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abstract

Binary code authorship identification is the task of determining the authors
of a binary program. It has significant application to forensic analysis of
malicious software (malware), software supply chain risk management,
and software plagiarism detection. The key message of this dissertation
is that authorship identification techniques must be fine-grained and be able
to identify multiple authors in a binary. This is because modern software,
including malware, is typically developed by multiple programmers.

The opposite side of authorship identification is to evade authorship
identification. Authorship evasion has the goal of modifying a binary so
that authorship identification would generate misleading results. Assess-
ing authorship identification from an attacker’s perspective is a key step
for improving the robustness of authorship identification techniques.

In this dissertation, we develop new fine-grained techniques for identi-
fying authors of binary programs and new techniques for evading iden-
tification. We first describe our new techniques for deriving accurate
source code authorship from software repositories, which serves as the
foundation for deriving high quality ground truth for evaluating our new
fine-grained techniques for binary code authorship identification. We
then describe our new techniques for identifying multiple authors in a
binary and our new techniques for reliably identifying multiple authors
when the binaries are compiled by different compiler families, versions,
and optimization levels. Last, from an attacker’s perspective, we describe
our new techniques for authorship evasion.
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1 introduction

Recovering code authorship is the task of determining the authors of a
computer program. This task can have many variations, such as determin-
ing how many authors there are of a program, whether there are unknown
authors, and whether two pieces of code are written by the same author.
The ability to perform these tasks has significant application to forensics
of malicious software (malware), detecting software intellectual property
violations, and identifying software components from untrusted sources
in the software supply chain. Malware analysts are eager to know who
wrote a new malware sample and whether the authors have connections
to previous malware samples. This information can be useful to determine
the operations and intentions of the new sample. For example, if several
cyber attacks use different malware written by closely connected authors,
these attacks can be supported by the same organization and can be a part
of a bigger offensive plot. In the domain of software intellectual property,
software plagiarism can be detected by matching programming styles
against known code. The idea of matching programming styles can also
be used for software supply chain risk management, where untrusted code
in the supply chain can be identified by matching programming styles
against known untrusted software such as malware.

Existing techniques for recovering code authorship work with either
source code or binary code. Most techniques have focused on source code
authorship [19, 21, 24, 36, 71, 123]. These techniques are not applicable
when the source code is not available, which is often the case when han-
dling malware, proprietary software, and legacy code. Techniques that
work with binary code do not have this limitation and can be used under
broader scenarios such as when only a code byte stream is discovered in
network packets or memory images instead of a complete program.

However, recovering binary code authorship has unique challenges.
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First, compilers remove many source level stylistic features, such as code
comments, space indentation, and identifier names. Second, compilers
perform optimizations that can drastically change the structure of the orig-
inal program and may distort programming styles. Third, even if certain
stylistic features survive compilation, it may not be easy to extract them
from binaries as the compiler generates challenging code constructs that
make various tasks of binary code analysis difficult [83]. For example, it is
difficult to build accurate Control Flow Graphs (CFGs) of program binaries
due to challenging code constructs such as non-code bytes embedded in
code sections, indirect control flow, functions laid out non-contiguously in
memory, functions sharing code, and tail calls. Despite these challenges,
recent studies have shown that it is possible to recover programming styles
from binaries [4, 21, 108].

While encouraging, these studies have assumed that each binary is
written by a single author. This single-author assumption does not hold
for modern software, as modern software is often the result of a team
effort. Even malware development has become similar to normal soft-
ware development, evolving from an individual hacking to cooperation
between multiple programmers [31, 77, 106]. Malware writers share func-
tional components and adapt them [73, 90, 94, 112]. Studies have shown
that malware writers share information and code by forming physically
co-located teams [76] or virtually through the Internet [2, 10, 54]. Through
black markets, malware can be shared, sold or purchased [3, 115]. Mal-
ware writers can then acquire malware functional components such as
command and control, key logging, encryption and decryption, beacon-
ing, exfiltration, and domain flux, to facilitate their development of new
malware [27, 90, 94, 131]. This trend indicates that current malware often
contains code from multiple authors and the connections between the
authors could be key to trace cyber attacks.

In addition, even if the source code is written by a single author, the
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corresponding binary may contain code that is not written by this author.
External library code, such as the Standard Template Library (STL) and
Boost C++ Library (Boost), is often inlined in the binary. In addition,
compilers may generate binary code that does not correspond to any
source code written by this author, such as the default constructor and
destructor of a class.

When applied to multi-author binaries, existing single-author tech-
niques have two significant limitations. First, they can identify at most
one of the multiple authors or report a merged group identity. Second,
these techniques do not distinguish external library code or code solely
generated by the compiler from the code written by the authors, which
may confuse the styles of these libraries or the compiler with the styles of
the authors. Therefore, an approach of binary code authorship analysis must
be fine-grained and be able to identify multiple authors in a binary. This is the
key area of contribution of this dissertation.

1.1 Advantages of Fine-Grained Analysis

Fine-grained binary code authorship analysis enables new ways of per-
forming real world analysis tasks including malware forensics, detecting
software plagiarism, and software supply chain risk management.

Existing techniques for malware forensics have inferred various types
of relations between malware samples, including identifying common
functional components [112], determining malware evolution lineage
[29, 60, 88], recognizing well-known malware variants [56, 59, 96], and
classifying behaviors of malware [105, 131]. Even though they capture
valuable connections between malware, these techniques would miss con-
nections between malware samples that are written by common authors,
but exhibit different malware behaviors, attacking techniques, or code
structure. These connections between authors can be crucial for tracing
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modern attacks.
The current trend of malware development and the limitations of ex-

isting techniques for malware forensics inspire us to build social networks
of malware writers to capture their social connections and establish con-
nections between malware written by them. The basic idea is to link the
code written by the same author and link the authors who cooperated
in writing a particular piece of malware. The same-author links can help
build profiles of individual malware writers and infer their distinct attack-
ing skills and their roles in cyber attacks. The cooperating-author links
can help identify connections among malware writers and infer the struc-
ture of physically co-located teams or black markets. Malware analysts
can determine who or which organization may be responsible for a new
malware sample and relate the new sample to existing samples written
by the same authors or even samples written by authors who are close to
the identified authors in the social networks. Fine-grained binary code
authorship analysis is the foundation for building these networks.

The need for detecting software intellectual property violations is also
increasing. Either driven by commercial interests or being unintentional,
individuals or companies may bring in and adapt external software with-
out respecting the corresponding software license terms [18, 38, 49, 79].
For example, Compuware filed various intellectual property claims against
IBM and the two companies reached $400 million settlement agreement [1].
Discovering these violations in the wild is challenging as commercial soft-
ware is usually distributed in binary form and the plagiarized code may
have been changed for adaptation or for evading detection [61, 75, 125].

Existing techniques for detecting software plagiarism are based on the
following observation. If the suspicious software contains plagiarized
code, the plagiarized code should be similar to its original version. If we
can measure the similarity between two pieces of binary code, we can then
match the suspicious software against a large set of known software to de-
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tect plagiarism. This observation has inspired a large amount of research
on measuring binary code similarity [30, 49, 61, 64, 70, 75, 119, 125]. These
studies have measured binary code similarity based on the four dimen-
sions: constant data such as string literals and integers; code structure
such as how similar are the CFGs; code semantics such as whether two
pieces of code provide similar functionalities; and program runtime be-
haviors such as the traces of executed instructions. However, the offender
may slightly change the the plagiarized code for adaptation or avoiding
detection and these changes can lead to significant differences on the four
similarity dimensions. On the other hand, the plagiarized code in the sus-
picious software would still exhibit the programming styles of its original
authors despite of these small changes, making fine-grained binary code
authorship analysis essential for detecting software plagiarism.

Fine-grained binary code authorship analysis can also be used to detect
untrusted software components in a software supply chain. Large soft-
ware systems often integrate software components from software suppliers
without verifying their trustworthiness and some software components
may even come from unknown sources [46]. These untrusted supply
chains can create significant security and reliability risks to the whole
software system [26, 35]. By matching programming styles against a large
set of untrusted code such as malware, we can determine whether the
software supply chains contain code from dangerous origins and whether
we need thorough investigation before integrating certain software com-
ponents.

1.2 Challenges of Fine-Grained Analysis

To develop fine-grained techniques, several challenges must be addressed.
First, having high quality ground truth is essential for evaluating our fine-
grained techniques. As we no longer make the assumption that a program



6

binary is written by a single author, the ground truth should be able to tell
us who are the authors of any piece of code within a program binary, such
as the authors of a function, a basic block, and even a machine instruction.
To the best of our knowledge, there is no such data set available and we
need to construct new datasets satisfying this requirement.

Second, what is the appropriate unit of code for attributing authorship?
Previous single-author techniques report one author per binary, so they
used the program as the attribution unit. Fine-grained candidates include
the function or the basic block. However, as programmers could change
any line of code or even parts of a line, there is no guarantee that a function
or a basic block is written by a single author. Therefore, this challenge
requires us to balance how likely a unit of code is written by a single author
and how much information it carries.

Third, how do we identify external template library code? Failing to
address this challenge may cause authorship identification algorithms
to confuse library code with their users’ code. However, existing library
code identification techniques are designed for only non-template library
code. These techniques either create a function fingerprint [44, 58] or
build a function graph pattern based on the program execution depen-
dencies [102]. When a template function is parameterized with different
data types, the final binary code can be significantly different, making
function fingerprints or graph patterns ineffective. Therefore, we need
new techniques for identifying template library code.

Fourth, authorship identification algorithms must be reliable across dif-
ferent compilation toolchains. Here, we define the compilation toolchain
as the combination of the compiler family, version, and optimization level.
Different compilation toolchains may generate significantly different bi-
nary code for the same source code. This makes it difficult to reliably rec-
ognize authors as the same code written by the same author may exhibit
drastically different structures when compiled by different compilation
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toolchains.
Fifth, is it possible to evade authorship identification? When program-

mers are aware of authorship identification techniques, they may want
to evade identification for various reasons, including avoiding criminal
charges for writing malware or avoiding plagiarism detection. It is im-
portant to be able to recognize authors under such adversarial setting.
To answer this question, we assess authorship identification from an at-
tacker’s point of view, which is to perform authorship evasion. Performing
authorship evasion can help us better understand the strengths and lim-
its of identification algorithms, and identify opportunities for improving
them.

1.3 Guiding Principles

We have identified three principles to guide our research of developing
fine-grained binary code authorship analysis techniques.

Machine learning driven Previous techniques for single-author identi-
fication have provided a foundation for us to develop fine-grained
techniques. These techniques have cast binary code authorship iden-
tification as a supervised machine learning problem. Given a set of
binaries with their author labels as the training set, these techniques
extract stylistic code features such as byte n-grams [60, 108] and
machine instruction sequences [21, 60, 107, 108, 113], and use super-
vised machine learning algorithms such as Support Vector Machines
(SVMs) [25] or Random Forests [53] to train models to capture the
correlations between code features and author labels. The generated
machine learning models are then used to predict the author of a
new binary. We base our research on this principle and push it to
the next level. For example, we will show that deep learning can
automatically extract a broad class of style features from binary code.
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Deep understanding of learning models While the application of ma-
chine learning has been successful in various domains, an unsat-
isfying phenomenon is that it is typically difficult to interpret the
results generated by the machine learning systems. It is important
for forensic analysts to know why the learning systems generate
such results so that they can acquire concrete evidence. Throughout
our dissertation, we not only aim to develop effective fine-grained
techniques, but also attempt to investigate the learning models and
explain the results.

Wearing the black hat The field of adversarial machine learning has shown
real threats to machine learning systems used in real world appli-
cations [11]. When developing new fine-grained identification tech-
niques, we attempt to put on our black hat and critically assess our
designs.

1.4 Techniques and Contributions

This dissertation describes four key techniques to address the challenges
presented in Chapter 1.2. Our new techniques constitute the main contri-
butions of this dissertation.

1.4.1 Source Code Authorship

Having high quality ground truth is the foundation for developing fine-
grained binary code authorship identification techniques. We derive
ground truth for each machine instruction in a binary program and get
ground truth for larger pieces of code by accumulating machine instruction
level authorship. Our approach is to derive accurate source line authorship
from open source project repositories, compile the source with debugging
information, and map each machine instruction back to source lines.
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However, commonly used version control systems only provide limited
support for determining source code authorship. Tools such as git-blame
[33, 104], svn-annotate [132], and CVS-annotate [117] lose information as
they only report the last commit that changed a line of code. Even when
the last commit changed only a small fraction of a line of code, the author
of the last commit still is credited for the entire line. We implement a
new tool, git-author, to overcome these limitations [84]. git-author traverses
the development history of a repository and calculates a vector of author
contribution weights for each line of code. We use git-author to derive fine
granularity ground truth for binary code.

We describe our techniques for deriving accurate source code author-
ship in Chapter 3.

1.4.2 Identify Multiple Authors

To determine whether to use the function or the basic block as the attribu-
tion unit, we conducted an empirical study of three large and long-lived
open source projects, for which we have authorship ground truth: the
Apache HTTP server [7], the Dyninst binary analysis and instrumentation
tool suite [100], and GCC [40]. The results of our study support the use of
the basic block as the attribution unit.

Our new techniques for identifying multiple authors contain three
components:

• We design new basic block level features to capture programming
style at the basic block level. Our new features describe common
code properties such as control flow and data flow. We also design a
new type of code features, context features, to summarize the context
of the function or the loop to which the basic block belongs.

• We make an initial step towards more effective library code identifi-
cation. This step focuses on identifying inlined code from the two



10

most commonly used C++ template libraries: STL and Boost. We add
group identities “STL” and “Boost” to represent the code from these
libraries and use the machine learning algorithms to distinguish
them from their users.

• As a programmer typically writes more than one basic block at a
time, we hypothesize that adjacent basic blocks are likely written
by the same author. To test our hypothesis, we compare independent
classification models, which make predictions based only on the code
features extracted from a basic block, and joint classification models,
which make predictions based on both code features and the authors
of adjacent basic blocks. We found that joint classification models
significantly out-performed independent classification models.

We describe our techniques for identifying multiple authors in Chap-
ter 4.

1.4.3 Multi-Toolchain, Multi-Author Identification

To investigate the impact of compilation toolchains, we first conduct a
study to evaluate how well our multi-author identification techniques
described in Chapter 4 will function in a multi-toolchain scenario. Our
results reveal two limitations. First, when models trained with binaries
compiled by one toolchain are applied to binaries compiled by another
toolchain, the identification accuracy is low. Second, there is a significant
difference between the accuracy of different single toolchain scenarios;
the optimization levels influence the accuracy. This accuracy difference
suggests that programmers can have a higher chance of evading current
multi-author identification by carefully choosing a toolchain. These two
limitations confirm the need for new techniques for identifying multiple
authors in multi-toolchain scenarios.
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Naively, applying models trained for one toolchain to binaries com-
piled by another toolchain leads to low accuracy. To address this situation,
we investigated two new approaches. The first approach is a two layer
one. Since previous techniques work better in single toolchain scenarios,
it is reasonable to first use toolchain identification techniques [103, 107]
to determine which toolchain generated the binary and then apply the
corresponding single-toolchain authorship model. Note that while previ-
ous authorship identification studies [4, 21] have discussed this approach,
none of them have implemented or evaluated it. The second approach
is to use unified training, where we construct a training set containing
binaries from all known toolchains. With a multi-toolchain training set, we
may be able to train an authorship model that can work in multi-toolchain
scenarios, albeit at a higher training cost.

While previous studies focused on designing new code features, we
instead use deep learning to automatically extract low level features from
raw bytes. We apply feed-forward neural networks to multi-author iden-
tification. To the best of our knowledge, we are the first project to apply
deep learning to this problem and show that it can reliably identify low
level code features.

We describe our techniques for multi-toolchain, multi-author identifi-
cation in Chapter 5.

1.4.4 Authorship Evasion

We perform authorship evasion to have a better understanding of au-
thorship identification techniques. We chose the techniques presented by
Caliskan-Islam et al. [21] for single-author identification as our evasion tar-
get. We make this choice for two reasons. First, evading multi-author iden-
tification techniques present much greater challenges compared to evading
single-author identification. Thus, evading single-author identification
is the natural first step. Second, techniques presented by Caliskan-Islam
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et al. [21] represent an external view of performing authorship identifica-
tion. Evading their techniques helps avoid a parochial view of authorship
identification, if we only attempted to evade our own techniques.

We make two main assumptions about the threat model. First, the
attackers plan to perform a test time attack, so they can affect the prediction
results only by providing a crafted input binary. Other possible attacks
against learning systems such as training set poisoning [12, 80] are not
in the scope of this study. Second, the attackers have perfect knowledge
of the target identification classifier. This assumption allows performing
a worst-case evaluation of the security of the authorship identification
techniques, common when performing test time attacks [13, 23, 116, 121].

Authorship identification techniques have a training stage and a testing
stage. While we do not directly attack the training stage, three choices
made in this stage impact our attacks. First, the design of the binary code
features determines the program properties of the binary to modify during
attacks. Features are typically defined to describe program properties
including machine instructions, program control flow, constant strings,
and program meta-data such as function symbols. Second, identification
techniques use binary code analysis tools such as Dyninst [100], NDISASM
[122] or Radare2 [97] for feature extraction. A key part of our attack is to
modify the binary and trick the binary code analysis tools into extracting
modified features to cause misprediction. Third, based on the machine
learning algorithm used by the identification technique, the attacker may
need to use different attack algorithms to determine which features should
be modified to cause misprediction. There are existing attack algorithms
for a variety of learning models, including Deep Neural Networks (DNNs)
[23], Random Forests (RFs) [63], and Support Vector Machines (SVMs)[13,
43].

The testing stage has two key steps: extracting code features from the
input binary to construct a feature vector and applying the pre-trained
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model on the feature vector to generate the prediction results.
Targeting the two steps in the testing stage, our evasion attack focuses

on developing two interacting attacking abilities: feature vector modification,
changing the feature vector to cause mis-prediction of the target classifier,
and input binary modification, modifying the input binary to match the
adversarial feature vector while maintaining the functionality of the input
binary. Feature vector modification guides what input binary modification
should be performed to cause mis-prediction, while input binary modifica-
tion gives feedback to feature vector modification as to which features are
difficult to modify, guiding feature vector modification to avoid modifying
difficult features. These two attacking abilities form an attack-verify loop.

