
1 ABSTRACT
With the development of dynamic compilers for
Java, Java’s performance promises to rival that of
equivalent C/C++ binary executions. This should
ensure that Java will become the platform of
choice for ubiquitous Web-based supercomputing.
Therefore, being able to build performance tools
for dynamically compiled Java executions will
become increasingly important. In this paper we
discuss those aspects of dynamically compiled
Java executions that make performance measure-
ment difficult: (1) some Java application methods
may be transformed from byte-code to native code
at runtime; and (2), even in native form, applica-
tion code may interact with the Java virtual
machine. We describe Paradyn-J, an experimental
version of the Paradyn Parallel Performance Tool
that addresses this environment by describing per-
formance data from dynamically compiled execu-
tions in terms of the multiple execution forms
(interpreted byte-code and directly executed native
code) of a method, costs of the dynamic compila-
tion, and costs of residual dependencies of the
application on the virtual machine. We use perfor-
mance data from Paradyn-J to tune a Java applica-
tion method, and improve its interpreted byte-code
execution by 11% and its native form execution by
10%. As a result of tuning just one method, we
improve the application’s total execution time by
10% when run under Sun’s ExactVM (included in
the Platform2 release of JDK).

1.1 Keywords
Performance profiling tool, dynamic compilation, Java.

2 INTRODUCTION
The platform independence of Java makes it ideal for
ubiquitous web-based supercomputing. In most cases
interpreted Java does not perform as well as equivalent
native code [1]. For Java to compete, it is clear that it must
execute, at least in part, in native form. Dynamic compilation
is the most promising alternative for transforming Java byte-
codes to native code. Thus, as more performance critical
Java programs are developed and run by VMs that
implement dynamic compilers, the ability to build
performance tools for these types of executions will become
increasingly important. We describe Paradyn-J, an
experimental version of the Paradyn Parallel Performance
Tool [2] that addresses this environment by dealing with the
multiple execution forms (interpreted byte-code and directly
executed native code) of a method, costs of the dynamic
compilation, and costs of residual dependencies of the Java
application program (AP) on the virtual machine (VM).
Paradyn-J measures simulated dynamically compiled Java
programs run under Sun’s version 1.1.6 of the Java VM.
Paradyn-J generates and inserts byte-code and native code
instrumentation into the VM and AP at runtime; it requires
no changes to the VM binary nor to AP .class files prior to
execution.

Figure 1 shows the two execution modes of an environment
that uses dynamic compilation: (1) the VM interprets AP
byte-codes; (2) native code versions of AP methods, that the
VM compiles at runtime, are directly executed by the
operating system/architecture platform with some residual
VM interaction (for example, activities like object creation,
thread synchronization, exception handling, garbage
collection, and calls from native code to byte-code methods
may require VM interaction). The VM becomes more like a
runtime library to the native form of an AP method. At any
point in the execution, the VM may compile a method, and
some methods may never be compiled.

There are several challenges associated with the unique
characteristics of these executions that make performance
measurement difficult:

1. Multiple execution forms of the Java application
program: Parts of the application program are transformed
from byte-code to native code by the VM at runtime; as a
result, the location and structure of Java application method
code can change at runtime. From a performance
measurement standpoint this causes two problems. First, a

Performance Measurement of Dynamically Compiled Java
Executions

Tia Newhall and Barton P. Miller
University of Wisconsin Madison
Madison, WI 53706-1685 USA

+1 (608) 262-1204
{newhall,bart}@cs.wisc.edu

performance tool must be able to measure each form of the
Java method, requiring different types of instrumentation
technologies. Second, a tool must be aware of the
relationship between the byte-code and native code version
of a method, so that performance data can be correlated.

2. Runtime Transformations: Compilation of Java byte-
code to native code occurs at runtime. A performance tool
must represent performance data associated with the
transformational activities.

3. Interaction between the VM and the AP: Even the
native code methods interact with the VM (the VM acts
more like a runtime library). Performance data that
explicitly describes these VM-AP interactions will help a
programer better understand their application’s execution.

We explicitly represent VM-AP interactions during the
interpretation and direct execution of the AP, costs
associated with the runtime compilation of Java byte-codes
to native code, and the relationships between the different
forms of AP code objects so that performance data from
different forms of an AP method can be correlated.

