Page 1

The Tool Deemon Protocol (TDP)

Barton Miller’, Ana Corté§ Miquel A. Sendr and Miron Livny

*Computer Sciences Department TDepartament d'Informatica
University of Wisconsin Universitat Autdbnoma de Barcelona
Madison, W1 53706 USA 08193 Bellaterra (Barcelona) Spain
{bart,miron}@cs.wisc.edu {miquelangel.senar,ana.cortes}@uab.es
Abstract retrieve any results produced by the job. This software is

commonly referred as a resource manager and it has
Run-time tools are crucial to program development. In our been used in local clusters in the form of batch queuing
desktop computer environments, we take for granted thenvironments.
availability of tools for operations such as debugging, profiling, Resource management plays a crucial role in the

tracing, checkpointing, and visualization. When programs .,,qter environment because it has the responsibility of

move into distributed or Grid environments, it is difficult to find carrving out the necessaryv steps to quarantee the execu-
such tools. This difficulty is caused by the complex interactions ying y P 9

necessary between application program, operating system anHOn of gppllcatlons_ in a seamless and Segure way by
layers of job scheduling and process management software. ASUPPOIting mechanisms such as resource discovery, sta-

a result, each run-time tool must be individually ported to run tus monitoring, selection, allocation and job control.
under a particular job management system; for m tools and nSystems such as Condor [13], Load Leveler [9], NQE
environments, the problem becomes anmreffort, rather than ~ [4], and LSF [15] are some of the most popular commer-
the hoped-fom + n efort. Variations in underlying operating cial and research batch queuing environments currently
systems can make this problem even worse. The consequenca@ed to schedule jobs in a local area cluster.

this S|tgat|on is a paucity of tools in distributed and Grid More recently, attention has focused on Grid com-
computing environments. puting, using systems such as Globus [7] or Legion [8]
In response to the problem, we have analyzed a variety of jot;(? pr_OV'de access t_o heterog_eneous collections of widely
scheduling environments and run-time tools to better distributed, dynamically configured resources. The pres-
understand their interactions. From this analysis, we isolated€nce of such a Grid system provides additional services
what we believe are the essential interactions between the rurfor authentication, data staging, monitoring, and sched-
time tool, job scheduler and resource manager, and applicationuling. While these interfaces are crucial for running pro-
program. We are proposing a standard interface, called thegrams in this complex environment, they offer
Tool Deemon Protocol (TDP) that codifies these interactionsadditional layers of interfaces and abstractions that must

and provides the necessary communication functions. We havge negotiated when trying to deploy a run-time tool in
implemented a pilot TDP library and experimented with 5t environment.

Parador, a prototype using the Paradyn Parallel Performance

tools profiling jobs running under the Condor batch-scheduling The use of run-time tools in a distributed environ-

environment. ment is difficult because of the complex interactions
between application program, operating system, and
1 INTRODUCTION layers of job scheduling and process management soft-

ware. As a result, each run-time tool must be individu-
Run-time tools are crucial to program development.ally ported to run under a particular job management
In our desktop computer environments, we take forsystem; form tools andn environments, the problem
granted the availability of tools for operations such asSpecomes am x n effort, rather than the hoped_fm+ n
debugging, profiling, tracing, checkpointing, and visual-effort. While there have been isolated point-solution
ization. When programs move into distributed or Grid successes (SUCh as Totalview [5] running under
environments, it is difficult to find such tools. MP|CH)1 the effort needed to genera”y solve the prob_
Distributed computing is well-established, gaining lem is prohibitive. Variations in underlying operating
popularity in recent years thanks to the availability of systems can make this problem even worse. The conse-
compute clusters, shared-memory multiprocessors, angquence of this situation is a paucity of tools in distrib-
Grid infrastructure. In general, such systems requireuted and Grid computing environments.
software to schedule access to them, stage the resources
needed to run a job, monitor the jobs's execution and

Permission to make digital or hard copies of all or part of this work for personal or classroom

use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation on the first page. To copy oth-
erwise, to republish, to post on servers or to redistribute to lists, requires prior specific per-

mission and/or a fee.

SC’'03, November 15-21, 2003, Phoenix, Arizona, USA Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00

Firewall
\
]

[— -

- — - -

Page 2

Run-time
Tool
(RT)

Resource
Manager
(RM)

Application
Process
(AP)

Remote Host

Figure 1: Remote Execution with Resource Manager and Run-Time Tool

To address this problem, we have analyzed a variety
of job scheduling environments and run-time tools to,
better understand their interactions. From this analysis,
we have isolated what we believe are the essential inter-
actions between the run-time tool (RT), job scheduler
and resource manager (RM), and application program
(AP). Figure 1 illustrates the main components. We are
proposing a standard interface, called ffo®l Daemon
Protocol (TDP) that codifies these interactions and pro-
vides the necessary communication functions to the RT,
RM, and AP.

There are several crucial interfaces needed by run-
time tools to monitor and control programs. Our goal
was to identify these interfaces, as used by both the RM
and RT.

» Process creationA fundamental operation of a RM
is launching new processes. This operation can be
in conflict with a tool such as a debugger or profiler
that also expects to launch the process. While most
sophisticated run-time tools have the ability to
attach to a running process, this does not handle the
case where the tool wants to attach to the process
before it starts execution. There needs to be clean
division of work between the RM and RT: (1) RM
creates, but does not start, the application process,
(2) the RT attaches to the process and performs its
initial processing, and (3) the RM then starts the®
application. The RM must provide the appropriate
information to the RT so that it can find and operate
on the application program.

* Tool creation:The RM is responsible for launching
the RT. The RT might be launched before the appli-
cation is created (as above) or launched afterwards.
In this second case, the RM must provide the appro-
priate information to the RT so that it can attach to

and operate on the application.

Process controlin the course of normal operation,

a RT may pause and resume the application pro-
cess. This change in process state might be viewed
by the RM as a sign of faulty behavior, so the RT
must coordinate these operations with the RM.

