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Abstract. We present Deep Start, a new algorithm for automated performance di-
agnosis that uses stack sampling to augment our search-based automated perfor-
mance diagnosis strategy. Our hybrid approach locates performance problems
more quickly and finds problems hidden from a more straightforward search
strategy. Deep Start uses stack samples collected as a by-product of normal search
instrumentation to finddeep starters, functions that are likely to be application
bottlenecks. Deep starters are examined early during a search to improve the like-
lihood of finding performance problems quickly. We implemented the Deep Start
algorithm in the Performance Consultant, Paradyn’s automated bottleneck detec-
tion component. Deep Start found half of our test applications’ known bottle-
necks 32% to 59% faster than the Performance Consultant’s current call graph-
based search strategy, and finished finding bottlenecks 10% to 61% faster. In ad-
dition to improving search time, Deep Start often found more bottlenecks than the
call graph search strategy.

1 Introduction

Automated search is an effective strategy for finding application performa
problems [7,10,13,14]. With an automated search tool, the user need not be a per
ance analysis expert to find application performance problems because the exper
embodied in the tool. Automated search tools benefit from the use of structural in
mation about the application under study such as its call graph [4] and by pruning
prioritizing the search space based on the application’s behavior during prev
runs [12]. To attack the problem of scalability with respect to application code size
have developedDeep Start, a new algorithm that uses sampling [1,2,8] to augment a
tomated search. Our hybrid approach substantially improves search effectiveness
cating performance problems more quickly and by locating performance problems
den from a more straightforward search strategy. We have implemented the Deep
algorithm in the Performance Consultant, the automated bottleneck detection co
nent of the Paradyn performance tool [13].

To search for application performance problems, the Performance Consu
(hereafter called the PC) performs experiments that test the application’s beha

1. This work is supported in part by Department of Energy Grant DE-FG02-93ER25176, L
rence Livermore National Lab grant B504964, and NSF grants CDA-9623632 and EIA-
9870684. The U.S. Government is authorized to reproduce and distribute reprints for Go
mental purposes notwithstanding any copyright notation thereon.
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Each experiment is based on ahypothesisabout a potential performance problem. Fo
example, an experiment might use a hypothesis like “the application is spending
much time on blocking message passing operations.” Each experiment also refle
focus. A focus names a set of application resources such as a collection of funct
processes, or semaphores. For each of its experiments, the PC uses dy
instrumentation [11] to collect the performance data it needs to evaluate whether th
periment’s hypothesis is true for its focus. The PC compares the performance d
collects against user-configurable thresholds to decide whether an experiment’
pothesis is true. At the start of its search, the PC creates experiments that test the
cation’s overall behavior. If an experiment is true (i.e., its hypothesis is true at its foc
the PCrefinesits search by creating one or more new experiments that are more spe
than the original experiment. The new experiments may have a more specific hypo
sis or a more specific focus than the original experiment. The PC monitors the co
the instrumentation generated by its experiments, and respects a user-configurab
threshold to avoid excessive intrusion on the application. Thus, as the PC refine
search, it puts new experiments on a queue of pending experiments. Itactivates(inserts
instrumentation for) as many experiments from the queue as it can without excee
the cost threshold. Also, each experiment is assigned a priority that influences the
which experiments are removed from the queue.

A search pathis a sequence of experiments related by refinement. The PC prun
search path when it cannot refine the newest experiment on the path, either becau
experiment was false or because the PC cannot create a more specific hypothesis
cus. The PC uses a Search History Graph display (see Fig. 1) to record the cumu
refinements of a search. This display is dynamic—nodes are added as the PC refin
search. The display provides a mechanism for users to obtain information abou
state of each experiment such as its hypothesis and focus, whether it is currently a
(i.e., the PC is collecting data for the experiment), and whether the experiment’s
has proven the experiment’s hypothesis to be true, false, or not yet known.