To quantify the unique runtime costs associated with
dynamic execution, we compare an all-interpreted execution
to a dynamically compiled execution using Sun’s ExactVM
dynamic compiler included in the Platform 2 release of JDK
(java.sun.com/jdk/). Our study (presented in Section 3)
examines three cases where we suspect that a method’s
dynamic compilation will result in little or no improvement
over its all-interpreted execution: (1) small methods with
few byte-code instructions, (2) methods whose native form
has a lot of interaction with the VM, (3) methods whose
interpreted execution time is not dominated by interpreting
byte-code, for example, methods dominated by I/O costs.
Results from our study demonstrate the need for detailed
performance data from dynamically compiled executions;
we show how performance data that allows a user to
compare the interpreted execution costs to the native
execution costs, to see the VM costs associated with the
native code’s execution, and to see ratios of I/O time to
interpreted and native execution times, can be used to more
easily determine how to tune the AP to improve its

performance. We discuss, in Section 6, how this same type
of performance data could be used by a VM developer to
tune the VM.

In Section 4, we describe a tool for measuring dynamically
compiled Java executions. Paradyn-J provides the types of
detailed performance data that we discovered were critical
to understanding the performance of a dynamically
compiled execution. In Section 5, we present results from
using Paradyn-J to measure a simulated dynamic execution
of two Java applications. We show how Paradyn-J can
profile VM overheads, I/O costs, interpretation costs, direct
execution costs, and runtime compilation costs associated
with the byte-code and the native code forms of individual
methods in the Java application. We use performance data
from Paradyn-J to tune a dynamically compiled Java
application method, and improve its interpreted byte-code
execution by 11% and its native form execution by 10%.
InSection 8, we discuss implementation issues associated
with adding support to Paradyn-J for measuring parallel
Java.

3 EVALUATING DYNAMIC
COMPILATION PERFORMANCE

Performance measurement of dynamically compiled
executions is more complicated than that of statically
compiled program executions; beyond the general need for
detailed performance data, a performance tool needs to deal
with the multiple execution forms of the AP, and with
runtime interactions between the AP and the VM. In this
section, we motivate the need for performance data that
describe VM costs and other detailed runtime measures
associated with interpreted byte-code and directly executed
native code forms of a method. We show examples of how
an AP developer can use such performance data to tune the
AP. We demonstrate the need for this type of performance
data by comparing total execution times of dynamically
compiled and all-interpreted executions of three Java
applications. We examine three cases where the
performance of dynamic compilation and subsequent direct
execution of a native form of a method might be the same
as, or worse than, simply interpreting a byte-code version of
the method: (1) methods whose native code interacts
frequently with the VM, (2) methods whose execution time
is not dominated by executing method code (e.g. I/O
intensive methods), and (3) small methods with simple byte-
code instructions.

The performance of a dynamically compiled Java method
can be represented as the sum of the time to interpret the
byte-code form, the time to compile the byte-code to native
code, and the time to execute the native form of the method:

(where
is the number of times the method is executed).

We examine three cases where we suspect that the cost of
interpreting a method is less than the cost of dynamically
compiling it
().
We implemented three Java application kernels to test these

Figure 1: During a dynamically compiled execution
methods may be interpreted by the VM and/or compiled

into native code and directly executed.The native code may
still interact with the VM. In this case, the VM acts like a

runtime library to the AP.

a Interp× Compile b NativeEx×+ + a b+ n=

n Interp×() a Interp× Compile b NativeEx×+ +()<

cases. Each kernel consists of a main loop method that
makes calls to methods implementing one of the three cases.
We ran each application for varying numbers of iterations
under ExactVM. We compared executions with dynamic
compiling disabled to executions that used dynamic
compiling. ExactVM uses a count based heuristic to
determine when to compile a method; if the method
contains a loop it is compiled immediately, otherwise it
waits to compile a method until it has been called 15 times.
As a result, the main loop method is immediately compiled
(since it contains a loop), and the methods called by the
main loop are interpreted the first 14 times they are called.
On the 15th call, the methods are compiled, and directly
executed as native code for this and all subsequent calls.
Calls from the native code in the main loop to the byte-code
versions of the methods require interaction with the VM.
Calls from the native code in the main loop to native code
versions of the methods involve no VM interactions.

