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1 ABSTRACT 2 INTRODUCTION

With the development of dynamic compilers for The platform independence of Java makes it ideal for
Java, Java’'s performance promises to rival that gfbiquitous web-based supercomputing. In most cases
equivalent C/C++ binary executions. This shouldnterpreted Java does not perform as well as equivalent
ensure that Java will become the platform offative code [1]. For Java to compete, it is clear that it must
choice for ubiquitous Web-based supercomputinixe‘:”te’ at least in part, in native form. Dynamic compilation

; : 5 the most promising alternative for transforming Java byte-
Therefore, being able to build performance tool odes to native code. Thus, as more performance critical

for dynamlcally_complled Java exequtlons will Java programs are developed and run by VMs that
become increasingly important. In this paper Wemplement dynamic compilers, the ability to build

discuss th0$e aspects of dynamically compile@erformance tools for these types of executions will become
Java executions that make performance measurgecreasingly important. We describe Paradyn-J, an
ment difficult: (1) some Java application methodsexperimental version of the Paradyn Parallel Performance
may be transformed from byte-code to native cod@dool [2] that addresses this environment by dealing with the
at runtime; and (2), even in native form, applica-multiple execution forms (interpreted byte-code and directly
tion code may interact with the Java virtual executed native code) of a method, costs of the dynamic

machine. We describe Paradyn-J, an experimentéq’mp"atio”* and costs of residual dependencies of the Java
; . ’ pplication program (AP) on the virtual machine (VM).
version of the Paradyn Paralle|l Performance TOOEaradyn-J measures simulated dynamically compiled Java

that addresses this environment by describing pe yrograms run under Sun’s version 1.1.6 of the Java VM.

fmeance data from dynaml_cally compl_led eXeCU'Paradyn—J generates and inserts byte-code and native code
tions in terms of the multiple execution forms jnstrumentation into the VM and AP at runtime: it requires
(interpreted byte-code and directly executed nativ@o changes to the VM binary nor to AP .class files prior to
code) of a method, costs of the dynamic compilaexecution.
gon’” C%lrtllctj:) ncgﬁttshgfwﬁf;?%a; c%?ﬁgn\?v%ngls%s g];fé?_ﬁigure 1 shows the two execution modes of an environment
pp : PErOrat uses dynamic compilation: (1) the VM interprets AP
mance data from _Paradyn_—J 'QO tune a Java appl'cﬁyte—codes; (2) native code versions of AP methods, that the
tion method, and improve its interpreted byte-code/\ compiles at runtime, are directly executed by the
execution by 11% and its native form execution byoperating system/architecture platform with some residual
10%. As a result of tuning just one method, wevM interaction (for example, activities like object creation,
improve the application’s total execution time bythread synchronization, exception handling, garbage
10% when run under Sun’s ExactVM (included incollection, and calls from native code to byte-code methods

the Platform2 release of JDK). may require VM interaction). The VM becomes more like a

runtime library to the native form of an AP method. At any
1.1 Keywords point in the execution, the VM may compile a method, and
Performance profiling tool, dynamic compilation, Java. some methods may never be compiled.

There are several challenges associated with the unique
characteristics of these executions that make performance
measurement difficult:

1. Multiple execution forms of the Java application
program: Parts of the application program are transformed
from byte-code to native code by the VM at runtime; as a
result, the location and structure of Java application method
code can change at runtime. From a performance
measurement standpoint this causes two problems. First, a



performance tool must be able to measure each form of theperformance. We discuss, in Section 6, how this same type
Java method, requiring different types of instrumentation of performance data could be used by a VM developer to
technologies. Second, a tool must be aware of thetune the VM.