Status monitoringAs just stated, the RM is inter-
ested in state changes of the application process, but
the RT also needs to receive this information. There
must be agreement as to which entity is responsible
for this information and under what circumstances
(and different operating systems, even different ver-
sions of Unix, have distinctly different behavior in
this area). There also must be a mechanism by
which this information is communicated to other
entity.

Standard input and output managemekithen a
RT tool launches an application program, it often
intercepts the applications standard input and out-
put so that this information appears at the same
location as the RT’s front-end. This control of stan-
dard input and output could be in conflict with sim-
ilar operations done by the RM. This operation
properly belongs to the RM, but must be coordi-
nated with the RT.

Tool daemon to tool front-end communicatidrhne
common front-end/back-end configuration for a RT
requires that a communication channel (typically a
TCP/IP connection) be established between the
front-end and back-end processes. In the case of
private networks (using firewalls or NAT), commu-
nication from the to execution nodes may require a
proxy (that is likely already provided by the RM for
its own purposes). The RM must be able to estab-

Page 3

lish a proxy tunnel for the RT's communication enhancement of both monitoring tools and resource
needs. management systems to make them interoperable. A
consequence of this project is that run-time tools should
may need configuration files transferred to the exebe more easily deployeq or_lto distributed infrastructures,
cution nodes. The RT might also generate outpu€asing the task of application program development. In
files that contain traces or summary data; if these®ther words, it will make distributed environments sig-

trace files will be processed off-line, they must be nificantly easier to use for application developers and

transferred from the execution nodes after the app“_will allow tool builders to concentrate on key technolo-
cation completes. gies rather than on repetitive porting efforts.

» Tool daemon configuration and data fileehe RT

» Auxiliary services (AS)There are entities in addi-
tion to the RM and RT that may be required for the
proper execution of a RT in a distributed environ- The Tool Daemon Protocol provides interfaces for
ment. For example, software multicast/reductioncreation of application processes, the subsequent moni-
networks are crucial to scalable tool use toring and control of these processes, establishing con-
[1,6,11,16]. The RM must be aware of and willing nections between the various tool daemon components,
to launch this second kind of non-application entity. and a means of exchanging configuration data. We start

. Fault detection and recoveryny of the three enti- with a pllscussmn of this data exchange facility, cglled
ties launched by the RM (AP, RT, AS) can fail dur- the attribute spaceas several of the other operations

ing execution. The RM must be able to detect thesedepend on It.
failures, respond to them, and perhaps communi;, .
cate their occurrence to the other entities. A clearz'l The Attribute Space

and precise fault model is required. Note that mod- ~ There are several cases in which the RM, RT, and
eling and detecting faults is ongoing work and AP must exchange information. Examples of such cases
beyond the scope of this paper. include the RM telling the RT the process ID of the AP,

There are some things that are explicitly not part ofthe RM providing the RT with the network address
TDP. In general, TDP does not try to solve a problem in(host/port number) of its front-end, and the RT (or the
the distributed environment that is not already solved (inRM) providing the AP with the network address of its
general usage) in the desktop environment, for examp|§tandard input and output. Instead of_deS|gn|ng special
coordinating the interactions between multiple run-timeProtocol messages for each type of information to be
tools. While TDP is designed to allow multiple tools to xchanged, we have organized our communication
be launched for a given application, the interactions@Pout a general purpose attribute-value space. The
between those tools must be coordinated by the tool§?€chanism was inspired by the new MPI Process Dae-
themselves. While some excellent experimental workmon (MPD) from Argonne [2], and can be considered a

has been done in this area [10], this feature is not foundighly simplified version of the Linda tuple space [3].
in tools that are in common use. Note that the X-window server [14] also has similar

To address the problems presented above, botﬂwechanlsm for use by its clients.
resource managers and monitoring tools to be aware of This interface should exhibit desirable characteris-
the existence of each other and to be prepared to executés such as generality, portability and extensibility. The
under such conditions. Unfortunately, neither the cur-Kind and format of information that may be exchanged
rently available resource managers and monitoring tool§/0€s not have to be restricted to any particular combina-
nor those under development in on-going Grid projectson of resource manager or monitoring tool. Rather, it
support the above-mentioned functionality. This work should be based on flexible and extensible mechani_sms
deals with the analysis and design of basic services t§1at enable any pair of resource managers and monitor-
overcome the drawbacks and limitations existing ining tools to communicate effectively.
middle ware services, as described above. TDP is an Each host on which an application process (and tool
effort to address the problem of tool interoperability in daemon) runs have a local instance of the attribute space
distributed and Grid environments. By interoperability, server (LASS). There is also a central attribute space
we refer to the ability of different tools and resource server (CASS) process on the host running the tool
managers to co-operate in controlling user applicationdront-end. A process using the TDP library can access
by using common services and communication mechathe attribute space of its LASS or the CASS, but cannot
nisms. access the LASS's of other nodes. The LASS's are

To allow for the general deployment of run-time started by the RM, while the CASS is started by the RM

tools in distributed environments with maximum trans- front-end process. Figure 2 shows the same structure as
parency and portability requires the extension andn Figure 1, with the addition of the attribute servers.

2 TDP INTERFACES

Page 4

- TTTTTTEEETETE TS EEEES Y
-_—— - - e = == - - \
\h i - - Ve \ \
.’ \ v
— 4
©|
il I Skt Local Resource Run-time
,' [~ = 1| Attr. Space Manager Tool
! = ,' (LASS) (RM) (RT)
1 LL ,
- - -
1
1
1
,l Application
1 Process
Central ! (AP)
Attr. Space |”
(CASS)

Remote Host

Figure 2: Remote Execution with Local (LASS) and Global (GASS) Attribute Space Servers Added
Attributes and values can be inserted and removed pause the application; (3) perform some tool initial-

from the attributed space with a simple put/get interface. ization, such as reading the symbol table or parsing
There is also a mechanism for providing asynchronous the executable; and (4) continuing the application.
notifications. The details of this interface are provided in Again, tools such as gdb, Totalview, and Paradyn
Section 3.2. use this technique.