We describe our evasion techniques in Chapter 6.
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2 related work

This dissertation explores code authorship identification and evasion.
Three essential topics of this research are: designing binary code features
that reflect programming styles, using machine learning techniques to
discover correlations between code features and authors, and abusing the
discovered correlations to evade identification. We survey related work in
each of these three topics.

We first examine binary code features used in existing single-author
identification techniques and other related research areas, such as mea-
suring binary code similarity (Section 2.1). We then discuss existing tech-
niques for single-author identification, including their workflow and eval-
uation results (Section 2.2). Next, we discuss related work in evading
authorship identification (Section 2.3). We conclude this chapter with a
summary of the related work (Section 2.4).

2.1 Binary Code Features

Instead of designing complicated features to represent specific aspects of
programming styles, we define a large number of simple candidate code
features and use training data to automatically discover which features
are indicative of authorship. This feature design philosophy is a general
machine learning practice [45] and has been used in previous binary code
authorship identification techniques [21, 108]. One key aspect of applying
this feature design philosophy is to design code features that can cover a
wide variety of code properties, such as instruction details, control flow,
data flow, program semantics, and external dependencies. We review
binary code features that have been used in existing binary code authorship
techniques [4, 21, 108] and also features used in other related research
areas such as binary code similarity [30, 49, 61, 64, 70, 75, 119, 125]. Even
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though code features in other research areas are used to capture different
information, these features can complement and inspire our feature design.

2.1.1 Features for Binary Code Authorship

In previous code authorship studies, binary code features were extracted
at the function and block level and then accumulated to the whole pro-
gram level. Block level features usually included byte n-grams [21, 108],
instruction idioms [4, 108], and function names of external library call
targets [108]. Our current work continues to include these features when
working at the basic block level. Function level feature types mainly in-
clude graphlets [21, 108], which represent subgraphs of a function CFG,
and register flow graphs [4], which captures program data flow. We cannot
directly reuse these function level features, so need to design new basic
block level features to capture code properties such as control flow and
data flow.

Byte n-grams represent consecutive n bytes extracted from binary code
[59, 60, 108]. Commonly used values of n range from 3 to 16. When
n is small, byte n-grams can capture information within individual in-
structions, such as specific instruction opcodes, immediate operands, and
memory operands. For example, Rosenblum et al. [108] used n = 3 for
authorship analysis to capture styles reflected on instruction details. On
the other hand, longer byte n-grams can be used to measure similarity be-
tween binaries. For example, Jang et al. [59] used n = 16 to locate similar
malware. While byte n-grams have been shown to be effective in many
studies, byte n-grams are sensitive to the specific values of immediate
operands in instructions, and do not capture the structure of programs.

Instruction idioms are consecutive machine instruction sequences [21,
60, 64, 107, 108, 113]. Besides the length of instruction idioms, many other
variations of instruction idioms have been defined, including allowing wild
cards [108], ignoring the order of instructions [64], normalizing operands



16

with generic symbols such as representing all immediate operands with a
generic symbol [60, 108], and classifying opcodes into a small number of
operation categories such as arithmetic operations, data move operations,
and control flow transfer operations [113]. Existing binary code authorship
techniques typically have used short instruction idioms ranging from 1 to
3 instructions.

Graphlets represents subgraphs of a function CFG to capture program
control flow [5, 64, 103, 108]. A node in a graphlet represents a basic
block. In some variations, colors are assigned to nodes, where the color
is derived from the mix of opcodes of the instructions in the basic block
[5, 103, 108]. An edge in a graphlet means that the two basic blocks are
adjacent in the function CFG. Rosenblum et al. [108] assigned labels to
edges to distinguish the control flow types, such as conditional taken,
conditional not taken, direct jump, and fall through.

Register flow graphs were designed to capture program data flow and
are extracted at the function level [4, 5]. The basic idea was to perform
perform backward slicing on the registers in all cmp and test instructions
and convert each slice to a hash value. While existing techniques only
extract register flow graphs for cmp and test instructions, we believe the
data flow of registers used in other instructions, such as memory and
arithmetic instructions, could also reflect programming style.

2.1.2 Features for Binary Code Similarity

Techniques in the area of binary code similarity are based on code features
that measure structural and semantic differences between two pieces of
code. Besides the features described in Section 2.1.1, other features used
in binary code similarity include “strands” capturing program data flow
[30] and “code juice” capturing program semantics [70, 112].

David et al. [30] define a strand to represent a backward slice of an
instruction within the basic block. A basic block can then be decomposed
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into several potentially disjoint strands. David et al. also defined a simi-
larity measure between two strands, where the similarity of two pieces of
binary code can be calculated based on the similarity measures between
the two sets of strands extracted from the binary code.

Code juice [70, 112] represents the semantics of a basic block with a
set of symbolic expressions. The specific register names and constants in
symbolic expressions are replaced with generic symbols for generalization.
Ruttenberg et al. [112] converted the symbolic expressions of each basic
block to a hash value, represented a binary function with a set of hash
values, and calculated the similarity between two binary functions by
measuring the similarity between the two sets of hash values.

Even though strands and code juice are both extracted at the basic
block level, our experiment results presented in Section 4.3 do not support
directly reusing them for authorship analysis. Strands and code juice are
not suitable for authorship because they represent complete data flow
dependencies and program semantics of basic blocks and highly depend
on the functionality of the code rather than the style. Nevertheless, as
we will discuss in Section 4.2, they provide a foundation for us to design
new basic block level code features to capture program data flow and
semantics.

In summary, only a few types of existing features can be directly reused
in our research when operating at basic block level, including byte n-grams,
instruction idioms, and library call targets. These features only cover a
small subset of code properties, so we need to design new basic block level
features to cover other code properties such as control flow, data flow, and
program semantics.
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2.2 Binary Code Authorship Identification

Previous code authorship identification techniques have used machine
learning techniques to discover the relationship between code features and
authors. We discuss the commonly used workflow, relationship between
accuracy and the complexity of the programs used in evaluation, and
relationship between accuracy and the compilation toolchains.

2.2.1 Workflow

The most common workflow used in existing single author identification
studies has four major steps:

1. Design a large number of simple candidate features;

2. Extract the defined features using binary code analysis tools such as
IDA Pro [52] or Dyninst [100];

3. Select a small set of features that are indicative of authorship by
using feature selection techniques such as ranking features based on
mutual information between features and authors [108]; and

4. Apply a supervised machine learning technique, such as SVM [25] or
Random Forests [53], to learn the correlations between code features
and authorship.

Rosenblum et al. [108] used instruction, control flow, and library call
target features, and used SVM for classification. Caliskan et al. [21] added
data flow features, constant data strings, and function names derived from
symbol information, and used Random Forests for classification.
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2.2.2 Complexities of Programs

Single author identification studies performed evaluations of their tech-
niques on single author programs such as Google Code Jam, and multi-
author programs that have a clear major author such as university course
projects and certain programs extracted from Github. Rosenblum et al.
reported 51% accuracy for classifying 191 authors on -O0 binaries from
Google Code Jam and 38.4% accuracy for classifying 20 authors on -O0
binaries from university course projects. Caliskan et al. improved Google
Code Jam accuracy to 92% for classifying 191 authors on -O0 binaries,
and 89% accuracy for classifying 100 authors on -O2 binaries. They also
extracted some programs from Github that have a major author who con-
tributed more than 90% of the code, and got 65% accuracy for classifying
50 authors.

These studies reported significantly lower accuracy on multi-author
programs than on Google Code Jam. There are at least two reasons for
this accuracy difference. First, university course projects and programs
extracted from Github contained code that was not written by the major
author. This code can confuse machine learning algorithms. For example,
course projects contained skeleton code from the professor and the ex-
tracted Github programs still had code from other authors and third party
libraries. Our fine-grained techniques do not suffer the same limitation.

Second, these multi-author programs are typically more complex than
the programs from Google Code Jam. Programs from Google Code Jam
are written quickly, while course projects can takes several days and pro-
grams from Github may take months to years. It is reasonable to perform
evaluation on Google Code Jam if the techniques are used for plagiarism
detection for programming contests. However, as programs from Google
Code Jam are typically not written with common software engineering
practices, they are less appropriate for malware forensics, intellectual
properties violation detection, and supply chain risk management on com-
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mercial software. For this reason, we will use large and long-lived open
source software to evaluate our techniques.

2.2.3 Impact of Compilation Toolchains

Caliskan et al. repeated single toolchain evaluations with four toolchains
(GCC -O0, -O1, -O2, -O3), with the programs from Google Code Jam.
In other words, they trained and tested at the same optimization level.
They reported that -O0 code has the highest accuracy (96%), and -O3
code has lowest accuracy (89%), but did not investigate why there is such
an accuracy difference between optimization levels. They assumed that
they could use previous toolchain identification techniques [103, 107] to
identify the toolchain.

Hendrikse [50] performed the only multi-toolchain study, though still
based on single author identification, using the programs from Google
Code Jam. He repeated single toolchain evaluations with 9 toolchains
(GCC, MSVS, and ICC with -O0, -O2, and -Os) and reported no significant
accuracy difference between optimization levels (-O0: 92%, -O2: 93%, and
-Os: 94%). He created a multi-toolchain data set by randomly sampling a
program from one of the 9 toolchains, and reported 92% accuracy. How-
ever, this study was at a small scale, as the experiments contained only 20
authors.

We believe that previous studies on the impact of compilation toolchains
are inconclusive due to the small scale of experiments and the focus on
single author identification. Our research found that the impact of compi-
lation toolchain on code authorship to be greater at the basic block level
compared to the program level, as compiler optimizations may create,
modify, and delete basic blocks. Therefore, it was crucial to investigate the
impact of compilation toolchains on fine-grained authorship identification.
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2.3 Evasion of Authorship Identification

To the best of our knowledge, there is no existing work on evading binary
code authorship identification. The closest was a study conducted by
Simko et al. [116], with the goal of evading source code single-author
identification.

Their evasion target is a classifier that has 98% accuracy on classifier
250 authors, evaluated with the Google Code Jam [20]. The classifier
used lexical features such as variable names and language keywords,
layout features such as code indentation, and syntactic features derived
the abstract syntax trees parsed from the source code.

28 programmers participated their study, including undergrad stu-
dents, former or current software developers. Each programmer was
given code from author X and Y and then was asked to modify source
code written by X to look like code written by Y. This manual attack
achieved 80% success rate for causing misprediction.

Simko et al. then inspected the modified source code and summarized
the most common modifications:

1. Copy entire lines of code written by Y into code written by X;

2. Make typographical changes such as brackets, newlines, space be-
tween operators;

3. Modify variable names and the location of variable declarations,
typically either from or to a global variable;

4. Add or swap library calls; and

5. Change the source code structure such as adding or removing macros,
changing loop types, or breaking up an if-statement

These changes are mostly local, involving a few lines of code. The study
participants did not need to understand the structure or the functional-



22

ity of the code to make such modifications. The modification strategies
presented in this study are unlikely to achieve equal success for evading
binary code authorship identification, as many of the modifications are
irrelevant at the binary code level, such as typographic changes, variables
renaming, and modifying macros.

2.4 Summary

While prior work has designed many types of binary code features for
tasks such as single author identification and measuring binary code
similarity, only a few types of existing features can be directly reused
in our research when operating at basic block level. How to effectively
capture programming styles at the basic block level is a theme throughout
this dissertation. We describe our new block level features in Chapter 4,
and describe how we use deep learning to automatically extract style
features in Chapter 5.

Prior work leaves unanswered questions on the impact of compila-
tion toolchains on authorship. Is a programmer’s programming style
reflected on binary code similar across different toolchains? Do we need
different machine learning models or different code features for differ-
ent toolchains? Understanding these questions is vital for performing
multi-author identification on real world software. We explore them in
Chapter 5.

The evasion of authorship identification has been performed only at the
source code level and done manually. Many of the source code authorship
evasion techniques do not apply at the binary code level. Developing
an automated way for performing evasion of binary code authorship
identification is the focus of Chapter 6.
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3 mining software repositories for accurate
authorship

High quality ground truth is essential for evaluating fine-grained tech-
niques for binary code authorship identification. To perform evaluation
on large, long-lived open source software, we need to derive accurate
source line authorship from software repositories. However, current tools
in common version control systems approximate line level authorship by
assuming that the last person to change a line is its author, while ignor-
ing all earlier changes. Such example tools include git-blame [33, 104],
svn-annotate [132], and CVS-annotate [117].

In this chapter, we describe our approach for deriving accurate author-
ship for each source line by mining software repositories. We describe
our abstraction for software repositories in Section 3.1. In Section 3.2, we
define structural authorship to capture the complete development history
of a source line and present an algorithm for computing structural au-
thorship. In Section 3.3, we define weighted authorship to summarize the
development history of a source line with a vector of author contribution
weights and present an algorithm for computing the contribution vectors.

We implemented our structural authorship model and weighted au-
thorship model in a new git built-in tool: git-author. We describe the two
experiments for evaluating the effectiveness of git-author in Section 3.4.
In the first experiment, we measured the quantity of the multi-author
lines in five open source repositories. Our results show that 10% of source
lines contain development contributions from multiple authors. git-author
provides more information than git-blame on these lines. In the second
experiment, we show that we can use the additional authorship infor-
mation to improve source code bug prediction to prioritize software test-
ing [47, 48, 62, 92, 93]. This experiment shows that our new authorship
models have a boarder impact than deriving ground truth for evaluating
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fine-grained binary code authorship identification.

3.1 Repository Abstraction

We define the repository graph to capture the fundamental capability of a
version control system (VCS). With the repository graph, we can focus on
the contents of development history without considering which specific
VCS is used. A VCS records the development history of a project by storing
all the revisions of source code and the dependent relationship between
these revisions. Our graph abstraction models revisions as nodes and the
relationship between revisions as edges. We are able to implement the
graph structure based on any current mainstream VCS.

A VCS allows programmers to checkpoint their changes. A new revi-
sion is created when a programmer commits their modifications to the
VCS. The dependencies between revisions also is recorded to maintain
the relative order of commits. Current VCS’s support concurrent devel-
opment. Programmers can work on different branches without affecting
other people’s work and later combine their work by merging branches.
Therefore, it is also necessary to record on which existing revision the
new revision is based. In addition to these basic capabilities, a VCS often
supports reverting previous changes, browsing development history, and
other complementary capabilities to facilitate daily development work.

The repository graph is a directed graphG = (V ,E,∆) used to describe
the basic capability of a VCS. A node in V represents a revision or a snap-
shot of the project and is annotated with information about the snapshot
including the author of the snapshot. The snapshot of node i is denoted
as si, si ∈ V , and the author is denoted as ai. Node s0 is a virtual node
representing the empty repository before any changes are committed. E
is the set of edges, representing development dependencies between re-
visions. ∆ is a labeling of E that represents code changes and there is a
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Alice Bob Jim

s0 s1 s2

s3 s4

s5 s6 s7 s10

s8 s9

δ0,1 δ1,2 δ2,5 δ5,6 δ6,7 δ7,10

δ3,4
δ2,3 δ4,7

δ8,9δ5,8 δ9,10

Figure 3.1: An example of the repository graph. Nodes are source code
revisions, denoted from s0 to s10. The color of a node shows the author
creating the revision. The virtual node s0 has no author information. Edges
represent development dependencies between revisions. δi,j on edge ei,j
is the code change from si to sj.

one-to-one mapping between the elements in E and ∆. We adapt our defi-
nition of code changes from Zeller and Hildebrandt [133], where a change
δ is a mapping from old code to new code. An edge ei,j(δi,j), ei,j ∈ E and
δi,j ∈ ∆, means that by applying the change δi,j to si, we can get code
snapshot sj; so δi,j(si) = sj. We define δi,j to be a tuple of (Di,j,Ai,j,Ci,j)

where Di,j is the set of lines deleted from si, Ai,j is the set of lines added
to si, and Ci,j is the set of pairs of lines changed from si to sj. For node
si, sj, and sk such that ei,j ∈ E and ej,k ∈ E, we define the composition of
change sets as δi,k = δj,k ◦ δi,j meaning applying δi,j first, and then δj,k.
Our definition implies that the operator ◦ is right associative. One key
property of the composition operation is that the result of composition of
change sets is path independent. The result only depends on the two end
nodes.

We illustrate our definition in Figure 3.1. The repository consists of
ten revisions (ten nodes) and three developers: Alice, Bob, and Jim. The
author information for a node is represented by its color. The virtual node
s0 has no author information, so we leave it blank. Alice created a branch
for her work and committed s3 and s4. Later Bob merged Alice’s work back
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to the master branch and created s7. For the path independent property,
we have (δ4,7 ◦ δ3,4 ◦ δ2,3)(s2) = (δ6,7 ◦ δ5,6 ◦ δ2,5)(s2) = s7. The first part in
the equation is the composition along Alice’s branch. The second one is
the composition along the master branch. The two paths yield the same
overall effects, which is the third part in the equation.

Our definition of the repository graph is applicable to any current
mainstream VCS. To demonstrate that, we consider how to derive the
nodes, edges, and the change sets on edges in three popular version control
systems: git, svn, and CVS. Git and svn store each commit as a snapshot of
the repository, so the commits correspond to the nodes in the repository
graph. CVS on the other hand stores commits as the change set containing
added lines and deleted lines. We can derive the contents of nodes by
composing consecutive change sets. All the three version control systems
record branching and merging, so edges are easy to find. Git and svn
provide built-in differencing tools to calculate change sets, but they are
not sufficient for our definition of δ because they report changed lines
separately as added lines and deleted lines. ldiff [22] calculates source
code similarity metrics (such as best edit distance and cosine similarity)
to match added lines and deleted lines and derive pairs of changed lines.
We use ldiff to implement our definition of δ. Since we can implement the
repository graph on any mainstream VCS, we assume a code repository is
represented as a repository graph in this chapter.

3.2 Structural Authorship

Structural authorship represents the development history of a line of
code. We define structural authorship as a subgraph Gl of the repository
graph G that includes only the revisions that change line l of code, and
the development dependences between these revisions. We present a
backward flow analysis algorithm on the repository graph G that extracts
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the structural authorship. Our analysis processes all lines in a file to
provide sufficient context for programmers to view code history. After
extracting structural authorship, analysis tools have access to all historical
information of a line so that they are not limited to the last change of that
line.

