqn sShHU AIN

ex h

fmt N

ftp sShaOU AIN

indent sh SHOGL AN

join OU sN

lex sShHaUGL AN

look shu HO N

m4 HU N

Mail N

make h

Table 4: List of Utilities that Crashed or Hung, Categorized by Cause
The letters in each entry describe the system on while the failure occurred (see Table 1 for a

description of the system letters)

Page 13

 October 1995

of the array. Following is a typical example of how “>>” is used:

char buff[BUFSIZE];

cin >> buff;

The representation of a UNIX character string does not carry information about the size of the
array in which it is stored. You can set the maximum input line size using the C++ input/output
class (using the cin.width() function), but this requires extra and explicit action by the program-
mer; the default case has dangerous behavior.

Signed Characters

The conversion of numbers from one size to another can cause problems; the problem is com-
pounded by using characters in both their symbolic and numeric forms. In C (and C++), the type

“char” is a signed, 8-bit integer on most UNIX systems1. The presence of a sign bit can be confus-

nroff SHOU AIN

plot O sh N

prolog sh

ptx sShH A

refer shU AHN

spell sha SOU N

spline N

strings O

style ShH N

telnet sShaU AIN

tsort L sha N

ul sShHOUL AIN

uniq sShaU IN

units SshaO AIN

vgrind N

1. Both the number of bits and presence of a sign bit are system dependent. If the programmer really does
not want a sign bit, then the declaration should include “unsigned”.

Utility
Cause

Array/
Pointer

Input
Functions

Signed
Characters

Divide by
Zero

EOF
Check

Others
No Source

Code

Table 4: List of Utilities that Crashed or Hung, Categorized by Cause
The letters in each entry describe the system on while the failure occurred (see Table 1 for a

description of the system letters)

Page 14

 October 1995

ing and error prone (with the possibility of sign-extension) when doing arithmetic. The following
example comes from "eqn" (file “lookup.c”):

register int h;
...
register char *s = name;

for (h = 0; *s != ’\0’;)
h += *s++;

h %= TBLSIZE;

The value pointed to bys is a signed character andh is an integer. Characters that are pointed to

by s may have their high-order bit on, makingh negative2 (h will subsequently be used as a sub-
script).

End-of-File Checks

Checking for end-of-file is another case of the programmer making implicit assumptions about
the structure of input data. It is a common, but dangerous assumption that end-of-file will occur
only after a complete input line; i.e., end-of-file will always immediately follow a newline charac-
ter. While this assumption can simplify the structure of the application code, it leaves the applica-
tion vulnerable to crashing or hanging.

2.3.3 Comparison of Results to the 1990 Study

When we compare the results from the 1995 study to those from 1990, it is interesting to go
beyond the raw numbers. When we examined the bugs that caused the failures, a distressing phe-
nomenon emerged: many of the bugs discovered (approximately 40%) and reported in 1990 are
still present in their exact form in 1995. The 1990 study was widely published in at least two lan-
guages. The code was made freely available via anonymous ftp. The exact random data streams
used in our testing were freely available via ftp. The identification of failures that we found were
also made freely available via ftp; these included code fragments with file and line number for the
errant code. According to our records, over 2000 copies of the fuzz tools and bug identifications
were fetched from our ftp site.

Several of the bugs found in the 1995 study were likely present in the 1990 study, but were
masked by the original bugs. Fixing the original bugs and re-testing should have exposed these
new ones.

The techniques used in this study are simple and mostly automatic. It is difficult to understand
why a vendor would not partake of a free and easy source of reliability improvements.

2. The standard, printable characters do not have their high-order bit on, but it is not safe to assume that
these are the only characters that will be read as input.

Page 15

 October 1995

3 NETWORK SERVICES

The fuzz testing techniques are effective for finding reliability problems in real programs. A natu-
ral question is: in what other domains can these techniques be applied? Our first new application
of the fuzz techniques was to test network services.

