
Using Binary Code Rewrite to Bypass License Checks

Tevfik Kosar∗ Mihai Christodorescu Rob Iverson
Barton P. Miller

Computer Sciences Department
University of Wisconsin, Madison

1210 W. Dayton St.
Madison, WI 53706-1685 USA

{kosart,mihai,riverson,bart}@cs.wisc.edu
April 8, 2003

Abstract

A common method of enforcing software license terms is for a program to contact another
program, called a license server, and ask for permission to run. This study attempts to bypass
these license checks in a commercial product through runtime code modification, using the
DynInst library.

The programs chosen as victims for this study are Adobe FrameMaker, the Purify family
of programs, and MatLab. We successfully bypass the FrameMaker licensing checks, allowing
full use of the product when the license server is unavailable. Limitations in DynInst prevent
similar results with Purify or MatLab. A set of powerful tools has been developed and used
in the process, and their generality should simplify similar license bypassing efforts on other
software products.

Key words: System security, intellectual proporty protection, cyber cime, dynamic instru-
mentation, bypassing licence checks, binary code rewriting.

1 Introduction

Most modern commercial products use some form of checking that the user is legally authorized
to run the program. Such checks prevent piracy, and enforce the software vendor’s product licensing
terms. The widespread implementation involves getting some data from an external source (such
as a protected file, or a secured network server) and verifying it for validity.

This study tested the strength of such algorithms, by trying to bypass them using dynamic
instrumentation [5] and attain full program functionality when the license data cannot be obtained.
We developed several tools that can help analyze a running program, without any prior information
about the executable and without access to source code. We used a binary rewriting1 library called
DynInst [1] that allowed us to keep a high-level view of the target program. All of the work
described in this paper was performed on an UltraSPARC IIi machine running Solaris 2.6.

∗Contact Author. Tel:+1(608)262–5945
1Binary rewriting is the process of modifying compiled binary code without knowledge of the source code.

1

We started from the premise that a legally licensed product is available, and that product
downtime due to non-product related failures is an unfortunate possibility. In the case of a network-
based license verification, the machine on which the license server runs can go down, but it should
not affect the users’ ability to run the licensed product.

Licensed checking data can be obtained from a file, or from a license server. We focused in
this study on products that use a license server, but our results can be easily extended to products
using local license files. This is due to the fact that the network communication and the local file
system have similar access Application Programming Interfaces (APIs).

2 DynInst

DynInst is an API that allows insertion of code and modification of subroutine calls inside a
running program. It also extracts program information that allows the recreation of the call graph,
of function types and arguments (when debugging information is present in the target program).
The code insertion is performed by displacing instructions and inserting appropriate jumps [2] to
and from the inserted code, which are called snippets in the DynInst parlance. DynInst can attach
to the process to be modified (called the mutatee) if the process is already running, or can start
the mutatee. The controlling program (called the mutator) uses the DynInst functionality to insert
code into the mutatee (see Figure 1). For further information about DynInst, please see [3].

MACHINE CODE

SNIPPET

Mutator
Process

DynInst
Library

Process
Mutatee

Figure 1: Overall architecture of a DynInst-based application.

DynInst preserves program behavior, although a slowdown was noticed in our experiments,
most likely due to the fact that cache locality properties are destroyed. We use all the functionality
available in the API, and at points we had to supplement it with our own code. We hope that some
of our work will be incorporated back into DynInst. A short list of limitations we encountered in
DynInst and of suggestions for further development is part of section 6.

2

3 Attack Methods

We approached the problem of bypassing license checking from several perspectives. We at-
tempted to see the program as a black box, from which we capture the I/O for later replay. Also,
we have traced the program to understand where the license checking is performed and to modify
those sections of code. The combination of these two methods helped us understand the program
behavior, a necessary step in modifying the license checking. Both methods are detailed in the
following subsections.

3.1 I/O Replay

The problem of bypassing license verification is similar to cracking a security protocol. They
both attempt to gain access to otherwise denied resources (data or functionality) by modifying the
expected behavior of the authentication engine. This suggests that some of the attack methods in
the cryptography world are valid candidates in our case. We developed an attack technique using
I/O replay, which involves capturing the communication data and feeding it back to the validation
module on a later run.