Our structural authorship model can be seen as a generalization of the
current method that only reports the last change. Both our model and
the current method stop searching the history of a line when the line is
found to be added. The distinction is that our model can make use of
the information in the set of changed lines C, while the current method
cannot.

3.2.1 Model definition

For a given line of code l appearing in a revision sv, the structural authorship
of the pair of (sv, l) is defined to be a directed graph Gl = (Vl,El,∆l). Vl

is the set of nodes that changed or added line l. El is the set of edges that
represent development dependences between nodes in Vl. ∆l is a labeling
of El that represents code changes. Before giving the formal definitions
of Vl, El, and ∆l, we first introduce notation to describe the relationships
between nodes and then extend our definition of δi,j.

We define si → sj if and only if there is a directed path in G from si

to sj. For the starting revision sv, its ancestor set contains the potential
revisions that could be in Vl. We define the ancestor set of a node si as

ance(si) = {sk ∈ V |sk → si}

To determine what lines a node si has changed or added, we define
the total effect of si as:

δi =
⋃

sk∈pred(si)

δk,i
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Di =
⋃

sk∈pred(si)

Dk,i

Ai =
⋃

sk∈pred(si)

Ak,i

Ci =
⋃

sk∈pred(si)

Ck,i

Now we can define Vl as the set of revisions of sv and its ancestors that
add or change the line l:

Vl = {sj ∈ (ance(sv) ∪ {sv})|l ∈ (Aj ∪ Cj)}

An edge in El represents a path that does not go through nodes in Vl.
For si and sj such that si → sj, we define si

Vl−→ sj if and only if there exists
one or more directed paths from si to sj and none of the intermediate
nodes on the path are in Vl. This relationship is used to describe the
development dependency between two nodes in Vl. We can define El as:

El = {ei,j|(si, sj ∈ Vl)∧ (si
Vl−→ sj)}

Note that a single ei,j in El can result from multiple directed paths in
the original G.

We now extend our definition of δi,j to the case where si → sj so that δ
can be used to describe ∆l. If <si, sk1 , . . . , skm

, sj> is a directed path from
si to sj, then

δi,j = δkm,j ◦ δkm−1,km
◦ · · · ◦ δi,k1

Note that the specific choice of the path is not important because the
result of composition of change sets is path independent. ∆l then can be
defined as

∆l = {δi,j|ei,j ∈ El}
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Alice Bob Jim

s2

s3 s4

s7 s10

s9

δ2,7 = δ6,7 ◦ δ5,6 ◦ δ2,5 δ7,10

δ3,4
δ2,3 δ4,7

δ2,9 =
δ8,9 ◦ δ5,8 ◦ δ2,5

δ9,10

Figure 3.2: An example of the structural authorship graph. Nodes in
Vl = {s2, s3, s4, s7, s9, s10} changed or added line l. Edges represent ex-
tended development dependencies between revisions. δi,j on edge ei,j is
the extended code change from si to sj.

We illustrate our subgraph definition with an example. In the reposi-
tory graphG shown in Figure 3.1, suppose we have the following scenario:
Line l was first introduced into the project by Bob in revision 2 (s2). Alice
changed l in revisions 3 and 4 in her branch. Jim changed l in revision
9 in his branch. Bob merged Alice’s branch in revision 7. Since Alice
and Jim made independent changes to l, when Bob finally tried to merge
Jim’s branch, Bob had to solve the conflict by taking either Alice’s change
or Jim’s change; we assume that Bob took Jim’s change. The structural
authorship Gl is shown in Figure 3.2.

3.2.2 Backward flow analysis

We calculate the structural authorship graphs in two steps. In the first
step, we use a backward flow analysis to calculate Vl. In the second step,
a depth first search is used to calculate El and ∆l. In our repository graph
abstraction,V andE can be directly accessed through API of the underlying
VCS, but we have to use ldiff to calculate ∆ in our analysis.

In the first step, we use the backward flow analysis shown in Figure 3.3
to extract Vl from the repository graph G. We perform our analysis on
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input :V , E, F, and sv
output : {Vl|l ∈ F}
// The live lines that can reach sv

1 liveLines[sv]← F;
2 for si ∈ (ance(sv) ∪ {sv}) in reverse topological order in G do

// Phase 1: calculate δ for si
3 for sk ∈ pred(si) do
4 δk,i ← ldiff (sk, si, F);
5 δi ← δi ∪ δk,i;

// Phase 2: update Vl

6 for l ∈ liveLines[si] do
7 if l ∈ Ai ∪ Ci then
8 Vl ← Vl ∪ {si};

// Phase 3: pass live lines to preds
9 for sk ∈ pred(si) do

10 for l ∈ liveLines[si] do
11 if l /∈ Ak,i then
12 liveLines[sk]← liveLines[sk] ∪ {l};
13 liveLines[si]← ∅;

Figure 3.3: S-Author: An algorithm that extracts Vl for all lines of code in
file F starting at revision sv

all of the lines in a file F rather than an individual line l for two reasons.
First, by processing all lines in F together, we can order the computation
so that we neither make redundant calls to ldiff nor store the results of
ldiff. Second, programmers usually want to view code history in a context,
so presenting histories of several lines together is more useful.

Our algorithm calculates dataflow information for each node and adds
nodes to Vl. For node si, its dataflow information records the live lines
that can reach the starting node sv from si before being deleted. We use
a map liveLines that associates a node to a set of live lines to efficiently
update the dataflow information. At the beginning, all lines in F are live
(line 1).

Because G is acyclic, the traditional work list algorithm for dataflow
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analysis is not necessary in our case. It is sufficient to visit each node from
sv in the reverse topological order of G (line 2). For each node si, there are
three major phases: calculating change sets (lines 3-5), updating Vl (lines
6-8) and passing live lines to the predecessors of si (lines 9-12).

In phase 1, we call ldiff to calculate a subset of ∆ that are sufficient
and necessary for the next two phases. In phase 2, for each live line l, we
determine whether si is in Vl or not (line 7). In phase 3, we check whether
the current live lines will still be live in each predecessor sk of si (line 11).
It is possible that lwill be dead along one branch, but still be live along
another branch.

The analysis finishes after it visits the virtual node s0. As a special
case, we can add s0 to Vl to represent the state where l has not yet been
introduced into the repository. For any l ∈ F, Vl are the nodes in the
structural authorship graph.

The memory used for the results of ldiff in phase 1 can be freed after
the phase 3 in this iteration. ldiff produces the δ between two files and has
a relative high time complexity, quadratic in terms of the size of the files
[22]. Caching the results of ldiff can avoid redundant calls to ldiff. But we
estimate that caching the results of ldiff on a large code repository could
take a few gigabytes of memory, which is too much for a built-in tool for a
VCS.

In the second step, for each node that we have determined is in Vl, we
can do a depth first search in G to calculate El and ∆l according to our
definitions.

The running efficiency of our algorithms both depends on the actual
sizes of structural authorship graphs. Gl could be as large as G in theory.
However, Gl is usually small in practice (Section 3.4) and our algorithms
show good performance.
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3.3 Weighted Authorship

The structural authorship graph Gl represents the complete development
history of a line of code l. However, existing analysis tools typically operate
on numerical or ordinal features rather than a graph, so we wish to provide
summaries of this information in a form such tools can consume. We define
the weighted authorship of l to be a vector of author contribution weights.
For each author, we can then use the weighted authorship to determine
their contribution, model their familiarity of the line, or estimate their
efforts spent on the line. This type of summary information is often used
to analyze software quality [15, 104], help familiarize new developers [37],
and estimate software development cost [87].

3.3.1 Model description

For a line of code l, we define the weighted authorship Wl as a vector
(c1, c2, . . . , cm). Each element ci is the percentage of contribution made by
developer i; elements inWl sum to 1. m is the total number of developers
that changed l. By examining Gl, we can determine the value of m. We
define each ci to be the number of characters attributed to developer i
divided by the total number of characters in l. For example, if Alice, Bob
and Jim are developers 1, 2 and 3,Wl = (30%, 20%, 50%) means that Alice,
Bob, and Jim contribute 30%, 20%, 50% of the line respectively. We use
characters as the unit of contribution because it is simple and avoids being
dependent on the programming language used. While we do not consider
the semantics of the code, we do collapse white space to minimize the
effects of simple formatting changes. We do not isolate the affect of each
of these choices, however the experiments in the following section show
that these choices produce satisfactory results.
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input : l, Vl, El, and ∆l

output :attr: maps a character in l to its attributed node
1 Let sv be the last node that changed l;

// The live characters that can reach sv
2 liveC[sv]← l;
3 for si ∈ Vl in reverse topological order in Gl do
4 if |pred(si)| == 1 then

// si is created by a normal commit
5 Let sk be the element in pred(si);
6 chars← AC-BestEdit(l, δk,i);
7 for c ∈ liveC[si] ∩ chars do
8 if (c /∈ attr.keys()) or (tstamp(si) < tstamp(attr[c])) then
9 attr[c]← si;

10 liveC[sk]← liveC[sk] ∪ (liveC[si] − chars);
11 else

// si is created by a merge commit
12 for sk ∈ pred(si) do
13 chars← AC-BestEdit(l, δk,i);
14 liveC[sk]← liveC[sk] ∪ (liveC[si] − chars);

Figure 3.4: W-Author: An algorithm calculating the attribution map for l

3.3.2 Algorithm

We calculateWl based on Gl. We first attribute each character in l to the
node that introduced that character and then attribute each node to the
appropriate developer. We define the attribution map attr to maintain this
character-to-node attribution. The node-to-developer attribution can be
done by checking the author label of each node.

We use the algorithm shown in Figure 3.4 to compute the attribution
map attr. The idea is to attribute a character to the node in which the
character is added or changed. The algorithm first finds the last revision
sv that changed l; this sv is the starting point of our algorithm (line 1).
For each node in Gl, we maintain the live characters that can reach sv
before being deleted. All characters in l at sv are live (line 2). We visit each
node in Gl in reverse topological order. For each node si, we distinguish
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whether si is created by a normal commit or a merge commit by checking
the number of its predecessors (line 4). In both case, we define AC-BestEdit
to calculate the set of characters added or changed in this node (line 6 and
13). These characters are not passed to the predecessors of si. For a normal
commit, we update the attribution map and pass the live characters (lines
5-10). For a merge commit, we only pass the live characters (lines 12-14).

AC-BestEdit adapts the Wagner-Fischer algorithm [128] for computing
the best edit distance to calculate the set of characters in l added or changed
by si. In the Wagner-Fischer algorithm, the best distance is defined as the
minimum number of steps needed to change a source string to a target
string. Each step can be adding, deleting, or substituting a character. The
algorithm computes a shortest path and returns the minimal number of
steps. For an edge ek,i ∈ El, the string in sk is the source string and the
string in si is the target string. AC-BestEdit calculates the shortest path to
change the source string to the target string using Wagner-Fischer, and it
returns the set of characters added or changed by si.

A normal commit has a single predecessor sk. A character that is added
or changed in this node may be also added or changed independently in
other nodes (in other branches). Since characters are the unit of contribu-
tion, we do not divide the contribution of a character among the multiple
commits. In this case, we attribute the character to the node with the
earlier commit timestamp (line 8).

For a merge commit, we assume that the commit is either produced
during an automatic merge by the VCS or manual selections from one of
the multiple branches; therefore a merge commit does not introduce new
characters. Since the added or changed characters in one branch actually
come from other branches, we just ignore these characters in this merge
commit and attribute them to other branches.

The performance of the algorithm depends on the size of Gl. As we
will discuss in the next section, the size of Gl is usually small. In our
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experience, running this algorithm on all lines in a file finishes in around
second.

3.4 Evaluation

We implemented our structural authorship model and weighted author-
ship model in a new git built-in tool: git-author. git-author uses a syntax
similar to that of git-blame so has a familiar feel to current users of git. We
designed two experiments to compare our new authorship models to the
current model that only reports the last change to a line. In the first exper-
iment, we ran git-author on five open source code repositories to study the
number of lines that were changed in multiple commits and the number
of lines that were changed by multiple authors. This experiment shows
that git-author can recover more information than git-blame on about 10%
of lines. The results show that most lines are touched only by one author
in one commit and the cooperation between developers is restricted to
small regions of code. We hypothesized that these small regions of code
contain rich information about the software development process and
that analysis tools can benefit from this extra information. We conducted
our second experiment to verify this hypothesis. Our second experiment
evaluated whether the additional information would be useful to build
a better analysis tool. We built a new line-level model for source code
bug prediction and compared it with the best previously report work on
a file-level model [62]. We found that our line-level model consistently
performed better than the file-level model. This demonstrates that our
new authorship models can help build better analysis tools.

3.4.1 Multi-author study

In this experiment, we ran git-author on the following five open source
projects: Dyninst [100], the Apache HTTP server [7], GCC [40], the Linux
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Table 3.1: Number of lines changed by multiple commits and multple
authors. The second column shows the number of lines changed in multi-
ple commits and the percentage they account for in the repository. The
third column shows the same information for lines that changed by multi-
ple authors.

Repository Multi. Commits Multi. Authors # of lines
Dyninst 53K (12.11%) 40K (9.12%) 434K
Httpd 27K (10.90%) 20K (8.15%) 247K
GCC 279K (8.08%) 217K (6.27%) 3454K
Linux 1440K (9.69%) 1072K (7.22%) 14857K
GIMP 122K (12.82%) 78K (8.12%) 955K

Kernel [74], and Gimp [41], extracting the structural authorship for each
line of the code. We then counted the number of nodes and the number
of authors in each structural authorship graph. Note that we did not run
git-blame on the five projects because git-blame would output only one
commit and one author for each line of code.

The results are shown in Table 3.1. About 10% of lines are changed by
multiple commits and about 8% of lines are changed by multiple authors.
git-author produces more information than git-blame on these lines.

3.4.2 Line-level bug prediction

Our second experiment evaluated whether the information provided by
git-author would be helpful to build a better bug prediction model. We
show that we can build a line-level bug prediction model that is more
effective than the best previously reported work on a file-level model by
Kamei, Matsumoto at el. [62]. To the best of our knowledge, we are the
first project to try to predict bugs at the line level.

We first give an overview of bug prediction and our experiment. We
then introduce our new line-level model and the file-level model we com-
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pared it to. We discuss our data sets and the metrics used to evaluate the
models. Finally, we present our results.

Overview

Many research efforts have been dedicated to source code bug prediction to
prioritize software testing [47, 48, 62, 92, 93]. Two comprehensive surveys
are from Arisholm, Briand, al el. [8] and D’Ambros, Lanza al et. [28].

Three decisions affect the performance of a bug prediction model: the
granularity of prediction, a set of bug predictors, and a machine learn-
ing technique that trains the model and predicts bugs. Using git-author
changes the granularity of prediction to the line level and introduces new
bug predictors. We do not explore the influence of different machine
learning techniques as it is beyond the scope of this paper.

Most of the existing source code bug prediction models predict at the
granularity of a source file [47, 91] or even a module [92, 93]. The disad-
vantage of coarse-grained prediction models is that, even if the prediction
results are accurate, developers still have to spend effort to locate the
bugs within a module or file. Predicting at a finer granularity, such as at
the method level can help to reduce the problem [48, 65]. Our line-level
model can locate the suspected lines and help focus testing efforts. It uses
the development history of lines of code provided by git-author to make
predictions. Note that since the development history of a line of code
produced by git-blame is incomplete, it is impractical to do line-level pre-
diction with git-blame. We compared our line-level model to the file-level
model because predicting at a file level is well understood.

Two types of bug predictors are commonly used: product predictors
that summarize code in the predicting snapshot [136] and process pre-
dictors that summarize the history of the predicting snapshot [91]. The
process predictors have been shown to be more effective than the product
predictors [62, 91]. In our experiment, most of our predictors are process
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Table 3.2: Bug predictors used in the study.

Level Predictor
name

Definition

Line WA Weighted authorship defined in Section 4
NOA # of authors
NOC # of commits
LEN Length of the line
VAR Variance of the length of the line across all com-

mits in Gl

FIX # of times a line involved in a bug-fix commit
REF # of times a line involved in a refactoring com-

mit
COM Whether a line is a comment
AGE The age of the line

File [62] Codechurn Sum of (added lines of code - deleted lines of
code)

LOCAdd Sum of added lines of code over all revisions
LOCDel Sum of deleted lines of code over all revisions
Revisions # of revisions
Age The age of the file
BugFixes # of times a file involved in a bug-fix commit
Refactor # of times a file involved in a refactoring commit

predictors.
Many machine learning techniques have been adopted for bug pre-

diction. However, previous studies have shown that the influence of bug
predictors on the final prediction results is much larger than the chosen
machine learning technique [8, 62]. Therefore, we selected linear learning
techniques for both our line-level model and the file-level model. We do
not believe this choice will have a noticeable effect on our results.

Models

The goal of our line-level model is, given a line of code, to output the
probability that the line is buggy. Based on these outputs, a developer
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could prioritize testing of the software to the lines with higher probabilities
of being buggy. We used a linear SVM as the learning technique in our
line-level model [34]. The predictors in our new model are shown in
Table 3.2. We introduce new predictors including the weighted authorship,
the length of the line, the variance of the length of the line across all
commits in Gl, and whether the line is a comment. The other predictors
were adapted from existing file-level predictors. We compute the values
of these line-level predictors from the outputs of git-author.

We compared our line-level model to the file-level model from Kamei,
Matsumoto et al. [62]. Their model outputs the predicted fault density
when given a file. They compared the prediction results of using process
predictors and product predictors with three learning techniques: linear
regression [32], regression tree [16], and random forest [17]. Their results
showed that using process predictors produced consistently better results
than using product predictors and combining them together did not pro-
vide further advantages. Therefore, we implemented the file-level process
predictors listed in Table 3.2. We chose the logistic regression [34], one
type of linear regression, as the learning technique of the file-level model
to match the linear SVM used in our line-level model.

Note that when evaluating the effects of git-author, it would have been
preferable to use the same machine learning technique in the line-level
model and the file-level model. However, because the outputs of the
line-level model and the file-level model are different, we cannot use the
exact same learning technique. Therefore, we can only try to minimize the
effects on performance from the factors rather than git-author.