relationship between the byte-code and native code version

of a method, so that performance data can be correlated. In Section 4, we describe a tool for measuring dynamically

compiled Java executions. Paradyn-J provides the types of
2. Runtime Transformations: Compilation of Java byte- detailed performance data that we discovered were critical
code to native code occurs at runtime. A performance tool to understanding the performance of a dynamically
must represent performance data associated with thecompiled execution. In Section 5, we present results from
transformational activities. using Paradyn-J to measure a simulated dynamic execution
of two Java applications. We show how Paradyn-J can
profile VM overheads, 1/0 costs, interpretation costs, direct
execution costs, and runtime compilation costs associated
with the byte-code and the native code forms of individual
methods in the Java application. We use performance data
from Paradyn-J to tune a dynamically compiled Java
We explicitly represent VM-AP interactions during the application method, and improve its interpreted byte-code
interpretation and direct execution of the AP, costs execution by 11% and its native form execution by 10%.
associated with the runtime compilation of Java byte-codes InSection 8, we discuss implementation issues associated
to native code, and the relationships between the differentwith adding support to Paradyn-J for measuring parallel
forms of AP code objects so that performance data from Java.

different forms of an AP method can be correlated. 3 EVALUATING DYNAMIC

COMPILATION PERFORMANCE

Performance measurement of dynamically compiled
executions is more complicated than that of statically

3. Interaction between the VM and the AP: Even the

native code methods interact with the VM (the VM acts
more like a runtime library). Performance data that
explicitly describes these VM-AP interactions will help a
programer better understand their application’s execution.

interpret  direct execution

|
i | ) compiled program executions; beyond the general need for
HIP byiteasils | AP native code detailed performance data, a performance tool needs to deal
I with the multiple execution forms of the AP, and with
VM ; runtime interactions between the AP and the VM. In this

section, we motivate the need for performance data that
Platform (OS/ARCH) describe VM costs and other detailed runtime measures
associated with interpreted byte-code and directly executed
native code forms of a method. We show examples of how
an AP developer can use such performance data to tune the
AP. We demonstrate the need for this type of performance
data by comparing total execution times of dynamically
compiled and all-interpreted executions of three Java
applications. We examine three cases where the
h performance of dynamic compilation and subsequent direct
execution of a native form of a method might be the same
as, or worse than, simply interpreting a byte-code version of
the method: (1) methods whose native code interacts
frequently with the VM, (2) methods whose execution time
is not dominated by executing method code (e.g. I/O
Thtensive methods), and (3) small methods with simple byte-
code instructions.

Figure 1: During a dynamically compiled execution
methods may be interpreted by the VM and/or compiled
into native code and directly executedThe native code may
still interact with the VM. In this case, the VM acts like a
runtime library to the AP.

To quantify the unique runtime costs associated wit
dynamic execution, we compare an all-interpreted execution
to a dynamically compiled execution using Sun’s ExactVM
dynamic compiler included in the Platform 2 release of JDK
(java.sun.com/jdk/). Our study (presented in Section 3)
examines three cases where we suspect that a method’
dynamic compilation will result in little or no improvement
over its all-interpreted execution: (1) small methods with
few byte-code instructions, (2) methods whose native form The performance of a dynamically compiled Java method
has a lot of interaction with the VM, (3) methods whose can be represented as the sum of the time to interpret the
interpreted execution time is not dominated by interpreting byte-code form, the time to compile the byte-code to native
byte-code, for example, methods dominated by 1/O costs. code, and the time to execute the native form of the method:
Results from our study demonstrate the need for detailed g x Interp+ Compile+ bx NativeExwherea+b = n
performance data from dynamically compiled executions; js the number of times the method is executed).

we show how performance data that allows a user to

compare the interpreted execution costs to the native\We examine three cases where we suspect that the cost of
execution costs, to see the VM costs associated with theinterpreting a method is less than the cost of dynamically
native code’s execution, and to see ratios of I/O time to compiling it

interpreted and native execution times, can be used to morg((n x Interp) <(ax Interp+ Compile+ bx NativeE)).
easily determine how to tune the AP to improve its We implemented three Java application kernels to test these



cases. Each kernel consists of a main loop method thatwritten as b x (DirectEx+ VMInteractiol . In this
makes calls to methods implementing one of the three casesgpplication, it is likely that theVMinteraction term

