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Abstract

We presenttwo systemsreliable sodets (rocks) and reliable
padkets (radks), that provide transpaent network connection
mobility using only userlevel metanisms.Each systemcan
detecta connectionfailure within secondsof its occurrence
preservethe endpointof a failed connectionin a suspended
state for an arbitrary period of timg and automatically
reconnecteven whenone end of the connectionchanges IP
address,with correctrecovery of in-flight data. To allow rocks
andradksto interoperate with ordinary clientsand serves, we
introducea generl userlevel EnhancemeretectionProtocol
that enablesthe remotedetectionof rocks and racks, or any
other sodket enhancementsystem, but does not affect
applicationsthat useordinary sokets.Rodksandracks provide
the same functionality but have different implementation
models:rodksinterceptand modifythe behaviorof the sokets
API by usingan interposedibrary, while racks usesa padet
filter to intercept and modify the padcets exchanged over a
connection.Radks and rocks introduce small throughputand
latency overheadsthat we deemacceptablefor the level of
mobility and eliability they provide

1 INTRODUCTION

We presentwo new systemsreliable sokets(rocks)andreli-
able padkets (racks), that eachprovides transpareninetwork
connectionmobility to ordinary applicationsusing only user
level mechanismsThesesystemshave several major features
in common. They automatically detect network connection
failures,includingthosecausedy link failures,extendedperi-
odsof disconnectionghangeof IP addressandprocessnigra-
tion, within secondsof their occurrenceThey automatically
recover broken connectionswithout loss of in-flight dataas
connectity is restored.When an applicationusing either of
thesesystemsestablishes new connectionjt safelyprobesits
remote peer for the presenceof a rocks- or racks-enabled
soclet, andfalls backto ordinarysoclet functionalityif neither
is present.Finally, designedto be ready-to-useby ordinary
users,both systemscan be usedwithout re-compilingor re-
linking existing binariesand without making kernel modifica-
tions, and rocks can be installed by uwigged users.

The failure detectionand recorery mechanismsare reli-
ability featuredntendedto enableapplicationgo transparently
endurethe travails of mobile computing,such as moving to
anothemetwork, unexpectedink failure (e.g.,modemfailure),
and laptop suspensionRocks and racks can automatically
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resumea broken connectioneven when one end (it doesnot
matterwhich one)changests IP addressFor therarecasesn
which both endsmove at the sametime, rocks and rackspro-
vide a callbackinterfacefor a third-partylocationservice.This
interface is one of several value-addedservicesprovided to
rocks-or racks-avare applicationsby the rocks-expandedAPI
(RE-API).

The remotedetectionof socletsenhancementis accom-
plishedby a new userlevel EnhancemenbetectionProtocol
(EDP). This protocol achieses a tricky task: it enablesuser
level soclet enhancement® testfor compatiblefunctionality
at the otherend of a new connectionwithout affecting unen-
hancedapplications.All non-trivial costsof the protocol are
borneby the client, soit is reasonabléo deploy in production
seners, and it doesnot interfere with network infrastructure
such as network addresstranslation (NAT) devices[5] or
firewalls [6]. Theprotocolis generapurposeit canbe usedby
othermobility systemssuchasMSOCKS[10] or mobile TCP
sockets[19,20], andit cansupportsystemghat enhancesock-
etswith otherfunctionality suchascompressiongncryption,or
quality-of-service For example,the EDP could end the com-
mon practiceof reservingtwo ports, one encryptedand one
non-encrypted, for netvk services such as IMA[R].

The major differencebetweernrocks andracksis the way
that they track communication Rocksare basedon a library
thatis interposedetweenthe applicationcodeandthe operat-
ing system.The library exportsthe socletsAPI to the applica-
tion, permitting it to be transparentlydroppedinto ordinary
applicationsyhile extendingthe behaior of thesefunctionsto
mask connectionfailures from the application. In contrast,
racksare basedon a separataiserlevel daemonthat usesan
adwanced kernel-level paclet filter to redirect the flow of
selectedpaclets to the daemor{15]; paclet filters with such
functionality currently include the Linux netfilter and the
FreeBSDdivert soclets. Racksdo not requireary codeto be
interposedn processethatusethem.Thetwo approachesach
have distinct advantagesand dravbacksand both implement
transparenénhancemenisf network communicatiorfunction-
ality in userspacewithoutrequiringkernelmodificationsBoth
implementationgrecompletewe distributeandmaintainthem
to be used with real applications.

Avoiding kernel modifications has two main benefits.
First, it facilitatesdeployment. Kernel modificationsmust be
maintainedwith eachkernelversionandareinherentlyunport-
able. Furthermore systemadministratorsare rightly paranoid
to apply kernelpatcheghatdo not provide functionality thatis
absolutely necessary

Second,userlevel mobility is much easierto combine
with processcheckpointingmechanismsWe have usedrocks
to expandthe scopeof Condor[9] processnigrationto include
distributed jobs that communicateover soclets,andto check-



point parallel programsbasedon MPI. Rocks are an ideal

abstractionfor suchfunctionality: as a userlevel abstraction,
they are portableand can be compatiblewith both userlevel

and kernel-lesel checkpointing mechanisms,while as a

replacemento the soclets API, they cansa/e communication
statewithout beingawareof application-specificletailssuchas
messagéormatsandbuffering. Rocksandracksareakey com-

ponentin our systemfor roamingapplications whosegoalis

to enablethe migrationto a new hostof the entirecontet of a

desktopapplication,includingits network, 1/0, anduserinter-

facestate,without introducingary modificationsto the appli-

cation, operating systems, or netw infrastructure.

Our systemscomplementthe functionality of existing
mobile networking systemsFor example,they canbe layered
over network stacksthat supportMobile IP [17] or the TCP
migrate option[21] to recover connectionsthat are not pre-
sened by thesesystems such as thosethat becomediscon-
nectedfor periodslongerthanthe TCPretransmissiotimeout.
On the other hand, for userswho cannotinstall the kernel
mechanismsequiredby thesenetwork stacksor the network
infrastructurerequiredby Mobile IP, rocks and racksreplace
their functionality with userlevel mechanismsFurthermore,
rocks and racks supporta mobility model more fine-grained
thanthat of Mobile IP: while Mobile IP requiresall applica-
tions at a given IP addresgo move togethey rocks and racks
enableindependenimobility of individual connections.This
freedomenablesindividual connectiongo be easily migrated
to nev hosts.

To summarize, the contritions of this paper are:

0 Two new userlevel techniquesfor transparentnetwork
connection mobility, including mechanismsfor failure
detectiongconnectiorsuspensiorandconnectiorrecovery
that presems in-flight data.

0 A comparisornof the implementationtechniquesof user
level paclet filtering and interpositionas techniquesfor
transparentlyenhancingthe functionality of a network
connectionWe look at issuesof transpareng and perfor-
mance.