Data collection

We are unaware of existing bug prediction data sets with line-level predic-
tors; instead we generated new such data sets. Producing a bug prediction
data set takes two steps. We first create a bug map from a bug record in
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the bug database to the pair of commits that caused the bug and fixed
the bug. We then choose a time point, typically a release, and use the
bug map to produce data instances for this snapshot. The second step is
repeated at several different release time points so that we can do cross
release prediction.

For the first step, we used the SZZ algorithm [117] to find buggy com-
mits and the corresponding fixing commits that fixed the bugs in the Apache
HTTP server repository. The quality of the results in this step is improved
by Relink [129], which addresses the problem of missing valid mappings
in the original SZZ algorithm [14].

In the second step, we projected the bug map onto the chosen snapshot.
A bug is relevant to the snapshot if and only if the snapshot is inside the
time interval between the buggy commit and the fixing commit. For each
relevant bug, we first produced line-level data, and then summarized the
data into file-level data. We assume the lines that are deleted or changed
in the fixing commit are the buggy lines. Two methods can be used to
summarize the line-level data. We can either count all buggy lines as a
single bug or count the lines separately. The first method assumes that it
takes the same effort to fix every bug, while the second method takes this
factor into consideration. We adopted both methods and produced two
data sets.

We collected data for seven releases in the Apache HTTP server project
and produced two data sets described above. The first data set is denoted
as “Bug count” and the other one is denoted as “Line count”. Table 3.3
summarizes our data sets.

Evaluation metrics

Many metrics are used to evaluate bug prediction models. The most
commonly used metrics include precision and recall [92, 93], the area
under the curve (AUC) of ROC curves [86, 91], and effort-aware metrics
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Table 3.3: Summary of the data sets. Each row in the table summarizes the
number of files, bugs, lines of code, and buggy lines in a release snapshot
of Apache.

Release # of files # of bugs SLOC # of buggy lines
2.1.1 305 129 177K 670
2.2.0 319 171 202K 746
2.2.6 320 167 205K 708
2.2.10 321 172 207K 664
2.3.0 383 179 207K 680
2.3.10 372 195 218K 747
2.4.0 362 181 223K 555

[62, 81]. Comparison studies have shown that the choices of metrics can
significantly affect the performance of prediction models [8, 28]. The
difference of performance on metrics does not mean inconsistent results
because different metrics are designed to answer different questions. We
use the effort-aware metrics because they are domain specific metrics for
bug prediction. They measure not only the accuracy of the predicting
results but also the efforts needed to fix the bugs.

In our study, we use two effort-aware metrics: Popt, which measures
the closeness of a model to the optimal file level model [81] and cost-
effectiveness (CE), which measures the advantages of that model over a
random prediction model [8]. The idea of effort-aware metrics is that a
developer can first test or inspect the most suspicious lines or the files
with largest fault densities and see what percentage of bugs can be found.
The assumption is that the effort needed to test a piece of code is roughly
proportional to the size of the code [8]. Using the percent of lines tested
as the x-axis and the percent of bugs covered as the y-axis, we can draw a
curve to visualize the performance of a model. We denote the area under
the curve of a modelm as AUC(m). Popt and CE can be defined as:

Popt(m) = 1 − (AUC(FileOptimal) −AUC(m))
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CE(m) = AUC(m)−AUC(Random)
AUC(FileOptimal)−AUC(Random)

In the above formulas, the file optimal model tests files in decreasing
order of the fault densities. It represents the upper bound of a file level
model. The random model orders the files randomly. We use the average
performance of the random model in the CE formula, which is a straight
line from (0, 0) to (1, 1). For both Popt and CE, larger values mean better
performance. When the values are larger than 1, the modelm performs
better than the optimal file-level model.

Results

We performed cross release prediction on our data set. We chose cross
release prediction instead of cross-validation inside a release because
the cross-release prediction represents the real practice of how a bug
prediction model is used. We used Liblinear to do training and prediction
on our two data sets [34]. We denote our line-level model as lm, the
file-level model as fm, and the optimal file-level model as fmo.

In the “Bug count” data set, we need to aggregate line-level prediction
results into the bug count. We provide three interpretations for our line
level models. The first one is that we can identify a bug as long as any
line comprising bug is identified. This is the optimistic interpretation and
represents the maximal benefits that can be acquired by using our line-
level model. The second one is that we take partial credit when we identify
a buggy line. For example, if we identify one buggy line for a five-line bug,
we say we find 20% of a bug. This is the average interpretation and assumes
that the more information about a bug is provided, the more likely the
bug can be identified. The third one is that only after we identify all buggy
lines of a bug, we cover the bug. This is the pessimistic interpretation. We
denote the three views as lmopti, lmavg, and lmpes.

The results for the “Bug count” data set are shown in Table 3.4. Our
results of Popt(fm) are consistent with the results shown by Kamei, Mat-
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Table 3.4: Results of “Bug count” data set. The two bold numbers in row
“2.3.10→ 2.4.0” are larger than one indicating that the performance of our
line level model can exceed the upper bound of any file level model.

Train→ Predict Popt CE
lmopti lmavg lmpes fm lmopti lmavg lmpes fm

2.1.1→ 2.2.0 0.9695 0.9392 0.9023 0.8321 0.9132 0.8243 0.7220 0.5221
2.2.0→ 2.2.6 0.9884 0.9632 0.9297 0.8166 0.9664 0.8935 0.7965 0.4693
2.2.6→ 2.2.10 0.9997 0.9706 0.9339 0.8453 0.9990 0.9148 0.8082 0.5509
2.2.10→ 2.3.0 0.9647 0.9325 0.8965 0.8716 0.8956 0.8007 0.6943 0.6208
2.3.0→ 2.3.10 0.9664 0.9275 0.8848 0.8870 0.8961 0.7756 0.6433 0.6504
2.3.10→ 2.4.0 1.0013 0.9665 0.9245 0.9267 1.0040 0.8979 0.7700 0.7769
Mean 0.9817 0.9499 0.9120 0.8632 0.9457 0.8511 0.7391 0.5984
Std. Dev. 0.0154 0.0173 0.0184 0.0368 0.0460 0.0532 0.0585 0.0998

sumoto at el. [62]. The results of CE(fm) are slightly better but still con-
sistent with the results shown by Arisholm, Briand et al. [8]. Therefore,
we believe that our implementation of fm is comparable to other imple-
mentations and that we can compare our lm to this implementation of
fm.

The optimistic interpretation and the average interpretation are consis-
tently much better than the file model in both Popt andCE. The pessimistic
interpretation loses to the file model slightly in two rounds of prediction
but has a much higher mean value. All the three interpretations have
much smaller standard deviation than the file model, so prediction results
are more stable on line level. Notice that the value of Popt(lmopti) and
CE(lmopti) in row “2.3.10→ 2.4.0” are larger than 1, which shows that
the performance of the line level model can even exceed the upper bound
of file level models.

Figure 3.5 shows the prediction results of training on release 2.2.10
and predicting on release 2.3.0. If we only test a small amount of code,
the lmopti is actually better than the fmo, but the lmpes is a little bit
worse than the fm. As we test more code, the three interpretations of the
line-level model are consistently better than the fm.

The “Bug count” data set assumes that every bug involves the same
amount of work to fix. We use the “Line count” data set to measure how
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Figure 3.5: Cross release prediction from 2.2.10 to 2.3.0 on “Bug count”
data set. The x-axis is the percentage of source line of code to test. The
y-axis is the percentage of bugs that can be identified.
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Figure 3.6: Cross release prediction from 2.2.10 to 2.3.0 on “Line count”
data set. The x-axis is the percentage of source line of code to test. The
y-axis is the percentage of buggy lines that can be identified.
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Table 3.5: Results of “Line count” data set.

Train→ Predict Popt CE

lm fm lm fm

2.1.1→ 2.2.0 0.9148 0.8113 0.7925 0.5404
2.2.0→ 2.2.6 0.9425 0.7704 0.8578 0.4321
2.2.6→ 2.2.10 0.9470 0.7860 0.8658 0.4579
2.2.10→ 2.3.0 0.9153 0.8288 0.7834 0.5624
2.3.0→ 2.3.10 0.8660 0.7711 0.6590 0.4173
2.3.10→ 2.4.0 0.9343 0.8860 0.8299 0.7050
Mean 0.9200 0.8089 0.7981 0.5192
Standard Deviation 0.0271 0.0404 0.0692 0.0988

many buggy lines can be covered during testing. The overall results are
shown in Table 3.5 and confirm that the line level model consistently
performs better in both Popt and CE. Figure 3.6 shows the results of
training on release 2.2.10 and predicting on release 2.3.0 in the “Line count”
data set. The line level model performs better than the file level model
over all ranges of the curve.

In summary, our two experiments confirm the effectiveness of our new
authorship models. The first experiment shows that git-author provides
more information than git-blame by the structured authorship model. The
second experiment shows that the information is useful to build better
analysis tools.

3.5 Summary

We have presented two line-level source code authorship models: the
structural authorship, which represents the complete development of a line
of code, and the weighted authorship, which summarizes the structural
authorship to produce author contribution weights. Our two authorship
models overcome the limitations of the current methods that only report
the last change to a line of code. We define the repository graph as a graph
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abstraction for a code repository and define a backward flow analysis
on the repository graph that derives the structural authorship. Another
backward flow analysis is used on the structural authorship to compute
the weighted authorship.

We have implemented our two authorship models in a new git built-in
tool git-author. We have evaluated git-author in two experiments. In the
first experiment, we ran git-author on five open source projects and find
that git-author can recover more information than git-blame on about 10%
of the lines. In the second experiment, we built a line-level model for bug
prediction based on the output of git-author. We compared our line-level
model with a representative file-level model and found that our line-level
model is consistently better than the file-level model on our data sets.
These results show that our new authorship models can produce more
information than the existing methods and that information is useful to
build a better analysis tool.
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4 identifying multiple authors

The foundation of fine-grained binary code authorship identification is
the capability of identifying multiple authors in a binary program. In this
chapter, we describe our new techniques for identifying multiple authors,
which consist of four components.

• To determine what granularity of authorship attribution is the most
appropriate, we conducted an empirical study on three large and
long lived open source projects, for which we have authorship ground
truth: the Apache HTTP server [7], the Dyninst binary analysis and
instrumentation tool suite [100], and GCC [40]. Our results show
that 85% of the basic blocks are written by a single author and 88%
of the basic blocks have a major author who contributes more than
90% of the basic block. On the other hand, only 50% of the functions
are written by a single author and 60% of the functions have a major
author who contributes more than 90% of the function. Therefore,
the function as a unit of code brings too much imprecision, so we
use the basic block as the unit for attribution. See Section 4.1.

• We designed new code features to capture programming styles at the
basic block level. These features describe common code properties
such as control flow and data flow. We also designed a new type
of code feature, the context feature, to summarize the context of the
function or the loop to which the basic block belongs. See Section 4.2.

• We made an initial step towards more effective library code identifi-
cation. This step focuses on identifying inlined code from the two
most commonly used C++ template libraries: STL and Boost. We
add group identities “STL” and “Boost” to represent the code from
these libraries and let the machine learning algorithms to distinguish
them from their users. See Section 4.3.
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• As a programmer typically writes more than one basic block at a
time, we hypothesize that adjacent basic blocks are likely written by
the same author. To test our hypothesis, we compared independent
classification models, which make predictions based only on the code
features extracted from a basic block, and joint classification models,
which make predictions based on both code features and the authors
of adjacent basic blocks. See Section 4.4.

We evaluated our new techniques on a data set derived from the open
source projects used in the empirical study. Our data set consisted of
147 C binaries and 22 C++ binaries, which contained 284 authors and
900,583 basic blocks. The binaries were compiled with GCC 4.8.5 and
-O2 optimization. Overall, our new techniques achieved 65% accuracy on
classifying 284 authors, as opposed to 0.4% accuracy by random guess.
Our techniques can also prioritize investigation: we can rank the correct
author among the top five with 77% accuracy and among the top ten with
82% accuracy. These results show that it is practical to attribute program
authors at the basic block level. We also conducted experiments to show
the effectiveness of our new code features, handling of inlined STL and
Boost code, and joint classification models. See Section 4.5.

4.1 Determining Unit of Code

Our fine-grained techniques start with determining whether the function
or the basic block is a more appropriate attribution unit. We investigated
the authorship characteristics in open source projects to make this granu-
larity decision.

Our study included code from three large and long lived open source
projects: the Apache HTTP server [7], the Dyninst binary analysis and
instrumentation tool suite [100], and GCC [40]. Intuitively, the more the
major author contributes to a function or a basic block, the more appro-
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priate it is to attribute authorship to a single author. We quantify this
intuition by first determining how much authorship contribution is from
its major author for all basic blocks and functions, and then summarizing
these contribution data to compare the basic block with the function.

4.1.1 Determining Contributions from Major Authors

Our approach to determine the major authors and their contributions can
be summarized in three steps:

1. Use git-author described in Chapter 3 to get a weight-vector of author
contribution percentages for all source lines in these projects. The
source lines of STL and Boost were attributed to author “STL” and
“Boost”, respectively.

2. Compile these projects with debugging information using GCC 4.8.5
and -O2 optimization, and obtain a mapping between source lines
and machine instructions. Note that the compiler may generate
binary code that does not correspond to any source line. For example,
the compiler may generate a default constructor for a class when
the programmer does not provide it. We exclude this code from our
study.

3. Derive weight vectors of author contribution percentages for all
machine instructions, basic blocks, and functions in the compiled
code. We first derived the weight vector for each instruction by
averaging the contribution percentages of the corresponding source
lines. We then derived the weight vector of a basic block by averaging
the vectors of the instructions within the basic block. Similarly, we
derived the weight vector of a function by averaging the vectors of
the basic blocks within the function.
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Figure 4.1: Tail distributions of major author contribution. The x-axis
represents the contribution percentage from the major author. The y-axis
represents the fraction of the number of blocks or functions that have a
major author who contributed more than a given percentage.

4.1.2 Study Results

To compare the function with the basic block, we plot the tail distribu-
tions of contribution percentages from the major authors. As shown in
Figure 4.1, 85% of the basic blocks are written by a single author and 88%
of the basic blocks have a major author who contributes more than 90% of
the basic block. On the other hand, only 50% of the functions are written
by a single author and 60% of the functions have a major author who
contributes more than 90% of the function. Therefore, the function as a
unit of code brings too much imprecision, so we use the basic block as the
unit for attribution.



51

Table 4.1: An overview of new basic block level features.

Code Property New block level features
Instruction prefixes,
instruction operands,Instruction
constant values in instructions
CFG edge types,Control flow whether a block throws or catches exceptions
# of live registers at block entry and exit,
# of used and defined registers,
# of input, output, and internal registers of a block,
stack height delta of a block,
stack memory accesses,

Data flow

backward slices of variables
Loop nesting levels,
loop sizes,
width and depth of a function CFG,Context

positions of a block in a function CFG

4.2 New Code Features

We followed an exploratory process for designing new features: design-
ing new features to cover code properties that are not covered, testing
new features to see whether they improve accuracy, and keeping those
features that turn out to be useful. We have four types of new features:
(1) instruction features that describe instruction prefixes, operand sizes,
and operand addressing modes, (2) control flow features that describe
incoming and outgoing CFG edges and exception-based control flow, (3)
data flow features that describe input and output variables of a basic block,
stack usages, and data flow dependencies, and (4) context features that
capture the context of a basic block such as the loops or the functions to
which the block belongs. Our new features are summarized in Table 4.1.
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4.2.1 Instruction Features

There are three new features to describe instruction details.
Prefix features: x86 and x86-64 instruction sets contain instruction pre-

fixes that reflect valuable code properties. For example, REP (re-
peat) prefixes are often used for string operations and REX prefixes
are often used to address 64-bit registers. We count how many
times each instruction prefix is used.

Operand features: Instruction operands represent the data manipulated
by programmers, so we designed instruction operand features
to capture operand sizes, types, and addressing modes. First,
operand sizes capture the granularity of data and may correlate
to the data types operated by a programmer. For example, a one-
byte operand often represents a char data type in C. We count the
number of operands in each operand size. Second, we count the
numbers of memory, register, and immediate operands. Third,
operand addressing modes can reflect data access patterns used
by programmers. For example, PC-relative addressing often rep-
resents accessing a global variable, while scaled indexing often
represents accessing an array. We count the number of operands
in each addressing mode.

Constant value features: We count the number of constant values used in
a basic block, such as immediate operands and offsets in relative
addressing.

4.2.2 Control Flow Features

We designed control flow features that describe the incoming and outgoing
CFG edges on three dimensions: (1) the control flow transfer type (such as
conditional taken, conditional not taken, direct jump, and fall through), (2)
whether the edge is interprocedural or intraprocedural, and (3) whether
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the edge goes to a unknown control flow target such as unresolved indirect
jumps or indirect calls.

In addition, for languages that support exception-based control flow
such as C++, we distinguish whether a basic block throws exceptions and
whether it catches exceptions.

4.2.3 Data Flow Features

Our new data flow features can be classified into three categories.

1. Features to describe input variables, output variables, and internal
variables of a basic block: We count the number of input, output,
and internal registers. To calculate these features, we need to know
what registers are live at the block entry and exit, and what registers
are used and defined.

2. Features to describe how a basic block uses a stack frame: Features in
this category include distinguishing whether a basic block increases,
decreases, or does not change the stack frame size, and counting
the number of stack memory accesses in the basic block. These
stack frame features capture uses of local variables. Note that stack
memory accesses are often performed by first creating an alias of the
stack pointer, and then performing a relative addressing of the alias
to access the stack. So, data flow analysis is necessary to identify
aliases of the stack pointer.

3. Features to describe data flow dependencies of variables: Features
in this category are based on backward slices of variables within
the basic block. A basic block potentially can be decomposed into
several disjoint slices [30]. We count the total number of slices, the
average and maximum number of nodes in a slice, and the average
and maximum length of slices. We also extract slice n-grams of
length three to capture common data flow dependency patterns.
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4.2.4 Context Features

Context features capture the loops and the functions to which a basic block
belongs. We count loop nesting levels and loop sizes to represent loop
contexts. When a basic block is in a nested loop, we extract loop features
from the inner-most loop that contains this basic block. For function
context, we calculated the width and depth of a function’s CFG with a
breadth first search (BFS), in which we assigned a BFS level to each basic
block. We also included the BFS level of a basic block and the number of
basic blocks at the same BFS level.