Internet network services are identified by a host name and port number. Most hosts support a
collection of services, such as remote login (“rlogind” and “telnetd”), file transfer (“ftpd”), user
information (“fingerd”), time synchronization protocols (“timed”), and remote procedures calls.
To test these services, we wrote a simple program (called “portjig”) that would attach to a network
port and then send random data from the fuzz generator. This testing configuration is illustrated in
Figure 1.

Figure 1: Testing Network Services

Most UNIX services are typically listed in a file called “/etc/services”. Our test script selected
each service in this file and sent it random data. We tested both TCP (connection-based) and UDP
(datagram-based) services.

Several years ago, we informally tested network services on a few UNIX systems and were
able to crash only two utilities (“ftpd” and “telnetd”). We ran our current tests on SunOS, NEXT-
STEP, and Linux.In this study, we were not able to crash any of the services that we tested on any
UNIX system. This result bodes well for network reliability and safety. Curiously though, we were
able to crash some of the client programs for network services (such as “telnet” and “ftp”, see
Table 4).

Fuzz Portjig Service

Page 16

 October 1995

4 X-WINDOW APPLICATIONS AND SERVERS

Our next target for fuzz testing was the window system and its application programs. An increas-
ing number of application programs are based on graphical user interfaces, so X-Window based
applications and servers were natural targets for the fuzz testing. Even though most of these appli-
cations were written more recently than the basic UNIX utilities, they still had high failure rates
under random input tests. The X server proved resistant to crashing. Section 4.1 describes the
tools we used to test the window server and applications, Section 4.2 describes the tests that we
performed, and Section 4.3 presents the results from applying these tests to applications.

4.1 X-Window Fuzz Tools

To send random input to the X-Window server or applications, we interposed our testing tools

between the client and the server. The interposed program, calledxwinjig1, can generate random
input or modify the regular communication stream between the X-Window application and server.

The xwinjig program pretends to be an X server to the applications, and pretends to be a client
to the real server. The X-Window system is capable of running on machines with multiple dis-
plays, and the X server has a separate TCP/IP port for each of its displays. These ports are num-
bered , where is the display number (display 0 is the standard default display). We
change the default display by setting the DISPLAY environment variable to a higher-numbered
display. Xwinjig listens on this port, and then connects to the real X server on the standard port.

The X server has an authentication mechanism, and xwinjig must mimic or circumvent it. We
provide proof of authentication by reading the user’s ~/.Xauthority file and sending the appropri-
ate authorization “cookie” to the server. We circumvent the authentication by disabling access
control checking on the server (by executing the command:xhost +).

4.2 X-Window Tests

In testing the X-Window server and applications, we used a combination of four different varia-
tions of random input streams. The first two techniques are used to test both the server and the
applications, whereas the last two are used to test only the applications. Each input type is closer
to valid input than the previous one (and therefore potentially tests deeper layers of the input pro-
cessing code). The last technique listed below is important because it simulates a user randomly
using the keyboard and mouse. Each application was tested with either (a) a combination of the
Types 1-4 types of random input, or (b) only Type 4 (legal) random input.

1. Completely Random Messages: xwinjig concocts a random series of bytes and ships it off to
the server or the client in a message.

2. Garbled Messages: xwinjig randomly inserts, deletes, or modifies parts of the message stream
between the application and server.

3. Random Events: xwinjig keeps track of message boundaries defined by the X Protocol Refer-

ence Manual[5]. xwinjig randomly inserts events2 that are of the proper size and have valid

1. Xwinjig actually has two implementations (calledxjig andwinjig) whose combined features are call xwin-
jig. This section reports on the combined results of testing with these two tools.

2. An event is a message sent by the server to the client to indicate that something of interest to the client
happened at the server side. E.g., an event is sent each time a key is pressed.

6000 N+ N

Page 17

 October 1995

opcodes (in the range 2 to 34). The sequence number, time stamp, and payload may be ran-
dom.