0 A new userlevel EDP for remotelydeterminingwhether
enhancedsoclet functionality suchasrocks or racks,is
present at the other end of a TCP connection.

0 An analysisof the role of unreliable,connection-lespro-
tocolssuchasUDP in the presenc®f network connection
reliability and mobility
The remaining sections of the paper are as follows.

Section2 discusseshe TCP failure modelthat motivatedthis

work. Section3 presentghe enhancedoclet detectionproto-

col. Section4 presentsthe architectureand functionality of
rocksanddiscussthe issueswe have hadwith its implementa-
tion model. Section5 presentgacks. Section6 discusseghe
securityissuesof rocksandracks.Section7 discusse®ur use
of rocks and racksin processcheckpointingand migration.

Section8 discussesur approacho thereliability andmobility

of UDP. Section9 evaluatesthe performanceof rocks and

racks. Sectiorl0 discusses relatecbvk.

2 NETWORK CONNECTION FAILURE M ODEL

Rocksandracksextendthereliability of TCP by detectingfail-
ures to TCP connectionsand preventing applicationsfrom
becomingaware of them.We review the essentiabackground

on TCP and relate itaflure modes to mobilityvents.
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Figure 1: An established TCP connection.

2.1 TCP Review

TCP providesreliable bi-directional byte streamcommunica-
tion betweentwo processesunning on separatenostscalled
the local hostandthe peerhost(seeFigurel). The operating
systemkernelson eachhostmaintainthe stateof theirendin a
TCPsoket A TCP socletis identifiedby aninternetaddress
comprisedof an IP addressanda port number;a pair of such
addresseddentifiesa TCP connection Applications manipu-
late sockts through calls to the saatk API.

The TCP reliability mechanisms basedon a pair of buff-
ersin eachsocletanda schemdor acknavledgingandretrans-
mitting data.Whenthe local applicationprocessarites to the
soclet, the local kernel copiesthe datato the soclet’s send
buffer beforetransmittingit to the peer This dataremainsin
thesendbuffer andis periodicallyretransmittedintil thekernel
receives an acknavledgementof its receipt from the peer
Whenthelocal kernelrecevesdatafrom the peer it copiesit to
the destination soclet’s receive buffer and sendsback an
acknavledgementThereceve buffer holdsdatauntil it is con-
sumedby the applicationprocessA processannotpassmore
datato TCP thancanbe storedin the combinedspaceof the
local sendbuffer and the peerreceve buffer. This limits the
maximumamountof in-flight data, datathat hasbeenpassed
from the processto the kernel on one end, but not yet con-
sumedby theprocesgrom thekernelonthe otherend,thatcan
exist at aly time over a TCP connection.

TCP connectionfailuresoccur when the kernel aborts a
connection.Aborts primarily occur when data in the send
buffer goesunacknevledgedfor a periodof time thatexceeds
the limits on retransmissiomefinedby TCP. Othercausedor
an abortinclude a requestby the application,too mary unac-
knowledged TCP keepalve probes,receipt of a TCP reset
paclet (suchasafterthe peerreboots) andsometypesof net-



work failuresreportedby the IP layer[1]. Oncean aborthas
occurred, the soet becomes iralid to the application.

2.2 Events Leading to Aborts

Mobile computerusersroutinely performactionsthat canlead
to the abort of TCP connections. These actions include:

0 Disconnection: A mobile host becomesdisconnected
whenthelink becomesinreachablésuchaswhentheuser
movesout of wirelessrange),whenthelink fails (suchas
when a modemdropsa connection),or whenthe hostis
suspended.

0 Changeof IP addressA hostmight move to a new physi-
cal subnetyequiringanew IP addressor asuspendetiost
might lose its IP addressand DHCP might subsequently
provide a different one. This changeof IP addresswill
leadto a failure of the TCP connectionthe next time one
endpoint attempts to send data to the other

0 Changeof physical addressThrough processmigration,
applicationgn executionmay move from onecomputerto
anotherProcessnigrationis animportantmobility feature
for peoplewho usemultiple computerssuchasa laptop
for travel and separatedesktopcomputersat home and
work, becauset freesusersfrom having to restarttheir
applicationswhen they move. Migration can causetwo
typesof failures.First,it changeshelP addres®f thepro-
cessSecondunlessthe processmigrationmechanisntan
migrate kernel state,it will separatethe processsoclet
descriptorfrom the underlyingkernelsoclet. The original
kernelsocletwill beclosedor abortedwhile furtheruseof
the descriptorby the processwill referto a non-istent
soclet. This characteristicof soclets has long beenan
obstacle to migration of applications using siek

0 Host crashes:The peer of the crashedhost will either
reachits retransmissiodimit while the hostis down or,
afterthe hostrebootsreceie aresetmessagén response
to ary pacletit sendsto the host.We do not explore host
crashesn this paperbecause¢hey entailapplicationrecov-
ery, while we consider only connection reeoy.

3 DETECTING SOCKET ENHANCEMENTS

Whenestablishinga new connectionour systemsusea novel
protocol, the EnhancementDetection Protocol, to detect
whetherthe remote soclet also supportsour systems(either
one) and, if it doesnot, to trigger the fall back to ordinary
soclet behaior on that connection With rare exceptionsthis
protocol is transparentto the applicationcode at eachend.
Besidesnetwork connectiommobility, the protocolis ageneral-
purpose approachto safe, portable, and userlevel remote
detection of ary type of socket enhancementSeners can
freely usethe protocol sinceit imposesa trivial performance
penaltywhenacceptingconnectiondrom unenhancedlients.
All significantcostsof the protocolareincurredby clientsthat
use soclet enhancementdlVe have verified that the protocol
works with mary standardservicesjncluding ssh, telnet, ftp,
and X windavs.

It is tricky to remotelydistinguisha enhancedoclket from
an ordinary one using only userlevel mechanismsThe prob-

lem for the enhancedsoclet is to unmistakablyindicate its

presencdo remoteprocesseshat useenhancedoclets with-

out affecting thosethat do not. The soclet enhancementode
cannotsimply announceits presencenvhen the connectionis

establishedas othershave suggeste(tl9,20], sincean unen-
hancedorocesss likely to misinterprett. It is alsoproblematic
to usea separateonnectionpecausery schemefor creating
the secondconnectioncould conflict with otherprocesseshat
do not participatein the schemeAnd althoughthereare TCP
andsoclet options, TCP optionscannotbe reador written from

userspacewithout emulatingall of TCP over a (usually privi-

leged)raw soclet, andit is not possibleto usesoclet optionsto

constructa distinctsoclet configurationthatcould be remotely
sensed.

The protocol is as folles (see Figure):

1. Client Probe: The client and sener perform a four step
protocol to establishto the client that the sener is
enhanced:
la. The client opens a connection to theeserv
1b. Theclient closesits endof the connectiorfor writing,
using the soakts API functiorshutdown.