4.3 External Template Library Code

We must distinguish external library code from the code written by their
users. In the study discussed in Section 4.1, about 15% of the total basic
blocks are STL and Boost code. If we are not able to identify STL or Boost
code, our techniques would wrongly attribute this large amount of code
to other authors.

Our experience with STL and Boost is that their source code looks
significantly different from other C++ code. So, our initial attempt is to
add group identities “STL” and “Boost” to represent each of these libraries.
Our results discussed in Section 4.5 show that both STL and Boost have
distinct styles and we are able to identify the inlined code.

4.4 Classification Models

Our next step is to apply supervised machine learning techniques to learn
the correlations between code features and authorship. Commonly used
machine learning techniques such as SVM [25] and Random Forest [53]
perform prediction solely based on individual features. While this is a
reasonable approach when operating at the program level, it may not be
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yi−1 yi yi+1

xi−1 xi xi+1

· · · · · ·

(a) Independent classification mod-
els

yi−1 yi yi+1

xi−1 xi xi+1

· · · · · ·

(b) Joint classification models

Figure 4.2: Comparison between independent classification models and
joint classification models. Each basic block has an author label yi and
a feature vector xi. An edge connects two inter-dependent quantities. In
both models, the author label and feature vector are dependent. In joint
classification models, the author labels of adjacent basic blocks are also
inter-dependent.

the case for the basic block level. Based on the intuition that a programmer
typically writes more than one basic block at a time, we hypothesize that
adjacent basic blocks are likely written by the same author. To test our
hypothesis, we built joint classification models, which perform prediction
based on code features and who might be the authors of adjacent basic
blocks, and compare them to independent classification models, which
perform prediction solely based on code features. The key difference
between the two types of models are illustrated in Figure 4.2.

For the independent classification models illustrated in Figure 4.2a,
we divide a binary into a set of basic blocks B = {b1,b2, . . . ,bm}. A basic
block bi is abstracted with a tuple bi = (yi, xi), where yi is the author of
this basic block and xi is a feature vector extracted from the code of this
basic block. The training data consists of a set of binaries and we convert
them to a collection of training basic blocks Btrain. Similarly, the testing
data consists of a different set of binaries, producing a collection of testing
basic blocks Btest. The author labels in Btrain are used for training, while
the author labels in Btest are not used during prediction and are only used
for evaluation. With this modeling, it is straight-forward to use SVM to
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train independent classification models.
For the joint classification models illustrated in Figure 4.2b, we use

the same notation bi = (yi, xi) to represent a basic block, where yi is the
author label and xi is the feature vector. The key difference here is that we
convert a binary to a sequence of basic blocks B = [b1,b2, . . . ,bm], where
bi and bi+1 are adjacent in the binary. The training data and testing data
contain two disjoint collections of basic block sequences. We then use
linear Conditional Random Field (CRF) [69] to train joint classification
models.

4.5 Evaluation

We investigated five aspects of our new techniques: (1) whether we can
recover authorship signals at the basic block level, (2) whether our new
basic block level features are effective, (3) the impact of the number of
selected features, (4) whether the joint classification models based on CRF
can achieve better accuracy than the independent classification models
based on SVM, and (5) whether we can identify inlined STL and Boost
library code. Our evaluations show that:

1. We can effectively capture programming styles at the basic block
level. Our new techniques achieved 65% accuracy for classifying 284
authors, compared to 0.4% accuracy by random guess. If a few false
positives can be tolerated, we can rank the correct author among
the top five with 77% accuracy and among the top ten with 82%
accuracy. Our results show that it is practical to perform authorship
identification at the basic block level.

2. Our new basic block level features are crucial for practical basic
block level authorship identification. Fe represents the basic block
level features used in previous work, as discussed in Section 2.1,
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Table 4.2: Summary of our experiment results. We investigated the im-
pact of three key components of our techniques on the accuracy: our
new features, the number of selected features, and the joint classification
models. Fe represents the existing basic block level features discussed in
Section 2.1. We have four types of new features discussed in Section 4.2:
instruction, control flow, data flow, and context features, denoted as FI,
FCF, FDF, FC, respectively. Fn = Fe ∪ FI ∪ FCF ∪ FDF ∪ FC, represents our
new feature set.

Classification model Feature set Number of selected features Accuracy
SVM Fe 2,000 26%
SVM Fe ∪ FI 2,000 31%
SVM Fe ∪ FCF 2,000 33%
SVM Fe ∪ FDF 2,000 34%
SVM Fe ∪ FC 2,000 38%
SVM Fn 2,000 43%
SVM Fn 45,000 58%
CRF Fn 45,000 65%

such as byte n-grams and instruction idioms; Fn represents our new
feature set, which is a union of Fe and the new features discussed in
Section 4.2. The results of the first row and the sixth row in Table 4.2
show that adding our new features leads to significant accuracy
improvement, adding 26% to 43%, when compared to using only Fe.

3. When operating at the basic block level, we need to select many more
features to achieve good accuracy than operating at the program
level. As we will discuss later in this section, previous program level
techniques have selected less than 2,000 features. Our results show
that 2,000 features significantly limit the prediction power of our
models and we can improve accuracy from 43% to 58% by selecting
about 45,000 features at the basic block level, as shown in the sixth
and seventh row in Table 4.2.

4. The CRF models out-perform the SVM models, but CRF requires
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more training time. As shown in the last two rows in Table 4.2,
the accuracy improved from 58% to 65% when we used CRF for
training and prediction. In our experiments, SVM needs about one
day for training and CRF needs about 7 times more training time
than SVM. Both CRF and SVM can finish prediction in a few minutes
on binaries of several hundred megabytes. As training new models is
an infrequent operation and prediction on new binaries is the major
operation in real world applications, it is reasonable to spend more
training time on CRF for higher accuracy.

5. We can effectively distinguish STL and Boost code from other code.
We calculated the precision, recall, and F1-measure for each author
in our data set. Our results show that “STL” has 0.81 F-measure and
“Boost” has 0.84 F-measure. For comparison, the average F-measure
over all authors is 0.65.

4.5.1 Methodology

Our evaluations are based on a data set derived from the open source
projects used in our empirical study discussed in Section 4.1. Our data set
consists of 147 C binaries and 22 C++ binaries, which contains 284 authors
and 900,583 basic blocks. C and C++ binaries are compiled on x86-64
Linux with GCC 4.8.5 and -O2 optimization. In practice, newly collected
binaries may be compiled with different compilers and optimization levels.
We can train separate models for different compilers or optimization levels
and then apply compiler provenance techniques [103, 107] to determine
which model to use. The handling of these cases is the subject of ongoing
research.

We used Dyninst [100] to extract code features, Liblinear [34] for linear
SVM, and CRFSuite [95] for linear CRF. We performed the traditional
leave-one-out cross validation, where each binary was in turn used as



59

the testing set and all other binaries were used as the training set. Each
round of the cross validation had three steps. First, each basic block in
the training set was labeled with its major author according to the weight
vector of author contribution percentages derived in Section 4.1. Second,
we selected the top K features that had the most mutual information with
the major authors, where we varied K from 1000 to 50,000 to investigate
the how it impacted accuracy. Third, we trained a linear SVM and a linear
CRF and predicted the author of each basic block in the testing set. We
calculated accuracy as the percentage of correctly attributed basic blocks.
We parallelized this cross validation with HTCondor [55], where each
round of the cross validation is executed on a separate machine.

An important characteristic of our leave-one-out cross validation is that
the author distribution of the training sets is often significantly different
from the author distribution of the testing sets. We believe this character-
istic represents a real world scenario. For example, an author who wrote a
small number of basic blocks in our training data may take a major role
and contribute a large number of basic blocks in the new binary. For this
reason, we do not stratify our data set, which is to evenly distribute the
basic blocks of each author to each testing folds, as stratifying the data set
does not represent real world scenarios.

Our data set is also imbalanced in terms of the number of basic blocks
written by each author. The most prolific author wrote about 9% of the
total basic blocks and the top 58 authors contribute about 90% of the total
basic blocks.

We stress that to the best of our knowledge, we are the first project
to perform fine-grained binary code authorship identification, so there
are no previous basic block or function level techniques with which to
compare. We do not compare with any previous program level techniques
either, as these techniques can only attribute a multi-author binary to a
single author. We experimented with applying program level techniques
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Figure 4.3: Experiment results on the impact of the number features.
The accuracy results are based on using the new feature set Fn and SVM
classification.

to our data set to estimate the upper bound accuracy that can be achieved
by any program level technique. As a program level technique reports one
author per binary, the best scenario is to always attribute all basic blocks
in a binary to the major author of the binary. For each binary in our data
set, we counted how many basic blocks were written by its major author
and got an average accuracy of 31.6%, which is significantly lower than
our reported numbers.

4.5.2 Impact of features

As we mentioned before, adding our new features can significantly in-
crease the accuracy. We now break down the contribution from each of
our new feature type and investigate the impact of number of selected top
features.

Our new features can be classified into four types: instruction, con-
trol flow, data flow, and context features. We denote these four types of
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features as FI, FCF, FDF, and FC, respectively. To determine the impact of
each feature type, we calculated how much accuracy can be gained by
adding only this type of new feature to the existing feature set Fe. In this
experiment, we used SVM classification and selected top 2,000 features. As
shown in the first row of Table 4.2, the baseline accuracy of using only fea-
ture set Fe is 26%. The second to the fifth row of Table 4.2 show that adding
FI, FCF, FDF, and FC leads to 31%, 33%, 34%, 38% accuracy, respectively.
Therefore, all of our new features provide additional useful information
for identifying authors at the basic block level, with the context features
providing the most gain.

In terms of the number of selected top features K, previous program
level techniques have shown that a small number of features are sufficient
to achieve good accuracy. Rosenblum et. al [108] selected 1,900 features.
Similarly, Caliskan et al. [20] selected 426 features.

We investigate the impact of K and find that the basic block level needs
more features. Figure 4.3 shows howK affects accuracy. We can see that we
need over 20,000 features to achieve good accuracy, which is significantly
larger than the number used in previous studies. While the number of
selected features is large, we have not observed the issue of overfitting: we
repeated this experiment with selecting 100,000 features and got the same
accuracy as selecting 50,000 features.

4.5.3 Classification model comparison

Our results show that CRF can achieve higher accuracy than SVM, but
requires more training time. Specifically, CRF can significantly improve
the accuracy for small basic blocks and modestly improve accuracy for
large basic blocks. Figure 4.4a shows how our techniques work with basic
blocks of different sizes. We can see that SVM suffers when the sizes of
basic blocks are small, which is not surprising as small basic blocks contain
little code, thus few code features and little information. On the other hand,
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Figure 4.4: Comparison between CRF and SVM. The results of both figures are
based on the new feature set Fn and selecting 45K features.

CRF performs better than SVM for all sizes of basic blocks. CRF provides
the most benefits when the sizes of basic blocks are small, where we do not
have enough information from the code features to make good prediction
and have to rely on the adjacency. As the sizes of basic blocks grow, we
have more information about these basic blocks and adjacency plays a
smaller role in prediction and provides smaller accuracy improvement.
We also observe that the accuracy starts to have a large variance when
the sizes of basic blocks are larger than 30 bytes. We find that large basic
blocks are few in our data set, so their results are unstable.

The accuracy improvement of CRF comes at the cost of more train-
ing time. In our experiments, training SVM needs about one day, while
training CRF needs about a week. As CRF training consists of iterations
of updating feature weights, there is a trade-off between training time
and accuracy. Figure 4.4b shows how the number of iterations of CRF
training impacts the accuracy. In our experiments, we can finish about 150
iterations per day. We need about two days for CRF to reach the accuracy
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achieved by SVM in one day and need about three days for CRF accuracy
to converge.

4.6 Summary

We have presented new fine-grained techniques for identifying the author
of a basic block, which enables analysts to perform authorship identifica-
tion on multi-author software. We performed an empirical study of three
open source software to determine the most appropriate attribution unit
and our study supported using the basic block as the attribution unit. We
designed new instruction, control flow, data flow, and context features,
handled inlined library code from STL and Boost by representing them
with group identities “STL” and “Boost”, and captured local authorship
consistency between adjacent basic blocks with CRF. We evaluated our
new techniques on a data set derived from the open source software used
in our empirical study. Our techniques can discriminate 284 authors with
65% accuracy. We showed our new features and new classification models
based on CRF can significantly improve accuracy. In summary, we make
a concrete step towards practical fine-grained binary code authorship
identification.
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5 multi-toolchain multi-author identification

In this chapter, we build upon the multi-author identification techniques
described in Chapter 4 to investigate the impact of compilation toolchains
on multi-author identification. We present the first thorough study of
multi-toolchain, multi-author identification and present new techniques
to identify multiple authors in multi-toolchain scenarios.

We first describe a study in Section 5.1, where we evaluate how well our
multi-author identification techniques presented in Chapter 4 will func-
tion in a multi-toolchain scenario. We created a multi-toolchain dataset,
containing binaries generated by 15 toolchains. The results of our study re-
vealed two limitations. First, when models trained with binaries compiled
by one toolchain are applied to binaries compiled by another toolchain, the
identification accuracy is low. Second, there is a significant difference be-
tween the accuracy of different single toolchain scenarios; the optimization
levels influence the accuracy. The results of the study confirm the need
for new techniques for identifying multiple authors in multi-toolchain
scenarios.

We then describe two approaches for multi-toolchain multi-author
identification in Section 5.2. The first approach is a two layer one, incor-
porating toolchain identification [103, 107] to determine which toolchain
generated the binary and then applying the corresponding single-toolchain
authorship model. The second approach is to use unified training, where
we construct a training set containing binaries from all known toolchains.

Next, we describe how to apply deep learning to automatically extract
style features in Section 5.3. We focus on two areas when applying deep
learning. First, we investigate what should be used as inputs to Deep
Neural Networks (DNNs) and find that while using only raw bytes as
inputs can achieve reasonable accuracy, complementing raw bytes with
higher-level structural features can further improve accuracy. Second, deep
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learning requires tuning several important learning hyper-parameters to
achieve good results, such as the learning rate, the number of layers, and
the number of hidden units per layer. We follow the general practices
recommended by deep learning researchers [9, 42], and report our experi-
ences of applying these practices.

In Section 5.4, we describe the evaluations of our new techniques.
Our results showed that with toolchain identification, we achieved 59%
accuracy for identifying 700 authors. Replacing SVM with DNN, we
improved this accuracy to 71%. In addition, DNN achieved 82% top-
5 accuracy and 86% top-10 accuracy, showing that our techniques can
effectively prioritize investigation. For the unified training approach, SVM
training did not scale to this data set, while DNN achieved 68% accuracy.

To gain more insights on how compilation toolchain impacts multi-
author identification and on how the machine learning models work, we
investigated the structure of the learning models, including the feature
weights of SVM and the activations of neurons in DNN. We describe the
lessons we learned in Section 5.5.

5.1 Multi-toolchain Study

We evaluate the effectiveness of our previous techniques for multi-author
identification [85] in a multi-toolchain scenario.

5.1.1 Data Set Generation

We created a multi-toolchain dataset by compiling three large, long-lived
open source projects (Apache HTTPD Server [7], Dyninst binary analysis
and instrumentation tool suite [100], and Git [39]), with three compilers
(GCC 4.8.5, ICC 15.0.1, and LLVM 3.5.0), and five optimization levels (O0,
O1, O2, O3, and Os) on a 64-bit Red Hat Linux 7 platform. For each of the
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15 toolchains, we used the following steps to generate the author label as
ground truth for each basic block.

1. Use git-author [84] to get a weight-vector of author contribution
percentages for all source lines in these projects. The source lines
of STL and Boost code were attributed to author identity “STL” and
“Boost”, respectively.

2. Compile these projects with debugging information using the given
compiler and optimization level, and obtain a mapping between
source lines and machine instructions. The compiler may generate
binary code that does not correspond to any source line, such as
the default constructor for a class when the programmer does not
provide it. We exclude this code from our data set.

3. Derive weight vectors of author contribution percentages for all
machine instructions and basic blocks in the compiled code. We
first derived the weight vector for each instruction by averaging the
contribution percentages of the corresponding source lines. We then
derived the weight vector of a basic block by averaging the vectors
of the instructions within the basic block.

4. Take the major author as the author label, based on the weight vector
of contribution percentages of a basic block.

We generated a data set consisting of 1,965 binaries generated by 15
toolchains, containing 50 million basic blocks and 700 authors. The 1,965
binaries consisted of 131 programs, with each program having 15 different
versions.

5.1.2 Evaluation Methodology

We enumerate all toolchain pairs to generate training sets and testing sets.
For each evaluation pair, we used the following evaluate strategy.
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We used Dyninst [100] to extract code features, Liblinear [34] for linear
SVM , and CRFSuite [95] for linear CRF. We performed the traditional
leave-one-out cross validation, where each program was in turn used as
the testing set and all other programs were used as the training set. So,
the testing set contained the binary of the testing program generated by
the testing toolchain, and the training set contained the binaries of the
training programs generated by the training toolchain.

Each round of the cross validation had two steps. First, we selected the
top 45,000 features that had the most mutual information with the major
authors. We investigated the impact of the number of selected features
and reported that selecting 45,000 features worked best [85]. Second, we
trained a linear SVM and a linear CRF and predicted the author of each
basic block in the testing set. We calculated accuracy as the percentage
of correctly attributed basic blocks. We parallelized this cross validation
with HTCondor [55], where each round of the cross validation is executed
on a separate machine.

5.1.3 Results

Table 5.1 shows the accuracy for all the evaluation pairs using SVM. We
make three observations from the result table. First, our previous tech-
niques did not work well in multi-toolchain scenarios, as shown in the
non-diagonal cells. The red-shaded cells show the minimal (5%), median
(13%), and maximal (64%) accuracy achieved in multi-toolchain scenar-
ios. Second, these techniques achieved much higher accuracy in single
toolchain scenarios, as shown in the diagonal cells. The green-shaded
cells show the minimal (44%), median (59%), and maximal (70%) accu-
racy achieved. However, there is a 26% accuracy difference between the
minimal and maximal. Third, by comparing the accuracy numbers in
each column, we find that we always get the highest accuracy for a testing
toolchain when we use the model trained on binaries generated by the
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Table 5.1: Evaluation results of our previous techniques [85]. The di-
agonal cells (in bold font) represent the single toolchain results and the
green-shaded cells represent the minimal, median, maximal accuracy
achieved in single toolchain scenarios. The non-diagonal cells represent
the multi-toolchain results and the red-shaded cells represent the minimal,
median, maximal accuracy achieved in multi-toolchain scenarios.