In a resource manager environment, case 1 requires

2.2 Application Process Creation no special modifications to the tools, while cases 2 and 3

Run-time tools use a variety of schemes for creatingequire change. In cases 2 and 3, the RT is no longer cre-

application processes. These schemes include: ating the application process; that responsibility now

1.

Create the application process and start it running'be'ongs to the RM. As a result, when using the TDP

) library, steps 2 and 3 look quite similar.
This scheme is typically the simplest, used in tools
that perform no external initialization of the appli- The sequence of steps for case 2 that must be coor-

cation program. Any needed initialization is done dinated by the TDP library is: (1) RM creates gnd _starts
by code already Compiled or linked into the applica_ the RT; (2) RM creates but doest start the appI|Cat|0n

tion. This scheme requires the least mechanism t&"OCess; (3)_RM_ sends information to the RT that identi-_
support. Tools such as Vampir and PCL use this€S the application process, (4) RT attaches to the appli-
technique. cation asin case 3, (4) RT performs_ |ts_|n|t|aI|zat|on, and
L _(5) RT tells the RM to start the application. The commu-
Crea}te the gppllcatlon, initialize it, and then Sta.rt_'tnication between the RM and RT use the Attribute
running. This scheme allows the tool to perform ini- 5406 gperations provided by TDP. Note that if the RT
tialization in the time before creating the applica- a5 aiready been started (perhaps because it is already

tion,_but before it is started execution. In Unix operating on another application process), step 1 might
terminology, both théork andexec must complete, |, skipped.

bﬁtesifs:u;;oﬂowe;urgﬁ sitni?i(;li:;i% F;]ei-c);':ei;]e tlhse & Case 3 under TDP works in a similar way, but with
q two minor differences. The first difference is that the RT

application should be run, but the intuition is that . L
program should be stopped before starting to eXe_mlght be created after the application process. Second,

cute the main function. Tools such as gdb, TotaI—Ste.p (4) above requires attachlng. ?‘”d pausmg.the appli-
) . . cation. Not all tools have the ability to use this attach
view [5], and Paradyn [12] use this technique.

_ o ~ technique. For example, the Vampir trace tool requires
Attach to a running application process: Attachingthe tracing to be started before the application starts exe-
is an important mechanism for operating on cytion.

already-running programs (such as servers) or pro- - the goal of TDP is to standardize these interactions
grams with complex start-up sequences. Attaching,nq encapsulate them in a library so that the details are
requires the following steps: (1) obtain control of piggen from the RM and RT. With a small amount of
the application, usually witiiproc or ptrace; (2) mogification (as demonstrated by our experience with

Page 5

Condor and Paradyn, reported in Section 4), both RMestablishing the connection and forwarding inbound and

and RT can be reorganized to use the TDP interfacesoutbound messages.

The result is RT will be able to operate directly in each TDP does not require a new proxy facilities with

RM environment that supports TDP and the RM can runnew permissions; it merely leverages existing ones (if

any tool that supports TDP. present), and provides a standard interface to such a
facility.

2.3 Application Process Monitoring and Control Y

Under TDP, the responsibility for controlling an 3 TDP SERVICES
application process and for monitoring its status belongs TDP provides three main groups of services: pro-

to th.e RM; .e., process m.anagement operatlons ArBess management, inter-daemon communication inter-
localized and encapsulated in the RM. This encapsulaf

control operations, the single point responsibility elimi-

nates confusing race conditions. Two different processe Developers of resource management svstems and
will never attempt conflicting control operations. For Velop u 9 y

process monitoring, we also avoid the confusing andﬂomtormg tools have been using Unix or Wmdovys
often conflicting semantics of various operating Sys_lnterfaces to create and control the execution of applica-

; tions (fork/exec, /proc interface, ptrace are examples in
tems. For example, under Linux, the parent (RM) pro- "~ . .
P P (RM) p Unix systems, and CreateProcess and WaitForSingleOb-

cess may or may not be the recipient of the child, ¢ les in Wind TDP ides it
process’ termination code. The choice of process cahCt are examples in Win ows). Provides its own

depend on whether some third process (the RT) et of interfaces that are OS neutral. The guidelines that
attached to control the child (application) process. In"/ere used in designing the APl were the following:
one unusual case, the return code might go to both pror The API should be simple and the API set small.

cesses. + The API should be consistent with standard C
As for other TDP communication, this status and library interfaces.

control information is exchanged using Attribute Space,

operations. When the RT needs to perform a process

management operation, it contacts the RM. When the) o

RM needs to notify the RT about a change in proces¢ The library shoulq be thregd safe .(It is expected .that

status, it places a value in the Attribute Space; the RM the devel_opers will be linking the library from serial

optionally can use the asynchronous notification to hear ~ and multi-threaded codes).

immediately about the change.

groups.

A first implementation will be provided in C lan-
guage.

3.1 Process Management.
2.4 Tool Communication TDP supports two scenarios for a RT to operation

The RT and its front-end need to communicate and®n an application process, create and attach. Figure 3

this communication is typically done with TCP/IP sock- illustrates the steps that must be followed by each dae-

with a firewall or gateway, they may not be able to create case (Figure 3A), once the RM is notified that the
establish a connection through out of the private net€W application to be launched is going to be monitored,
work. A similar problem can occur if when the standard Unlike a normal process creation, it will use a
input/out of the application program needs to be con-ldp_create_process function with a paused option,

nected to desktop machine of the user (or some othefhich will launch the process by stopping it at the very
site outside the private network). beginning (using Unix terms, the process will be