Our implementation involves a module which uses DynInst to attach itself into the mutatee at
any place which performs I/O, thus making it applicable in analyzing the behavior of programs
which communicate with license servers. The module replaces the open() library function, among
others, with a custom version of open(). This new open() sets up a mirror file for later use by
read() and write(), which are modified to copy their data into the mirror file. In this way we can
save the contents of any temporary files, any socket activity, any data worth analyzing. The idea
is to find successful client-server transactions and save them for later replay (perhaps with slight
modification if some sort of time stamp or machine identification is included in the transaction).
These processes are illustrated in Figures 2, 3 and 4.

Process
I/O

License

Server

Mutatee

Figure 2: Normal communication pattern.

We have succeeded in evolving the module to the point where it can track most I/O performed
by the mutatee. This attack method provides a large amount of data from the mutatee, but
processing this information and replaying it becomes complicated by timing issues. We turned to
full program tracing in order to gain some context information necessary for a successful replay
attack.

3

I/O
Mutatee
Process

Capture

File

Server
License

Capture
I/O

Module

Figure 3: The process of capturing the I/O traffic.

License
Server

Module

I/O
Capture

Mutatee
Process

Capture

File

I/O

Figure 4: The process of replaying previously captured I/O traffic.

3.2 Program Tracing

Full program tracing is another method we tested in our experiments. By tracing the execution
of the target program in case of success and in case of failure and by comparing the two traces,
one can locate where the license checking occurs. More importantly, functions to be skipped or
replaced to avoid the failure of the license check can be determined..

Using DynInst, tracing is easily implemented: we insert code at the beginning and at the end
of a function in the mutatee. The code will trigger output which the mutator can interpret. Depth
in the call stack and order of calls can be determined, as can the return values from each function.
Although highly intrusive, this method preserves the program semantics, and provides us with an
understanding of the mutatee inner workings.

We attempted to perform tracing by inserting the trace snippets in every function. This method
is not successful with large programs. Since a lot of code is inserted, DynInst increases the size
of the target program, and at some point the virtual memory system is overloaded and starts
thrashing. When the available physical memory fills up, the trace program crashes, possibly due

4

to the memory handling code. We improved our algorithm to perform incremental tracing.
The benefits of incremental tracing are multiple: limited memory impact, ability to trace only

the functions of interest, and ease of stopping and restarting the tracing on demand, while the
mutatee is running. A quick outline of the algorithm follows:

1. On entry to a function: insert breakpoints before and after all the calls made by that function.

2. Before a call to a function: insert breakpoints on entry to and on exit from that function.

3. After a call to a function: remove the breakpoints on entry to and on exit from that function.

4. On exit from a function: remove the breakpoints before and after all the calls made by that
function.

As one can easily determine, now the code insertions closely follows the call stack. There are
a couple of problems generated by this approach: calls made through function pointers cannot
be followed using only DynInst functionality, callbacks cannot be detected (unless all the calls,
including library calls, are traced - quite expensive in our experience), and the execution time
increases almost quadratically. We have developed a solution for the first problem, which we
present in the next section. Callbacks are not completely handled, but we are looking into possible
workarounds. Execution time cannot be improved too much, but our belief (backed by experimental
observations) is that during tracing, information is gathered that leads to a converging set of
functions to trace, thus improving execution time.

3.2.1 Dynamic Calls Through Function Pointers

One of the obstacles to the successful analysis of a program has been that many call points
in the program are dynamic, i.e. calls through function pointers. These function pointers show
themselves through DynInst returning a NULL pointer when requesting information about the
called function. Since the target of the call cannot be determined until reaching that point in the
code, we have developed a different method to determine which function is being called than we
have for static calls.

The functions pointers take the form of the SPARC “jump-and-link” (jmpl) instruction. This
instruction causes an unconditional branch to either a register plus another register or a register
plus a constant. The most common occurrence of this instruction is the two-register version, with
the second register being %g0, which always holds the value 0 on SPARC.