We ran each application for varying numbers of iterations gominates this expression, and as a result, dynamic
under ExactVM. We compared executions with dynamic compilation does not result in much performance
compiling disabled to executions that used dynamic jjmprovement. Performance data that represent VM costs of
compiling. ExactVM uses a count based heuristic 0 gpject creation and modification, and can associate these
determine when to compile a method; if the method ¢osts with particular AP methods, can be used by an AP
contains a loop it is compiled immediately, otherwise it geveloper to tune the AP. For example, if performance data
waits to compile a method until it has been called 15 times. ygrifies that VM object creation costs dominate the
As a result, the main loop method is immediately compiled eyecution of the native and byte-code forms of a method,

(since it contains a loop), and the methods called by the then the AP developer could try to move to a more static
main loop are interpreted the first 14 times they are called. g¢rycture.

On the 15th call, the methods are compiled, and directly

executed as native code for this and all subsequent callsCase 2: Methods whose performance is not dominated
Calls from the native code in the main loop to the byte-code by interpreting byte-code: A method'’s execution time can
versions of the methods require interaction with the VM. be dominated by costs other than executing code (e.g., I/O
Calls from the native code in the main loop to native code Of synchronization costs). For this case, we implemented a

versions of the methods involve no VM interactions. Java application kernel consisting of a main loop method

) ) ) ) that calls a method to read a line from an input file, and then
the native form of the method can be dominated by pypothesis was that dynamic compilation of the read and
interactions with the VM. Some examples include methods yyrite methods will not result in much improvement because

that do object creation, deletion (resulting in increased theijr native code execution is dominated by 1/0 costs.
garbage collection), or modification (either modifying an

object pointer, or modifications that have side effects like The results of comparing an interpreted to a dynamically
memory allocation), and methods that contain calls to compiled execution on different sized input files (number of
methods in byte-code form. To test this case, we Main loop iterations) are shown as Case 2 in Table 1. After
implemented a Java application kernel that consists of aabout 500 iterations, the dynamically compiled execution
main loop that calls two methods. The first method creates performs better than the all-interpreted execution. Speed-
two objects and adds them to a Vector, and the secondups obtained for an increasing number of iterations are not
method removes an object from the Vector. After each main that great; 1/O costs dominate the native code’s execution
loop iteration, the Vector's size increases by one. The Javatime. Performance data that represent I/O costs associated
Class Libraries’ Vector class stores an array of objects in aWith a method’s execution could be used by an AP
contiguous chunk of memory. In our application, there are developer to tune the AP. For example, performance data
VM interactions associated with the two objects created in that indicate a method’s execution time is dominated by
the first method. The increasing size of the vector will result performing several small writes could be used by an AP
in periodic interactions with the VM: when an object is developer to reduce the number of writes (possibly by
added to a full Vector, the VM will be involved in allocation  buffering), and as a result, reduce these 1/O costs.

of a new chunk of memory, and in copying the old Vector’s
contents to this new chunk. Object removal will result in
increased garbage collection activity in the VM, as the
amount of freed space increases with each main loop
iteration. Our hypothesis was that the dynamic compilation
of methods that create, modify, and delete objects will not
result in much improvement over an all-interpreted
execution because their execution times are dominated b
interactions with the VM.

Case 3: Methods with a few simple byte-code
instructions: For these methods, the time spent interpreting
method byte-codes is small, so the execution of a native
form of the method may not result in much improvement.
To test this case, we wrote a Java application kernel with a
main loop method that calls three small methods; two
change the value of a data member and one returns the value
Yof a data member. Our hypothesis was that dynamic
compilation of these three small methods will not result in
Results are shown as Case 1 in Table 1. For about the firsthuch improvement because their interpreted execution is
3,000 iterations, interpreted execution performs better thannot that expensive.

dynamically compiled execution. After this, the Costs of pe regyits (Case 3 in Table 1) show that there are a non-
runtime —compilation are recovered, and dynamiC givial number of iterations (about 25,000) where an all-
compilation performs better. However, there are no greatjnerpreted execution outperforms a dynamically compiled
improvements in the dynamically compiled performance as gyecytion. However, as the number of iterations increases,
the number of iterations increase. This is due t0 VM the nenalty for continuing to interpret is high. Part of this is

interactions with the native code due to object creates andy e to the high costs of VM overhead to interpret method
modifications. Each method’s native execution consists of .| instructions vs. the cost of directly executing a native

part direct execution of native code and part VM interaction; .oqe call instruction. Performance data that explicitly
in the formula on Page 3, thie x NativeEx term can be represent VM method call overheads, VM costs to interpret