The Deep Start search algorithm augments the PC’s current call-graph-based s
strategy with stack sampling. The PC’s current search strategy [4] uses the applica
call graph to guide refinement. For example, if it has found that an MPI applicatio
spending too much time sending messages, the PC starts at the main function an
to refine its search to form experiments that test the functions that main calls. If a fu
tion’s experiment tests true, the search continues with its callees. Deep Start augm
this strategy with stack samples collected as a by-product of normal search instru
tation. Deep Start uses its stack samples to guide the search quickly to perform
problems. When Deep Start refines its search to examine individual functions, it dir
the search to focus on functions that appear frequently in its stack samples. Bec
these functions are long-running or are called frequently, they are likely to be the a
cation’s performance bottlenecks.

Deep Start is more efficient than the current PC search strategy. Using stack
ples, Deep Start can “skip ahead” through the search space early in the search. Thi
ity allows Deep Start to detect performance problems more quickly than the curren
graph-based strategy. Due to the statistical nature of sampling and because some
of performance problems such as excessive blocking for synchronization are not n
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sarily indicated by functions frequently on the call stack, Deep Start also incorpor
a call-graph based search as a background task.

Deep Start is able to find performance problems hidden from the current strat
For example, consider the portion of an application’s call graph shown in Fig. 2. If A
a bottleneck but B, C, and D are not, the call graph strategy will not consider E e
though E may be a significant bottleneck. Although the statistical nature of samp
does not guarantee that E will be considered by the Deep Start algorithm, if it oc
frequently in the stack samples Deep Start will examine it regardless of the behavi
B, C, and D.

2 The Deep Start Search Algorithm

Deep Start uses stack samples collected as a by-product of dynamic instrumentat
guide its search. Paradyn daemons perform a stack walk when they insert instrum
tion; this stack walk checks whether it is safe to insert instrumentation code into the
plication’s processes. Under the Deep Start algorithm, the PC collects these stack

Fig. 1. The Performance Consultant’s Search History Graph display

Fig. 2. A part of an application’s call graph. Under the Performance Consultant’s call grap
based search, if B, C, and D are not bottlenecks, E will not be examined. In contrast, the 

Start algorithm will examine E if it appears frequently in the collected stack samples

C EA

B

D
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ples and analyzes them to finddeep starters—functions that appear frequently in the
samples and thus are likely to be application bottlenecks. It creates experiments t
amine the deep starters with high priority so that they will be given preference when
PC activates new experiments.

2.1 Selecting Deep Starters
If an experiment tests true and was examining a Code resource (i.e., an applicati
library function), the PC triggers its deep starter selection algorithm. The PC coll
stack samples from each of the Paradyn daemons and uses the samples to upd
function count graph. A function count graph records the number of times each functi
appears in the stack samples. It also reflects the call relationships between functio
indicated in the stack samples. Nodes in the graph represent functions of the applic
and edges represent a call relationship between two functions. Each node holds a
of the number of times the function was observed in the stack samples. For insta
assume the PC collects the stack samples shown in Fig. 3 (a) (wherex→y denotes that
functionx called functiony). Fig. 3 (b) shows the function count graph resulting from
these samples. In the figure, node labels indicate the function and its count. Onc
PC has updated the function count graph with the latest stack sample informatio
traverses the graph to find functions whose frequency is higher than a user-configu
deep starter threshold. This threshold is expressed as a percentage of the total num
of stack samples collected.