Process managers, such as Condor and Globus, prggo_pped just after the executiqn (.)f té»eac call). At tha_t
vide proxy mechanisms to forwarding their connectionspo'n_t', the_ TOP fram_ework is initialized _by c_alllng
in and out of a private network. TDP provides a standarddP—init- Finally, RM will launch the RT, which will be
interface to these mechanisms. In general, TDP will proStarted as aregular process usifpg create_process.
vide a host/port number pair to the RT to contact its [N the second scenario, the application is already
front-end and to the application program to connect its"nning and controlled by the resource manager system.
standard input/out. If there are no routing or addressindt @ later time, a RT tool would like to attach to the
restrictions, then the host/port number will be the actuaPplication process to monitor/analyze it. In this situa-
address of the remote process. If the private network&on, the RM might be notified that it must launch a RT
block such connections, then the host/port number willt© monitor the running application process. If a RT had
be that of the RM’s proxy, which will be responsible for Peen previously created, this step would be skipped. The

Page 6

RT RM AP RT RM AP

| |

tdp_init() tdp_init()
tdp_create_process(RT,run) tdp_create_process(AP,run) =
tdp_create_process(AP,paused)~ (tdp_create_process(RT,run)

tdp_init() l | tdp_init() l
1
1

tdp_attach(pid) tdp_attach(pid)

tdp_continue_process() tdp_continue_process()

A: The RM createsthe application process B: The RMattachesto existing process

Figure 3: Steps to Allow a RT to operation on an Application Program
Note that for the create case, the creation of the application process and RT can occur in either order

basic steps followed under this scenario are depicted ibbetween both the RM and RT®n succesgdp_init will
Figure 3B. When the user decides to use the RT on theeturn atdp handle which will be used in any TDP sub-
application process, a TDP framework will be estab-sequent action.

lished by callingtdp_init and, subsequently, the corre- Once the TDP framework has been successfully set
sponding RT will be launched. Once these initializationyp, both the RM and RT communicate through the
steps have been accomplished, the TDP communicatiopASS to exchange configuration information. The two
channel will be established and both daemons will bepasic Attribute Space primitives aredp_get and
ready to exchange information. tdp_put. Information in the shared environment space is
Notice that the state of the application process willkept in the form of (attribute, value) pairs, where both
be completely different in each of the two cases, but thehe attribute and value are constrained only to be null-
behavior of the monitoring tool is similar. When the terminated strings. An attribute consists simply in a
application has been created by the RT,fthikandexec ~ character string that names data in the shared space.
have been successful, but the application proces®Vhile there is a standard list of attribute names for the
remains stopped at that point. The monitoring tool thenset of data commonly exchanged between the different
will attach and have a chance to perform initialization daemons (everyone RT and RM must understand this
and track the application’s execution from its start.set), different tools and resource managers can extend
When the RT has attaches to an already running applicahis set with their own situation specific attributes.
tion, the application process will be stopped at some | miting attribute values to strings, while simple,
unknown point it its execution. brings up the problem that there may be the need to pro-
In both the attach and create cases, once the RT hagde attributes that multiple or structured values. If we
completed its initialization of the application, it can consider, for example, the arguments passed to an appli-
restart the application using thdp_continue_process cation, we would like to pass information that may be

operation. something like “-p1500 -P2000". This kind of attributes
could be stored into the shared environment space using
3.2 TDP Inter-Daemon Communication the simple put operation, and let use TDP client handle
Each daemon process in the TDP environment (thdn€ Parsing.

RM and each RT) must perform basic initialization, =~ The local Attributed Space is initialized when
including establishing connection with the Local tdp_init is called. A RM that deals simultaneously with
Attribute Space Service (LASS) and exchanging someseveral RT may initialize a different space for each RT.
basic configuration information. The first step is thatEach RT interacts with the RM through its own local
each daemon process must exeadpe init. This func- Attribute Space, called a&ontext. A different context
tion establishes the TDP communication channelparameter is used by the RM in eadh_init call to cre-

Page 7

ate a different space. Communication with a specific RTthe RT’s use of the signal. Finding a signal that does not
is accomplished by using its particular context. Multiple conflict with some tool is problematic. The use of
tools can share the same space with the RM by using théhreads also is a problem because of the plethora of
samecontext but current tool designs do not yet have athread packages. There is no way to select a thread
need for such a feature. An RT disengages from the TDpackage for TDP that would be compatible with the
library and Attribute Space witkdp_exit function. An many possible packages used by RTs.
Attribute Spaced shared between a resource manager |n many cases, a pure asynchronous notification
and several tools (using a common context) will bemechanism is not necessary. Most RTs and RMs have a
destroyed when the last element using the specific corcentral polling loop where they use an operation such as
text callstdp_exit. the Unixpoll or select to wait for the next event to pro-
We briefly describe the use of the main functionscess. In these cases, asynchronous events simply causes
required to communicate information through theactivity on a descriptor, so the daemon would return
Attribute Space. The basic functions adp_getand from thepoll, find out that a given descriptor is active
tdp_putfunctions that have a structure whose synopsisand call a function to extract an event and possibly act

can be sketched as follows: on it. This mechanism is also compatible with other
tdp_get (handle, attribute, &value) operating systems like Windows that do not support

wherehandlecorresponds to the identification returned per event type thét would F’e used.))
by tdp_init, attributeis the string that identifies the infor- To support this behavior, the TDP library provides

mation to store to or retrieve from the Attribute Space,2/S0tdp_service_event that will call any pending call-
andvalueis the information contained in that attribute. PacK that has been registered previously in an asynchro-

. . . nous put or get. Under this scheme, the delivery of
These operations are blocking forms of communi- I . .
. events related to communication actions will be checked
cation between a daemon and th&SS In theput case,

the function will block until the new attribute is stored in g: sglam(f:l(c; diog(;jsg]c?gggsirgﬁg _e\t/ﬁgt \C/Q}IT)IQCT iu?w-cl;tion
the shared space. In thgt case, the function blocks ' d Y.