Case 1: object modifications Case 2: /0O intensive Case 3: small methods

itera- Dyn Interp | Speed itera- Dyn Interp | Speed iterations Dyn Interp | Speed
tions Comp up tions Comp up Comp up

100,000|| 114.7 119.5 1.04 100,000 427.1 436(43 1.02 10,000,000 176 B511 |19.94

10,000 1.73 2.04 1.18 10,00p  40.47 4270 1{0p 1,000{p00 0.83 4.16 5.01
1,000 0.71 0.65 0.91 1,000 4.593 4.64 1.p2 100,000 0.74 D.98 1.32
100 0.70 0.63 0.90 100 1.0p 0.99 0.94 10,0p0 072 Q.67 D.93

1,000 0.73 0.63 0.86

Table 1: Execution time (in seconds) of each Java kernel run by ExactVM comparing interpreted Javi{erp column) to
dynamically compiled Java Dyn Compcolumn). Each measurement is the average of 10 runs.

byte-codes, and VM costs to execute native code could bethreshold (based on number of calls) the wrapper calls a
used by an AP developer to identify that interpreted call routine that simulates the method’s runtime compilation.
instructions are expensive. The “compiling” routine takes an estimated compiling time
as a parameter, and it waits for the specified time. For all
subsequent calls to the method, the wrapper function calls a
native version of the method. The native version is written
in C with minimal use of the JNI interface (java.sun.com/
products/jdk/1.2/docs/guide/jni/index.html). It is compiled

The result of this study points to specific examples where
detailed performance measures from a dynamically
compiled execution can provide information that is critical

to understanding the execution. For real Java applications

Gontrol flow sirlcture, & performance ool that can reprasentM0 & shared object that the VM loads at runime. We

specific VM and I/O,costs associated with byte-code and approximated .each met hqd’s compile time by timing
. - ExactVM’s runtime compilation of each method.

native code can be used by an AP developer to more easily

determine which AP methods to tune and how to tune them. We simulate the three different execution phases we need to

In Section 6, we discuss the implications of this study for a demonstrate a performance tool that can provide detailed

VM developer. performance measures from a dynamically compiled

execution. However, we do not use our simulation to

4 A PERFORMANCE TOOL FOR compare total execution times of a dynamically compiled
DYNAMICALLY COMPILED JAVA execution to an interpreted execution because each wrapper

We present Paradyn-J, a prototype implementation of afunction adds an extra layer of indirection for calls to byte-
performance tool for measuring dynamically compiled Java code and JNI native code versions of the method. The
executions. Paradyn-J generates and inserts (or removesyrapper functions also add more interpreted execution since
instrumentation code into AP and VM code at runtime; as a they are written in Java and interpreted each time they are
result, Paradyn-J requires no modifications to the VM nor to called.

the AP prior to execution. We wanted to implement .

Paradyn-J to measure a real Java dynamic compiler,4-2 Performance Tool Implementation
unfortunately, no source code was available for ExactVM or Paradyn-J is an extension of our earlier tool for measuring
HotSpot[3]_ Instead, we simulated dynamic Comp"ation, interpreted Java exgcutions [4] We mOdIerdthIS tool to add
and built our prototype to measure its execution. We first support for measuring our simulated dynamically compiled
present our simulation and then the details of Paradyn-J's€xecutions run under Sun’s version 1.1.6 of JDK. Paradyn-J

implementation. generates and inserts instrumentation code into the AP and
. ) ) . VM at runtime; we use Paradyn’s Dynamic Instrumentation
4.1 Simulation of a Dynamic Compiler [2] to instrument VM code and AP native code, and we use

Our simulation approximates the three main runtime Transformational Instrumentation [4] to instrument AP
activities in a dynamically compiled execution: byte-codes.