In reality, the PC’s function count graph is slightly more complicated than the gra
shown in Fig. 3. One of the strengths of the PC is its ability to examine application
havior at per-host and per-process granularity. Deep Start keeps global, per-hos
per-process function counts to enable more fine-grained deep starter selections. F
ample, if the PC has refined the experiments in a search path to examine process
on hostcham.cs.wisc.edu, Deep Start will only use function counts from tha
process’ stack samples when selecting deep starters to add to the search path. To
fine-grained deep starter selections, each function count graph node maintains a t
counts as shown in Fig. 4. The root of each node’scount-treeindicates the number of
times the node’s function was seen in all stack samples. Subsequent levels of the c
tree indicate the number of times the function was observed in stack samples for sp
hosts and specific processes. With count-trees in the function count graph, Deep
can make per-host and per-process deep starter selections

(a) (b)

Fig. 3. A set of stack samples (a) and the resulting function count graph (b)

A→B→C→D
A→E→C→D
A→F→D
A→F→G

A:4 E:1 C:2 D:3

B:1

F:2 G:1
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As Deep Start traverses the function count graph, it may find connected subgr
whose nodes’ function counts are all above the deep starter threshold. In this case,
Start selects the function for the deepest node in the subgraph (i.e., the node fu
from the function count graph root) as the deep starter. Given the PC’s call-graph-b
refinement scheme when examining application code, the deepest node’s function
above-threshold subgraph is the most specific potential bottleneck for the subgrap
is thus the best choice as a deep starter.

2.2 Adding Deep Starters
Once a deep starter function is selected, the PC creates an experiment for the dee
er and adds it to its search. The experimentE whose refinement triggered the deep star
er selection algorithm determines the nature of the deep starter’s experiment. The
starter experiment uses the same hypothesis and focus asE, except that the portion of
E’s focus that specifies code resources is replaced with the deep starter function
example, assume the experimentE is

hypothesis: CPU bound

focus: < /Code/om3.c/main, /Machine/c2-047/om3{1374} >

(that is, it examines whether the inclusive CPU utilization of the functionmain in proc-
ess 1374 on host c2-047 is above the “CPU bound” threshold). If the PC se
time_step  as a deep starter after refiningE, the deep starter experiment will be

hypothesis: CPU bound

focus: < /Code/om3.c/time_step, /Machine/c2-047/om3{1374} >.

Also, Deep Start assigns a high priority to deep starter experiments so that they are
en precedence when the PC activates experiments from its pending queue.

With the PC’s current call-graph-based search strategy, the PC’s search hi
graph reflects the application’s call graph when the PC is searching through the a
cation’s code. Deep Start retains this behavior by creating as manyconnecting experi-

Fig. 4. A function count graph node with count-tree

Global: 4

m01: 2
p4263: 1

m02: 2

p4264: 1

p217: 1

p224: 1

Function: A

Counts:

Function: E
Counts:

Function: F
Counts:

Function: B
Counts:
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mentsas necessary to connect the deep starter experiment to some other experim
ready in the search history graph. For example, in the search history graph in Fig.
PC chosep_makeMGas a deep starter and added connecting experiments for funct
a_anneal , a_neighbor , andp_isvalid . Deep Start uses its function count graph t
identify connecting experiments for a deep starter experiment. Deep Start gives m
um priority to the connecting experiments so that they have preference over the b
ground call-graph search but not over the deep starter experiments.

3 Evaluation

To evaluate the Deep Start search algorithm, we modified the PC to search using e
the Deep Start or the current call graph-based search strategy. We investigated th
sitivity of Deep Start to the deep starter threshold, and chose a threshold for use i
remaining experiments. We then compared the behavior of both strategies while se
ing for performance problems in several scientific applications. Our results show
Deep Start finds bottlenecks more quickly and often finds more bottlenecks than
call-graph-based strategy.

During our experimentation, we wanted to determine whether one search stra
performed “better” than the other. To do this, we borrow the concept ofutility from con-
sumer choice theory in microeconomics [15] to reflect a user’s preferences. We c
a utility function wheret is the elapsed time since the beginning of a searc
This function captures the idea that users prefer to obtain results earlier in a search
a given search, we weight each bottleneck found byU and sum the weighted values to
obtain a single value that quantifies the search. When comparing two searches wit
utility function, the one with the smallest absolute value is better.