This lead us to the desire to instrument these call points to find out which functions were
being called in order to produce a more accurate callgraph. The method we developed, known as
redirection, is clean and conceptually simple. During initial instrumentation, the dynamic call is
replaced with a static call to a library function. The value in the register is passed as an argument to
another library function, DC redirect, which communicates that value to the mutator and stops
on a breakpoint. The mutator does the desired instrumentation or recording and wakes up the
mutatee. DC redirect then calls the function normally. This process is shown in Figure 6.

5

MutateeTracer

Snippet

Snippet

Snippet

Snippet

Snippet

Snippet

ABC:

call DEF

DEF:

return

insert snippet
1

3

2

4

insert snippet

remove snippet

6
5 7

8

9

Figure 5: The interaction between the tracer and the mutatee for one function.

Since this sort of redirection is not supported by DynInst, we had to deal with many interesting
complications. First of all, there is no functionality to read data or code from an arbitrary address
in the mutatee’s address space; provisions are only made for reading the values of variables in this
address space. Through the extremely unwholesome, but strangely fulfilling action of hacking the
DynInst header files, we are able to attain this functionality, and thus are able to analyze the
instruction. At this point, we create a customized static call instruction to the initial redirector.

This method currently works for function calls made through 24 of the 27 possible register

6

�
��
�

��

}

give func to mutator(funcp);
DYNINSTbreakPoint();

DC redirect(arg1..arg5, funcp) {

return funcp(arg1..arg5);

DC redirect(arg1..arg5, %g3)
return;
}

g3 redir(arg1..arg5) {

jmpl %g3

old code

call g3 redir

new code

Figure 6: Dynamic Function Pointers

targets, as long as the functions do not take more than 5 parameters. This limitation, which affects
few functions, is currently being removed. Return values are preserved in all cases. We believe this
method is useful and it can greatly improve the power of our techniques.

4 Target Programs

We applied the presented methods to three common applications that perform license checking:
Adobe’s FrameMaker, Rational’s Purify, and MathWorks’ MatLab. The following subsections
describe in more detail our efforts to bypass the license checks in these applications.

4.1 Adobe FrameMaker

FrameMaker is a complex software product, with numerous callbacks and special code that
complicates analysis. The default installation uses a shell script to start the program. The script
detects the architecture of the machine it is run on, reads some configuration data, sets environment
variables, and finally calls the correct executable. In spite of the fact that the script sets more than
10 environment variables, we managed to limit the number of relevant ones to 4.

The FM FLS HOST variable provides the FrameMaker executable with the information neces-
sary for the license check functionality. If the variable is set correctly, the executable performs the
license checking and runs successfully. If the variable is empty, the executable will pop up a dialog
box asking the user whether to run in demo mode or exit.

Having a sure, reproducible way of controlling the behavior of the license checking module,
we then traced FrameMaker. There are 86 subroutines that perform some kind of license-related
function, and, by transitivity, the set of functions calling any of the license-related functions contains
1,181 entries. The total number of functions in FrameMaker is 16,943 (including dynamic library
functions), and by using our tools we have cut down the number of functions to be instrumented
to less than 10%.

7

In the next few paragraphs we describe the license checking mechanism employed by FrameMa-
ker, and after we explain how this mechanism was bypassed to provide full program functionality
in the absence of license server connectivity.

During the initialization phase, FrameMaker’s main() calls NlOpenLicenses(), which con-
tacts the license server, retrieves the license data, and stores it in memory for later use. If the
FM FLS HOST is not set, NlOpenLicenses() fails, and no license data is obtained. In either case,
the program continues initializing, going through all the steps for setting up X windows, reading
the user defaults, the Most-Recently-Used document list, and other configuration settings.

At the end of the initialization phase, main() calls NluiCheckLicense(). This function checks
the license data in memory. When the license data is missing, FrameMaker pops up a dialog box
asking the user whether to go into demo mode or exit. It then calls ChangeProductToDemo() or
FmExit() (depending on the user input).