Case 1: Methods with VM interactions: The execution of
the native form of the method can be dominated by
interactions with the VM. Some examples include methods
that do object creation, deletion (resulting in increased
garbage collection), or modification (either modifying an
object pointer, or modifications that have side effects like
memory allocation), and methods that contain calls to
methods in byte-code form. To test this case, we
implemented a Java application kernel that consists of a
main loop that calls two methods. The first method creates
two objects and adds them to a Vector, and the second
method removes an object from the Vector. After each main
loop iteration, the Vector’s size increases by one. The Java
Class Libraries’ Vector class stores an array of objects in a
contiguous chunk of memory. In our application, there are
VM interactions associated with the two objects created in
the first method. The increasing size of the vector will result
in periodic interactions with the VM: when an object is
added to a full Vector, the VM will be involved in allocation
of a new chunk of memory, and in copying the old Vector’s
contents to this new chunk. Object removal will result in
increased garbage collection activity in the VM, as the
amount of freed space increases with each main loop
iteration. Our hypothesis was that the dynamic compilation
of methods that create, modify, and delete objects will not
result in much improvement over an all-interpreted
execution because their execution times are dominated by
interactions with the VM.

Results are shown as Case 1 in Table 1. For about the first
3,000 iterations, interpreted execution performs better than
dynamically compiled execution. After this, the costs of
runtime compilation are recovered, and dynamic
compilation performs better. However, there are no great
improvements in the dynamically compiled performance as
the number of iterations increase. This is due to VM
interactions with the native code due to object creates and
modifications. Each method’s native execution consists of
part direct execution of native code and part VM interaction;
in the formula on Page 3, the term can be

written as . In this
application, it is likely that theVMInteraction term
dominates this expression, and as a result, dynamic
compilation does not result in much performance
improvement. Performance data that represent VM costs of
object creation and modification, and can associate these
costs with particular AP methods, can be used by an AP
developer to tune the AP. For example, if performance data
verifies that VM object creation costs dominate the
execution of the native and byte-code forms of a method,
then the AP developer could try to move to a more static
structure.

Case 2: Methods whose performance is not dominated
by interpreting byte-code: A method’s execution time can
be dominated by costs other than executing code (e.g., I/O
or synchronization costs). For this case, we implemented a
Java application kernel consisting of a main loop method
that calls a method to read a line from an input file, and then
calls a method to write the line to an output file. Our
hypothesis was that dynamic compilation of the read and
write methods will not result in much improvement because
their native code execution is dominated by I/O costs.

The results of comparing an interpreted to a dynamically
compiled execution on different sized input files (number of
main loop iterations) are shown as Case 2 in Table 1. After
about 500 iterations, the dynamically compiled execution
performs better than the all-interpreted execution. Speed-
ups obtained for an increasing number of iterations are not
that great; I/O costs dominate the native code’s execution
time. Performance data that represent I/O costs associated
with a method’s execution could be used by an AP
developer to tune the AP. For example, performance data
that indicate a method’s execution time is dominated by
performing several small writes could be used by an AP
developer to reduce the number of writes (possibly by
buffering), and as a result, reduce these I/O costs.

Case 3: Methods with a few simple byte-code
instructions: For these methods, the time spent interpreting
method byte-codes is small, so the execution of a native
form of the method may not result in much improvement.
To test this case, we wrote a Java application kernel with a
main loop method that calls three small methods; two
change the value of a data member and one returns the value
of a data member. Our hypothesis was that dynamic
compilation of these three small methods will not result in
much improvement because their interpreted execution is
not that expensive.

The results (Case 3 in Table 1) show that there are a non-
trivial number of iterations (about 25,000) where an all-
interpreted execution outperforms a dynamically compiled
execution. However, as the number of iterations increases,
the penalty for continuing to interpret is high. Part of this is
due to the high costs of VM overhead to interpret method
call instructions vs. the cost of directly executing a native
code call instruction. Performance data that explicitly
represent VM method call overheads, VM costs to interpretb NativeEx×

b DirectEx VMInteraction+()×

byte-codes, and VM costs to execute native code could be
used by an AP developer to identify that interpreted call
instructions are expensive.

The result of this study points to specific examples where
detailed performance measures from a dynamically
compiled execution can provide information that is critical
to understanding the execution. For real Java applications
consisting of thousands of methods, some with complicated
control flow structure, a performance tool that can represent
specific VM and I/O costs associated with byte-code and
native code can be used by an AP developer to more easily
determine which AP methods to tune and how to tune them.
In Section 6, we discuss the implications of this study for a
VM developer.