3.1 Experimental Environment
We performed our experiments on two sequential and two MPI-based scientific a
cations (see Table 1). The MPI applications were built using MPICH [9], version 1.2
Our PC modifications were made to Paradyn version 3.2. For all experiments, we
the Paradyn front-end process on a lightly-loaded Sun Microsystems Ultra 10 sy
with a 440 MHz Ultra SPARC IIi processor and 256 MB RAM. We ran the sequen
applications on another Sun Ultra 10 system on the same LAN. We ran the MPI a
cations as eight processes on four nodes of an Intel x86 cluster running Linux, ke
version 2.2.19. Each node contains two 933 MHz Pentium III processors and 1
RAM. The cluster nodes are connected by a 100 Mb Ethernet switch.

3.2 Deep Start Threshold Sensitivity
We began by investigating the sensitivity of Deep Start to changes in the deep s
threshold (see Sect. 2.1). For one sequential (ALARA) and one parallel applica
(om3), we observed the PC’s behavior during searches with thresholds 0.2, 0.4, 0.6
0.8. We performed five searches per threshold with both applications. We observed
smaller thresholds gave better results for the parallel application. Although the
threshold gave slightly better results for the sequential application, the difference
tween Deep Start’s behavior with thresholds of 0.2 and 0.4 was small. Therefore

U t( ) t–=
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decided to use 0.2 as the deep starter threshold for our experiments comparing the
Start and the call graph search strategy.

3.2.1 Comparison of Deep Start and Call Graph Strategy
Once we found a suitable deep starter threshold, we performed experiments to com
Deep Start with the PC’s existing call graph search strategy. For each of our test a
cations, we observed the behavior of ten PC searches, five using Deep Start an
using the call graph strategy. Fig. 5 shows search profiles for both Deep Start and
graph search strategies for each of our test applications. These charts relate the
necks found by a search strategy with the time they were found. The charts show
cumulative number of bottlenecks found as a percentage of the total number of kn
bottlenecks for the application. Each curve in the figure shows the average time ove
runs to find a specific percentage of an application’s known bottlenecks. Range ba
used to indicate the minimum and maximum time each search strategy needed to
specific percentage across all five runs. In this type of chart, a steeper curve is bett
cause it indicates that bottlenecks were found earlier and more rapidly in a se
Table 2 summarizes the results of these experiments for each of our test applica
showing the average number of experiments attempted, bottlenecks found, and w
ed sum for comparison between the two search strategies.

For each application, Deep Start found bottlenecks more quickly than the cur
call graph search strategy as evidenced by the average weighted sums in Table 2 a
relative slopes of the curves in Fig. 5. Across all applications, Deep Start found ha
the total known bottlenecks an average of 32% to 59% faster than the call graph sta
Deep Start found all bottlenecks in its search an average of 10% to 61% faster tha
call graph strategy. Although Table 2 shows that Deep Start tended to perform mor
periments than the call graph search strategy, Deep Start found more bottlenecks
the call graph strategy found fewer than 100% of the known bottlenecks. Our res
show that Deep Start finds bottlenecks more quickly and may find more bottlene
than the current call graph search strategy.

Name Version Type Language Domain Size

DRACO 6.0 Sequential Fortran 90 Hydrodynamic
simulation

68981 lines
18632 KB
398 functions

ALARA 2.4.4 Sequential C++ Induced radioac-
tivity analysis

19576 lines
2911 KB
720 functions

om3 1.5 Parallel (MPI) C Global ocean cli-
mate simulation

2674 lines
385 KB
36 functions

su3_rmd 6 Parallel (MPI) C Quantum chromo-
dynamics pure
gauge lattice the-
ory simulation

35845 lines
511 KB
189 functions

Table 1. Characteristics of the applications used to evaluate Deep Start
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4 Related Work