The program continues execution and displays the standard FrameMaker toolbar. The license
checking validation is performed once more, when the user moves to open or create a document.
An X library callback verifies the license data, and calls the appropriate functions if everything is
OK. If the license data is missing or invalid, text warning about the lack of a license is displayed,
and access to the full functionality is denied. Otherwise, full functionality is enabled, and the user
can proceed with creating / editing / saving documents. The license checking validation code is
called from time to time (at random intervals), while the user edits a document, even though an
initial license check validation was done.

The behavior exposed above was discovered using our DynInst-based tools. We are working
on more complete control over function calls, using dynamic call disambiguation (as presented in
section 3.2.1), and over the data transfer through network interfaces.

We successfully bypassed the licensing checks, by the following procedure:

1. Allow the retrieval of the license data to fail.

2. Prevent FrameMaker from entering demo mode, by modifying the functionality of
ChangeProductoDemo().

3. Bypass the first license data validation, by skipping over the sequence of code that performed
it.

4. Modify all later license data validations to always succeed, regardless of the presence of the
license data in memory.

Using this controlled failure mode, we managed to run a successful FrameMaker editing session,
without a license being checked out from the license server.

4.2 MatLab

Another piece of software that we tried to instrument was MatLab. MatLab is invoked by
a Bourne Shell script which first sets the environment variables, then determines the machine

8

architecture, and finally starts the appropriate executable.
MatLab maintains a local license file, given by the environment variable $(LM LICENSE FILE)

(by default set to $(MATLAB)/etc/license.dat) on startup. The MatLab startup script tests for
the existence of this file and the syntax of the contents. If the test fails, it exits with an error
message without invoking the MatLab executable. If the test succeeds, and all other environment
variables are set correctly, the MatLab executable is invoked by the script.The license check is
performed just at the start of the executable, and if it fails, the executable exists with an error
message. If the license check succeeds, the application continues execution.

We were not be able to instrument MatLab using the DynInst library, since the standard
DynInst call to create a process fails and exits without creating the process and without any error
messages. We were able to attach to a running MatLab process using an alternate API call, but
we still could not instrument it since, at this point, DynInst gives a warning message:

function start has call to same location as call, NOT instrumenting

and does not let us to proceed any further. We have reported this bug to the developers of
DynInst, and postponed our work on MatLab until it gets fixed.

4.3 Purify / Quantify / PureCoverage

The Purify, Quantify, and PureCoverage programs are software development tools which all
follow the same pattern of execution. They run on a program’s object code, modify the code in
some way, and create a new executable that is linked to similarly modified libraries. We quickly
determined that the license checking is not done by the Purify programs themselves, so we assumed
that it was done by the new executable. This proved to be only partially true, as it did not seem
possible to instrument the program before the license checking happened. For example, attempts to
stop the program (even with gdb) at main() or start() showed that the Purify window would be
displayed before the break point. This means that the most likely place to find the license-checking
code is in a dynamic library initialization routine.

Since the Purify license checking code is not present in the executable but instead in a dynamic
library, we need to be able to insert the instrumentation before the library is initialized. The
DynInst system automatically loads the target program’s dynamic libraries during the process
creation step, which begins the instrumentation session. Because all modifications to the program
must be done after this step, there is no hope of ever controlling these programs with DynInst as
it stands now.

To successfully bypass the license checking of the Purify programs, a different approach would
need to be taken. One way would be to modify DynInst to prevent the automatic loading of a
program’s libraries. It may be possible to modify it to allow the partial loading of the libraries, just
enough to allow DynInst to find and modify the functions in those libraries, but without calling
the initialization routines.

9

Another way which might work would be to modify the libraries before loading the program.
This cannot be done with DynInst, because DynInst is more suited to modifying running programs
rather than object code on disk. Due to time constraints, we chose to focus on other licensed
programs instead.

5 Tools

In the course of this study, we experimented with numerous methods and techniques, and
developed numerous tools. Many of these tools are useful for general DynInst programming, as
well as specifically for our study of license checking methods. Some of these tools are listed here.
They all act as mutators using DynInst to modify/control the mutatee.

