Chapter 1
The Paradyn Parallel Performance Tools and PVM*

Barton P. Millerf Jeffrey K. Hollingsworth? Mark D. Callaghan®

Abstract

Paradyn is a performance tool for large-scale parallel applications. By using dynamic
instrumentation and automating the search for bottlenecks, it can measure long running
applications on production-sized data sets. Paradyn has recently been ported to
measure native PVM applications.

Programmers run their unmodified PVM application programs with Paradyn.
Paradyn automatically inserts and modifies instrumentation during the execution of
the application, systematically searching for the causes of performance problems. In
most cases, Paradyn can isolate major causes of performance problems, and the part
of the program that is responsible the problem.

Paradyn currently runs on the Thinking Machine CM-5, Sun workstations, and
PVM (currently only on Suns). It can measure heterogeneous programs across any of
these platforms.

This paper presents an overview of Paradyn, describes the new facility in PVM that
supports Paradyn, and reports experience with PVM applications.

1 Introduction

Performance monitoring creates a dilemma: identifying a bottleneck necessitates collecting
detailed information, yet collecting all this data can introduce serious data collection
bottlenecks. At the same time, users are being inundated with volumes of complex graphs
and tables that require a performance expert to interpret. Paradyn takes a new approach
that addresses both these problems by combining dynamic on-the-fly selection of what
performance data to collect with decision support to assist users with the selection and
presentation of performance data. The approach is called the W3 Search Model. We
have also developed a new monitoring technique for parallel programs called Dynamic
Instrumentation.

This paper presents an overview of Paradyn, describes the new facility in PVM
that supports Paradyn, and reports experience with PVM applications. The initial
implementation of the Paradyn Performance Tools was for a Thinking Machines CM-5.
We have ported the Paradyn tools to a network of workstations running PVM[2]. To do
this we took advantage of the new features of PVM 3.3 that permit external tools to easily
integrate with PVM. This effort was the first port of the Paradyn tools, and one of the first
users of this new interface to PVM.

*This research supported in part by Department of Energy grant DE-FG02-93-ER25176, Office of Naval
Research grant N00014-89-J-1222, and National Science Foundation grants CCR-9100968 and CDA-9024618.
Hollingsworth is supported in part by an ARPA Graduate Fellowship in High Performance Computing.

tUniversity of Wisconsin, Madison

tUniversity of Maryland, College Park

$University of Wisconsin, Madison

2 MIiLLER, HOLLINGSWORTH, CALLAGHAN

2 Overview of the Paradyn System

The Paradyn Performance Tools Suite is a modular collection of tools to measure and
understand the performance of large-scale parallel programs. It is designed for the runtime
monitoring and analysis of programs. Paradyn consists of a flexible data collection facility,
a tool for the automatic isolation of performance bottlenecks, and an open visualization
interface. In addition, several performance visualizations are provided. Before describing
how the Paradyn tools work together with PVM, we briefly review each of the components
of the Paradyn system.

2.1 The W? Search Model

For a given parallel program, the amount of performance data that might be useful
to understand its performance can be huge. However, in practice a small amount of
information is often sufficient to reveal the key bottlenecks. Performance debuggers exist
to help programmers find the gems of understanding among the large space of available
performance data. In this section we review the W3 Search Model[4], a system that provides
a structured way for programmers to quickly and precisely isolate a performance problem
without having to examine a large amount of extraneous information. It is based on
answering three separate questions: why is the application performing poorly, where is
the bottleneck, and when does the problem occur. By iteratively refining the answer to
these three questions, we can give programmers a precise description of why their program
is not performing as expected. To deliver answers rather than just posing the questions,
we automate this search process.

The first performance question most programmers ask is “why is my application running
so slowly?” To answer this question we need to consider what types of problems can cause a
bottleneck in a parallel program. We represent these potential bottlenecks with hypotheses
and tests. Hypotheses represent the fundamental types of bottlenecks that occur in parallel
programs independent of the program being studied. For example, a hypothesis might
be that a program is synchronization bound. Tests are boolean functions that indicate if
a program exhibits a specific performance behavior related to the hypothesis. They are
expressed in terms of thresholds that indicate when a test should evaluate to true (e.g.,
more than 20% of the time is spent waiting for synchronization).

Hypotheses can have other hypotheses as pre-conditions. The dependence relationships
between hypotheses define the search hierarchy for the “why” axis. Figure 1 shows a
partial “why” axis hierarchy with the current hypothesis being that the application has a
HighSyncBlockingTime bottleneck. This hypothesis was reached by first concluding that a
SyncBottleneck exists in the program.