Whereas Deep Start uses stack sampling to enhance its normal search behavior, s
tools use sampling as their primary source of application performance data. Most U
distributions include the prof and gprof [8] profiling tools for performing flat and ca
graph-based profiles, respectively. Quartz [2] addressed the shortcomings of pro
gprof for parallel applications running on shared memory multiprocesso
ProfileMe [1] uses program counter sampling in DCPI to obtain low-level informati
about instructions executing on in-order Alpha [5] processors. Recognizing the lim
tions of the DCPI approach for out-of-order processors, Dean et al [6] designed h
ware support for obtaining accurate instruction profile information from these type

(a) (b)

(c) (d)

Fig. 5. Profiles for Deep Start and call graph searches on (a) ALARA, (b) DRACO, (c) om
and (d) su3_rmd. Each curve represents the average time taken over five runs to find a s
percentage of the application’s total known bottlenecks. The range bars indicate the bes

worst time taken to find each percentage across the five runs
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processors. Each of these projects use program counter sampling as its primary
nique for obtaining information about the application under study. In contrast, D
Start collects samples of the entire execution stack. Sampling the entire stack inste
just the program counter allows Deep Start to observe the application’s call sequen
the time of the sample and to incorporate this information into its function count gra
Also, although our approach leverages the advantages of sampling to augment aut
ed search, sampling is not sufficient for replacing the search. Sampling is inapprop
for obtaining certain types of performance information such as inclusive CPU util
tion and wall clock time, limiting its attractiveness as the only source of performa
data. Deep Start leverages the advantages of both sampling and search in the sa
tomated performance diagnosis tool.

Most introductory artificial intelligence texts (e.g., [16]) describe heuristics for r
ducing the time required for a search through a problem state space. One heuris
volves starting the search as close as possible to a goal state. We adapted this id
Deep Start, using stack sample data to select deep starters that are close to the goa
in our problem domain—the bottlenecks of the application under study. Like the u
situation for an artificial intelligence problem search, one of our goals for Deep Sta
to reduce the time required to find solutions (i.e., application bottlenecks). In cont
to the usual artificial intelligence search that stops when the first solution is found, D
Start should find as many “solutions” as possible.

The goal of our Deep Start work is to improve the behavior of search-based a
mated performance diagnosis tools. The APART working group [3] provides a for
for discussing tools that automate some or all of the performance analysis proces
cluding some that search through a problem space like Paradyn’s Performance Co
ant. For example, the Poirot approach [10] uses heuristic classification as a control
egy to guide an automated search for performance problems. Also, FINESSE [14]
ports a form of search refinement across a sequence of application runs to pr
performance diagnosis functionality. Search-based automated performance diag
tools like these should benefit from the Deep Start approach if they have low-cost ac
to information that allows them to “skip ahead” in their search space.

Application
Total

Known
Bottlenecks

Search Type
Average

Experiments
Attempted

Average
Bottlenecks

Found

Average
Weighted

Sum

ALARA 46 Call Graph
Deep Start

174.0
173.4

39.4 (86%)
39.8 (87%)

-191.9
-134.1

DRACO 18 Call Graph
Deep Start

105.0
105.0

18.0 (100%)
18.0 (100%)

-152.7
-75.2

om3 145 Call Graph
Deep Start

261.6
269.0

141.8 (98%)
142.2 (98%)

-158.1
-124.5

su3_rmd 85 Call Graph
Deep Start

260.0
261.4

75.6 (89%)
82.2 (97%)

-141.8
-114.3

Table 2.  Summary of Deep Start/Call Graph comparison experiments. “Total Known
Bottlenecks” is the number of unique bottlenecks observed during any search on the applica

regardless of search type and deep starter threshold
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5 Conclusions

With the Deep Start search algorithm we have found that a hybrid approach comb
stack sampling with automated search can outperform the Performance Consul
current call graph-based search strategy. Our experiments show that Deep Start
bottlenecks more quickly than the PC’s call graph strategy. Also, our experiments s
that Deep Start finds bottlenecks hidden from the simpler search strategy.
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