4 A PERFORMANCE TOOL FOR
DYNAMICALLY COMPILED JAVA

We present Paradyn-J, a prototype implementation of a
performance tool for measuring dynamically compiled Java
executions. Paradyn-J generates and inserts (or removes)
instrumentation code into AP and VM code at runtime; as a
result, Paradyn-J requires no modifications to the VM nor to
the AP prior to execution. We wanted to implement
Paradyn-J to measure a real Java dynamic compiler,
unfortunately, no source code was available for ExactVM or
HotSpot[3]. Instead, we simulated dynamic compilation,
and built our prototype to measure its execution. We first
present our simulation and then the details of Paradyn-J’s
implementation.

4.1 Simulation of a Dynamic Compiler
Our simulation approximates the three main runtime
activities in a dynamically compiled execution:
interpretation of method byte-code; run-time compilation of
some methods; and direct execution of the native form of
transformed methods. We simulate dynamic compilation by
modifying the Java application and running it with a Java
interpreter (JDK 1.1.6 running on Solaris 2.6). The VM
handles all class loading, exception handling, garbage
collection, and object creation. A “dynamically compiled”
method is replaced with a wrapper function that initially
calls a byte-code version of the method. After we reach a

threshold (based on number of calls) the wrapper calls a
routine that simulates the method’s runtime compilation.
The “compiling” routine takes an estimated compiling time
as a parameter, and it waits for the specified time. For all
subsequent calls to the method, the wrapper function calls a
native version of the method. The native version is written
in C with minimal use of the JNI interface (java.sun.com/
products/jdk/1.2/docs/guide/jni/index.html). It is compiled
into a shared object that the VM loads at runtime. We
approximated each method’s compile time by timing
ExactVM’s runtime compilation of each method.

We simulate the three different execution phases we need to
demonstrate a performance tool that can provide detailed
performance measures from a dynamically compiled
execution. However, we do not use our simulation to
compare total execution times of a dynamically compiled
execution to an interpreted execution because each wrapper
function adds an extra layer of indirection for calls to byte-
code and JNI native code versions of the method. The
wrapper functions also add more interpreted execution since
they are written in Java and interpreted each time they are
called.

4.2 Performance Tool Implementation
Paradyn-J is an extension of our earlier tool for measuring
interpreted Java executions [4]. We modified this tool to add
support for measuring our simulated dynamically compiled
executions run under Sun’s version 1.1.6 of JDK. Paradyn-J
generates and inserts instrumentation code into the AP and
VM at runtime; we use Paradyn’s Dynamic Instrumentation
[2] to instrument VM code and AP native code, and we use
Transformational Instrumentation [4] to instrument AP
byte-codes.

Paradyn-J interacts with the VM’s runtime compiling
routines. We discover the native form of a compiled method
so that it can be instrumented, create mappings between
byte-code and native code forms of a method so that
performance data collected in different forms of an AP
method can be correlated, and measure costs associated
with the runtime compilation of a method. We instrument
our routine that simulates runtime compilation. The

Case 1: object modifications Case 2: I/O intensive Case 3: small methods

itera-
tions

Dyn
Comp

Interp Speed
up

itera-
tions

Dyn
Comp

Interp Speed
up

iterations Dyn
Comp

Interp Speed
up

100,000 114.7 119.5 1.04 100,000 427.1 436.43 1.02 10,000,000 1.76 35.11 19.94

10,000 1.73 2.04 1.18 10,000 40.47 42.70 1.05 1,000,000 0.83 4.16 5.01

1,000 0.71 0.65 0.91 1,000 4.53 4.64 1.02 100,000 0.74 0.98 1.32

100 0.70 0.63 0.90 100 1.06 0.99 0.94 10,000 0.72 0.67 0.93

1,000 0.73 0.63 0.86

Table 1: Execution time (in seconds) of each Java kernel run by ExactVM comparing interpreted Java (Interp column) to
dynamically compiled Java (Dyn Comp column).Each measurement is the average of 10 runs.

instrumentation notifies the tool whenever a method is
“dynamically compiled”. At runtime, the VM calls dlopen()
to load the shared objects that contain the native versions of
the AP methods and contain our “compiling” routine. We
instrument the VM to catch dlopen() events. When we
detect that the VM has loaded our “compiling” routine, we
instrument it. Instrumentation at its entry point starts a timer
to measure the dynamic compiling time. Instrumentation at
its exit point stops the timer measuring the compiling time,
and gets the name of the native form of the method to obtain
mapping information between the method’s two forms.