. k . : will be called at a well-known and (presumable) safe
until the value of the corresponding attribute is returned . _ :
. . } . : . “point. Thetdp_service_event function must be called
or and error is returned if the attribute is not contained in L .
whenever an activity has been detected inttie han-

the shared space. o ~dle. It will identify which kind of event has been deliv-
Asynchronous versions for retrieving and storing oreq and call the associated action function.

information from the shared space are also available: Pseudo-code for an example of the use of this asyn-

tdp_async_get (handle, attribute, &value, callback, chronous communication services is illustrated below:

callback_arg) .
= . tdp_fd = tdp_async_get (tdp_handle, “pid”,
tdp_async_put (handle, attribute, value, callback, &pid, my. callbackl, my_argl):

callback_arg) tdp_fd = tdp_async_get (tdp_handle,
Both functions will return immediately after being “executable_name”, &exec_name,
called, however, the storing or retrieval of information my_callback2, my_arg2);
may not have been completed at that time. The callback
function provided to these functions will be executed
when the corresponding operation completes. A user- poll ();
supplied argumentc@llback_arg is also passed to the fori =1 to descriptors
callback function. The use of these asynchronous func- friirst the tool processes all events
tions will prevent a daemon process from being blocked procreeszfeveon? (f(f)r; escripfors
in a communication operation with the shared environ-

/* main polling loop of the tool */

ment space and keep with his own activities. /* callbacks registered for completed TDP
functions will be processed here */
3.3 Event Notification tdp_service_events();

In this example,tdp_service_event would call out to

In principle, the callback function from an asyn- my_callbackl or my_callback2 depending on which get
chronousget or put would be called once the operation - .
action has been completed, respectively.

has been completed. However, a pure asynchronous
notification mechanisms may be hard to manage in]
some tools because the obvious UNIX implementation4 PARADOR: PROTOTYPING TDP
of such features in TDP on UNIX might use signals or As an initial test of TDP protocol, we chose the
threads. Signals are a problem for many run-time toolSCondor batch system and the Paradyn Parallel Perfor-
because the TDP use of these signals might conflict with

Page 8

Match
Maker

/'

schedd

Job submit

\

» startd

fork l

<

Claiming & Activation

Execution protocol

l fork

» starter

shadow <

Home File
System

Creates the
fork execution
environment.

Figure 4: Condor Structure
The schedd and shadow run on the user’s local machine and startd and starter run on the remote machine.

mance Tool as representative examples for resource
manager and run-time tool. We outline the structure of

each system and describe how they were modified to
work together using TDP.

4.1 Condor structure

Condor is a widely-used system for scheduling jobs
to run in distributed cluster and Grid environment. It
provides all the mechanisms needed to submit jobs and
run them remotely, including checkpointing and remote
file access. Using Condor terminology the local host is
the submit machin@nd the remote hosts are callexk-
cution machinesThe submission of a job and the inter- »
action between different Condor daemons is illustrated
in Figure 4.

In the following paragraphs, we will describe the
role of the different Condor daemons. We start by
describing the daemons that run on the local machine
(condor_schedd and condor_shadow) and continue with
the daemons that run on the remote maching
(condor_startd and condor_starter). The local daemons
are:

O condor_scheddThis daemon represents resources
requests to the Condor pool. Any submit machine
needs to have a condor_schedd running. Basically,
condor_schedd takes care of the job until a suitable
and available resource is found for the job. The

condor_shadowT his program runs on the machine
where a given request was submitted and acts as the
resource manager for the request. Jobs that are
linked for Condor's standard universe, which per-
form remote system calls, do so via the
condor_shadow. Any system call performed on the
remote execute machine is sent over the network to
the condor_shadow which actually performs the
system call (such as file 1/0) on the submit
machine, and the result is sent back over the net-
work to the remote job.

The remote daemons are:

condor_startd: This daemon represents a given
resource (namely, a machine capable of running
jobs) in the Condor pool. The condor_startd runs on
each machine in your pool on which you wish to be
able to execute jobs. When the condor_startd is
ready to execute a Condor job, it spawns the
condor_starter, described below.

condor_starter: This program is the entity that
spawns the remote Condor job on a given machine.
It sets up the execution environment and monitors
the job once it is running. When a job completes,
the starter sends back any status information to the
submitting machine, and exits. Together, the
condor_startd and condor_starter form the RM.

Figure 4 shows also another element called the

condor_schedd spawns a condor_shadow daemamatch_makerit represents the entity that is responsible
(described below) to serve that particular request. for finding a suitable machine on which to run the job.

Page 9

The matchmaking algorithm is responsible for locatingthe program ¢reate modgand attaching to an already-
compatible resource requests with offers. When a comrunning processaftach modg

patible match is found, the matchmaker notifies the corp
responding job and machine about it. Once a suitable
matching is notified to the schedd, it contacts the corre-
sponding startd. This is known asciiming protoco)

and either party may decide not to complete the alloca-
tion. There is another condor daemon, called the
condor_mastethat is present on both local and remote
nodes; its job is to keep track of the other Condor dae-
mons. Figure 4 shows the existing relation between all
these components.

4.2 Paradyn Structure

Paradyn is a performance profiling tool for parallel
and distributed programs. Two of its major technologies
are the ability to automatically search for performance
bottlenecks (Performance Consultant) and dynamically
inserting and removing instrumentation in the applica-
tion program at run time (Dyninst). Paradyn has two
main parts: the Paradyn front-end and user interface
(paradyn) and the Paradyn daemorsatadynd, which
are the agents that run on each remote host where the
application program is running. Paradyn contains the

Create mode:Paradyn launches the application
with the user providing information such as work-
ing directory, the application name and its argu-
ments, and execution host machine. Once the front-
end has all the information related to the new appli-
cation, it will create the paradynd using either fork
in the case of launching paradynd in the local
machine or rsh or ssh when executing on a remote
machine. Once paradynd has been successfully
started, a connection is established between the
front-end and paradynd. At this point, the paradynd
is ready to launch the application process by fork-
ing a new process. Before allowing the user to start
the application, some initialization is done:

» the paradyn run-time library is loaded into the
application process,

paradynd parses the executable to discover
symbols and find potential instrumentation
points, and

e aconnection is established between the appli-
cation and the paradynd.

user interface that allows the user to display perfor-after these steps, the user is able to control the execu-
mance, data visualizations, use the Performance Conon of the application from the front-end.

sultant to automatically find bottlenecks, start or stop th
application, and monitor the status of the application.
The paradynds operate under the control of paradyn to
monitor and instrument the application processes. In
TDP terminology, paradynd is the RT.