1c. The sener detectsthe end-of-file and announcesn
responsehat it is enhancedthen closesthe connec-
tion.

1d. Theclient recevesthe announcemerandnow knows
the serer is enhanced. It closes the connection.

2. Client Announcement: The client opensanotherconnec-
tion to the sener and sendsan announcementhat it is
enhancedNow boththe sener andthe clientaremutually
aware of being enhanced.

3. Enhancement Negotiation: Theclientandsener exchange
messages to agree on which enhancementsitifiause.

4. Enhancement Initialization: The clientandsener perform
enhancement-specific initialization.

5. Application Communication: The protocol is complete;
the application code s normal communication.

The enhancemenannouncementhat is exchangedmust
be a patternthatis extremelyunlikely to be producedby unen-
hancedclients or seners. The sener generates long (1024
byte) randombyte array as its announcementand the client
returns this array as its enhancementannouncementThe
announcementpattern may be shared among different
enhanced seer processes.

Thereare a few interestingcasego consider First, when
an enhancedlient connectg¢o an unenhancedener and per-
forms stepsl and 2 of the protocol, the sener will closeor
resetits end of the connection,obliviously senddata, or do
nothing.In ary case the client doesnot receve the announce-
mentfrom the sener, andsoit abortsthe protocolandreverts
to ordinary behaior. However, if the sener doesnothing,the
clientneedssomeway to know it shouldabort.Althoughonly a
strangesener would quietly leave opena connectionthat has
beenclosedfor writing by its client (we have not seenit hap-
pen),shouldthis ever happertheclienthasatimeoutto prevent
it from hanging.Thetimeoutperiodis a multiple of thetime it
took for connect to succeeda conserative estimateof the
time for seeral round trips.
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Figure 2: The socket enhancement detection protocol.

Second,if an unenhanceclient thatis connectedo an
enhancedener happendo performthe first two stepsof the
protocol, which includesreadingfrom a half-closedconnec-
tion, thenit will unexpectedlyreceve theannouncemergener-
atedby the sener. However, this client behaior is too bizarre
to be worth accommodating;for example, although some
remote shell client implementationsmay use shutdown in a
similarway, they alwayssendcommandsinddatato the sener
beforehand, so tlgedo not apply to this case.

Finally, thetwo clientconnectionsnayreachtwo different
senersif the sener applicationis replicatedbehinda device
that distributes incoming connectionsto multiple sener
machinesHowever, this arrangemenonly affectsthe protocol
whenthereplicatedsenersarenon-uniformlyenhancedwhich
we considerto bea problemwith deployment,notthe protocol.

4 RELIABLE SOCKETS

Reliable soclets are implementedas a library interposed
betweertheapplicationprocessandthekernelatbothendsof a
TCP connection(seeFigure3). Thelibrary exportsthe soclets
API to the applicationcodeto enableit to be transparently
droppedin ordinary applications.The library also exportsthe
rocks expanded APl (RE-API), which enablesmobile-avare
applicationdo setpoliciesfor thebehaior of thereliablesock-

ets library and to manually control some of its mechanisms.

We give an overview of the reliable soclets architecture
andoperationandthendescribeour experiencewith rocks,par-
ticularly issueghatarepertinentto arny systemthatattemptgo
interposeauserlevel functionality betweerapplicationcodeand
the lernel.
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Figure 3: Thereliable sockets architecture.

4.1 Rocks Overview

The operationof a reliable socket can be summarizedoy the
statediagramshavn in Figure4. A reliablesoclet existsin one
of three states:CLOSED, CONNECTED, or SUSPENDED.
Note that thesestatescorrespondo reliable soclet behaior

thataffectsthe processnot theinternal TCP soclet statemain-
tainedby the kernel. A reliable soclet beginsin the CLOSED
state.

760
G

Reconnect

CONNECTED)*

»( SUSPENDED
TCP Failure

Figure4: Thereliable socket state diagram

To establisha reliable soclet connection the application
codemakesthe usualsequencef socletsAPI callsto createa
TCP connectionlnsteadof beinghandledby the kernelor the
systemsoclets library, thesecalls are handledby the rocks
library, which performs the follwing steps:

1. Test for interoperability: The rocks library performsthe
EDP andrevertsthe soclet to ordinary soclet behaior if
the peer does not support rocks or racks.

Establish the data connection: The dataconnectionis a

TCP connectionthat, oncethe reliable socket connection
is established, is used for application communication.



3. Initialize: Therocksestablishanidentifierfor the connec-
tion basedon the addresse®f the connectionendpoints
and a timestamp, perform a Diffie-Hellman key
exchangg12] for later authenticationand exchangethe
sizesof their kernel soclet buffers (which are available
from the sockts API).

4. Establishthe control sodket The controlsocletis a sepa-
rateUDP socletthatis usedto exchangecontrolmessages
with the peer It is mainly usedto detectthe failure of the
data connection.

Following these stepsthe rock changesto the CON-
NECTED state.Once connectedthe applicationcan usethe
rock as it vould use ay ordinary sockt.

Therock buffersin-flight dataasit is sentby the applica-
tion. Thesizeof thein-flight buffer is the sumof the sizeof its
TCP sendbuffer andthe size of its peers TCP receve buffer,
the maximumnumberof bytesthat canbe in flight from the
rock to its peer Whenthe applicationsendsdata,the rock puts
a copy of the datainto the in-flight buffer, and incrementsa
count of bytessent.Older datain the in-flight buffer is dis-
cardedto make roomfor new data;thein-flight buffer is sized
to guarante¢hatdatathathasnotyetbeenrecevedby thepeer
remainsin the buffer. Whenthe applicationrecevesdata,the
rock increments a count of bytes reeei.

Connectionfailures are detectedprimarily by heartbeat
probes that are periodically exchangedbetweenthe control
soclets.Unlike the TCP retransmissiomechanismheartbeats
detectconnectionfailureswithin seconddnsteadof minutes,
their sensitvity canbetunedwith theRE-APlonaperconnec-
tion basis, and they work even if the connectionis idle.
Although the TCP keep-alve probecanalsodetectfailuresof
idle connectionsit is poorly suitedfor reliablesocletsbecause
its two hour minimum default periodgenerallycannotbe low-
eredon a perconnectiorbasis,only on a system-widebasisby
privileged users.A rock switchesto the SUSPENDEDstate
whenit detectghatit hasnotreceivedseveralsuccessie heart-
beats (the number can be adjusted using RE-API).