5.1 Callgraph Analyzer

We created static callgraph-related tools to help us perform some of the necessary tracing tasks.
We have tools to find all parents and children of a given function, as well as all possible descendants
and ancestors. Of course these do not reflect calls through function pointers, but they are useful
nonetheless.

Some general utility routines have been developed to manage the problem of dealing with more
than 16,000 core functions. Some of these tools allow us to add and remove functions from a list
based on a regular expression, and to take the intersection and union of lists.

5.2 Java to DynInst Compiler

In order to specify snippets to be inserted, DynInst requires the construction of a hierarchy of
objects similar to an Abstract Syntax Tree (AST) for the desired piece of code. This method is
cumbersome and error-prone for any code sequence containing more than one instruction.

In order to simplify this programming task, we implemented a compiler supporting all arithmetic
expressions, function calls and if statements which are necessary for snippet insertion. As the
interface language for our compiler, we selected Java due to our previous experience with Java
compilers and its similar syntax to C/C++. Our Java to DynInst compiler performs all necessary
operations to:

• find the correct type and allocate variables

• create assignment and expression statements

• find the corresponding function

• allocate a vector of snippets for its parameters

• create constant expressions for parameter values

10

• create a procedure call using the function found

Figure 7 shows a simple Java input file for our compiler, and Figure 8 shows the corresponding
DynInst code, generated by it. As you can see, this tool greatly simplifies code generation in
DynInst.

5.3 GUI for License Bypasser

A major goal in this study was development of a tool which will simplify the process of tracking
down and bypassing the license checking step in any software product. For this purpose, we devel-
oped a graphical user interface (GUI), which would enable the user to instrument the executable
without any knowledge of DynInst.

In the implementation of the GUI, we could either use FLTK (The Fast Light Tool Kit, pro-
nounced “fulltick”) which is a C++ graphical user interface toolkit, or we could use Java Foundation
Classes (JFC) Swing components. We implemented a simple callgraph GUI using both tools, and
compared their performances. We observed that FLTK (C++) was more than 10 times faster
compared to Swing (Java). In addition to the performance, when we considered the integration
of the GUI with the utility functions that we have already developed in C++, we decided to use
FLTK to implement the graphical user interface of our tool.

The License ByPasser GUI allows the user to walk through the callgraph of the target appli-
cation, search for certain keywords which maybe the sign of possible license check points, list all
functions calling a specific function, list all modules and get the list of all license-related functions
in the application, load user-defined libraries, replace function calls and continue execution without
writing a single line of code. Figure 9 is a screenshot of the GUI in action.

5.4 dynit - DynInst-based shell

All of our results up to now, as well as the various algorithms we developed, were integrated in
dynit , which provides a Unix shell-like interface, similar in many aspects to gdb.

dynit is the top of the line tool for dynamic program analysis and control. Backed by DynInst,
it provides access to various run-time information. It offers access to low-level DynInst functionality
together with higher level analysis tools. Although developed for this project, we have attempted
to keep it general, and it should be useful in many other cases.

dynit implements a simple, yet powerful, scripting language meant to drive a running applica-
tion. It is similar to a debugger, but with a higher level list of features. The language specification
is still under heavy development, but the initial version of the tool is surprisingly flexible and easy
to use. We plan to extend it to allow for more powerful binary rewriting.

The GUI for the License ByPasser (5.3) will drive dynit , providing yet another easy to use
interface and level of indirection. For a complete description of dynit , please see Appendix ??.

11

class X
{
public int open(String path, int flag, int mode) { }

public static void main(String argv[])
{

int test;
test = 1;
if(test != 0)
{
open(filename, O_WRONLY | O_CREAT, 0666);

}
}

}

Figure 7: Simple Java input file for our compiler.

BPatch_function *openFunc = $IMAGE->findFunction("open");
BPatch_Vector<BPatch_snippet*> openArgs;

BPatch_variableExpr *test = $THREAD->malloc(*$IMAGE->findType("int"));

BPatch_arithExpr $ArithExpr(BPatch_assign, *test,
BPatch_constExpr(1)); //<-Arith. Expr.