4. Legal Events: These are protocol conformant messages that are logically correct individually
and in sequence. These events have valid values for such things as X-Y coordinates within a
window. Information such as window geometry, parent/child relationships, event time stamps,
and sequence numbers are obtained by monitoring client/server traffic and are used to gener-
ate these events.
The xwinjig program has options to control the rate of injection of events, the frequency and

method of randomizing the event stream, the direction of operation (client to server or vice versa),
and the event types (keyboard and mouse events only, or all events).

4.3 X-Window Test Results

We tested the version 11R5 X-Window server on the SunOS and Ultrix systems; the X-Window
applications were tested on SunOS. Testing was done only on these few systems because of the
significant time it takes to complete this type of testing. The X-Window application programs
include ones distributed by the vendor, locally written, freely distributed, and purchased from
third party vendors.

4.3.1 Quantitative Results

The results of our tests on X-Window applications are given in Table 5. The first conclusion to
draw is that the fuzz testing techniques are effective for testing programs based on graphical user
interfaces. This result should encourage this type of testing on other window-based systems, such
as the Macintosh and PC.

The test inputs of Types 1 and 2 represent some failure in the X server or its associate librar-
ies. It may be reasonable to argue that these errors are unlikely, or that if they occur, the applica-
tion programs cannot do much to counteract them. Good software design practice says that
programs should have reasonable error checking on all external interfaces; in case of a crash, at
least these checks will help localize the problem (and help convince the programmer that it is not
in their own code). These checks can result in better bug reports to the software vendor.

The Type 3 and 4 inputs contain enough valid data that they take us past most of the basic
checks in the X library. The Type 4 test input produced what is probably the most condemning
result. Given legitimate input event streams, more than 25% of the programs tested crashed.
Application programs from all sources failed on this type of input. Errors of this type are com-
mon; most users have, at some time, selected large amounts of text from a window and acciden-
tally “pasted” it into the wrong window.

For the X-Window system, the “hang” results may be more serious than the crashes. In many
cases, an X-Window application will hang while it is has exclusive control over input (keyboard
and mouse). This means that the user cannot select another window to terminate the hung applica-
tion; the user must use another workstation and remotely kill the application.

4.3.2 Causes of Crashes/Hangs

We identified the cause of the failures of several of the X-Window applications that we tested in
this study. In this section, we describe some of the errors that we found. In general, the type of

Page 18

 October 1995

X Utility

Input Data Stream Types (described in Section 4.2)

Combination Input (A Mix of Types 1-4) Legal Events Only (Type 4)

bitmap ❷❸❹ ❹

emacs ❷❹ ➂

ghostview ➂

idraw ➂ ➃

mosaic ➃

mxrn ➂

netscape ❸ ❹

puzzle ➂

rxvt ➂ ➃

xboard ➂

xcalc

xclipboard ➃

xclock

xconsole

xcutsel ➂

xditview ➂

xdvi ➁➂➃

xedit

xev

xfig ➁➃

xfontsel

xgas

xgc ➂

xmag ➂

xman

xmh

xminesweep

xneko

Table 5: List of X Applications Tested and Results of Those Tests
�❶❷❸❹= crashed on Type 1, 2, 3, or 4 input. ➀➁➂➃ = hung on Type 1, 2, 3, or 4 input.

When more than one combination of input types caused a crash, all are listed.
Tests run on SunOS 4.1.3.

Page 19

 October 1995

programming errors that we found were similar to those found in the basic tests.
The “xpaint” application crashes because of a common error with pointers: dereferencing a

NULL pointer. During input, an X library function returns a window with zero height. The struc-
ture of the subsequent code is awkward. There are many places where the pointer might be used
and each of these (except one!) has a check for NULL. The code structure has the appearance of
evolving with incremental fixes rather than systematic overhaul.