Paradyn interacts with the application program in
one of two modes, as described in Section 3.1: starting

Match
Maker

— T

schedd ———» startd

fork l l fork

shadow «—— > starter

- b
Home File
System

A: The daemon structure

job submit

Create and pause —>
the application

paradynd

Monitoring tool —>

Attach mode:The user specifies the host and pro-
cess id of the application process and the front-end
launches a paradynd by either forking it or execut-
ing an rsh/ssh. In this case, paradynd will attach to
the application process and, once the attach action
has been done, it will pause the application and per-
form the same actions that were previously
described for create mode.

universe = Vanilla

executable = foo

input = infile

output = outfile

arguments =12 3

transfer_files = always

+SuspendJobAtExec = True

+ToolDaemonCmd = “paradynd”

+ToolDaemonArgs = “-zunix -I3
-mpinguino.cs.wisc.edu
-p2090 -P2091 -a%pid”

+ToolDaemonOutput = “daemon.out”

+ToolDaemonError = “daemon.err”

tranfer_input_files = paradynd

queue

Typical job —>
description

information

B: The Condor submit file with new entries

Figure 5: Paradyn Running with Condor using TDP

4.3 ParadoR: Combining Both Worlds

The process control of both Paradyn and Condo

Page 10

the Local Attribute Space. We used the -a%pid notation

As a temporary mechanism to show which information

were modified to use the TDP library. While these mod-the starter should put into LASS and which information

ifications involved some re-arranging of the related cod

lines. A Condor user can submit a job that will create the
application process (paused), create the paradynd, al
provide paradynd with enough information that it can

contact its front-end.

The code changes in Paradyn and Condor fell intomitting a job like the one in Figure 5B. The front-end

€
in each system, the total code involved was less than 508

should paradynd get from there. This attribute is used by
aradynd to know it is running under the TDP frame-
work. A more expressive mechanism should be defined
each resource manager or run-time tool in a real sce-
nario. Once Paradyn front-end was created, it did not
carry out any further action to create paradynds or appli-
cation processes. This work was left to Condor by sub-

two categories, rearrangement of basic operations to f\’vaited until Condor found an available machine to run

the TDP model and addition of TDP library calls. The

rearrangement of operations has no net effect on th
behavior of Paradyn or Condor; this rearrangement sep-) :

y g pgvere included in both Paradynd and Condor to work
changes can be considered permanent. The addition of
TDP library calls allows Paradyn and Condor to operate
with TDP, and these calls are only invoked in a TDP

environment.

The prototype described in this section has bee
developed under thereate mode, where the resource
manager daemorcdndor_starterin this case) creates
both the RTand AP from the beginning. In addition, the

prototype managed only the Local Attribute Space
(LASS) at the remote host; no management of globa

attributes were included.

The logical view of this approach is depicted in
Figure 5A. From the Condor point of view, the new job

consists of two entities; the application process and
paradynd. In the current prototype, new commands in

the job submit fileare used to notify Condor that the

application process must be created but not started to
allow paradynd to monitor the application process from

scratch. For this purpose, tl8uspendJobAtExeatirec-

tive must be introduced in the Condor submit file as is
shown in Figure 5B (line 7). Furthermore, the submit
file must also contain all the information about the RT
(in this case the paradynd). For this purpose, a set of

lines initiated with the stringlfoolDaemonare intro-

duced. These lines outline all the information needed to

launchparadyndand are equivalent to the description of
aregular job. That is, instead Afgumentspne will use
ToolDaemonArgumentinstead ofoutput one will use
ToolDaemonOutputand so on.

In our tests, the Paradyn Front-end was started first.
This step was required because the front-end publishes
two port numbers that paradynds must use to connect to
it. As seen in Figure 5, port numbers were manually

included in the submit file (-p2090 arg2091) and the
starter passed them directly to paradynd as arguments

starting time. In a complete TDP framework, port argu-
ments should be published by Paradyn front-end and
disseminated to remote sites as attribute values. On the

other hand, the applicatiquid was communicated using

the application.
Next, we briefly sketch how the TDP functions

e

der TDP. Figure 5A describes the daemons’ behavior
in the remote host. Once the Condor claiming and acti-
vation protocols are completed, a remote machine is
ready to accept the submitted job. The Condtartd
creates astarter, which will be in charge of the pro-

Tesses involved in theew job In our case, th@ew job

comes from a speci@b submit file which includes the
extra arguments as described earlier. These arguments
are parsed by thetarter, which detects that monitored

{ob should be launched. Figure 6 shows the four steps

hat are followed by botistarterand paradynd to com-
plete the launching sequence:

Step 1: Thestarter executeddp_init to create
the LASS through which starter and paradynd
communicate. Once the TDP framework has been
initialized, the starter launches the application pro-
cess using tdp_create_process with a
paused argument to indicate that the application
process must be stopped before starting execution.
In Unix terms, this means that the application has
been stopped after executing the faik/exec

calls and, consequently, the libraries dependencies
have not been already loaded and initialized. At this
point, the paradynd can not yet safely introduce its
instrumentation points.

O Step 2: The starter launches the paradynd by using
thetdp_create_process function but, in this
case, thegpaused option is not used and the para-
dynd is created normally. When the paradynd
parses its arguments, which were specified in the
job submit file it does not find any application pro-
cess reference. Paradynd assumes then that it is

working under a TDP framework.