The useof a separatecontrol soclet is motivated by the
difficulty of combining application data and asynchronous
rocks control dataon the sameTCP connection.When both
flow over a singleconnectiontheremustbe a way to transmit
heartbeaprobeseven when ordinary dataflow is blocked by
TCR otherwiserocks would suspendperfectly good connec-
tions. TCP urgentdatais the bestavailablemechanisnfor this
type of communication,but it has several limitations. First,
althoughsoclets canreceve urgentdataout-of-band,sending
the heartbeatover the same connectionas application data
wouldinterferewith applicationssuchastelnet andrlogin, that
male useof urgentdata.Second,on someoperatingsystems,
including Linux, whennew out-of-banddatais receved, ary
previously receved urgentdatathathasnot beenconsumedy
the applicationis memged into the data streamwithout ary
recordof its position,possiblycorruptingthe applicationdata.
Sincewe cannotguaranteg¢hata heartbeats consumedefore
the next onearrives,we cannotprevent this corruption.Third,
on someoperatingsystemswhentheflow of normal TCP data
is blocked, sois the flow of both urgentdataand urgentdata

notification. A separatecontrol socket avoids all theseprob-
lems.

A suspendedock automaticallyattemptsto reconnecto
its peer by performing the folldng four steps:

1. Establisha new data connection Each rock simulta-
neouslyattemptsto establisha connectionwith its peerat
its last knownaddress the IP addressand port numberof
the peerend of the previous dataconnection.Whichever
connectionattemptsucceeddirst becomeshe new data
connection.

2. Authenticate The rocks mutually authenticatehrougha
challenge-respongarotocolthatis basedon the key they
established during initialization.

3. Establisha new contml sodket The new control soclet is
establishedin the samemanneras the original control
soclet.

4. Recwer in-flight data The rocks perform a go-back-N
retransmissiomnf ary datathatwasin-flight at the time of
the connectionfailure. Eachrock determineghe amount
of in-flight datait needgo resendby comparingthe num-
ber of bytesthatwerereceved by the peerto the number
bytes it sent.

Rock reconnectioris a best-efort mechanismit depends
on the ability of one end (it doesnot matter which one) to
establishanew connectiorto theother A rock cannotestablish
a new connectionif (1) the other end has moved during the
period of disconnection(2) it is blocked from establishinga
new connectionby a firewall, or (3) the lastknown addresf
thepeerwasmasqueradebly a NAT device. Althoughordinary
applicationscannotrecover from thesecasesthe RE-API pro-
vides an interface to supportmobile-avare applicationswith
alternatemeansof recovery. Mobile-avare applicationscan
receve a callbackwhena connectionis suspendedr whenits
reconnectioriimeoutexpires,andthey canspecifyanalternate
last known address.Suspendedocks attempt reconnectfor
threedays, a period of time that handlesdisconnectionghat
spana weelend;the RE-API canbe usedto changeor disable
theperiodon perrock basis.Rockssuspendetbngerswitchto
the CLOSED stateand behae to the applicationlike an ordi-
nary aborted soek.

A rock closesgracefullywhenthe applicationcalls close
or shutdown. If the applicationattemptsto closea suspended
rock, therock continuego try to reconnecto the peer andthen
automaticallyperformsa normal closeonceit is reconnected,
preservingn all but one casethe closesemanticof TCR. The
outstandingcaseis that an applicationattemptto aborta TCP
connectionis cornverted by the rocks library to an ordinary
close,becauseocks usesthe abortmechanisnto distinguish
connectiorfailure from intentionalapplication-leel close.We
have yetto seeanapplicationthatdepend®n abortsemantics,
but shouldoneexist, rockscould usethe control socletto indi-
cate an application abort.

We provide two programs,rock and rockd, that make it
simpleto userockswith existing applicationsrock startsa pro-
gramasa rock-enablegrogramby linking it with thereliable
socletslibrary atruntime.rockd is areliablesoclet senerthat
redirectsits client's connectionto anothersener over an ordi-



nary TCP connection.Rock-enabledclients can effectively

establishreliable soclet connectionswith ordinary seners by

running rockd on the samehost as the sener. Although the

connectiorbetweertherockd andtheseneris notreliable,it is

immune to TCP failures, including sener host IP address
changessinceit is local to the host. To simplify the use of

rockd, rock detectsthe use of somecommonclient applica-
tions, and automaticallyattemptsto startrockd on the sener

host if necessary

4.2 Experience

We have beenusingrockson a daily basisfor over a year, pri-
marily with interactve network clientssuchasssh, ftp, telnet,
andX windows clientssuchasGNU EmacsandAdobeFrame-
maker. On hostswherewe have root accessye have modified
the startupscriptsfor the correspondingenersto userock; on
other sener hosts, we establishrocks connectionsthrough
rockd. Not having to restartapplicationss addictve, andusing
rockswidely generallyworks well sincethe EDP switchesto
ordinarysoclketswhennecessaryHowever, we sometimesun
into troublewhentrying to userockswith a new application.
The main problem is maintaining application transpareny;
new applicationscan exhibit behaior that interfereswith the
rockslibrary in unanticipatedvays.The point of this sectionis
to illustratethe major problemsthat mustbe handledby a sys-
tem that usesinterpositionto maintain application transpar-
eng.

We usually link an applicationwith the reliable soclets
library by usingthe preloadingfeatureof the Linux loader a
commonly available mechanismthat enablesa library to be
linked with binariesat executiontime. Preloadinghasseveral
problemsFirst, notall binariessupportpreloadingit cannotbe
performedon static binaries,sinceit dependn the dynamic
linker, andfor securityreasonst is usuallydisabledfor setuid
binaries.Secondsystemlibrariesdo not alwayscorrectlysup-
port preloading:the nameresoher in the Linux C library, for
example,containsstatic calls to socket that cannotbe trapped
by the preloadingmechanismRocksstepsaroundthis problem
by patchingthe C library with correctedcalls at run time, but
this requiresknowledge of the problematicfunctions, which
may changewith new library versions(thoughwe aredevelop-
ing atool to automatehe search)Third, therockslibrary may
not be the only library thatthe userwantsto interposein their
application.For example, they may also link those used by
Kangaroo[24], Condor[9], or those createdby the Bypass
toolkit [25]. Multiple library interpositionrequiresa sensible
orderingof the libraries, linkage of interceptedfunction calls
through each library, and consistent managementof file
descriptorsandotherkernelresourcewirtualizedby thelibrar-
ies, none of which happensautomatically Although libraries
generatedy Bypasscanco-exist with otherinterposedibrar-
ies, most othersjust assumethey will be placedat the layer
closest to thedernel.

Sincethe rocks stateresidesin userspace,t is not auto-
matically managedby the kernel when the applicationcalls
fork or passedhe underlyingsoclet descriptorto anotherpro-
cessover a Unix soclet. Whenarock becomesharedn either
of theseways, the rocks library doesseveral things. First, it
movesthe stateof the rock to a sharedmemorysegment,and

forcesall sharingprocesseso attachto the segment.Secondit
makesoneof the sharingprocessesesponsiblgor monitoring
therock’s heartbeaaindtriggeringits reconnectiorin the event
of failure. Third, in the othersharingprocessest periodically
verifiesthatthe responsiblerocesss still runningand,if it is
not, chooses another process to resume its responsibilities.