BPatch_constExpr path(filename);
BPatch_constExpr flag(O_WRONLY|O_CREAT);
BPatch_constExpr mode(0666);

openArgs.push_back(&path);
openArgs.push_back(&flag);
openArgs.push_back(&mode);

BPatch_funcCallExpr openCall(*openFunc, openArgs); //<-function call

BPatch_Vector<BPatch_snippet*> StatementsInsideIF;
StatementsInsideIF.push_back(&/*pointer to the statement goes here*/);
BPatch_sequence IFSequence(StatementsInsideIF);
BPatch_boolExpr boolExpr(BPatch_eq, *test, BPatch_constExpr(0));
BPatch_ifExpr IFExpr(boolExpr,IFSequence); //<-If Epression

Figure 8: DynInst snippet creation code for the Java code in Figure 7.

12

Figure 9: Screenshot of the License ByPasser GUI.

13

6 DynInst Limitations and Suggested Extensions

In the process of developing the tools necessary for our analysis of license-verification modules,
we encountered various limitations and inconsistencies within DynInst. As DynInst is still under
heavy development, this is understandable. We compiled a list of suggestions for the DynInst team.

Problems:

• Call points to small functions which cannot be instrumented by DynInst are set to NULL,
preventing the driver program from constructing a complete callgraph.

• Too many return-value snippets can crash DynInst.

• Instrumentation at entry point to main is not always executed.

Suggestions:

• A finer-grain Control over the program is desirable (instrumentation can only be inserted at
certain points in the current DynInst implementation).

• There should be a way of refreshing the callgraph information (the calls made by a function).
Since the mutator can change function calls to go to other functions, DynInst information
should be more dynamic.

• A BPatch image::findModule function would be useful.

• The BPatchSnippetHandle should provide more information about the snippet it represents.
This oversight forces programs using DynInst to store information which is obviously internal
to DynInst. Extra information in BPatchSnippetHandle would simplify the programming
task, and reduce the memory footprint of the driver program.

• Along the same lines, when the program is stopped, DynInst should maintain state informa-
tion about where the stop is (at function entry or exit, for example).

• The behavior of the instrumented program is undefined when removing a snippet that contains
the current point of execution (PC). Functionality to insert at the execution point would solve
this problem.

• DynInst should allow for access to machine-level resources, such as registers, in the snippet
generation code, as well as insertion of assembly code directly into the target program.

14

7 Conclusions

The goal of this sudy was to test the strength of the licence checking algorithms and question
difficulty of bypassing them using dynamic instrumentation. The DynInst library enabled us to
make arbitrary changes in the behaviour of Adobe Framemaker and bypass its licence cheks, allow-
ing full use of the product without a licence. But the limitations in the current version of DynInst
API prevented us getting similar results with the other tested software. With some enhacements
to the DynInst library, it is not hard to get successful results also in other software. As a result,
our study showes that by dynamically instrumenting binary code on the fly, the licence checks of
most of the commercial software can be easily bypassed.

References

[1] B. R. Buck and J. K. Hollongsworth, “An API for Runtime Code Patching”, Journal of High
Performance Computing Applications 14, 4, Winter 2000, pp.317-329

[2] J. G. Ganssle, “A Look Back”, Embedded Systems Programming, 12, 13, December 1999.

[3] J. K. Hollingsworth, “DynInstAPI Programmer’s Guide - release 2.0”, Computer Science De-
partment, University of Maryland, Oct. 1999.

[4] J. K. Hollingsworth, B. P. Miller, M. J. R. Gonçalves, O. Naim, Z. Xu, L. Zheng “MDL: A
Language and Compiler for Dynamic Program Instrumentation”, 1997 International Confer-
ence on Parallel Architectures and Compilation Techniques, November 1997, San Francisco,
California

[5] B. P. Miller, M. Christodorescu, R. Iverson, T. Kosar, A. Mirgorodskii, F. Popovici, “Playing
Inside the Black Box: Using Dynamic Instrumentation to Create Security Holes”, Parallel
Processing Letters, 11, 2 & 3, 2001, pp 267- 280.

15