By searching along the “why”, axis we classify the type of problem in a parallel
application; to fix the problem, more specific information is required. For example, knowing
that a program is synchronization bound suggests we look at the synchronization operations,
but a large application might contain hundreds or thousands of these operations. We must
also find which synchronization operation is causing the problem. To isolate a bottleneck
to a specific resource, we search along the “where” axis.

The “where” axis is formed by a collection of logically independent resource hierarchies.
Resource hierarchies include: synchronization objects, source code, threads, processes,
processors, and disks. There are multiple levels in each hierarchy, and the leaf nodes
are the instances of the resources used by the application. Searching the “where” axis is
iterative and consists of traveling down each of the individual resource hierarchies.

SIAM PROCEEDINGS SERIES MACROS 3

| TopLevelHypothesis |

-/,%ottl eneck

|Frequenta/ncoperations | |High$/ncBIockingTime |

[highSyncHoldingTime | | HighSyncContention

Fia. 1. A Partial “Why” Auxis.

Synchronization
Objects
/ O E
O Individual

Individual Barriers

Message

Tags
| Client | Server

B Lo AN

Fic. 2. A Partial “Where” Auxis.

The top tree in Figure 2 shows a sample resource hierarchy. The root of the hierarchy
is Synchronization Objects. The next level contains two types of synchronization (Messages
and Barriers). Below the Barriers node are the individual barriers used by the application.
The children of the Messages node are the types of messages (tags) used.

The current status of the search along the “where” axis is called the focus, and consists
of the current state of each resource class hierarchy. Figure 2 shows a sample “where”
axis containing three resource hierarchies. The highlighted nodes show the current focus
component of each hierarchy. The focus shown in the figure is all Messages on Host #1 used
in any procedure.

Programs in general, and especially parallel programs, have distinct phases of execution.
For example, a simple program might have three phases of execution: initialization,
computation, and output. Within a single phase of a program, its performance tends to be
similar. However, when it enters a new phase, behavior of the program can change radically.
When a program enters a new phase of execution, its performance bottlenecks also change.
As a result, decomposing a program’s execution into phases provides a convenient way for
programmers to understand the performance of their program.

4 MIiLLER, HOLLINGSWORTH, CALLAGHAN

The third component of the W3 Search Model is the “when” axis. The “when” axis is
a way for programmers to exploit the phase behavior of their programs to find performance
bottlenecks. Searching along the “when” axis involves testing the current hypotheses for
the current focus during different intervals of time during the application’s execution. For
example, we might choose to consider the interval of time when the program is doing
initialization.

A key component of the W?2 Search Model is its ability to automatically search for
performance bottlenecks. This automation is accomplished by making refinements across
the “where”, “when”, and “why” axes without requiring the user to be involved. Automated
refinement is exactly like manual (user directed) searching, and hybrid combinations of
manual and automated searching are possible.

2.2 Dynamic Instrumentation

Data collection is a critical problem for any parallel program performance measurement
system. To understand the performance of parallel programs, it is necessary to collect
data for full-sized data sets running on large numbers of processors. However, collecting
large amounts of data can excessively slow down a program’s execution, and distort the
collected data. A variety of different approaches have been tried to efficiently collect
performance data. Two common approaches are event tracing and statistical sampling.
Both of these techniques have limitations in either the volume of data they gather or
granularity of data collected. Paradyn takes a new approach to data collection, called
dynamic instrumentation[3] that defers instrumenting the program until it is in execution.
This approach permits dynamic insertion and alteration of the instrumentation during
program execution. We also describe a new data collection model that permits efficient,
yet detailed measurements of a program’s performance.

To meet the challenges of providing an efficient, yet detailed instrumentation we needed
to make some radical changes in the way traditional performance data collection has been
done. However, since we wanted our instrumentation approach to be usable by a variety
of high level tools, we needed a simple interface. The interface we developed is based on
two abstractions: resources and metrics. Resources are similar to nodes in the “where”
axis of the W3 Search Model. Metrics are time varying functions that characterize some
aspect of a parallel program’s performance. Metrics can be computed for any subset of
the resources in the system. For example, CPU utilization can be computed for a single
procedure executing on one processor or for the entire application.