O
at

Step 3: At this point, paradynd calidp_init to
contact the LASS. Once the contact has been suc-
cessfully accomplished, paradynd immediately asks
for the application pid. For this purpose, it calls a
tdp_get with a PID attribute. Sincédp_get is

a blocking function, paradynd is blocked until the

starter

tdp_handle = tdp_init()

pid = tdp_create_process(ap, paused) j

starter

‘tdp_handle = tdp_init()

pid = tdp_create_process(ap, paused)
f tdp_create_process(paradynd,run)

monitored monitored
condor job Appl. Paradynd condor job Appl.
main() main()
STEP 1 STEP 2
starter starter

tdp_handle = tdp_init()

tdp_handle = tdp_init()

Page 11

pid = tdp_create_process(ap, paused)

pid = tdp_create_process(ap, paused)
tdp_create_process(paradynd,run) tdp_create_process(paradynd,run)
tdp_put = (tdp_handle, "pid” pid) tdp_put = (tdp_handle, “pid” pid)

monitored monitored
Paradynd condor job stop A_ppl. Paradynd condor job A_ppI.
tdp_handle = tdp_init() — | main() tdp_handle = tdp_init() continue| Main0
tdp_get = (tdp_handle, “pid” &pid) tdp_get = (tdp_handle, “pid” &pid) _‘
tdp_attach(pid) libe tdp_attach(pid) libc
tdp_contiue_process(pid) E
STEP 3 STEP 4

Figure 6: TDP Function Calls from the Condor and Paradyn Sides

starter stores in the LASS the corresponding applithe job (i.e., any sequential job that runs outside of Con-
cation pid using tdp_put . Once paradynd dor will run in the Vanilla Universe without modifica-
receives the queried pid, it attaches to the application). When a vanilla application is run under the TDP
tion by calling thetdp_attach function. After- framework, the starter creates the application and para-
wards, paradynd will run the application processdynd following the order depicted in Figure 3A. The
until the beginning of thenain function by issuing paradynd is blocked in a tdp_get operation until the
atdp_continue_process call. applicationpid is put by the starter into the LASS. The

0 Step 4: Paradynd will have the control of the appli- Paradyn front-end then is updated with the information
cation execution as usual. about the application and the user is in control of the

i L . . application as usual.
Condor defines six different execution environ- 2P , ,
ments, called “universes”, to run applications. Each uni- '€ MPI Universe is used to run parallel programs

verse is chosen according to the type of application thafVrttén with MPI. More specifically, applications must
the user wants to run and specified by theiverse bg compiled with the. M.PICH ch_p4 version of MPL. In
attribute in the submit file. Slightly different mecha- this case, the submit file also specifies the number of

nisms are used by the starter in each universe to spawfdes to be used in the parallel job. The application does

the application. Our prototype was demonstrated usinéwt start until a suitable nur_nber of machines aEe allo-
the Vanilla and the MPI universes, which have similar c&t€d by Condor. Then, a first process (called “master
starters. process”) is started. In MPI terminology, this process

The Vanilla Universe is used to run sequential has rank 0. A paradynd is created afterwards, informa-

. - - : tion is exchanged between starter and paradynd using
applications, when no specific restrictions are applied tQ[he LASS, paradynd attaches to the process and, simi-

Page 12

larly to how we described for the Vanilla universe, con- basic configuration and application specific information,
trol is passed to the user through the front-end. Once thbut also to notify the occurrence of run-time events
user issues the run command, the rest of processes froralated to the application execution.

the application are created with a paradynd attached to A first prototype of TDP has been applied to the
each one of them. Processes are created and stoppethndor batch system and the Paradyn Parallel Perfor-
paradynds attach to them and, after reporting to thenance Tool as a proof of concept. Appropriate daemons
front-end, they immediately issue a run command (usingyf Condor and Paradyn were modified to work together

TDP_continue). At this point, the user is able to further using the TDP |ibrary_ As a result, we were able to run

steer and analyses the execution of the application agbs in a Condor pool (both sequential and MPI) in

usual by using the commands from the Paradyn frontwhich the job was also monitored and controlled by

end. Paradyn. This prototype focussed mainly on interopera-
The benefits of distributed resource sharing are welbjlity problems between a resource manager daemon
established, and numerous software environments angind a run-time monitoring tool daemon at the execution
toolkits have evolved in recent years to support thissite (where the Local Attribute Space is used).

mode of computing. Grids, which are considered to be

the most generalized metacomputing systems, havACKNOWLEDGEMENTS

gained tremendous popularity recently as enabling

This work has been supported in part by Depart-

secure, coordinated, resource sharing across multiplgyent of Energy Grants DE-FG02-93ER25176 and DE-

administrative domains, networks and institutions.

FG02-01ER25510, Lawrence Livermore National Lab

grant B504964, VERITAS Software, tiidreccion Gen-

5 CONCLUSIONS

Despite the potential benefits of large distributed
systems, it is commonly accepted that they are inher:
ently more complex than existing parallel systems or
local-area clusters. In these large-scale distributed sys-
tems, resource managers play a crucial role as they aré
responsible for providing basic services to guarantee th
execution of applications in remote resources. On th
other hand, the use of on-line monitoring tools is an[1]
important approach for finding effective solutions to
performance problems and to ensuring application reli-
ability. Reliability and performance problems are not
restricted only to user applications but also to the whole
set of components that are commonly referred as system
middleware. Subsequently, the use of on-line monitor{2]
ing tools is extensible to these middleware services.

Large-scale distributed environments imply a new
scenario that requires that both resource managers and
monitoring tools be aware of the existence of onel3l
another and be prepared to execute in such conditions.
This paper described our early experiences with TDH4]
(Tool Daemon Protocol), a standard interface that aims
to improve interoperability between resource managers?]
and monitoring tools. By interoperability, we refer to the
ability of different tools and resource managers to co-
operate in controlling user applications by using com-
mon services and communication mechanisms. TDP is
based on a small set of functions that are used both by
resource managers and monitoring tools to create and
control application processes. Additionally, it manages
a common Attribute Space that is based on a flexible an
extensible mechanisms that enable any pair of resourc
managers and monitoring tools to communicate effec-
tively. The Attribute Space is used not only to exchange

]

eral de Universidadesnder grant PR2001-0425 and the
Comision Interministerial de Ciencia y Tecnologia
(CICYT) under contract TIC2001-2592. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon.