Another problem stemmingfrom rock sharingis that a
sener daemonthat handsoff incoming client connectionso
subprocessemay find itself acceptingreconnectiorattempts
from pastconnectionsTo handlethis case wheneer a sener
rock acceptsa reconnectiorattemptit locates,by indexing a
sharedablewith theidentifierestablishediuringinitialization,
theprocesghathasthe otherendof thatsuspendedonnection,
and passes thewesonnection to it.

A similar problem with the userlevel state of a rock
occurswhen the application calls exec. If left alone, exec
would expungefrom the processall rocks state,including the
rocks library, but retain the underlyingkernel soclets. When
the rockslibrary interceptsan applicationcall to exec, it cre-
atesand sharesits rocks with a temporaryprocess,setsthe
ervironmentvariablesusedto preloadthe rocks library, and
thenallows the exec call to execute If thecall fails, thelibrary
kills the temporaryprocesslf the call succeedaindthe rocks
library is loaded thenduringits initialization the library trans-
fers the stateof the rocks from the temporaryprocesslf the
call succeedsut, becausehe preloadingdoesnot work in the
new binary, therockslibrary is not loaded the temporarypro-
cess eentually times out and closes the rocks.

Maintaining transpareng requiresvirtualizing additional
mechanismsijncluding: (1) emulating polling, asynchronous
I/0, andnon-blockingl/O semanticdor reliablesoclets,since
datamay be available to readfrom a userlevel buffer in the
rocks library; (2) multiplexing the timers and signal handlers
setby both the applicationand the heartbeamechanismand
(3) virtualizing processcontrolinterfacessuchaswait, kill, and
SIGCHLD to isolateprocessesreatedby the applicationfrom
those created by the rock library

None of theseissuesaloneis particularly difficult, but in
aggreation the mechanismave have introducedto presere
transpareng are nearly as substantialas the soclet enhance-
mentsthey support.They introduceadditional operatingsys-
temdependenciethatmustported;sincethey aremostly Unix
oriented,they will comprisea significantpart of the effort to
port to Wndows.

5 RELIABLE PACKETS

Seekinganalternatve to theapplicationtransparengproblems
createdoy therockslibrary, we developedreliablepacletswith
thegoalof supportingnetwork connectiormobility outsidethe
kernelwithout the needto executein process’addressspace.
Themainideais to usea pacletfilter to manipulatehe paclets
that are exchangedbetweenthe kernel-level soclet endpoints
of the connectionjnsteadof trying to control the behaior of
thesocletsAPI seerby applicationsThisideais similarto the
useof packet manipulationin the TCP migrateoption[21] and
the TCP splice of the MSOCKS proxy [10]. The main differ-
encesarethatracksperformpaclket manipulationswithout ker-
nel modifications and they provide additional functionality



including interoperability long-term connectionsuspension,
and automaticdilure detection and reconnection.

A paclet filter is a kernelmechanisnthat enablesa user
processo selectpaclets that traversethe host network stack.
Paclet selectionis basedon a setof matchingrules,suchasa
particular combinationof TCP flags or a rangeof sourcelP
addressegshatthe processlynamicallypasseso the paclet fil-
ter. Early applicationsof paclet filters included userlevel
implementatiorof network protocols,tradingthe performance
penaltyof passingnetwork traffic over the userkernelbound-
ary for the corvenienceof kernelindependencfl5]; racksfol-
lows thistradition.However, asthe primaryuseof pacletfilters
turnedto network monitoring[11,14], the kernelfunctionality
that enabled paclets to be redirected through user space
becamereplacedwith more efficient mechanismdgor passing
copies of paclets, making systemslike racks difficult to
develop.Recentlytheability to controlpacletsfrom userspace
hasreturnedto someoperatingsystemsprimarily to support
firewall software. Our implementationis basedon the recent
Linux netfilter technology but it also could use FreeBSDS
divert soclets.

Racksareimplementedn adaemontherackd, thatusesa
pacletfilter to insertitself in the flow of pacletsbetweerlocal
socletsandthe network (seeFigure5). Thejob of therackdis
to preventlocal TCP socletsfrom abortingdueto connection
failure. Sincethe rackd executesas a separaterocessoutside
of boththekernelandapplicationprocessesherackdlacksthe
ability to changethe binding of kernel soclets to other pro-
cesseslf it allowed socletsto abort,astherockslibrary does,
it could not recweer the connection.

Therackdinspectgacletsflowing in eitherdirectionand,
for eachpaclet, decideswvhetherto discardit or to forwardit,
possibly modified, to its destination.At ary time, the rackd
may alsoinject new pacletsdestinedior eitherendof the con-
nection.Becauseheseoperationsare privilegedon Linux, the
rackd needs to run with root pileges.

Host

Application
Process

Filter
A
— Outbound v'
Packet Flow Network
---9 Inbound
Packet Flow

Figure5: Thereliable packets architecture.

To be compatible with rocks, the rackd emulatesthe
behaior of reliablesoclets,generatinga paclet streamthatis
indistinguishabldérom thatinducedby the rockslibrary. How-
ever, for connectionsn which the peeris also managecy a
rackd,it takesadvantageof the fine controlit hasover paclets
to usea simplerenhancemendetectionprotocolandto detect
failures without a separate control setck

The rackd exchangesmessagesvith the rackd or rocks
library atthe otherendof eachconnectiorduringinitialization,
authenticationand reconnectionThe rackd sendsa message
by injectingit asif it weredatasentby thelocal soclet. It sends
the messagén a TCP paclet whosesequenceumberfollows
the sequencenumber of the last data emitted by the local
soclet. Oncea messagédasbeensentand acknavledged,the
local socket and the remoteend no longer have synchronized
sequencawumbers.The rackd rewrites paclets asit forwards
themto mapsequencandacknavledgemenhumberdo those
expected by the soek

To establishnen connectionsunder the control of the
rackd,the rackd configureshe paclet filter to redirectpaclets
in which only the TCP SYN flag is set;thesepaclets are the
first in the three-vay handsha& of TCP connectionestablish-
ment. It receves both outboundinitial SYN paclets (connec-
tion attemptsissuedby local client soclets)andinboundones
(attemptsby remoteclientsto connectto local seners). Since
theinitial SYN containghelP addresandport numberof both
endsof the connectionbeingcreatedjt containsall the infor-
mationnecessaryor therackdto selectsubsequernpacletsfor
that connection.

Whenthe initial SYN originatesfrom a local soclet, the
rackdcompleteghe three-vay handsha& on its behalf,except
it usesa differentinitial sequencenumberfrom the one sup-
pliedin theinitial SYN andit blocksthelocal socletfrom see-
ing the paclets exchangedduring the handshag. It performs
our EDP client probeover the establisheadtonnectiorandthen
closest. Therackdthenallowsthelocal socletto completethe
three-vay handsha& by sending the original initial SYN
paclet. If from the EDP probeit determinedthat the peeris
enhancedherackdtakescontrolof theconnectionOtherwise,
it releaseghe connectionby configuringthe paclet filter to
ceaseaedirectingthe associateghaclets;sincethe local soclet
connectionwas establishedising the original initial sequence
numberandno messagewereexchangedit canfunction nor-
mally without the rackd.