A key question about any performance data gathering system is what data is collected
and how is it collected. We have developed a new data collection model that combines the
advantages of tracing and sampling. Tracing inserts instrumentation to generate a log of
all of the interesting events during a program’s execution; logged events generally include
inter-processor communication and procedure invocations. Trace-based systems can collect
detailed information about specific events during a program’s execution. However, they
can generate vast amounts of data that are difficult to manage. A second approach to
collecting performance data is to summarize interesting information as counts and times
that are reported at the end of program execution. Using summary counters and timers
greatly reduces the volume of performance data collected; however summary data loses
important temporal information about usage patterns and relationships between different
components. For example, it is impractical to collect performance data about how each
procedure uses different synchronization variables on each processor for a large parallel

SIAM PROCEEDINGS SERIES MACROS 5

machine. Instead, Paradyn dynamically modifies the program to record precise information
about relevant state transitions in counter and timer data structures. These structures are
then periodically sampled to report performance information to the higher layers of our
system. Periodic sampling of these structures provides accurate information about the
time varying performance of an application without requiring the large amount of data
needed by full tracing.

By using simple counters and timers, we are also able to easily integrate performance
data from external sources. For example, most operating systems keep a variety of
performance data internally: I/O counts, virtual memory statistics, and CPU time.
Usually, this information can be made available to user processes by reading kernel
data structures. Also, several machines provide hardware based counters that are a
source of useful performance information. For example, the Power2[6], Cray Y-MP[1],
and Sequent Symmetry[5] systems provide detailed counters of cache utilization, floating
point operations, and bus contention. We can combine external information with direct
instrumentation to get precise information to relate the external events back to specific
parts of the program. For example, if we have a counter of page faults by a single process,
we can read this counter before and after a procedure call to compute the number of page
faults taken by that procedure.

Dynamic Instrumentation is a new approach to data collection that permits customized
instrumentation to be inserted at runtime. We also use a hybrid of sampling and tracing
that permits efficient collection of intermediate (temporal) values of counters and timers
without having to do full event tracing.

2.3 Visualization Interface

Performance Visualizations are useful to explain the performance of a parallel program; but
developing visualizations is not a primary goal of the Paradyn project. However, a number
of visualization tools have been built, and we would like to be able to use these tools as part
of a Paradyn session. To do this, we have created an Application Programmer Interface
(API) to permit the performance data gathered by Paradyn to be exported to visualization
tools.

The interface is a simple grid (array) that permits visualization tools to request data for
any combination of resources and metrics in the system. In addition, data can be requested
in either summary (single value) form or as a time series (time histogram). Since Paradyn
is designed to work during program execution, the Visualization Interface also needs to be
able to provide timely delivery of performance data to visualizations. This is accomplished
by delivering data to all components of the data grid for a single time step at once.

3 Porting Paradyn to Work with PVM

The Paradyn Performance Tools are divided into three parts: the Paradyn controller,
the Paradyn daemon, the application processes. Figure 3 displays their relationship.
The Paradyn controller performs automated searches for performance bottlenecks and
supports the user interface to the rest of the Paradyn system. The Paradyn daemon
acts as an intermediary between the Paradyn controller and the application processes,
and each application process is controlled by one Paradyn daemon. The operating system
and machine specific dependencies have been isolated to the Paradyn daemon. Only the
Paradyn daemon had to be changed to enable the Paradyn system to work in the PVM
environment. The application processes contain the dynamically inserted instrumentation

6 MIiLLER, HOLLINGSWORTH, CALLAGHAN

Fic. 3. Structure of Paradyn and PVM.

and periodically report the values of metrics.

Restricting the machine and programming environment specific code in Paradyn to
the daemon enables the controller to work with any daemon that supports the Paradyn
controller interface. As an intermediary, the Paradyn daemon instruments the application
processes when requests from the controller process are received, and forwards performance
data from the application process to the controller process.

3.1 Interface

The interface between the Paradyn controller and daemon supports three main functions:
process control, performance data delivery, and performance data requests. The daemon
services the process control requests and performance data requests from the controller. The
daemon also delivers performance data to the controller in response to prior performance
data requests.

Process control functions include the ability to start, stop, pause, continue, and write
to the address space of application processes. Not only is the ability to start application
processes required, but the Paradyn daemon must also intercept all process start requests
(e.g., pym_spawn calls) made by the application. There are two reasons for this requirement.
First, the Paradyn controller must be aware of all processes that make up a parallel
application. Second, UNIX ptrace system calls are used to insert instrumentation into the
application; therefore, the Paradyn daemon must be the parent of the application process,
unless an attachable version of ptrace is provided by the machine vendor.