Another example of not checking for NULL values can be found in “xsnow”, an X application
that creates snowflakes on the screen and drops them towards the bottom. The bug in this utility is
that it does not sufficiently check the return values from X library functions. XCreateRegion()
returns a NULL pointer that is subsequently passed to XPointInRegion(). Many of the X library
functions (including XPointInRegion) do not check their arguments for validity in the interests of
performance. (While the client side X libraries scrupulously check message from the server for
errors, they trust the client (of which they are a part) to pass in correct arguments and to check
return values.)

xpaint ❸❹ ➂

xpbiff

xpostit ➃

xsnow ❸

xspread ➂➃

xterm ➁

xtv ➂ ➃

xv ➁➃ ➂

xweather ❷ ❹

xxgdb ➃

tested 38 38

crash/hang 22 10

% 58% 26%

X Utility

Input Data Stream Types (described in Section 4.2)

Combination Input (A Mix of Types 1-4) Legal Events Only (Type 4)

Table 5: List of X Applications Tested and Results of Those Tests
�❶❷❸❹= crashed on Type 1, 2, 3, or 4 input. ➀➁➂➃ = hung on Type 1, 2, 3, or 4 input.

When more than one combination of input types caused a crash, all are listed.
Tests run on SunOS 4.1.3.

Page 20

 October 1995

5 MEMORY ALLOCATION CALLS

We applied our random testing techniques to the interface between application programs and the
system call library. We created a library that looks like the standard UNIX C library, but allows us
to simulate error conditions. We limited our experiment to replacing one family of library rou-

tines: the dynamic memory allocation routines1. malloc() is a C library function that allocates
memory on the heap, extending the program’s virtual address space if necessary. A zero (NULL)
return value from malloc() typically means that no more virtual memory is available to this pro-
cess (because of insufficient swap space or system imposed resource constraints). It is a common,
but dangerous, programming practice to ignore the return values from the memory allocation rou-
tines; failure to check for a zero return value can result in dereferencing a NULL pointer.

We extracted the object files for the malloc() family of functions from the standard C library
and used a binary rewriting utility to rename the symbols [1]. By creating an object file with the
original library call names (called “libjig”) and linking against the new library, we were able to
intercept calls to malloc() (see Figure 2). Any call to malloc() in the user program or the system
library first went through libjig, before calling the real malloc(). The routines in libjig control the
average percent of the time that malloc() fails.

Figure 2: Intercepting calls to the memory allocation routine

We tested the programs in the “/bin” and “/usr/ucb” directories on a system running SunOS
4.1.3. Of the programs that had source code readily available, 53 made use of malloc(), and 25
(47%) crashed with our library. The utilities that crashed are listed in Table 6.

The memory allocation routines return zero typically when a user or system resource limit is
reached. A common example is when the swap space is full. Note that many of the utilities listed
in Table 6 are ones that a programmer might want to use when this situation occurs: “finger”, “w”,
or “users” (to see who is logged in), “login” (to log in as super-user to try to fix the situation), and

1. The memory allocation routines that we considered were calloc(), malloc(), and realloc().

program libjig C library

malloc(...); void *

(sym table modified)

void *malloc(...) {

randomly return zero or rv;

}

_malloc(...) {

. . .

}

rv=_malloc(...);

Page 21

 October 1995

“df” (to check the amount of disk space used).

In all but one case that we investigated, the programs simply dereference the address returned
by malloc() without any checking. Some of the programs checked the return values in one place,
and not another, while other programs did not check at all. The one case that was different was
“df” (a program that shows the amount of disk space available); it checked all its calls to malloc().
However “df” calls another C library routine (getmntent()), which then calls malloc() without
checking its return code. This is an example of a program being as strong as its weakest link.

This testing technique of modifying the return value of a call to a library can be easily applied
to any other library routine. A common cause of programming error is not checking the return
value on file operations (open, read, or write). Libjig could be used to find potential bugs in the
use of these calls.

Utilities that Crashed

bar df login rup tsort

cc finger ls ruptime users

checknr graph man rusers vplot

ctags iostat mkstr sdiff w

deroff last rsh symorder xsend

Table 6: Utilities that Crashed when malloc() Returns Zero
Tested on SunOS 4.1.3.

Page 22

 October 1995

6 CONCLUSIONS

We revisited our original testing study with the expectation that it would be difficult to find many
bugs in the new versions of the utilities that we tested. Our 1995 study surprised us in several
ways.