GCC ICC LLVM
Train

Predict
-O0 -O1 -O2 -O3 -Os -O0 -O1 -O2 -O3 -Os -O0 -O1 -O2 -O3 -Os

-O0 45% 8% 7% 7% 8% 9% 7% 7% 7% 7% 8% 8% 7% 7% 7%
-O1 8% 59% 25% 22% 16% 8% 14% 16% 16% 14% 7% 10% 24% 23% 16%
-O2 7% 27% 63% 38% 18% 6% 14% 17% 17% 14% 6% 10% 28% 29% 18%
-O3 7% 25% 41% 66% 16% 6% 14% 19% 18% 14% 6% 9% 25% 25% 16%

GCC

-Os 8% 19% 20% 17% 55% 7% 13% 13% 13% 13% 7% 11% 19% 19% 14%
-O0 9% 6% 6% 6% 6% 47% 6% 7% 7% 6% 6% 6% 8% 7% 6%
-O1 7% 13% 13% 12% 11% 7% 58% 19% 19% 45% 7% 9% 16% 16% 12%
-O2 6% 14% 15% 15% 10% 7% 20% 66% 64% 21% 6% 8% 19% 19% 12%
-O3 6% 13% 15% 15% 10% 8% 20% 64% 66% 21% 5% 8% 19% 19% 12%

ICC

-Os 7% 13% 13% 12% 11% 7% 45% 20% 20% 58% 6% 9% 16% 16% 12%
-O0 9% 9% 9% 8% 9% 9% 9% 8% 8% 9% 44% 9% 8% 8% 8%
-O1 9% 10% 9% 8% 10% 7% 9% 8% 8% 9% 7% 52% 16% 15% 21%
-O2 8% 19% 19% 18% 13% 8% 14% 17% 17% 14% 7% 18% 69% 63% 40%
-O3 8% 19% 19% 18% 13% 7% 14% 17% 17% 14% 6% 17% 63% 70% 37%

LLVM

-Os 8% 19% 18% 16% 14% 7% 13% 14% 14% 13% 6% 21% 40% 38% 61%

same toolchain. This observation supports the idea that as long as we can
identify the toolchain that generated the testing binary, we know which
authorship model is the most appropriate to use.

We were not able to get any accuracy results with CRF because CRF
training took too long to finish. We commented in our previous work
[85] that we spent 7 days to train a CRF model. The previous data set
had 900,583 basic blocks and 284 authors, whereas in this study, the data
used in each evaluation pair had average 1.5 million basic blocks and 700
authors. As the training of a linear CRF has a time complexity quadratic in
the number of labels and linear in the total number of data instances [120],
it is not surprising that we cannot finish CRF training in any reasonable
amount of time.

The results of our study confirm that we need new approaches for
authorship identification in multi-toolchain scenarios and investigate the
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accuracy differences between optimization levels.

5.2 Approaches

We compare two approaches for multi-toolchain, multi-author identifica-
tion. First, we attempt to identify the toolchain that generated the target
binary and then apply the corresponding single toolchain authorship
model. We call this the two layer approach. Second, we construct a train-
ing set that contains binaries from all known toolchains and then train a
multi-toolchain model. We call this the unified training approach.

5.2.1 Two Layer Approach

Besides training multiple single-toolchain authorship models, the other
key component of the two layer approach is to perform toolchain identifi-
cation. Toolchain identification is typically performed at the function level
[107]. The program level is not suitable for toolchain identification as a
binary may contain code generated by different toolchains. For example, a
programmer may compile their code with one toolchain and then statically
link a library that was generated by a different toolchain. On the other
hand, a function is typically generated by one toolchain, as the source code
of a function is in a single source file and the source file is typically the
compilation unit.

Toolchain identification can be summarized in three steps. First, we
define and extract candidate binary code features. Rosenblum et al. [107]
used instruction idioms, which represented consecutive machine instruc-
tions, and graphlets, which represented subgraphs extracted from the Con-
trol Flow Graph (CFG) of a function. Second, we perform feature selection
by ranking features based on the mutual information with toolchain labels.
Third, as a compilation unit typically contain more than one function, we
perform joint classification by training a Conditional Random Field model
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to capture the correlations between code features and toolchain labels.
Note that training a CRF model for toolchain identification is significantly
faster compared to multi-author identification, as there are only 1.4 million
functions and 15 toolchain labels in our data set.

The two layer approach needs to maintain multiple classifiers: one
toolchain identification classifier, and one authorship identification classi-
fier for each toolchain. On the other hand, maintaining multiple classifiers
brings two advantages. First, each single-toolchain authorship model can
capture the distinct characteristics of each toolchain. Second, the training
effort of each model is modest.

5.2.2 Unified Training Approach

The unified training approach constructs a multi-toolchain training set.
This idea is based on a general machine learning practice called data set
augmentation [42]. Data set augmentation aims to improve the accuracy
of a classifier by adding training examples that have been modified with
transformations that do not change the label of the example. For example,
in object recognition in computer vision, a cat image remains a cat image
if it is shifted one pixel to the right. Similarly, the code written by an
author remains code written by this author if it is compiled by a different
toolchain.

Compared to the two layer approach, the unified training approach
needs to maintain only one classifier. However, training this classifier
requires significantly more computing power, as the size of the training
set is multiplied by the total number of available toolchains.

5.3 Applying Deep Learning

We apply deep learning to automatically learn features from raw bytes of
basic blocks. We first introduce the basics of feed-forward neural networks
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and then focus on how to construct inputs to the network.

5.3.1 Basics of Feed-forward Neural Networks

Figure 5.1 illustrates an example of a feed-forward neural network and
breaks down its individual components. As shown in Figure 5.1a, nodes in
the network are arranged into layers: one input layer, multiple hidden lay-
ers (two in this example), and one output layer. Typically, nodes between
adjacent layers are fully connected, and there are no backward edges or
cross layer edges.

As shown in Figure 5.1b, a node in the input layer takes an input value
fi and outputs the same value fi. The information used for constructing
inputs is application specific. Two common choices are using manually
designed features and using raw data as inputs. Examples of raw data
include individual pixels in computer vision tasks and raw bytes in our
case.

The internal computation of a hidden layer node is shown in Figure 5.1c.
The number of hidden layers and the number of nodes in a hidden layer
are two hyper-parameters that need tuning. A node in a hidden layer takes
multiple inputs from the previous layer and generates new output value
to the next layer. Denote Xi = [xi1, xi2, . . . , xin]T as the input vector, where
n represents the total number of nodes in the previous layer. The inputs
first go through a linear transformation, defined as zi =WT

i Xi+bi, where
weightsWi = [wi1,wi2, . . . ,win]

T and bias bi are two learning parameters,
whose values are determined in the training process. Note that each node
has separate weights and bias. The output is then defined as yi = σ(zi),
where σ is called the activation function. σ is a non-linear function so that
the whole network can represent a non-linear prediction space. While the
Rectified Linear Unit (ReLU) is a commonly used activation function, we
found that the Scaled Exponential Linear Unit (SELU) [67] achieved better
results.
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x𝑖2x𝑖1

𝑝𝑖

𝑧𝑖 = 𝑊)
*𝑋𝑖 + 𝑏𝑖

𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑍 𝑖

…

(d) An output layer node

Figure 5.1: Overview of a feed-forward neural network. Nodes are ar-
ranged into an input layer, hidden layers, and an output layer. Nodes in
adjacent layers are fully connected. From an user point of view, the input
layer takes user provided inputs and the output layer generates prediction
probabilities. Internally, an input layer node outputs the input value fi
without modification. A hidden layer node defines learning parameters
weights Wi and bias bi, and performs a linear transformation with the
input Xi. The result of the linear transformation zi then goes through a
non-linear activation function σ to generate the output to the next layer.
An output layer node also defines Wi and bi and generates the prediction
probability for a class.
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The goal of the output layer is to generate a probability vector P =

[p1,p2, . . . ,pm]T , where pi represents the probability that the input data in-
stance belongs to class i andm is the total number of classes. As shown in
Figure 5.1d, similar to a node in a hidden layer, the inputs first go through
a linear transformation zi =WT

i Xi + bi, where Z = [z1, z2, . . . , zm]T . The
output is defined as pi = softmax(Z)i, where softmax(Z) is a func-
tion that normalizes a vector of arbitrary values to a probability vec-
tor; softmax(Z)i is the ith element in the probability vector, defined as
softmax(Z)i = (ezi)/(

∑m
k=1 e

zk). We can then report the class with the
highest probability as the prediction result, or report the top-k classes by
choosing the k highest probabilities.

The purpose of training is to determine the values for W and b, which
can be summarized in four steps [42].

1. Initialize the weights and biases. Typically, weights are randomly
sampled from a Gaussian or uniform distribution; biases are set to
heuristically chosen constants.

2. Calculate the loss for a training example. Suppose the training ex-
ample belongs to the Lth class. We calculate the output of each node
along the layers in the network, and get the prediction probability
vector P. A common loss function is cross-entropy. In this context, it
is defined as −log(pL). Intuitively, the larger pL is, the more likely
we make the correct prediction and the smaller the loss.

3. Update weights and biases by gradient descent. This step aims to
reduce the loss by updating the weights and biases. The direction of
the update is specified by the negative of the gradient, as it represents
the fastest direction along which the loss decreases. The magnitude
of the update is specified by a user-defined hyper-parameter called
the learning rate.
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4. Repeat the second and third steps over the training set until converg-
ing. Since the training set for deep learning is typically too large to fit
in memory, a common practice is to split the training set into multiple
mini-batches, where one mini-batch contains dozens or hundreds
of data instances. Only one mini-batch is loaded into memory at a
time.

As a user of feed-forward neural networks, we need to construct ap-
propriate inputs to the network and tune key hyper-parameters such as
the learning rate, the number of layers, and the number of unit in each
hidden layers.

5.3.2 Extract Low Level Features

A key advantage of deep learning is that it can automatically learn features
from data. So, we use raw bytes of a basic block as inputs, as opposed to
designing the features ourselves. As manual feature design is unlikely
to cover all relevant code properties, using raw bytes can also potentially
capture information that is not represented by existing features. To provide
raw bytes as input, we have two issues to address. First, the length of a
basic block is variable, but a feed-forward network takes a fixed number
of inputs. For this issue, we empirically decided to use the first 70 bytes of
the basic block as we found over 99% of the basic blocks are short than
70 bytes. For basic blocks shorter than 70 bytes, we add padding after the
code bytes.

Second, how do we represent the value of a byte as the inputs to the
network? Ideally, we would like a representation that will allow the net-
work to capture instruction fields such as instruction prefixes, opcodes,
and operands, and the encoding of machine instructions. For the x86-64 ar-
chitecture, instruction fields do not necessarily align with byte boundaries.
For example, the lower four bits of a REX prefix byte represents four differ-
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ent fields. Therefore, we use bit values as inputs. Specifically, we translate
bit value 0 to input value -1, bit value 1 to input value 1, and padding bit
to value 0. This representation allows the network to distinguish padding
from real code bits.

However, using only raw bytes of a basic block as input cannot capture
higher-level structural features such as control flow, data flow, and the
context. This is because structural properties are the results of interactions
between multiple basic blocks and extracting structural code features is
the result of extensive, semantic analysis of the binary code [6, 83, 114]. We
reuse existing basic block level structural features [82, 85, 108] as additional
inputs.

5.4 Evaluation

We evaluated our techniques with the same multi-toolchain data set dis-
cussed in Section 5.1. Recall that this data consists of 1,965 binaries gener-
ated by 15 toolchains, containing 50 million basic blocks and 700 authors.

We focus on two aspects of our techniques: how well the two layer
approach and the unified training approach can perform multi-toolchain,
multi-author identification, and whether DNN can improve accuracy over
traditional machine learning techniques such as SVM. As either the two
layer approach or the unified training approach can be paired with either
SVM or DNN, we evaluated the following four techniques: two-layer-svm,
two-layer-dnn, unified-svm, and unified-dnn.

5.4.1 Evaluation Methodology

Our evaluations are based on leave-one-out cross validation, where all 15
versions of a program are considered as a fold. So, in each round of cross
validation, the training set contains all 15 versions of 130 programs, and
the testing set contains all 15 versions of the other program.
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For two-layer-dnn, we train a toolchain identification classifier with
linear CRF using all binaries in the training set. We then train 15 single-
toolchain authorship classifiers with feed-forward neural networks, where
each classifier is trained with the corresponding version of the 130 pro-
grams. For testing, we first use the toolchain identification classifier to
determine which toolchain generated the functions in the testing binaries,
and then we apply the corresponding single-toolchain authorship model
to predict the authors of all basic blocks. The steps for two-layer-svm are
similar to the steps for two-layer-dnn, but we replace feed-forward neu-
ral networks with linear SVM. For both unified-svm and unified-dnn, we
train a multi-toolchain authorship model with all binaries in the training
set and then predict the authors of binaries in the testing set. Accuracy is
calculated as the number of correctly attributed basic blocks over the total
number of basic blocks.

We used Dyninst [100] to extract code features, Liblinear [34] for linear
SVM, CRFSuite [95] for linear CRF, and TensorFlow [124] for deep learning.
It is straight-forward to parallelize the training and testing of neural net-
works in TensorFlow. In our experiments, we used four CPUs for training
and testing each feed-forward neural networks. We parallelized our eval-
uations with HTCondor [55]. Note that the two layer approach has more
parallelism than the unified training approach. For the unified training
approach, we can parallelize different rounds of cross validation. For the
two layer approach, we can parallelize different rounds of cross validation,
as well as the training of toolchain identification and all single-toolchain
authorship models within a round of cross validation.

5.4.2 Evaluation Results

A key question to answer in our evaluations is how well we can per-
form multi-toolchain, multi-author identification. Our results show that
two-layer-svm, two-layer-dnn, and unified-dnn achieved 59%, 71%, and
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Table 5.2: Comparison of single toolchain results between SVM and
DNN. For convenience of comparison, we copy the results for SVM
from the diagonal cells in Table 5.1. DNN improved accuracy for all
15 toolchains.

O0 O1 O2 O3 Os Avg
SVM DNN SVM DNN SVM DNN SVM DNN SVM DNN SVM DNN

GCC 45% 64% 59% 69% 63% 70% 66% 75% 55% 66% 58% 69%
ICC 47% 62% 58% 68% 66% 79% 66% 79% 58% 68% 60% 73%
LLVM 44% 63% 52% 64% 69% 77% 70% 77% 60% 69% 60% 71%
Avg 45% 63% 57% 67% 66% 76% 67% 77% 58% 68% 59% 71%

68% accuracy for classifying 700 authors on code generated by 15 toolchains,
as opposed to as low as 5% accuracy when a mismatched authorship model
is used. Our techniques can help prioritize investigation: two-layer-dnn

achieved 82% top-5 accuracy and 86% top-10 accuracy. Our results show
that unified-svm did not scale to the merged training set containing all 15
toolchains.

To better understand the accuracy achieved the two layer approach,
we investigated how the accuracy of toolchain identification impact multi-
author identification. Our toolchain identification classifiers achieved 93%
accuracy for identifying 15 toolchains, where accuracy is calculated as
the number of functions that we identified the correct toolchain over the
total number of functions. To investigate the impact of 7% error rate on
toolchain identification, we repeated experiments with two-layer-svm and
two-layer-dnn using an oracle for toolchain identification. We observed
less than 1% accuracy improvement by using an oracle for toolchain identi-
fication. Therefore, we believe current toolchain identification techniques
are good enough for multi-toolchain, multi-author identification.

We then compared two-layer-dnn and two-layer-svm on two aspects to
understand how two-layer-dnn improved accuracy. First, we broke down
the accuracy achieved by DNN and SVM in single toolchain scenarios.
Table 5.2 shows that DNN improved not only the overall accuracy, but also
the accuracy for all 15 toolchains. In addition, two-layer-dnn had a slightly
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reduced accuracy difference between optimization levels, as ICC -O0 had
the lowest accuracy (62%) and ICC -O3 had the highest accuracy (79%),
compared to two-layer-svm, where LLVM -O0 had the lowest accuracy
(44%) and LLVM -O3 had the highest accuracy (70%).

Second, we compared the accuracy of SVM and DNN for different
sizes of basic blocks. As shown in Figure 5.2a, we can see that SVM suffers
when there are small basic blocks. This observation aligns with the results
presented in our previous study [85] and can be explained simply as small
basic blocks provide fewer code features for prediction. On the other
hand, DNN achieved much higher accuracy on small basic blocks. We
attribute this improvement to the advantage of deep learning: our DNN
models extract features at bit level, which can capture information that
is not represented by existing low level features. For larger basic blocks
(byte size larger than 20), both DNN and SVM have varying accuracy, and
DNN does not seem to outperform SVM. Note that we only use the first 70
bytes of a basic block, but this decision does not hurt accuracy for blocks
larger than 70 bytes. Figure 5.2b shows the cumulative distribution of
basic blocks in different sizes. Since about 80% of the total basic blocks
are smaller than 20 bytes, the accuracy improvement on small basic blocks
explains the overall improvement of DNN.

Since unified-svm did not scale to the merged training set, it shows
that unified-dnn has better training scalability. We observed similar accu-
racy results from unified-dnn compared to two-layer-dnn: (1) unified-dnn

has similar accuracy differences between optimization levels, where O0
code has lowest accuracy, and O2 and O3 code have highest accuracy; (2)
unified-dnn has a similar accuracy trend in terms of block sizes.

Last, we discuss the needed training time. For two-layer-dnn, it took
about 30 hours to train a DNN model and about 10 hours to train a linear
CRF model for toolchain identification. For two-layer-svm, it took about
20 hours to train a linear SVM, and we use the same linear CRF models
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Figure 5.2: Comparison between accuracy of SVM and DNN on basic
blocks in different sizes. DNN significantly outperforms SVM for small
basic blocks. As there are more small basic blocks, DNN achieved better
overall accuracy.

for toolchain identification. For unified-dnn, it took about 240 hours to
train a DNN model. Note that we can significantly speed up the training
of DNN models by deploying them on GPUs and more CPUs. We believe
the training cost of unified-dnn is practical.