interpretation of method byte-code; run-time compilation of
some methods; and direct execution of the native form of
transformed methods. We simulate dynamic compilation by
modifying the Java application and running it with a Java
interpreter (JDK 1.1.6 running on Solaris 2.6). The VM
handles all class loading, exception handling, garbag
collection, and object creation. A “dynamically compiled”
method is replaced with a wrapper function that initially
calls a byte-code version of the method. After we reach a

Paradyn-J interacts with the VM's runtime compiling
routines. We discover the native form of a compiled method
so that it can be instrumented, create mappings between
byte-code and native code forms of a method so that
performance data collected in different forms of an AP
e )
method can be correlated, and measure costs associated
with the runtime compilation of a method. We instrument
our routine that simulates runtime compilation. The



instrumentation notifies the tool whenever a method is methodfoo will we measure the VM overhead associated
“dynamically compiled”. At runtime, the VM calls dlopen()  with the object create).

to load the shared objects that contain the native versions of
the AP methods and contain our “compiling” routine. We
instrument the VM to catch dlopen() events. When we
detect that the VM has loaded our “compiling” routine, we
instrument it. Instrumentation at its entry point starts a timer
to measure the dynamic compiling time. Instrumentation at
its exit point stops the timer measuring the compiling time,
and gets the name of the native form of the method to obtain
mapping information between the method’s two forms.

For the neural network program, we picked good candidate
methods to “dynamically compile” by using Paradyn-J to
measure its all-interpreted execution and choosing the seven
application methods that were accounting for most of the
execution time. We wrote JNI native versions and wrapper
functions for each of these methods. We first demonstrate
that Paradyn-J can associate performance data with AP
methods in their byte-code and native code forms, and with
the runtime compilation of AP methods. Figure 2 shows a
For performance tools like ours, that instrument AP byte- performance visualization from Paradyn-J. The
codes, there is a problem of how to deal with instrumented visualization is a time plot showing the fraction of CPUtime
byte-codes that are about to be transformed by the dynamicper second for the byte-code (in black) and native (in white)
compiler. One option is to let the VM compile the byte-code forms of theupdateWeights AP method, showing that
instrumentation along with the byte-code instructions of the updateWeights benefits from dynamic compilation.
AP method. This solution is not ideal because there is no Figure 3 is a table visualization that shows performance
guarantee that the VM will produce transformed measures of total CPUTime (middle column), and total
instrumentation code that is measuring the same thing as thenumber of calls (right column) associated with the byte-
byte-code instrumentation (the compiler could re-order code (top row) and native (middle row) forms of
instrumentation code and method code instructions, orupdateWeights , and compiling time (left column)
could optimize away some instrumentation code). A better associated with the method’'s wrapper function (0.174
option is to remove byte-code instrumentation from the seconds). This visualization shows data taken part way
method just prior to compilation, let the VM compile the through the application’s execution. At the point when this
method, and then generate equivalent native codewas taken, the procedure calls measure shows that the byte-
instrumentation, and insert it into the native form of the code version is called 15 times for a total of 0.478 seconds
method. This requires that the performance tool interact before it is “dynamically compiled”, and the native code
with the VM immediately before and after compilation of a version has executed 54 times for a total of 0.584 seconds.
method. Since our simulated compiling routine does not The implication of this data is that at this point in the
actually translate byte-code to native code we did not have execution,updateWeights  has already benefited from

to worry about this problem for our tool's current being compiled at runtime; if the method was not
implementation. However, when we port our tool to a real “dynamically compiled”, and instead was interpreted for

dynamic compiler we will have to handle this case. each all of these 69 calls, then the total execution time
would be 2.2 seconds (69 caks0.031 seconds/call). The
5 RESULTS total execution time for the method’s “dynamically

We present results using performance data from Paradyn-Jcompiled” execution is 1.2 seconds (0.478 seconds of
We demonstrate how we can provide detailed performanceinterpreted execution + 0.174 seconds of compilation +

data from two Java applications, a neural network (.584 seconds of native execution).