When the initial SYN originates remotely the rackd
allows the local soclet to perform the three-vay handshag.
Therackddatawatchedor oneof threeinitial eventsfrom the
remoteclient: (1) if theclientperformsaclientprobe therackd
sendsthe enhancemerdannouncemerntp the client and closes
bothendsof the connectiony2) if theclientsendsanenhance-
mentannouncementt exchangeseliablesocletsinitialization

messages; otherwise, (3) the rackd releases the connection.

The connectiorestablishmenprotocolis shortcircuitedif
arackdis presenatbothendsof theconnectionWhensending
aninitial SYN, therackdmodifiesthe pacletto includea TCP
optionthatindicatesit wasproducedby arackd.A rackdthat
recevesaninitial SYN containingthis optionalsoincludesthe
optionin thesecondaclet of thethree-vay handshak. At this



point, both endsof the new connectionare mutually aware of

their rackssupport,andimmediatelyfollowing thethird paclet

of the handshaé they initialize a reliable soclets connection.
As with ary other TCP option, the rackd optionis ignoredon

hosts that do not look for it.

Racksdetectfailureson an establishecconnectionusing
the TCPkeepalve protocolinsteadof a separateontrolsoclet.
The rackd periodically sendsa standardkeep-alive probe, a
TCP paclet with no payloadwhosesequencenumberis one
lessthanthe last sequence&iumberacknavledgedby the peer
When the rackd on the other end receves this paclet, it for-
wardsit to theremotesocletandin responsetheremotesoclet
sendghestandardeply to akeepalve probe:anacknavledge-
ment of the currentsequencenumber To the sendingrackd,
these acknavledgementssene the role of a heartbeatthat
assertdhe viability of the connection.This techniqueis unaf-
fectedby the useof the keepalve option by the processesn
eitherendof the connection:TCP respondgo the probeseven
if the optionis not setand TCP is not affectedby the presence
of moreprobeshanusual. Thekeepalve protocolis usedwhen
the rackd is connectedo anotherrack; when connectedo a
rock, the rackd manages a separate controksock

Whenit suspends connectiontherackdmustpreventthe
local soclet from aborting,which will happenf thereis unac-
knowledgeddatain the sendbuffer or if the applicationhas
enabledhe TCP keep-alve probe.Therackdsendgo thelocal
soclet a TCP paclet adwertising a zero receve-windov from
its peer Thesepacletsindicateto thelocal soclet thatthe peer
is viable, but currently cannotacceptmore data. The local
soclet periodically probesthe remotesoclet for a changein
this condition. While the connectionis suspendedthe rackd
acknavledgesthe probe,leaving the window size unchanged.
Although TCP implementationsare discouragedrom closing
their windows in this manney their peersare required[1] to
cope with them and remain open as long as probes are
acknavledged.

Racksreconnectn the sameway asreliablesoclets:each
endof the connectionattemptsto reconnecto the last known
addresof its peer Whentherackdrecevesa new initial SYN
from a remotesoclet, it first checkswhetherit is destinedfor
the previous local addressof ary suspendedacks.If it is, it
handlesthe SYN as an incoming reconnection.To maintain
consisteng with thelocal soclet, therackdrewritesthe paclets
of the new connectionto matchthe sourcelP addressport
numbers,and sequencenumbersto those expected by the
receving soclet, a function similar to that performedby the
TCP splice in MSOCK$10].

6 SECURITY

Rocksandracksdo not provide additionalprotectionfrom the
existing securityproblemsof network connectionsTo thatend,
rocks and racks guaranteethat a suspendedtonnectioncan
only beresumedy the partythatpossessethe key established
during initialization. Sinceit is obtainedthrough the Diffie-
Hellmankey exchangeprotocol,the key is secureagainstpas-
sive eaesdropping12].

Like ordinary network connectionsyocks and racks are
vulnerableto man-in-the-middleattacksstagedduring the key

exchangeor afterthe connectionis establishedResolvingthis
limitation requiresa trustedthird party that can authenticate
connectionendpoints.Currently applicationsthat requirethis
additionallevel of securitycanregistercallbackswith the RE-
API to invoke their authenticatioimechanisnduringinitializa-
tion andreconnectionWe could easilyextendrocksandracks
to interfacewith a public key infrastructureput we arewaiting
for this technologyto becomemore widespread Rocks and
racksarecompatiblewith existing protocolsfor encryptionand
authenticationsuchas SSHand IPsec(encryptedconnections
are the common case in our daily use).

In addition, rocks and racks may be more sensitve to
denial-of-servicattackshecause¢hey consumeamoreresources
thanordinaryconnectionsMost of theadditionalmemorycon-
sumptionoccursat userlevel in the rockslibrary or the rackd,
however additionalkernelresourcesre consumedy the rock
control soclet and the rackd paclet filter rules. Thesedo not
represennew typesof denial-of-serviceattacks,but they may
lower the requirements for an attacko bring dan a host.

7 PROCESS CHECKPOINTING

Rocks and racks can extend processcheckpointingmecha-
nisms to handle parallel programs,such as those that use
MPI [13] or PVM [7] in direct messageouting mode. They
free the checkpointmechanismfrom ary knowledge of the
library-level communicatiorsemantic®f theapplication since
therocksandracksrecorery mechanismeperateontheunder-
lying soclets,theleastcommondenominatarin contrastpther
systems that checkpoint parallel programs, such as
CoChecl{22,23] and MIST [2], are explicitly aware of the
communication library used by the application.

Existing processcheckpointmechanismgantake adwvan-
tageof reliablesocletswithout any modification.Whena pro-
cesslinked with rocksis checkpointedthe stateof the rocks
library is automatically saved with the rest of the process
addressspace Whenthe processis restartedirom the check-
point, the rocks library detectsthat the soclet file descriptors
have becomdnvalid, andinitiatestheirrecovery. A procesgshat
usesrocks can be migrated with its connectionssimply by
restarting its checkpoint on theméost.