5.4.3 Experiences of Deep Learning

As we are the first project to apply deep learning to multi-author iden-
tification, we report our experiences of deep learning tuning. We used
the Adam optimizer in our experiments, as it has been shown empirically
to be more effective than other optimization methods [66]. We first dis-
cuss several factors that are fundamental for us to achieve any success on
training DNN models:

1. Use a small initial learning rate. Typical values for the initial learn-
ing rate are between 10−5 and 1, with a default value 0.01 [9]. We
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followed this recommendation and found that we needed a small
initial learning rate, around 10−4. Too large values such as 0.01 and
0.001 caused the training loss to increase with training and eventually
diverge to infinity.

2. Using SELU as the activation function allows training deeper net-
works compared to using ReLU, and we achieved better results when
using SELU. The best SELU network had 10 hidden layers, while the
best ReLU network had 5 hidden layers.

3. Shuffle the training data before training. We started with dividing
data into mini-batches by iterating every binary in the training set
and putting consecutive basic blocks into one mini-batch. As adja-
cent basic blocks are likely written by the same author, this caused
each mini-batch to have code from only a few authors and different
mini-bathes to have disjoint sets of authors, which in turned caused
the training to repeatedly optimize the weights and biases for dif-
ferent authors and led to fluctuating training accuracy. Shuffling
the training data so that each mini-batch contains code from more
authors makes the training converge to a high training accuracy.

We did not observe significant improvement by tuning the number
of hidden units per layer. Our networks are set to have 800 hidden units
per layer. We let all hidden layers have the same number of units, as
Larochelle et al. [72] empirically showed that an even-sized network archi-
tecture performs no worse than a decreasing-sized or an increasing-sized
architecture. Our results align with this recommendation. The decision of
800 hidden units per layer is based on two considerations. First, a hidden
layer wider than the input layer typically performs better than a hidden
layer narrower than the input layer [9]. Our input layer has 704 units (560
units for 70 bytes and 144 units for structural features), so our hidden
layer should be wider than 704 units. Second, on the other hand, too wide
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hidden layers will significantly increase training time as the number of
learning parameters is quadratic in the number of units per layer. We
tried more units and fewer units per layer and observed about the same
or lower accuracy.

5.5 Understanding the Models

We investigate the internals of our machine learning models to better
understand how the models work, including the selected features and
their weights in two-layer-svm and the activation outputs of the hidden
units in unified-dnn. We focused on three toolchains (GCC -O2, ICC -O2
and LLVM -O2). We stress that our observations are anecdotal, meaning
that we did not find any conflicting facts, but we cannot prove them either
due to the complexity of the data sets and the machine learning models.

5.5.1 Different Features Are Selected for Different
Toolchains

Two key questions for understanding the impact of compilation toolchains
on authorship are do we need different features for different toolchains?
And if there are features that are indicative of authorship for all toolchains,
do these features contribute similarly to the models for the different
toolchains? We try to answer these questions by examining the selected fea-
tures and their weights in two-layer-svm. Note that while two-layer-svm

has lower accuracy than two-layer-dnn and unified-dnn, we choose to
analyze two-layer-svm as SVM models are easier to interpret than deep
learning models.

For the first question, Figure 5.3 shows a Venn diagram of the number of
uniquely selected features and the number of commonly selected features.
We selected 45,000 features each for GCC, ICC, and LLVM. Since some
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Figure 5.3: A Venn diagram of selected features in models from
two-layer-svm. Each model selected 45,000 features. There are 88,000
features selected and 591 features are structural features. The results are
represented in a form “A/B,C/D”, where A represents the total number
of features, B represents the percentage of total features, C represents
the number of structural features, and D represents the percentage of
structural features.

features were selected by more than one toolchain, there are only 88,000
selected features in total. 65% of the selected features are uniquely selected
by a single toolchain, with 22%, 23%, and 20% of features uniquely selected
by GCC, ICC, LLVM, respectively. On the other hand, only 18% of the
selected features are selected by all three toolchains. Among the 88,000
features, there are 591 structural features. 40% of the structural features
are uniquely selected by a single toolchain, while 49% of the selected
structural features are selected by all three toolchains. Our results show
that overall, we need different features for different toolchains, but a much
higher percentage of structural features are shared.

For the second question, we analyze the weights of features that are
selected by all three toolchains. An SVM model defines a weight for each
pair of author a and feature f. When f is observed in a basic block, the
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larger the weight, the more likely that the basic block is written by a. For
a given feature, we can generate a ranking of all authors to summarize
its contribution to a model. If a feature has similar rankings for different
toolchains, we can conclude that this feature contributes similarly to all
models for the different toolchains. Note that we analyze the rankings
instead of the actual values of weights because the values of weights of a
feature also depend on the other features in the model. As GCC, ICC, and
LLVM each have uniquely selected features, the actual values of weights
in different models are not directly comparable.

We calculated the Spearman correlation [118] to measure similarities
between author rankings. The value of the Spearman correlation of two
rankings is between -1 and 1, where -1 means opposite rankings, 0 means
that there is no association between two rankings, and 1 means the same
ranking. Figure 5.4 shows the histogram of Spearman correlations for
the GCC model and the ICC model. We can see that most features have
Spearman correlation values between -0.1 and 0.3, indicating that the
rankings for GCC has little or no association with the rankings for ICC. We
repeated the same analysis for GCC and LLVM, and ICC and LLVM, with
results similar to Figure 5.4. Therefore, our results suggest that commonly
selected features typically contribute differently to predictions in different
toolchains.

5.5.2 DNNs Can Internally Recognize the Toolchain

In Section 5.4.2, our results show that two-layer-dnn and unified-dnn have
similar results. This suggests that unified-dnn can internally recognize the
toolchain that generated the input data, even without explicitly training
for toolchain identification. Note that a similar phenomena was observed
in computer vision research, where Zhou et al. [135] found that a deep
learning model trained for scene classification (whether an image describes
a office or a bedroom) can internally recognize objects (whether an im-
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Figure 5.4: The histogram of Spearman correlations for commonly selected
features by all three toolchains in GCC model and ICC model.

Table 5.3: Unit distributions in hidden layers.

GCC ICC LLVM
Dominant Exclusive Dominant Exclusive Dominant Exclusive

Layer 1 0.6% 0.0% 24.0% 1.0% 75.4% 71.4%
Layer 2 10.4% 0.1% 48.6% 6.4% 41.0% 22.6%
Layer 3 7.6% 0.4% 61.4% 10.5% 31.0% 17.5%
Layer 4 8.0% 0.5% 55.6% 7.3% 36.4% 19.5%
Layer 5 9.7% 0.1% 67.4% 3.9% 22.9% 8.4%
Average 7.3% 0.2% 51.4% 5.8% 41.3% 27.9%

age contains a desk or a bed), even without explicitly training for object
classification.

We adapted the techniques presented by Zhou et al. to investigate
whether unified-dnn can internally identity toolchains. The basic idea is
that the larger the absolute value of the activation of a hidden unit, the
more active the unit. By examining the top K activations generated by
using a data set as input, we can determine whether a unit is most active
for GCC, ICC, or LLVM code.
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We used 500,000 basic blocks as input and made sure that GCC, ICC
and LLVM each accounted for about one third of the total input set. We
recorded the top K = 1000 activations for each unit and summarized each
unit with a tuple (G, I, L), where G is the number of GCC basic blocks in
the unit’s top K activation list, I is the number for ICC and L is the number
for LLVM. We call a unit GCC dominant if GCC basic blocks are the most
in the unit’s top 1000 activation list and GCC exclusive if GCC basic blocks
constitute more than 90%. Similarly, we have ICC and LLVM dominant
and exclusive units.

Table 5.3 breaks down unit distributions in different layers. In the first
hidden layer, there are many LLVM exclusive units, but almost no ICC or
GCC exclusive units. Layer 2 - 5 have similar unit distributions to each
other: there are more ICC dominant units than LLVM dominant units,
and there is a modest number of GCC dominant units.

We make three observations from our results. First, the large number of
LLVM exclusive units suggests that LLVM code has many unique patterns
and the network dedicates a significant number of units to represent them.
The first hidden layer has a large number of LLVM exclusive units to learn
these patterns, indicating that these patterns can be easily derived from
the input. Second, the large number of ICC dominant units suggests that
ICC code also exhibits distinguishable patterns. Learning these patterns
happened mostly in the last four layers. However, the small number of
ICC exclusive units suggests that most of these patterns are not unique to
ICC code. Third, GCC code has the fewest distinct patterns to learn, where
learning the GCC patterns happened mostly in the last four layers. Our
observations align with our knowledge about these compilers. Both ICC
and LLVM aim to be compatible with and extend GCC, so it is reasonable
that GCC code has the fewest unique patterns. On the other hand, as
LLVM is developed by a large community of compiler researchers, it is
not surprising that LLVM code shows the most unique patterns.
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Table 5.4: Total number of basic blocks (in millions).

O0 O1 O2 O3 Os
GCC 1.46 1.30 1.29 1.62 1.11
ICC 1.55 1.18 2.36 2.36 1.16
LLVM 1.62 1.21 1.60 1.70 1.14

Table 5.5: Percentages of basic blocks that contains boilerplate code pat-
terns.

O0 O1 O2 O3 Os
GCC 14.0% 0.7% 0.7% 0.5% 0.8%
ICC 17.0% 0.2% 0.1% 0.1% 0.2%
LLVM 12.8% 2.1% 1.2% 1.1% 1.7%

In summary, the distinct activation patterns of our network provide
strong evidence that unified-dnn can internally determine which toolchain
generated the input basic block.

5.5.3 Unoptimized Code Is More Difficult to Attribute

Traditional wisdom is that compiler optimization can drastically change
the structure of binary and distort the styles of the original authors. So,
optimized code should be more difficult to attribute than unoptimized
code. However, our results in Table 5.2 show the exact opposite: we
achieved higher accuracy on optimized code than unoptimized code. Our
investigation suggests that compiler optimizations actually work in our
favor for improving accuracy. We find two pieces of supporting evidence.

First, when compiling without optimizations, the compiler tends to
generate boilerplate code regardless of the authors; in practice such code
provide little useful information for learning author style. In optimized
code, the boilerplate code is replaced by optimized code, which reflects the
structure and style of the surrounding code, so is more useful for learning.
In the code that we studied, we identified two prevalent examples of
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Table 5.6: Percentages of basic blocks caused by function inlining.

O0 O1 O2 O3 Os
GCC 0.0% 40.6% 41.9% 57.0% 29.1%
ICC 0.0% 0.0% 66.7% 66.7% 0.0%
LLVM 0.0% 0.0% 57.2% 59.8% 37.0%

boilerplate code when not using optimizations, function preamble and
function epilogue. To estimate the effects of this boilerplate code, we
counted the total number of basic blocks and calculated the percentage of
basic blocks containing these examples. Table 5.4 shows the total number
of basic blocks for each toolchain and Table 5.5 shows that -O0 code has a
modest number of basic blocks containing boilerplate code (above 12%),
while code compiled at other optimization levels have significantly fewer
such basic blocks (below 3%). These results suggest that boilerplate code
negatively impacts learning.

Second, function inlining can improve learning. When an author’s code
is inlined at multiple call sites, the compiler creates more data instances
in the author’s style as compared to no inlining. We used Dyninst to
understand the debugging information to determine whether a basic block
is from an inlined function. Table 5.6 shows that -O0 code has no inlined
basic blocks and -O3 code has the most inlined basic blocks. We notice
that the percentages of inlined basic blocks are positively correlated to the
single-toolchain accuracy achieved by two-layer-dnn. In Figure 5.5, we
show linear regression analysis between the percentages of inlined basic
blocks and the single-toolchain accuracy. This linear regression model has
an R-squared coefficient of 0.85 and a p-value of about 10−5, indicating
that there is indeed a strong positive correlation between function inlining
and accuracy.

In summary, our investigation suggests that compiler optimizations
improve our learning, making unoptimized code more difficult to attribute.
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Figure 5.5: Correlation between inlining and accuracy. Each data point
represents a toolchain. The x-axis represents the percentage of inlined
basic blocks. The y-axis represents the single-toolchain accuracy achieved
by two-layer-dnn. The dashed line represents regression line for all points.

5.6 Summary

We have presented new techniques to perform multi-toolchain, multi-
author identification. We started with an extensive evaluation of existing
multi-author identification techniques, showing that existing techniques
did not work well in multi-toolchain scenarios. We designed two new
techniques to overcome the weaknesses of existing techniques: the two
layer approach that combines toolchain identification and single-toolchain
authorship identification, and the unified training approach that train
multi-toolchain authorship models based on a multi-toolchain data set.
We also applied deep learning to multi-author identification, using raw
bytes of basic blocks as input to automatically extract low level features.
Our techniques achieved 71% accuracy, 82% top-5 accuracy, and 86% top-10
accuracy for classifying 700 authors, showing that analysts can effectively
prioritize investigation based on our prediction. Our results also showed
that our deep learning models consistently outperformed traditional learn-
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ing methods such as SVM. We then tried to understand the internals of
our machine learning models by investigating the feature weights of SVM
and the activations of neurons in DNN. We learned interesting lessons
from our investigation, such as that unoptimized code is more difficult to
attribute. These lessons learned from investigating our models provide
valuable insights on how compilation toolchains impact authorship styles.

In summary, we showed that we can perform practical multi-author
identificaiton in multi-toolchain scenarios. Our work lays the foundation
for research topics such as whether we can suppress programming styles
to evade identification and whether we can impersonate someone else’s
coding style to mislead identification.
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6 evasion of authorship identification

In the previous two chapters, we described our new techniques for fine-
grained binary code authorship identification. In this chapter, we look at
the problem of authorship identification from a different angle and attempt
to perform authorship evasion, whose goal is to trick machine learning
classifiers for authorship identification into make wrong predictions.

Authorship evasion is the application of adversarial machine learning
to authorship identification. The field of adversarial machine learning has
focused on attacking and defending machine learning systems used in real
world applications [11]. A specific threat is called a test time attack, where
attackers change a test example to cause misprediction. Researchers have
performed successful test time attacks for a wide range of domains, includ-
ing computer vision [13, 23, 121], audio processing [134], and program
analysis tasks [43, 116]. Such test time attacks can have serious security
implications. For example, Simko et al. [116] showed that when given
source code from other people, a programmer can change the source code
to avoid authorship attribution.

However, currently there are no such attacks against binary code au-
thorship identification. The key challenge for developing such attacks is to
modify the binary to not only cause misprediction, but also maintain the
structural validity and functionality of the binary. Even flipping one bit of
a binary may cause the binary to either be invalid, such as not loadable by
the loader, or lose functionality that the attackers care about. Therefore,
attacks against binary code are intrinsically more difficult than attacks
targeted at domains such as computer vision, where attackers can change
each pixel of the input image independently and still maintain a valid
image.

In this chapter, we describe our new automated attacks against binary
code authorship identification. The contributions of our new attacks are



91

three-fold. First, we show that it is realistic to automatically attack binary
code authorship identification in an end-to-end fashion: we take a binary
program as input and generate a new, valid binary that has the same
functionality as the input binary and will cause misprediction. Second,
our techniques can be used for adversarial re-training to mitigate the
threats from the wild, incorporating the generated adversarial examples
into the training set to re-train a model with a modified loss function
[89]. Third, based on our experiences, we summarize the lessons we
learned for designing more secure machine learning systems for binary
code authorship identification.

Operationally, there are three different goals for attacking authorship
identification: (1) the losing-confidence attack, which is to remove any finger-
prints and anonymize the program, such that the target classifier rejects
to make a prediction; (2) the untargeted attack, which is to cause mispredic-
tion to any of the incorrect authors; and (3) the targeted attack, which is to
cause misprediction to a specific incorrect author. To perform a losing-
confidence attack, the target classifier must have the capability to reject
an input binary based on the lack of confidence in the prediction, which
is not the case for most existing techniques for binary code authorship
identification [4, 108]. Therefore, we focus on untargeted and targeted
attacks.

We assume that we have perfect knowledge of the target classifier. This
assumption allows performing a worst-case evaluation of the security of
the target classifier, common when performing test time attacks [13, 23,
116, 121].

We developed two interacting attack abilities for evading binary code
authorship identification: feature vector modification, changing the feature
vector to cause mis-prediction of the target classifier, and input binary
modification, modifying the input binary to match the adversarial feature
vector while maintaining the functionality of the input binary.



92

Our approach to feature vector modification started with existing at-
tacks for computer vision tasks [23, 99, 134], and then extended these
attacks in two ways to address the structural validity requirement of bi-
nary programs. First, existing attacks did not consider the difficulty of
modifying a feature; changing any pixel of an image is equally easy for
maintaining the validity of the image. However, for binary analysis, some
features are easier to modify than others. For example, local features that
describe machine instructions are typically easier to modify than global
features that describe program control flow, because modifying global fea-
tures can require changing more code, making it more difficult to maintain
structural validity. Second, existing attacks modified each feature inde-
pendently; changing one pixel of an image does not impact other pixels.
However, features in our domain can be correlated. Without considering
feature correlation, we may generate feature vectors for which there do
not exist corresponding valid binaries.

Our input binary modification removes or injects features according
to the results of feature vector modification, with the additional goals of
maintaining structural validity and preserving functionality. To remove
features, we need to ensure that the program properties that correspond
to the removed feature are replaced with semantically equivalent ones. In
many cases, we cannot simply remove them because such modification
would break the functionality of the binary. On the other hand, the main
challenge of injecting features is to ensure that the binary code analysis
tools used for feature extraction indeed recognize the injected code, data
or meta-data.

We describe an attack example in Section 6.1, using untargeted attacks
on a classifier trained with the techniques presented by Caliskan-Islam et
al. [21] for single author identification. This example represents a complete
overview of our attack.

In Section 6.2, we describe our attack framework, which has three key
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components:

1. Feature grouping: We categorize binary code features into a small
number of feature groups such that features in a group can be modi-
fied with the same strategy. Two key factors for grouping features are
the program property that the features describe and the underlying
binary analysis tool used for feature extraction.