application consisting of 15,800 lines of Java source code
and 23 class files, and a CPU simulator application e next demonstrate how performance data from Paradyn-J

consisting of 1,200 lines of code and 11 class files. Using €@n expl_icitly represent VM costs associated with byte-code
this data, we tuned a method in the neural network and native code forms of a method. We measured the
application improving the method’s interpreted byte-code number 9f object creates in each of our “dynamically
execution by 11% and its native code execution by 10%, and€ompiled” methods. In Figure 4, the visualization shows a
improving overall performance of the application by 10% Method CalculateHiddenLayer ) that accounts for
when run under ExactVM. We profile the CPU simulator most of the object creates. Th|sl V|§uallzat|on shows dgta
application to further show how we can obtain key taken part way through the application’s execution. In its

performance data from a dynamically compiled execution. byte-code form (top row), it is called 15 times, creates 158
] ] B objects, and accumulates 3.96 seconds of CPU time. After it
We obtain performance measures that describe specific VM-is called 15 times, it is compiled at runtime, and its native

AP interactions by dynamically inserting instrumentation code form (bottom row) is called 50 times, creates 600
code into VM routines and Java AP routines to measure theobjects, and accumulates 20.8 seconds of CPU ltirie

mterﬁctlzn. For .e)t(ag‘pleth tobme?sure t?ed O.bje':; Creattr'lognative form execution is more expensive (at 416 ms per
overhead associated with Objects created in metho execution) than its interpreted execution (at 264 ms per

foo, we insert instrumentation into methdeb that will execution). This performance data tells the Java application
set afoo_flag wheneverfoo creates an object, and we
insert timer instrumentation into VM routines that handle
object creates. The timer code will be executed only when ! Each time the method is called, the number of object creates can
the foo_flag  is set (only when the object is created by  vary due to changes in the application’s data structures.
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Figure 2: Performance data for theupdateWeights  method from the dynamically compiled neural network Java application.
The time plot visualization shows the fraction of CPUtime/second for the native (white) and byte-code (black) form of thel . metho

File Actions View

| Phase: Global
H compile time  cpu  procedure_calls
CPUs seconds CPUs seconds ops
updateWeights_interp(Lml.MyHashtable;)y 0.478 15
Java_ArtificialNeuralNetworkLearner_updateWeights 1native 0.584 4
/ updateWeights(Lml.MyHashtable;)V 0.174 69
i T

Figure 3: Performance data for theupdateWeights  method from the dynamically compiled neural network Java application.
The table shows the performance measures total CPUTime (second column) and number of calls (third column), for both thelbyte-co
(top row), and native (middle row) forms, and compile time (first column) associated w/the wrapper (bottom row).

developer that in both its byte-code and native code form, version (23 vs. 158 creates), and 75% in the native code
calculateHiddenLayer creates a lot of objects. At version (150 vs. 600 creates). The CPU time spent
least part of the reason why it runs so slowly has to do with interpreting the method’s byte-code form improved by 11%
the VM overhead associated with these object creates. Ong3.53 vs. 3.96 seconds), and the CPUtime executing the
way to improve its performance is to try to reduce the method’s native code form improved by 10% (18.7 vs. 20.8
number of objects created in the method’s execution. We seconds).

examined the method’s Java source code, and discovere

that a temporary object was being created in a while loop. dynamically compiled execution translates to a real

This temporary object had the same value each time it was icall led ’ Wi ¢ d th
created and used inside the loop.We modified the method to ynamically compried execution. VVe performe € same

hoist the temporary object creation outside the loop. The tuning changes to the original version of the Java

table in Figure 5 shows total CPUtime and object creates of appliqatipn (without our modifi'cations to'simL'JIate dynamic
the modified version ofcalculateHiddenLayer compilation), and measured its execution time when run

: At der ExactVM. The overall execution time improved by
This data was taken partway through the application’s un . ; "
execution. As a result of this change, we were able to reducelO%(,When run by ExactVM with dynamic compiling, and
the number of object creates by 85% in the byte-code by 6% when run by ExactVM with dynamic compiling

%e wanted to see how well our tuning based on a simulated



File Actions View

| Phase: Giohal

N epu_inclusive num_obj create procedure_calls
CPUs_seconds ops ops

calculateHiddenLayer interp(V 39614 158 135
Java_ArtificialNeuralNetworkLearner_calculateHiddenLayer_Inative  20.762 600 30

I

Figure 4: Performance data for methodcalculateHiddenLayer . The total CPU time (first column), total number of object creates
(second column), and total number of calls (third column) to the byte-code (top row) and native code (bottom row) formmeftibd.