Racksaremorecomplicatedo checkpointWe have added
rackscheckpointingsupportto a userlevel checkpointlibrary
thatis linked with the processit checkpoints A rack check-
point consistsof the statemaintainedby the rackd and, since
therackddoesnot buffer in-flight data,the contentsof the ker-
nel soclet buffers.Whendirectedby the checkpointibrary, the
rackdinducesthe soclet to transmitthe contentsof ary unac-
knowledged data in its send-liffer by advertising a large
receive window. The checkpointlibrary obtainsthe receve-
buffer contentsby readingfrom the soclet. Whenrestoringa
rack checkpoint,the checkpointlibrary passeshe checkpoint
to therackd,createsa new soclet, andconnectghe socletto a
specialaddress.The rackd interceptsthe paclets exchanged
during the connectionand rather than establishinga normal
connection,resumesthe connectionfrom the checkpoint.To
restorethe soclet buffers, the checkpointlibrary sendsthe
send-iffer contentsthroughthe soclet, and the rackd trans-
mits the recafe-kuffer contents to the local scetk



The processcheckpointingiunctionality enabledby rocks
andrackscanbeusedin severalways.To toleratethefailure of
a single node,the processunningon thatnodecanbe check-
pointedandthenrestartedvhenthe noderecovers. The same
checkpointcanalsobe usedto migratethe processo another
nodeby restartingthe checkpointon the new node.In thesame
manney the entire applicationcanbe migratedto a new setof
hosts,althoughthis migration mustbe performedone process
at a time to ensuresuccessfulreconnection Alternately the
network proxy we are developing for roaming applications
enablesary subsef the processeso be migratedat the same
time, and more generally the RE-API can be usedto link an
arbitrary mechanismfor locating migrated processwith the
rocks library

Racksandrockscanalsobe usedto obtaina globalcheck-
point of a parallel applicationfrom which the applicationcan
be restartedafter a hardware failure. Care must be taken to
ensurehatthe checkpoints globally consistentOneapproach
is to stopeachprocessfterit checkpointsOnceall processes
have checkpointedthe applicationcan be resumed. A more
generalapproactthat doesnot requirethe entireapplicationto
be stoppedis to take a Chandy and Lamport distributed
snapshoj3].

We have usedracksandrocksto checkpointand migrate
the processe®f an ordinary MPI applicationrunning under
MPICH [8]. Our applicationrunson a clusterof workstations
usingthe MPICH p4 device for clusters.Oncethe application
is started gachprocessanbe signalledto checkpointandthen
terminateor stop.Usingthistechniquewe planto extendCon-
dor supportfor MPI applicationd26] to includecheckpointing
andmigration.To obtaina globally consistentheckpointeach
processwill stopitself afterit checkpointsand Condorwill be
responsible for restarting them.

8 UDP

Rocksor racksarenot an obviousfit with UDP-basedpplica-
tions,howeverthemobility featuresf rocksandrackscanbea
clearbenefitto UDP applicationsenablinga programto con-
tinue its communicationfollowing a changeof addressor an
extended period of disconnection.For example, they could
allow streamingmediaapplicationsto automaticallycontinue
afteruserdisconnectiormandmovement.On the otherhand,the
reliability featuresof rocksandracksarenot alwaysappropri-
atefor UDP. Althoughthey couldsimplify thereliability mech-
anisms of some UDP applications, for others the reliable
delivery of all datamay compromisethe applications perfor-
mance or be poorly matched to its reliability model.

SinceUDP is inherentlyunreliable,applicationsthat use
UDP must be preparedfor lost, duplicated,and out-of-order
datagrams.Applications generally use timeouts to trigger
retransmissiorof lost dataandto decidethat communication
shouldbe aborted.It would be difficult for rocksandracksto
override timerbased mechanismssince that would require
themto understandheapplicationsuficiently to separatéimer
eventsrelatedto communicatiorfailure from thosethattrigger
othereventssuchas userlevel threadschedulingInstead the
mainbenefitof rocksandracksto UDP applicationds thatthey
can be a source of information about mobhility

For mobile-avare applications,we provide callbacksin
the RE-API throughwhich they canbe notified whena failure
hasbeendetectedyy rocksor racksandwhenthereconnection
mechanismhas locatedthe remote peer Thesecallbacksare
notareplacementor reliability mechanismsisedby the appli-
cation, but ratherthey provide thesemechanismswith addi-
tional information about communicationfailures. In the rare
casesn whichthefull reliability featuresof rocksandracksare
appropriatfor a UDP application the RE-API alsoallows the
applicationto tunnelUDP pacletsover arocks-or racks-man-
aged TCP connection.

9 PERFORMANCE

We have evaluatedrocksandracksdatatransferthroughputand
lateng, connectiorlateng, andreconnectiortateng over TCP
connectionsbetweena stationary500MHz Intel Pentium|lil
laptopanda mobile 700MHz Intel Pentiumlll laptopbothrun-
ning Linux 2.4.17.0Overall, thereare few surprises.The addi-
tional context switchesand copying of redirecting paclets
throughthe rackd makesracksthe more expensve of the two
systemsTheoverheadof rocksis noticeableonly whendatais
transferredn small paclets, while the performanceeffects of
racksare moresignificantandoccurat larger block sizes.The
startupcostof bothrocksandracksconnectiorestablishmenis
significantly higher thanthat of an ordinary TCP connection,
but only onthe orderof 1 ms. Altogether we feel the overhead
is acceptabldor thelevel of mobility andreliability functional-
ity provided by these systems.

9.1 Throughput and L atency

We attachedthe stationary laptop to a 100BaseTethernet
switch in our departmentnetwork and measuredthe TCP

throughputandlateny betweenit andthe mobile laptopfrom

threedifferentlinks: the sameswitch, the departmen802.11b
wirelessnetwork, anda homenetwork connectedo the Inter-

netby a cablemodem(in the uplink direction).We compared
throughputand lateny of ordinary soclets, rocks, and racks
with varying block sizes.Block sizeis the size of the buffer

passedo the soclet send systemcall. We reportaveragemea-
surements\er five runs (see Figui@).

The overheadf rocksandracksis mostvividly illustrated
on the fastlink. For blocksof size 100 bytesand larger, ordi-
nary soclets and rocks have comparablethroughputthat is
close to the link capacity (around 90Mb/sec). For smaller
blocks throughputdropsfor all three connectiontypes, how-
everthedropis largerfor rocks.Thelateny overheadof rocks
is small (around 10usec)and independenof block size. We
attribute the rocks overheadto the variousperoperationcosts
incurredduringdatatransferoverrocks,includingthe overhead
of copying into the in-flight buffer, periodicheartbeainterrup-
tions, andthe rocks wrappersto underlyingsoclet API func-
tions. Rackshave more dramaticoverhead.While they have
throughputsimilar to rockson smallblocks,for largerblocksit
plateausat a significantly lower rate (less than 75Mb/sec).
Thereis alsoa higherperblock lateng overheadthat, unlike
rocks,increasesvith the block size.We attribute this overhead
to the additionalperpaclket rackd context switchesandsystem
calls and the overheadof copying pacletsin and out of the
rackd.
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Figure 6: Average rocks and racksthroughput and latency over 100BaseT, 802.11b, and cable modem links.