First, the continued prevalence of bugs in the basic UNIX utilities seems a bit disturbing. The
simplicity of performing random testing and its demonstrated effectiveness would seem to be irre-
sistible to corporate testing groups. The basic utilities may simply fall between the cracks. Most
of these are not major flashy components, such as a kernel or compiler. There is little glory or
marketing impact associated with them and different companies assign these utilities to different
groups.

Second, the reliability of network services and X-Window servers is good news. These basic
system components are getting enough attention within the computer companies that they have
been honed to a (relatively) high level of reliability.

Third, X-Window applications are no less prone to failure (and seem to be more so) than the
basic utilities. These applications are generally newer than the basic utilities so, we hope, would
be designed with better engineering techniques. Perhaps the large additional complexity of con-
structing a visual interface is too much of a burden. Hanging an X-Window application can cause
the server to ignore all other input until the hanging application is terminated (which must be done
remotely).

Fourth, the reliability of the freely-distributed GNU and Linux software was surprisingly
good, and noticeably better than the commercially produced software. It is difficult to tell how
much of this is a result of programmer quality, the culture of the programming environment, or the
general burden supported by the software developers. Large companies will need to make some
concrete changes in their software development environments and culture if they hope to produce
higher quality software.

Modern compilers, languages, and development tools should be helping us develop more reli-
able programs. However it is clear that these new tools can be as easily abused as more primitive
tools (old assembly language programmers are proud to point this out). A good example was
shown in Section 2.3.2, where the problem of the missing input field-width specification of the C-
library gets() can still be found in the C++ “>>” operator.

New versions of software are being released all the time. Our results represent a snapshot of
versions that we had available to us at the time of testing.

There are certainly many things left to do in a study such as this one. The random testing can
be applied to kernel calls and to randomly generated command-line parameters to utilities. Check-
ing return codes from library routines should be extended to input/output and other types of calls.
Any procedure call interface can be checked using libjig. Other areas of system software are ame-
nable to this type of testing. The system call interface is an ideal candidate; calling these routines
with random parameter values is likely to produce interesting results.

Other operating systems should be given the same scrutiny as we gave to UNIX. The prob-
lems that we found in the systems that we tested should not be interpreted to say that UNIX is any
worse (or better) than other systems. Certainly the popular Apple Macintosh and IBM PC systems
should receive the same level of testing.

Page 23

 October 1995

SOURCE CODE AND RELATED PAPERS

Note that the source and binary code for the fuzz tools (for UNIX and Windows NT) is available
from our Web page at:ftp://grilled.cs.wisc.edu/fuzz .
A more recent paper, applying fuzz testing techniques to applications running on Windows NT
can be found atftp://grilled.cs.wisc.edu/technical_papers/fuzz-nt.pdf .

ACKNOWLEDGMENTS

We gratefully thank Mike Powell for his observations about the software development process.

REFERENCES
[1] Cargille, J., and Miller, B.P., Binary Wrapping: A Technique for Instrumenting Object Code.SIGPLAN Notices 27, 6 (June

1992), 17-18.

[2] Miller, B.P., Fredrikson, L., and So, B., An Empirical Study of the Reliability of UNIX Utilities.Communications of the
ACM 33, 12 (December 1990), 32-44. Also appears in German translation as Fatale Fehlerträchtigkeit: Eine Eimpirische
Studie zur Zuverlassigkeit von UNIX-Utilties,iX (March 1991).
ftp://grilled.cs.wisc.edu/technical_papers/fuzz.pd f .

[3] Rochlis, J.A., and Eichin, M.W., With Microscope and Tweezers: The Worm from MIT’s Perspective.Communications of
the ACM 32, 6 (June 1989), 689-698.

[4] Spafford, E.H., The Internet Worm: Crisis and Aftermath.Communications of the ACM 32, 6 (June 1989), 678-687.

[5] X Consortium,X Protocol Reference Manual. O’Reilly and Associates, Inc., 1992.