To deliver performance data, the Paradyn daemon forwards data it receives from
the application processes to the Paradyn controller. Performance data for a particular
resource and metric combination might require data to be gathered from several application
processes. In this case, the data from each application process must be combined to form
the desired aggregate data. Data aggregation could be done either by the daemon or the
controller. We choose to aggregate data in the daemon when possible. When more than
one daemon forwards data to the controller for the same resource and metric combination,
the data is aggregated by the controller. Data aggregation by the daemon reduces message
traffic to the controller.

Requests for performance data may cause the Paradyn daemon to instrument the
processes that it manages. The request for performance data uses a metric and a resource
as parameters. The daemon translates this request to machine language instructions that

SIAM PROCEEDINGS SERIES MACROS 7

are written into the address space of the application process. Using the Paradyn daemon as
an intermediary allows the controller to maintain a high level, machine independent view
of performance data.

3.2 Implementation

The implementation of the interface between the Paradyn daemon and the application
process is machine and parallel programming model specific. It takes advantage of new
features of PVM version 3.3. PVM allows processes to register with PVM to provide services
that are by default provided by PVM. These services include starting new application
processes and starting new PVM daemons. A process that registers with its local PVM
daemon to start processes is called the tasker. A process that registers with its local PVM
daemon to start new PVM daemons is called a hoster. There is only one hoster process at
any given time within a given Parallel Virtual Machine. Providing these open interfaces in
PVM has increased its utility by enabling it to work in close coordination with Paradyn
(and other similar tools).

Supporting process control functions in the PVM-Paradyn daemon required significant
changes whereas supporting data delivery and instrumentation did not. The hoster and
tasker features allow the PVM-Paradyn daemon to start all processes for PVM. We assume
that PVM daemons are running when a PVM-Paradyn daemon is started. The first PVM-
Paradyn daemon queries PVM to determine all hosts that have a PVM daemon, and starts
a PVM-Paradyn daemon on each of those hosts. Each PVM-Paradyn daemon registers
with the local PVM daemon as the tasker for that PVM daemon. The first PVM-Paradyn
daemon also registers as the hoster. The PVM-Paradyn daemon now performs all process
starts for the PVM environment. In addition, the hoster starts a new PVM-Paradyn
daemon on any machine that is added to the Parallel Virtual Machine.

The following sequence of steps occurs when a process is started by a PVM-Paradyn
daemon.

1. The PVM-Paradyn daemon receives a start task message from PVM;

2. The PVM-Paradyn daemon starts the application process after creating a pipe for
communication;

3. The PVM-Paradyn daemon notifies the controller that a new application process has
been started;

4. The application process connects to its local PVM daemon; and

5. The PVM-Paradyn daemon informs the PVM daemon that the start was successful.

The code that instruments application processes required some PVM specific changes.
It must know how to translate instrumentation requests from the Paradyn controller to
machine instructions. An example is the case in which the Paradyn controller wants to
determine how many messages have been sent in an application process. The Paradyn
daemon must determine the points in an application process at which messages are sent,
and instrument these locations to increment a counter. The PVM-Paradyn daemon is
required to know which PVM functions send messages. The instrumentation is inserted
into the application process using ptrace system calls.

8 MIiLLER, HOLLINGSWORTH, CALLAGHAN

(@D Start message
(@ Create appl. process
(3 Notify Paradyn
(4 Connect to PVMD
(B Start complete

Fic. 4. Starting a new Process with Paradyn and PVM.

3.3 Summary

The design of the Paradyn system was driven by the principle of the separation of the
interface from the implementation. A well-defined interface for communication between
the Paradyn controller and the Paradyn daemon allowed the development of a Paradyn
controller that contains no machine or parallel programming environment specific code.
All parallel programming specific code was contained in the Paradyn daemon. The new
features of PVM 3.3, the hoster and tasker functionality, enabled the Paradyn system to
be ported to the PVM environment.

4 An Example of using Paradyn with PVM

The PVM-Paradyn daemon has been used to find performance bottlenecks in PVM
applications. In this section, we describe using Paradyn on a simple PVM application.
The processes in the application were organized as a ring, and a token message was passed
around the ring. There were three SPARC workstations in the Parallel Virtual Machine,
and four processes in the application. All messages sent after initialization used the same
message tag. Paradyn dynamically determines the message tags that have been used and
is capable of making the instrumentation in a message send function dependent on the
message tag used in the message send.