The performanceeffectsof racksandrocksarelesseasily
discernedn the slower links. While we have exclusive access
to the 100BaseTswitch, our measurementsn the 802.11band
cablemodemnetworks aresubjectto the varying conditionsof
thesesharednetworks, makingit difficult to capturecleardif-
ferencesOn the 802.11blink, the standarddeviation is about
20% of the averagethroughputand about15% of the average
lateng. On the cablemodem,the standarddeviation is about
4% of the averagethroughputand about40% of the average
lateng. We concludethatthe overheadf racksis still apparent
on slaver links, ut not the werhead of rocks.

9.2 Connection

We measuredhe connectionoverheadin a rock-to-rockcon-
nectionand a rack-to-rackconnection We timed 100 applica-
tion calls to connect andreportthe averagetimesin Tablel.
Rockconnectiortimeis aboutl8timeshigherthanthetime for
ordinarysoclet connectionwhile rack connectionis about16
timeshigher The mostexpensve aspecbf bothconnectionss
the key exchangefor authenticationan operationthatinvolves
large integer arithmetic and takes approximately 2ms.
Althoughthesetimesarehigh, connectiortimesarestill about

Connection Type | Time (usec)

Ordinary Sockts 221
Rocks 3908
Racks 3588

Table 1: Average TCP connection establishment time.

4ms,which we deeman acceptableostfor the addedreliabil-
ity and mobility

9.3 Reconnection

We measuredhe amountof time it takesto reconnecia sus-
pendedock or rack.Reconnectioniime is thetime following a
restorationof network connectity that a rock spendsestab-
lishing anew dataandcontrolsocletwith thepeerandrecover-
ing in-flight data. For our experiment, we suspendeda
connectiorby disablingthe network interfaceon onemachine,
then measuredhe time elapsedrom whenwe re-enabledhe
interface to when the connectionreturnedto the ESTAB-

LISHED state.



The elapsedtime over multiple runs of the experiment
were always under2 secondsThis time is lessthanthe time
requiredto restartmostnon-trivial applicationsthatwould fail
withoutrocksor racks,andsmallin thetime scaleof theevents
that typically lead to network connectionfailures, such as
changeof link device, link device failure, laptop suspension,
re-dial and connect, or process migration.

10 RELATED WORK

Many techniquesfor network connectionmobility have been
proposed.Unlike thesesystems,racks and rocks emphasize
reliability over mobility, viewing mobility asjustanothercause
of network connectiorfailure. They provide reliability by inte-
grating mechanismgor rapid failure detectionand unassisted
reconnectiorwith mechanisméor preservingconnectiorstate.
The otherdistinguishingfeaturesof our systemsare that they
areimplementecentirely outsideof the kernelandthey enlista
new userlevel protocol to interoperatesafely with ordinary
soclets.

Mobile  TCP  soclets[19,20] and Persistent
Connectiong27] interposelike rocks, a library betweenthe
applicationcodeandthe socletsAPI thatpreserestheillusion
of a single unbrolen connectionover successie connection
instancesBetweenconnectionsMobile TCP socletspresere
in-flight databy using an unspecifiedkernel interfaceto the
contentsof the TCP sendbuffer (suchinterfacesare not com-
mon), while PersistentConnectiongnakes no attemptto pre-
sene in-flight data.Mobile socletscannothandleTCP failures
that resultin the abort of the TCP soclet, since that action
destrgs the contentsof the soclet sendbuffer. Both of these
techniquesdependon external supportto re-establishcontact
with a disconnectegheer andneitherinteroperatesafelywith
ordinaryapplicationsMobileSoclet[16] providesto Java pro-
gramsthe samein-flight data reliability of rocks and racks
usinganin-flight databuffer similarto thatof rocks,but it lacks
automaticfailure detection,usesa more complicatedin-flight
databuffering schemethat restrictsapplicationdataflow, and
lacks an interoperabilityfeaturelike the EDP, so it canonly
operate with other applications that use Mobile®bck

The TCP Migrate option[21] is an experimentalkernel
extensionto TCR It introducesa new stateto the TCP state
machinethatanestablishedonnectiorenterswhenit becomes
disconnecte@ndreturnsfrom whenthe connectioris re-estab-
lished. The techniqueis similar to racksin thatit manipulates
connectionstateat the paclet level. However, it is basedon a
modificationto the kernelimplementatiorof the transportpro-
tocol, not manipulationof the paclets. In addition, it lacks
automaticfailure detectionand automaticreconnectiorand it
does not supporixéended periods of disconnection.

MSOCKS[10] hasarchitecturakimilaritiesto both rocks
andracks.MSOCKSis a proxy-basedystenmthatenablescli-
ent applicationprocessto establisha mobile connectionwith
anordinarysener. The proxy usesa kernelmodificationcalled
a TCP splice thatallows the client, asit moves,to closeits end
of theconnectiorandestablisha new onewithout affectingthe
sener. The TCP splice mapsthe stateof the original connec-
tion held openby the sener with the stateof the currentcon-
nection held by the client. The TCP splice could be

reimplementedt userlevel with the rackd paclet filter tech-
nigueto mappacletsbetweerocal andremotesoclet state.ln
addition,MSOCKSinterposes library betweerclientapplica-
tion code and the operatingsystemthat redirect soclet API
calls to the MSOCKS proxy, andit usesa usesa mechanism
similar to the rocksin-flight buffer to presere datasentfrom
the client to the sener. MSOCKS lacks mechanismgor auto-
matic failure detectionandreconnectiorandits TCP spliceis
implemented in thedenel.

An alternatve to TCP-specifidechniquesMobile IP [17]
routesall IP paclets, including thoseusedby TCP and UDP,
betweena mobile host and ordinary peersby redirectingthe
pacletsthrougha home agent, a proxy on a fixed hostwith a
specializedkernel. Except for masking IP addresschanges
from TCP soclets,Mobile IP doesnot handlefailuresto TCP
connectionslt dependson externalmechanismdor detecting
disconnection and initiating reconnection.

11 CONCLUSION

Rocks and racks transparentlyprotect ordinary applications
from network connectiorfailures,including thosecausedy a
changeof IP addresslink failure, and extendedperiod of dis-
connection.Besidesbeing an unavoidable part of life with
mobile computersthesefailurescan also occur unexpectedly
during non-mobilecommunicationsuchaswhenmodemdail
or dynamiclP addresdeasesexpire. Rocksand racksdo not
require modifications to kernels or network infrastructure,
work transparentlywith ordinary application binaries, and
using our nev EnhancemenbetectionProtocoltransparently
revert to ordinary soclet behaior when communicatingwith
ordinarypeersWe routinely usethesesystemssocletsfor end-
userinteractve applications suchasremoteshellsandremote
GUI-basedapplications,andfor checkpointingand migrating
parallel programs.

As part of our ongoingwork on roamingapplication,we
aredevelopinga network proxy for moregeneranetwork con-
nectionmobility. This proxy will provide supportfor simulta-
neousmovementof both endsof a connectionandsupportthe
rocks-andracks-basedonnectionsvith ordinarypeersthatdo
not support either system.
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