For performance tools like ours, that instrument AP byte-
codes, there is a problem of how to deal with instrumented
byte-codes that are about to be transformed by the dynamic
compiler. One option is to let the VM compile the byte-code
instrumentation along with the byte-code instructions of the
AP method. This solution is not ideal because there is no
guarantee that the VM will produce transformed
instrumentation code that is measuring the same thing as the
byte-code instrumentation (the compiler could re-order
instrumentation code and method code instructions, or
could optimize away some instrumentation code). A better
option is to remove byte-code instrumentation from the
method just prior to compilation, let the VM compile the
method, and then generate equivalent native code
instrumentation, and insert it into the native form of the
method. This requires that the performance tool interact
with the VM immediately before and after compilation of a
method. Since our simulated compiling routine does not
actually translate byte-code to native code we did not have
to worry about this problem for our tool’s current
implementation. However, when we port our tool to a real
dynamic compiler we will have to handle this case.

5 RESULTS
We present results using performance data from Paradyn-J.
We demonstrate how we can provide detailed performance
data from two Java applications, a neural network
application consisting of 15,800 lines of Java source code
and 23 class files, and a CPU simulator application
consisting of 1,200 lines of code and 11 class files. Using
this data, we tuned a method in the neural network
application improving the method’s interpreted byte-code
execution by 11% and its native code execution by 10%, and
improving overall performance of the application by 10%
when run under ExactVM. We profile the CPU simulator
application to further show how we can obtain key
performance data from a dynamically compiled execution.

We obtain performance measures that describe specific VM-
AP interactions by dynamically inserting instrumentation
code into VM routines and Java AP routines to measure the
interaction. For example, to measure the object creation
overhead associated with objects created in AP method
foo, we insert instrumentation into methodfoo that will
set afoo_flag wheneverfoo creates an object, and we
insert timer instrumentation into VM routines that handle
object creates. The timer code will be executed only when
the foo_flag is set (only when the object is created by

methodfoo will we measure the VM overhead associated
with the object create).

For the neural network program, we picked good candidate
methods to “dynamically compile” by using Paradyn-J to
measure its all-interpreted execution and choosing the seven
application methods that were accounting for most of the
execution time. We wrote JNI native versions and wrapper
functions for each of these methods. We first demonstrate
that Paradyn-J can associate performance data with AP
methods in their byte-code and native code forms, and with
the runtime compilation of AP methods. Figure 2 shows a
performance visualization from Paradyn-J. The
visualization is a time plot showing the fraction of CPUtime
per second for the byte-code (in black) and native (in white)
forms of theupdateWeights AP method, showing that
updateWeights benefits from dynamic compilation.
Figure 3 is a table visualization that shows performance
measures of total CPUTime (middle column), and total
number of calls (right column) associated with the byte-
code (top row) and native (middle row) forms of
updateWeights , and compiling time (left column)
associated with the method’s wrapper function (0.174
seconds). This visualization shows data taken part way
through the application’s execution. At the point when this
was taken, the procedure calls measure shows that the byte-
code version is called 15 times for a total of 0.478 seconds
before it is “dynamically compiled”, and the native code
version has executed 54 times for a total of 0.584 seconds.
The implication of this data is that at this point in the
execution,updateWeights has already benefited from
being compiled at runtime; if the method was not
“dynamically compiled”, and instead was interpreted for
each all of these 69 calls, then the total execution time
would be 2.2 seconds (69 calls× 0.031 seconds/call). The
total execution time for the method’s “dynamically
compiled” execution is 1.2 seconds (0.478 seconds of
interpreted execution + 0.174 seconds of compilation +
0.584 seconds of native execution).

We next demonstrate how performance data from Paradyn-J
can explicitly represent VM costs associated with byte-code
and native code forms of a method. We measured the
number of object creates in each of our “dynamically
compiled” methods. In Figure 4, the visualization shows a
method (calculateHiddenLayer) that accounts for
most of the object creates. This visualization shows data
taken part way through the application’s execution. In its
byte-code form (top row), it is called 15 times, creates 158
objects, and accumulates 3.96 seconds of CPU time. After it
is called 15 times, it is compiled at runtime, and its native
code form (bottom row) is called 50 times, creates 600
objects, and accumulates 20.8 seconds of CPU time1. Its
native form execution is more expensive (at 416 ms per
execution) than its interpreted execution (at 264 ms per
execution). This performance data tells the Java application

1 Each time the method is called, the number of object creates can
vary due to changes in the application’s data structures.