File Actions View

| Phase: Giohal
Y epu_inclusive num_obj_create procedure_calls
CPUs seconds ops ops
calculateHiddenLayer interp()Vy 1.53 23 15
Java_ArtificialNeuralNetworkLearner calculateHiddenLayer Inative 18.7 150 a0
/]

Figure 5: Performance data for methodcalculateHiddenLayer after removing some object createsThis table shows that the
total CPUtime for both the native and byte-code forms of the method is reduced as a result of reducing the number of offest cre

disabled (Table 2). These results imply that ExactVM’s indication of how to tune the method to improve its
interactions with AP native and byte-codes due to handling performance.
object creates account for a larger percent of the

application’s execution time (compared to our “dynamic original | Tuned Change
compiler”). ExactVM has improvements over JDK 1.1.6 to 9 9
reduce garbage collection, method call and object access| pynamic Comp. 21.09 18.97 10%
times, and it does not have any of the JNI interactions with

the VM that our native forms of methods have with the VM. All-Interpreted 190.83 179.90 6%

Therefore, it is reasonable to conclude that object creates — —
account for a larger percentage of the VM overheads in Table 2: Total execut_lon times under ExactVM for the original
ExactVM executions. As a result, our tuned application _and the tuned versions of the neural network programe
achieves a higher percentage of total execution time mprove the performance by 10% with dynamic compiling, and
improvement when run under ExactVM than when run by by 6% with dynamic compiling disabled (all-interpreted).

our “dynamic compiler”. ) ,
In general, for methods that do not benefit from being

In this study, we limited our options for performance tuning compiled at run-time by the VM, performance data that help
to the seven methods for which we simulated dynamic explain why the method does not perform well will help a
compilation. However, there are close to 1,000 methods in program developer more easily determine how to tune the
the application’s execution. If this was a real dynamically method’s performance_ For examp|e, in Section3 we
compiled execution, then all of these methods would be demonstrated cases where if we had performance data
available for performance tuning. Performance data from describing specific VM costs and 1/O costs associated with a
our tool that can measure VM overheads associated with thernethod’s interpreted byte-code and direcﬂy executed native

byte-code and native code form of a method, help a programcode, then we could more easily know how to tune the
developer focus in on those methods to tune, and gives anmethod to improve its performance.



Case 1: object creates Case 2: /O intensive Case 3: small functions
Measurement Byte-code|| Measurement Native Byte-code Measurement] Native Byte-code
Total CPU seconds 2.3515 Total I/O 5.6493 0.36658 CPU seconds | 49us 6.7us

seconds
Object Creation 1.5730 Total CPU 0.00496 0.04403 MethodCall 2.5us
Overhead seconds seconds Time

Table 3: Performance data from the CPU Simulation APThese are detailed performance measures of methods in the AP that have
performance characteristics similar to the three test cases from Section 3.

In the second study, using the CPU simulator application, why this method benefits from being dynamically compiled;
we show additional examples of how Paradyn-J can providethe fraction of CPU time for the native code version of the
the type of detailed performance measures that we method is slightly better than for the byte-code version (4.9
discovered would be useful in Section 3; we picked methods s to 6.7 us per call), however, the added method call
to “dynamically compile” based on the three cases we overhead for interpreting (an additional 245 for every 6.7
examined in Section 3. For the first case (native code with aps of interpreting byte-code) make interpreted execution
lot of VM interaction), we picked a method that created much more expensive. If this had been an all-interpreted
several String objects. For the second case (methods whosexecution, then the performance data for the interpreted
execution is not dominated by interpreting byte-code), we byte-code form of the method indicates that interpreting
picked a method that did a lot of I1/O. For the third case method call instructions is an expensive VM activity.
(small byte-code methods), we picked a method consisting Therefore, one way to make this method run faster on an
of 3 byte-code instructions that simply returned the value of interpreter VM, is to reduce the nhumber of method calls in
a data member. In Table 3, we show performance data fromthe execution. In a previous paper [4], we presented a
Paradyn-J's measurement of each of the three methods.  performance tuning study of an all-interpreted execution of
this Java application. In this study we reduce method call
overheads by tuning the application to remove some method
calls. Performance data from our tool led us to easily
determine which methods to tune and which calls to remove
from the execution to improve its performance.