EFERENCES

S.M. Balle, B.R. Brett, C.-P. Chen, D. LaFrance-
Linden. A New Approach to Parallel Debugger
Architecture. Sixth International Conference PARA
2002 Espoo, Finland, June 2002. Published.aesture
Notes in Computer Scien@3867, J. Fagerholm et al
(Eds.), Springer, Heidelberg, June 2002, pp. 139-149.

R. Butler, W. Gropp, and E. Lusk, “A Scalable
Process-Management Environment for Parallel
Programming”, EuroPVM/MPI 2000 Balaton,
Hunger, August 2000. Spring Verlag LNCS 1908.

N. Carriero and D. Gelernter, “Linda in Context”,
Comm. of the ACN82, 4, April 1989, pp. 444-458.

Cray Computer Inc., “NQE Users Guide”, Version 3.2,
January 1997.

Etnus LLC, “TotalView User's Guide”, Document
version 6.0.0-1, January 2003.
<http://www.etnus.com>

D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C.
Armstrong. Lilith: Scalable Execution of User Code
for Distributed ComputingSixth IEEE International
Symposium on High Performance Distributed
Computing (HPDC ‘97) Portland, Oregon, August
1997, pp. 306-314.

I.T. Foster and C. Kesselman, “The Globus Project: A
Status Report”,Seventh Heterogeneous Computing
Workshop Orlando, Florida, March 1998.

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

A.S. Grimshaw and W.A. Wulf, “Legion - A View
from 50, 000 Feet”5th International Symposium on
High Performance Distributed ComputingHPDC
'96), Syracuse, NY, August 1996.

IBM Corporation, “Load Leveler Users Guide”,
Version 1.2. 1995.

T. Ludwig, R. Wismiller and M. Oberhuber, “OCM -
An OMIS Compliant Monitoring System”,Third
European PVM ConferenceMiinchen, Germany,
October 1996, Springer Verlag LNCS 1156.

S. Madden, M.J. Franklin, J.M Hellerstein, and W.
Hong. TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks.Fifth Symposium on Operating
Systems Design and Implementation (O$BbBston,
Massachusetts, December, 2002.

B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K.
Hollingsworth, R.B. Irvin, K.L. Karavanic, K.
Kunchithapadam, and T. Newhall, “The Paradyn
Parallel Performance Measurement ToolSEEE
Computer28, 11, (November 1995). Special issue on
performance evaluation tools for parallel and
distributed computer systems.

M.J. Mutka, M. Livny, and M.W. Litzkow, “Condor -
A Hunter of ldle Workstations”8th Int'l Conf. on
Distributed System$an Francisco, Calif., June 1988.

Adrian Nye,Xlib Programming Manual , 3rd edition,
O’'Reilly and Assaociates, Inc., July 1992.

Platform Computing Inc, “LSF Users Guide”.

P.C. Roth, D.C. Arnold, and B.P. Miller, “MRNet: A
Software-Based Multicast/Reduction Network For
Scalable Tools”,SC 2003 Phoenix, AZ, November
2003.

Page 13

	The Tool Dæmon Protocol (TDP)
	Abstract
	1 Introduction
	Figure�1: Remote Execution with Resource Manager and Run-Time Tool

	2 TDP Interfaces
	2.1 The Attribute Space
	Figure�2: Remote Execution with Local (LASS) and Global (GASS) Attribute Space Servers Added

	2.2 Application Process Creation
	1. Create the application process and start it running: This scheme is typically the simplest, us...
	2. Create the application, initialize it, and then start it running. This scheme allows the tool ...
	3. Attach to a running application process: Attaching is an important mechanism for operating on ...

	2.3 Application Process Monitoring and Control
	2.4 Tool Communication

	3 TDP Services
	Figure�3: Steps to Allow a RT to operation on an Application Program Note that for the create cas...
	3.1 Process Management.
	3.2 TDP Inter-Daemon Communication
	3.3 Event Notification
	Figure�4: Condor Structure The schedd and shadow run on the user’s local machine and startd and s...

	4 Parador: Prototyping TDP
	4.1 Condor structure
	4.2 Paradyn Structure
	Figure�5: Paradyn Running with Condor using TDP

	4.3 ParadoR: Combining Both Worlds
	Figure�6: TDP Function Calls from the Condor and Paradyn Sides

	5 Conclusions
	Acknowledgements
	References
	[1] S.M. Balle, B.R. Brett, C.-P. Chen, D. LaFrance- Linden. A New Approach to Parallel Debugger ...
	[2] R. Butler, W. Gropp, and E. Lusk, “A Scalable Process-Management Environment for Parallel Pro...
	[3] N. Carriero and D. Gelernter, “Linda in Context”, Comm. of the ACM 32, 4, April 1989, pp. 444...
	[4] Cray Computer Inc., “NQE Users Guide”, Version 3.2, January 1997.
	[5] Etnus LLC, “TotalView User’s Guide”, Document version 6.0.0-1, January 2003. <http://www.etnu...
	[6] D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C. Armstrong. Lilith: Scalable Execution of User...
	[7] I.T. Foster and C. Kesselman, “The Globus Project: A Status Report”, Seventh Heterogeneous Co...
	[8] A.S. Grimshaw and W.A. Wulf, “Legion - A View from 50, 000 Feet”, 5th International Symposium...
	[9] IBM Corporation, “Load Leveler Users Guide”, Version 1.2. 1995.
	[10] T. Ludwig, R. Wismüller and M. Oberhuber, “OCM - An OMIS Compliant Monitoring System”, Third...
	[11] S. Madden, M.J. Franklin, J.M Hellerstein, and W. Hong. TAG: a Tiny AGgregation Service for ...
	[12] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic, ...
	[13] M.J. Mutka, M. Livny, and M.W. Litzkow, “Condor - A Hunter of Idle Workstations”, 8th Int’l ...
	[14] Adrian Nye, Xlib Programming Manual, 3rd edition, O’Reilly and Associates, Inc., July 1992.
	[15] Platform Computing Inc, “LSF Users Guide”.
	[16] P.C. Roth, D.C. Arnold, and B.P. Miller, “MRNet: A Software-Based Multicast/Reduction Networ...