developer that in both its byte-code and native code form,
calculateHiddenLayer creates a lot of objects. At
least part of the reason why it runs so slowly has to do with
the VM overhead associated with these object creates. One
way to improve its performance is to try to reduce the
number of objects created in the method’s execution. We
examined the method’s Java source code, and discovered
that a temporary object was being created in a while loop.
This temporary object had the same value each time it was
created and used inside the loop.We modified the method to
hoist the temporary object creation outside the loop. The
table in Figure 5 shows total CPUtime and object creates of
the modified version ofcalculateHiddenLayer.
This data was taken partway through the application’s
execution. As a result of this change, we were able to reduce
the number of object creates by 85% in the byte-code

version (23 vs. 158 creates), and 75% in the native code
version (150 vs. 600 creates). The CPU time spent
interpreting the method’s byte-code form improved by 11%
(3.53 vs. 3.96 seconds), and the CPUtime executing the
method’s native code form improved by 10% (18.7 vs. 20.8
seconds).

We wanted to see how well our tuning based on a simulated
dynamically compiled execution translates to a real
dynamically compiled execution. We performed the same
tuning changes to the original version of the Java
application (without our modifications to simulate dynamic
compilation), and measured its execution time when run
under ExactVM. The overall execution time improved by
10% when run by ExactVM with dynamic compiling, and
by 6% when run by ExactVM with dynamic compiling

Figure 2: Performance data for theupdateWeights method from the dynamically compiled neural network Java application.
The time plot visualization shows the fraction of CPUtime/second for the native (white) and byte-code (black) form of the method.

Figure 3: Performance data for theupdateWeights method from the dynamically compiled neural network Java application.
The table shows the performance measures total CPUTime (second column) and number of calls (third column), for both the byte-code

(top row), and native (middle row) forms, and compile time (first column) associated w/the wrapper (bottom row).

disabled (Table 2). These results imply that ExactVM’s
interactions with AP native and byte-codes due to handling
object creates account for a larger percent of the
application’s execution time (compared to our “dynamic
compiler”). ExactVM has improvements over JDK 1.1.6 to
reduce garbage collection, method call and object access
times, and it does not have any of the JNI interactions with
the VM that our native forms of methods have with the VM.
Therefore, it is reasonable to conclude that object creates
account for a larger percentage of the VM overheads in
ExactVM executions. As a result, our tuned application
achieves a higher percentage of total execution time
improvement when run under ExactVM than when run by
our “dynamic compiler”.

In this study, we limited our options for performance tuning
to the seven methods for which we simulated dynamic
compilation. However, there are close to 1,000 methods in
the application’s execution. If this was a real dynamically
compiled execution, then all of these methods would be
available for performance tuning. Performance data from
our tool that can measure VM overheads associated with the
byte-code and native code form of a method, help a program
developer focus in on those methods to tune, and gives an

indication of how to tune the method to improve its
performance.

In general, for methods that do not benefit from being
compiled at run-time by the VM, performance data that help
explain why the method does not perform well will help a
program developer more easily determine how to tune the
method’s performance. For example, in Section 3 we
demonstrated cases where if we had performance data
describing specific VM costs and I/O costs associated with a
method’s interpreted byte-code and directly executed native
code, then we could more easily know how to tune the
method to improve its performance.

Figure 4: Performance data for methodcalculateHiddenLayer . The total CPU time (first column), total number of object creates
(second column), and total number of calls (third column) to the byte-code (top row) and native code (bottom row) forms of the method.

Figure 5: Performance data for methodcalculateHiddenLayer after removing some object creates. This table shows that the
total CPUtime for both the native and byte-code forms of the method is reduced as a result of reducing the number of object creates.

Original Tuned Change

Dynamic Comp. 21.09 18.97 10%

All-Interpreted 190.83 179.90 6%

Table 2: Total execution times under ExactVM for the original
and the tuned versions of the neural network program.We

improve the performance by 10% with dynamic compiling, and
by 6% with dynamic compiling disabled (all-interpreted).

In the second study, using the CPU simulator application,
we show additional examples of how Paradyn-J can provide
the type of detailed performance measures that we
discovered would be useful in Section 3; we picked methods
to “dynamically compile” based on the three cases we
examined in Section 3. For the first case (native code with a
lot of VM interaction), we picked a method that created
several String objects. For the second case (methods whose
execution is not dominated by interpreting byte-code), we
picked a method that did a lot of I/O. For the third case
(small byte-code methods), we picked a method consisting
of 3 byte-code instructions that simply returned the value of
a data member. In Table 3, we show performance data from
Paradyn-J’s measurement of each of the three methods.