Paradyn used this ability to refine the performance bottleneck. The results of the search
are displayed in Figure 5. The white nodes in the graph represent the current bottleneck.
Paradyn initially refined along the “why” axis and found that syncBottleneck evaluated to
true. A syncBottleneck means that the Paradyn test criteria for a synchronization bottleneck
has been satisfied. The initial bottleneck was further refined to excessiveBlockingTime. This
means that the bottleneck with the synchronization operations is due to too much time spent
waiting for the operations to execute (as opposed to too fine grained of synchronization).
Paradyn refined along the “where” axis when no further “why” axis refinements could be
made. It determined that excessive blocking time was being spent on message receives
(MsgTag), and it refined this bottleneck to a specific message tag (4). Paradyn next
determined that the bottleneck was in the process spmd{1}. Finally, Paradyn determined
that the bottleneck was in a specific procedure, dowork on the machine named poona. Since

SIAM PROCEEDINGS SERIES MACROS 9

Paradyn Search History

dowork heauf@pt m ’:

REFINE | AUTO SERRCH | FESUIE SERRCH | QUIT PC

Fi1a. 5. A Sample Session of the Performance Consultant.

all of the processes used the same executable file, Paradyn could have chosen any of the
processes and any of the machines. At this point no further refinements can be made since
Paradyn has refined along the “why” axis and each component of the “where” axis.

The bottleneck that Paradyn had found is further illustrated by a visualization that
is supported by the Paradyn controller. This is shown in Figure 6. In this figure, the
amount of time spent in synchronization operations for the process spmd{1} on machine
poona is displayed along with the CPU utilization for process spmd{1} on machine poona.
The visualization shows that the majority of time is spent waiting for synchronization
operations to complete. For the selected process and machine, the vast majority (greater
than 90%) of the time is spent waiting for synchronization operations to complete.

This particular visualization is a time histogram. Each line on the visualization
represents a resource and metric combination. The visualization can display multiple metric
and resource combinations and is updated in real time by data that is forwarded to it from
the Paradyn controller. The x-axis represents time and the y-axis represents the metric
amount. The visualization can plot any combination of metrics and resources along the
y-axis.

5 Conclusions

In this paper, we described the Paradyn Parallel Performance tools. We also reported
on the techniques used to port Paradyn to work with PVM applications. We illustrated
how Paradyn was used to automatically isolate a performance bottleneck in a simple PVM
application. Finally, we presented an example of a performance visualization that can be
used in conjunction with the Paradyn system.

6 Acknowledgments

We wish to thank Jack Dongarra and Bob Manchek of the University of Tennessee for their
invaluable help in defining and implementing the tasker and hoster interfaces to PVM.

References

10

MILLER, HOLLINGSWORTH, CALLAGHAN

Time Histogram

CPUs # Waiting

0,14 4 1.0
0,12
0,84
0,10 4
0,6
0,08 >
Z
_]
0,086 0,4 0
0,04 M
0,2 1
0,02
0,00 - o0 L2 : L% : : :
9:20 10340 12300 13320
Hintsec
aync_wait </MachinespoonasProcesssspndil-/ProceduresSynclbject >
Cpu <HHachine.f’pnu:una.f’F‘mc:essf'spmd{l}r’F‘mcedur‘ErﬂﬁuncDbJeu:t>

Fig. 6. A Sample Performance Visualization.

The graph displays synchronization waiting time and CPU utilization over time. Both metrics are shown
for the process spmd{1} on the host poona.

[1] CraY RESEARCH INc, UNICOS File Formats and Special Files Reference Manual, SR-2014

[2]
[3]

[4]

[5]

[6]

5.0 ed.

J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam, Integrated PVM framework
supports heterogeneous network computing, Computers in Physics, 7 (1993), pp. 166—74.

J. K. Hollingsworth, J. Cargille, and B. P. Miller, Dynamic Program Instrumentation
for Scalable Performance Tools, in Proceedings of the 1994 Scaleable Highe Performance
Computing Conference, Knoxville, TN, May 1994, pp. 841-850.

J. K. Hollingsworth and B. P. Miller, Dynamic Control of Performance Monitoring on
Large Scale Parallel Systems, in Proceedings of the 7th ACM International Conference on
Supercomputing, Tokyo, July 1993, pp. 185-194.

S. S. Thakkar, Performance of Parallel Applications on a Shared-Memory Multiprocessor
System, in Performance Instrumentation and Visualization, M. Simmons and R. Koskela, eds.,
Addison-Wesley, 1990, pp. 233-256.

E. H. Welbon, C. C. Chen-Nui, D. J. Shippy, and D. A. Hicks, The POWER2 Performance
Monitor, IBM Journal of Research and Development (submitted for publication), (1994).