For case 1, VM object creation overheads account for more
than half of the method’s execution time (1.57 out of 2.35
seconds); this tells the AP developer that one way to make
this method run faster is to try to reduce this VM overhead
by removing some object creates from this method’s
execution. The performance data from these three methods describe the

In the second case, a method that performs a lot of 1/O, Ourdetalled behaviors needed by AP developers to tune their

tool can represent performance data showing the amount Ofdynamlcally compiled applications.

CPU seconds and I/O seconds in the interpreted byte-codegg QUR PERFORMANCE DATA AND VM
and directly executed native code form of the method (a DEVELOPERS

total of 5.65 seconds of I/O time and negligible CPU time in
. . The same type of performance data used by an AP
the native code form, and a total of 0.37 seconds of I/O time developer can also be used by a VM developer to tune the

and 0.044 seconds of CPU time in the byte-code f8rm) M. For example, by characterizing byte-code sequences
This performance data tells an AP developer to focus on that do not benefit much from dynamic compilation (like
reducing the I/O costs since they account for the largest methods with calls to I/O routines and simple control flow
fraction of this method’s execution time (almost 100% of graphs), the VM could identify AP methods with similar
the native code’s execution, and 90% of the interpreted byte-pyte-code sequences and exclude them from consideration
code’s execution is due to I/O costs). for runtime compilation. Similarly, performance data

In the third case, small method functions with a few simple Showing that certain types of methods may be good
byte-code instructions, our performance data representsc@ndidates for compiling, can be used by the VM to
CPU times for both the byte-code and native code form of fécognize these methods, and compile them right away

the method. This data provides us with some explanation of (EX2ctVM does something like this for the case of methods
containing loops). The data can also point to ways that the

compiler can be tuned to produce better native code. For
2 The 1/0 time for the native code is much larger than that of the example, performance measures indicating that VM method
byte-code because the native code of the method is called morecall overheads are expensive can be used to tune the
frequently than the 15 calls to the interpreted byte-code form of compiler to aggressively in-line methods (this is why
the method. We are representing these numbers as total ratheHotspot is designed to aggressively in-line methods).The
than per call numbers because each call to the method writes a dif-\/M also could use performance information about specific
ferent number of bytes; they are not directly comparable on a per interactions between the VM and the native code (e.g. object
call basis. creation overheads) to try to reduce some of these expensive




VM interactions or to tune the VM routines that are Paradyn-Jto demonstrate how we can represent data that is
responsible for these interactions (e.g. the VM routines critical to understanding the performance of dynamically
involved in object creation). compiled executions; performance data from Paradyn-J can
be used by a Java application developer or by a Java virtual
machine developer to more easily determine how to tune the
Java application or the Java virtual machine.

Detailed performance data, collected at runtime, could be
used to drive the VM's runtime compiling heuristics. For

example, the VM could measure I/O and CPU time for a
method the first time it is interpreted. If the method is For Paradyn-J to be more useful to developers of high
dominated by I/O time, then exclude it as a candidate for performance Java applications, we need to add support for
compiling (and stop profiling it). There have been several profiling threaded Java programs. In future versions of

efforts to incorporate detailed runtime information into Paradyn-J, we will support threaded Java applications by
compilers to produce better optimized versions of code and/leveraging off of Paradyn’s new support for threads [9].

or to drive runtime compiling heuristics [5, 6, 7, 8] (these

are all for languages other than Java). 9 ACKNOWLEDGEMENTS
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