For case 1, VM object creation overheads account for more
than half of the method’s execution time (1.57 out of 2.35
seconds); this tells the AP developer that one way to make
this method run faster is to try to reduce this VM overhead
by removing some object creates from this method’s
execution.

In the second case, a method that performs a lot of I/O, our
tool can represent performance data showing the amount of
CPU seconds and I/O seconds in the interpreted byte-code
and directly executed native code form of the method (a
total of 5.65 seconds of I/O time and negligible CPU time in
the native code form, and a total of 0.37 seconds of I/O time
and 0.044 seconds of CPU time in the byte-code form)2.
This performance data tells an AP developer to focus on
reducing the I/O costs since they account for the largest
fraction of this method’s execution time (almost 100% of
the native code’s execution, and 90% of the interpreted byte-
code’s execution is due to I/O costs).

In the third case, small method functions with a few simple
byte-code instructions, our performance data represents
CPU times for both the byte-code and native code form of
the method. This data provides us with some explanation of

why this method benefits from being dynamically compiled;
the fraction of CPU time for the native code version of the
method is slightly better than for the byte-code version (4.9
µs to 6.7 µs per call), however, the added method call
overhead for interpreting (an additional 2.5µs for every 6.7
µs of interpreting byte-code) make interpreted execution
much more expensive. If this had been an all-interpreted
execution, then the performance data for the interpreted
byte-code form of the method indicates that interpreting
method call instructions is an expensive VM activity.
Therefore, one way to make this method run faster on an
interpreter VM, is to reduce the number of method calls in
the execution. In a previous paper [4], we presented a
performance tuning study of an all-interpreted execution of
this Java application. In this study we reduce method call
overheads by tuning the application to remove some method
calls. Performance data from our tool led us to easily
determine which methods to tune and which calls to remove
from the execution to improve its performance.

The performance data from these three methods describe the
detailed behaviors needed by AP developers to tune their
dynamically compiled applications.

6 OUR PERFORMANCE DATA AND VM
DEVELOPERS

The same type of performance data used by an AP
developer can also be used by a VM developer to tune the
VM. For example, by characterizing byte-code sequences
that do not benefit much from dynamic compilation (like
methods with calls to I/O routines and simple control flow
graphs), the VM could identify AP methods with similar
byte-code sequences and exclude them from consideration
for runtime compilation. Similarly, performance data
showing that certain types of methods may be good
candidates for compiling, can be used by the VM to
recognize these methods, and compile them right away
(ExactVM does something like this for the case of methods
containing loops). The data can also point to ways that the
compiler can be tuned to produce better native code. For
example, performance measures indicating that VM method
call overheads are expensive can be used to tune the
compiler to aggressively in-line methods (this is why
HotSpot is designed to aggressively in-line methods).The
VM also could use performance information about specific
interactions between the VM and the native code (e.g. object
creation overheads) to try to reduce some of these expensive

Case 1: object creates Case 2: I/O intensive Case 3: small functions

Measurement Byte-code Measurement Native Byte-code Measurement Native Byte-code

Total CPU seconds 2.3515 Total I/O
seconds

5.6493 0.36658 CPU seconds 4.9 µs 6.7µs

Object Creation
Overhead seconds

1.5730 Total CPU
seconds

0.00496 0.04403 MethodCall
Time

2.5µs

Table 3: Performance data from the CPU Simulation AP.These are detailed performance measures of methods in the AP that have
performance characteristics similar to the three test cases from Section 3.

2 The I/O time for the native code is much larger than that of the
byte-code because the native code of the method is called more
frequently than the 15 calls to the interpreted byte-code form of
the method. We are representing these numbers as total rather
than per call numbers because each call to the method writes a dif-
ferent number of bytes; they are not directly comparable on a per
call basis.

VM interactions or to tune the VM routines that are
responsible for these interactions (e.g. the VM routines
involved in object creation).

Detailed performance data, collected at runtime, could be
used to drive the VM’s runtime compiling heuristics. For
example, the VM could measure I/O and CPU time for a
method the first time it is interpreted. If the method is
dominated by I/O time, then exclude it as a candidate for
compiling (and stop profiling it). There have been several
efforts to incorporate detailed runtime information into
compilers to produce better optimized versions of code and/
or to drive runtime compiling heuristics [5, 6, 7, 8] (these
are all for languages other than Java).

7 RELATED WORK
There are several performance tools for interpreted or just-
in-time (JIT) compiled Java. JDK’s built in profiling system
(www.javasoft.com/products/JDK/tools) provides total
elapsed time and counts associated with Java application
methods, and provides call graph information. JProbe
(www.klg.com/jprobe/), is a special version of a VM for
JDK versions up to 1.1.6. It can profile interpreted and JIT-
compiled Java. It provides cumulative CPU times and
counts associated with application methods, and counts
associated with object creates. It also provides call graph
and memory usage displays (showing memory allocation
and garbage collection statistics as the application runs).
Optimize It (www.optimizeit.com), is a Java profiler that
works with Java applications interpreted by JDK’s VM
versions through 1.1.6. It provides total CPUtime measures
associated with application threads, total CPUtime and
counts associated with methods, a real-time memory
profiler (number of instances per class), and a source code
viewer annotated with method CPU times and counts.

These tools provide performance measures in terms of Java
application code, and two of them provide some indication
of how the application interacts with VM memory
allocation and garbage collection. However, they can not
represent performance data in terms of specific interactions
between the VM and the Java application. These tools also
do not currently support dynamically compiled Java
executions. Paradyn-J is the only one that can represent
arbitrary VM-AP interactions, VM and other runtime costs
associated with byte-code and native code forms of an AP
method, and performance measures associated with the
runtime compilation of AP methods.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we discussed some of the unique
characteristics of dynamically compiled Java executions
that make performance measurement difficult. We described
a prototype implementation of a performance tool for
measuring dynamically compiled Java executions that
addresses these problems by dealing with the multiple
execution forms (interpreted byte-code and directly
executed native code) of a method, costs of the dynamic
compilation, and costs of residual dependencies of the Java
application program on the virtual machine. We used

Paradyn-J to demonstrate how we can represent data that is
critical to understanding the performance of dynamically
compiled executions; performance data from Paradyn-J can
be used by a Java application developer or by a Java virtual
machine developer to more easily determine how to tune the
Java application or the Java virtual machine.

For Paradyn-J to be more useful to developers of high
performance Java applications, we need to add support for
profiling threaded Java programs. In future versions of
Paradyn-J, we will support threaded Java applications by
leveraging off of Paradyn’s new support for threads [9].

9 ACKNOWLEDGEMENTS
We thank Marvin Solomon and Andrew Prock for providing
the Java application programs used in Section 5, and we
thank Karen Karavanic, Brian Wylie, and Zhichen Xu for
their comments on this manuscript. This work is supported
in part by Department of Energy Grant DE-FG02-
93ER25176, NSF grants CDA-9623632 and EIA-9870684,
and DARPA contract N66001-97-C-8532. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon.

10 REFERENCES
[1] C. Mangione. Performance test show Java as fast as

C++.JavaWorld, February 1998.

[2] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic,
K. Kunchithapadam, and T. Newhall. The Paradyn Par-
allel Performance Measurement Tools.IEEE Computer
28, 11, November 1995.

[3] D. Griswold. The Java HotSpot Virtual Machine Archi-
tecture.Sun Microsystems Whitepaper, March 1998.

[4] T. Newhall and B. P. Miller. Performance Measurement
of Interpreted Programs.EuroPar’98, September 1998.

[5] J. B. Chen, M. D. Smith, and B. N. Bershad. Morph: A
Framework for Platform-Specific Optimization.White-
Paper http://www.eecs.harvard.edu/morph/, March
1996.

[6] U. Holzle and D. Ungar. A Third-Generation Self
Implementation: Reconciling Responsiveness with Per-
formance. InProceedings of the ACM OOPSLA ‘94
Conference, Portland, OR, October 1994.

[7] Digital Semiconductor. FX!32 Technical Introduction.
On-line: http://www.digital.com/info/semiconductor/
amt/fx32/.

[8] J. Auslander, M. Philipose, C. Chambers, S. Eggers,
and B. Bershad. Fast, Effective Dynamic Compilation.
In Proceedings of ACM PLDI Conference on Program-
ming Language Design and Implementation, May
1996.

[9] Z. Xu, B. P. Miller, and O. Naim. Dynamic Instrumen-
tation of Threaded Applications. InProceedings of
SEVENTH ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, May 1999.