2. Feature correlation: We derive feature correlation from a data set.
Note that this data set can be, but does not have to be the training set
used for training the target classifier. We can derive useful feature
correlation information, as long as this data set is drawn from the
same application domain as the training set. We then use the corre-
lation information to ensure that correlated features are modified in
a consistent way.

3. Binary modification strategies: We design injection and removal strate-
gies for each feature group. These modification strategies consist of
a sequence of binary modification primitives, including inserting,
deleting, and replacing code, data, and meta-data. Binary instru-
mentation and rewriting tools such as Dyninst provide such binary
modification primitives to support our modification strategies.

In Section 6.3, we evaluate our evasion attacks using five classifiers
trained with the techniques presented by Caliskan-Islam et al. [21]. We
achieved 96% success rate for untargeted attacks and 46% success rate for
targeted attacks. Our results show that we can effectively suppress author-
ship signal for authorship evasion, but it is significantly more difficult to
impersonate the style of another author.
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6.1 An Attack Example

We present an example showing how to perform untargeted attacks to a
classifier for binary code authorship attribution. The goal of this section
is to give an overview of our attack process. In the subsequence sections,
we describe the steps in more detail.

We first describe the procedures for setting up the target classifier,
which is trained with the techniques presented by Caliskan-Islam et al.
[21]. We then describe our feature correlation analysis and how to use the
correlation information to generate feature vectors that correspond to real
binaries and cause misprediction. Finally, we give examples on how to
modify the binary to match the generated feature vectors.

6.1.1 Binary Code Authorship Attribution

Caliskan-Islam et al. [21] assume that a binary is written by a single
author, so, they predict one author for a binary. Their workflow can be
summarized in four steps.

1. Define candidate features: They used binary code features that describe
machine instructions and program control flow. They also included
source code features derived from decompiled source code. The
source code features include character n-grams and tree n-grams.
The tree n-grams are extracted from abstract syntax trees (ASTs) built
by parsing the source code. These source code features have been
shown to be effective for source code authorship attribution [20].

2. Extract features: They used two disassemblers, NDISASM [122] and
radare2 [97], to extract binary code features. To derive source code
features, they first used the Hex-Ray decompiler [51], and then used
Joern [130] to parse the source code into ASTs. They represent each
feature as a string. To derive feature strings, they first split the results
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of disassembly, decompiling, and source code parsing into tokens
and then normalize hex tokens to the generic symbol “hexdecimal”
and decimal digit tokens to the generic symbol “number”. They use
string matching to count the frequency of a feature string and use
the frequencies of feature strings to construct feature vectors.

3. Select Features: Typically, hundreds of thousands of features are ex-
tracted from a data set. So, feature selection is necessary to avoid
overfitting. They selected features that have information gain with
respect to the author labels.

4. Train a classifier: They compared Random Forests (RFs) with Support
Vector Machines (SVMs) and reported that RFs outperformed SVMs.

They used a data set derived from Google Code Jam (GCJ) and evalu-
ated their techniques with binaries compiled by GCC on a 32-bit platform.
For binaries compiled with GCC and -O0, they achieved 96% accuracy for
classifying 100 authors. For binaries compiled with higher optimization
levels, they reported slightly lower accuracy.

We obtained the GCJ source files used by Caliskan-Islam et al. [21]
and their source code for extracting features. Due to the predominance
of 64-bit platforms, we perform attacks on 64-bit platforms. Note that
while Caliskan-Islam et al. only evaluated their techniques on 32-bit
platforms, their techniques can be directly applied to 64-bit platforms. We
compiled the GCJ sources with GCC 5.4.0, using -O0 optimization on a
64-bit platform, and achieved 90% accuracy for classifying 30 authors.

6.1.2 Attack Procedure

Given the target classifier to attack, the goal of our attack is to modify an
input binary to cause misprediction. The key steps for attacking this au-
thorship attribution classifier are performing feature correlation analysis,
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generating feature vectors that can cause misprediction, and modifying
the input binary to match the feature vector.

Feature Correlation Analysis

We derive correlations between features to guide feature vector modifica-
tion to generate feature vectors corresponding to real binaries.

We identify two types of feature correlation for this classifier. First,
a feature can contain other features. For example, if feature “push rax;

push rbx” is present in a binary, features “push rax” and “push rbx” are
also present. So, the frequencies of “push rax” and “push rbx” should be
no fewer than the frequency of “push rax; push rbx”. Second, the same
properties extracted by different binary analysis tools are treated as dif-
ferent features. For example, the instruction “call fprintf” corresponds
to three different features: “call fprintf” extracted by NDISASM, “call

fprintf” extracted by radare2, and “fprintf” extracted from decompiled
source code. These features should all have the same frequency.

We derive linear correlation between features based on the training set.
For each pair of features, we perform linear regression and calculate the
correlation coefficient. If the coefficient is larger than a threshold value,
such as 0.9, we merge the pair into one feature. While this simple strategy
will miss non-linear feature correlation, our experiments showed that
capturing linear correlation is sufficient for launching successful attacks
against authorship attribution.

Generating Adversarial Feature Vectors

We extend the attacks presented by Carlini and Wagner [23] to generate
adversarial feature vectors. Their attacks are designed for DNNs trained
for images, and can be readily applied to other gradient based learning
algorithms. However, Caliskan-Islam et al. used RFs, which is a non-
gradient based learning algorithm. Fortunately, researchers have shown
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that adversarial examples created for classifiers trained with one type of
learning algorithms (such as DNN) are likely to cause misprediction for
classifier trained with a different type of learning algorithms (such as RF)
[98, 126]. Therefore, we first trained a substitute DNN using the same
training data and then applied the adversarial vectors to the RF classifier.
The substitute DNN is a simple feed-forward neural network, containing 7
hidden layers with each layer having 50 hidden units. The substitute DNN
has 80% accuracy. While the substitute DNN has modestly lower accuracy
than the target classifier, as we will show in Section 6.3, this accuracy gap
does not impact the success rate of our attack.

To ensure that the generated adversarial feature vector confuses not
only the substitute classifier but also the target classifier, we keep gen-
erating new feature vectors until the resulting vectors can mislead the
target classifier. Our new attack strategy can generate effective adversarial
feature vectors, reducing the accuracy of both the substitute DNN and the
RF classifier to 0%.

However, it is difficult to modify the input binary to completely match
the feature vectors generated in this way, as they contain hundreds of
modified features.

Categorizing Features

We have observed that while the attacks presented by Carlini and Wagner
can make effective changes to the feature vector to cause misprediction,
not all changes are necessary for causing misprediction. Therefore, we
attempt to modify fewer features to cause misprediction, making it easier
to perform binary modification to match the generated feature vector. We
categorize features into feature groups, so that features in the same feature
group can be modified with the same strategy. And then we modify one
feature group at a time until misprediction occurs.

Two important factors for categorizing the features are the program
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properties that the features describe and the strength of the binary analysis
tools. For the first factor, features describing low level code properties
such as machine instructions are easier to modify compared to features
describing higher level structural properties such as program control flow
and data flow. Therefore, we started by attacking instruction features.

For the second factor, recall that Caliskan-Islam et al. used two dis-
assemblers: NDISASM, which disassembles the binary linearly from the
first byte of the binary file, and radare2, which understands the layout of
the binary, performs binary analysis to identify code bytes, and attempts
to disassemble only code bytes. It is easier to modify features extracted by
NDISASM, because NDISASM also disassembles non-loadable sections
and editing or adding non-loadable sections has no impact on the function-
ality of the program. On the other hand, instruction features extracted by
radare2 typically represent real code. So, we need to ensure that we do not
change the functionality when removing a radare2 feature, and ensure that
radare2 disassembles the inserted code when injecting a radare2 feature.

After grouping features, we first modify instruction features extracted
by NDISASM, reducing the accuracy from 90% to 45%. We then modify
instruction features extracted by radare2, further reducing the accuracy
from 45% to 7%. Note that only features in the these two feature groups
are modified and we can generate new binaries to complete the attack.

6.1.3 Binary Modification Strategies

Finally, we describe our binary modification strategies for injecting and
removing NDISASM and radare2 features, using four typical examples.
These examples are extracted from our successful attacks. In each example,
we describe the modification primitives that constitute the modification
strategy and explain why our modifications do not change the functionality
of the input binary.
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Feature string or [rax],ebp
Raw bytes 09 28
Modification Insert bytes 09 28 into a new non-loadable section

Figure 6.1: An example of injecting a NDISASM feature. We can insert the
bytes into a non-loadable section.

Binary name 1835486_1481492_paladin8
Feature string imul ebp,[fs:rsi+hexadecimal],dword hexadecimal

Offset in the binary 0x3e09
Raw bytes 64 69 6E 38 2E 63 70 70
Modification Overwrite bytes to other values

Figure 6.2: An example of removing a NDISASM feature. This feature seems
to represent an instruction, but actually represents a string in the .strtab section.

Modifying NDISASM Features

We show two examples of modifying NDISASM features. The first example
shows the case where we can inject a feature by inserting bytes into the
binary. As shown in Figure 6.1, we need to inject instruction feature “or

[rax],ebp” into the target binary. Since NDISASM disassembles every
bytes in the binary, we can add a new non-loadable section to store the bytes
of the corresponding instruction. This simple injecting strategy causes
NDISASM to extract this feature and does not change the functionality of
the program.

The second example shows the case where we can simply remove a fea-
ture, without replacing the removed program property with a semantically
equivalent one. As shown in Figure 6.2, this feature seems to represent
an imul instruction. However, offset 0x3e09 of the binary is in the .strtab

section, which stores symbol names for the compile-time symbol table.
Therefore, instead of representing an instruction, the feature represents
string “in8.cpp”. To remove this feature, We can change the string “in8.cpp”
to any another string. .strtab is used at debug-time, and not used at the
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link-time or run-time (it disappears if the binary is stripped), so changing
its content does not impact the functionality of the original program.

In addition, we tried to understand why the string “in8.cpp” is a use-
ful feature. We found that the string is extracted from source file name
“1835486_1481492_paladin8.cpp” and “paladin8” is the author’s name. So,
this feature turns out to contain three characters of the author’s name.
While a string containing three characters of the author’s name is useful
for identifying the author, such author name feature is not available in any
realistic context. This example teaches us a lesson that machine learning
practitioners need to ensure that the feature definition and the extracted
features actually match. In this case, instruction features should only be
extracted from real code bytes. So, the use of NDISASM is not robust for
real world identification because it disassembles all bytes in the binary.

Modifying radare2 Features

We now show two examples of modifying radare2 features. The first
example shows the case where we need to insert new code and data. As
shown in Figure 6.3, feature “number.in” represents a string. Note that
this feature is not present in the target binary, and we need to inject it into
the target binary to cause misprediction. We found feature “number.in”
in another binary, based on the instruction “mov $0x400c57,%edi”. Here,
address 0x400c57 points to a string “number.in”; radare2 recognizes the
string and prints it in the disassembly results.

To inject this feature, we need to (1) insert string “number.in” into the
target binary, and (2) insert a mov instruction that loads the address of the
inserted string. However, to trick radare2 to disassemble the inserted in-
struction, there are two additional steps. First, we create a function symbol
pointing to the inserted code. Second, we append a return instruction
after the inserted code. Since most binary analysis tools treat function
symbols as ground truth for specifying the locations of code bytes, our
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Feature string number.in
Machine instruction mov $0x400c57,%edi

Insert string “number.in” into a new data sectionModifications Insert new instructions to load the inserted string

Figure 6.3: An example of injecting a radare2 feature. This feature represents
a string. We need to insert the string and insert an instruction to load the address
of the string.

injection strategies can be also applied to other binary analysis tools.
The second example shows the case where we need to replace existing

code with semantically equivalent code to remove a feature. As shown in
Figure 6.4, we need to remove a feature describing an object symbol. The
feature is extracted from instruction “mov 0x20157d(%rip),%rax”. Here
radare2 recognizes that the result of the PC-relative calculation points
to an object symbol, so it annotates the instruction with the name of the
object symbol in the disassembly results.

To remove this feature, we need to transform the calculation of the
symbol address to a semantically equivalent calculation done by one or
more instructions, so that radare2 cannot recognize the loading of the
symbol address. To do this, we can split the address loading into two
instructions: loading the address minus one into the target register and
incrementing the target register by one. We cannot just overwrite the
symbol name with a different string because this symbol is in the .dynsym

section and it is used for dynamic linking (Overwriting the name of a
dynamic symbol will cause the program to not be loadable).

6.2 Attack Framework

We describe our attack framework in this section, based on the attack
algorithm in Figure 6.5. The inputs to our algorithm includes an input
binary b, a target classifier m, feature groups fg, and a misprediction
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Feature string obj.stdin
Machine instruction mov 0x20157d(%rip),%rax

Load 0x20157d(%rip)-1 into %raxModifications Increment %rax

Figure 6.4: An example of removing a radare2 feature. This feature represents
an object symbol “stdin”. We can split the address loading instruction into two
instructions to remove the feature.

input : an input binary b; a pre-trained modelm; feature groups fg;
and a misprediction target tar (tar = −1 represents
untargeted attacks)

output :an adversarial binary b ′ that causes misprediction
1 P← FeatureCorrelationAnalysis(m);
2 x← FeatureExtraction(b);
3 y← Prediction(m, x);

// Keep looping until causing misprediction
4 for g in fg do
5 x′← FeatureVectorModification(x, g, P, tar);
6 b ′← InputBinaryModification(b, x′, g, P);
7 y← Prediction(m, FeatureExtraction(b ′));

// Non-targeted attacks succeed
8 if tar = −1 and y 6= y ′ then break;

// Targeted attacks succeed
9 if tar 6= −1 and tar = y ′ then break;

Figure 6.5: The attack algorithm. The main structure of the algorithm is to iter-
ate over feature groups until we generate a new binary that causes misprediction.

target label tar. The output of the algorithm is an adversarial binary
b ′ that causes the required misprediction. The main component of our
algorithm is an attack-verify loop, where we iterate over feature groups
until we generate a new binary that causes misprediction.

Our algorithm relies on two routines from the application we are at-
tacking: FeatureExtraction to extract features and Prediction to generate
a prediction label from a set of known labels. The meaning of these labels
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depend on the target application. For example, a label can describe an
author for authorship attribution or a compiler for compiler identification.
We now describe the other routines in our algorithm.

6.2.1 Feature Correlation Analysis

Given a set of features F = {f1, f2, . . . , fk} used in the target classifier m,
our feature correlation analysis generates a partitioning of the features,
P = {p1,p2, . . . ,pk}, where each partition consists of all correlated features.
So, ∀fx ∈ pi and fy ∈ pi, fx and fy are correlated; and ∀i 6= j, fx ∈ pi, and
fy ∈ pj, fx and fy are not correlated. In addition, feature partitions are
disjoint. So, ∀i 6= j, pi ∩ pj = ∅.

We build a undirected graph to generate the feature partitioning. Let
G = (V ,E), where each node in the graph represents a feature (so V = F),
and each edge in the graph represents the correlation between two features.
We only capture linear correlation between features, creating an edge
between two nodes if the linear correlation coefficient between two features
is larger than a pre-specified threshold. In another words, E = {(fi, fj) :
coeij > T }, where coeij is the linear correlation coefficient between fi and
fj and T is the pre-specified threshold. Finally, each connected component
in the graph represents a partition of the correlated features.

An important observation is that we do not have to capture the exact
correlation between features to launch successful attacks. For example,
suppose we have three features: “f1: push rax; push rbx”, “f2: push rax”,
and “f3: push rbx”. The precise correlation is

(freq(f1) 6 freq(f2))∧ (freq(f1) 6 freq(f3)) (6.1)

where freq(f) represents the frequency of feature f. Our algorithm will put
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all three features in the same partition and derive the following correlation:

freq(f2) = A1freq(f1) + B1, freq(f3) = A2freq(f1) + B2 (6.2)

As we will discuss in the next section, it is straightforward to incor-
porate correlation (6.2) into our feature vector modification. In addition,
as the linear correlation is derived from a data set drawn from the same
domain as the training set for the target classifier, feature vectors satisfying
correlation (6.2) typically also satisfy correlation (6.1).

6.2.2 Feature Vector Modification

Given an input feature vector x = [x1, x2, . . . , xk], where xi represents
the feature value of feature fi, our feature vector modification outputs
a modified feature vector x′, such that the prediction results for x′ are
different from the prediction results of x (for untargeted attacks) or are
the specified results (for targeted attacks).

We use the approach of training a substitute DNN and transferring the
adversarial example to the target classifier [98]. We extend the attack pre-
sented by Carlini and Wagner [23], denoted as the CW attack, to generate
adversarial feature vectors. We first summarize the CW attack and then
explain how we extend it to our domain. The CW attack is regarded as a
powerful targeted attack. The CW attack can also be used for untargeted
attacks, but the projected gradient descent is regarded as a stronger untar-
geted attack [57]. As we will show in Section 6.3, the untargeted version
of the CW attack works well for us.

CW Attack

The CW attack was designed for a DNN. We describe only the prediction
process of the DNN as we are attacking a pre-trained model. Given a
feature vector x, a pre-trained DNN model can seen as a function pred(x),
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which generates a prediction label y and is defined as y = pred(x) =

argmax(softmax(Z(x))), where:

• z = Z(x), where z = [z1, z2, . . . , zl] is a vector of raw (non-normalized)
predictions that the DNN generates; l is the total number of labels.
z is also known as the logits. The calculation of Z(x) is specified
by various hyper-parameters, including the depth and the width of
the neural network, the choice of the activation function, and the
training parameters for each hidden unit. For a pre-trained model,
all these parameters are constant.

• pr = softmax(z), where pr = [pr1,pr2, . . . ,prl] is a probability
vector and pri is the probability that the input belongs to label i.
softmax normalizes the raw prediction z to probability distribution.

• y = argmax(pr), meaning that the predicted label is the one that
has the highest probability.

The CW attack has two variations: one for untargeted attacks, and one
for targeted attacks. We first describe the untargeted version. Denote y
as the original prediction label for x. The output of the untargeted CW
attack is a new vector x′ such that pred(x′) 6= y. x′ is defined as x+ δ, so
once we have calculated δ, we know x′.

Carlini and Wagner formulated an optimization problem to calculate
δ, balancing two factors for minimization. First, to cause misprediction,
the new logits vector z′ = Z(x+ δ) should satisfy the condition that z ′y is
no longer the maximum element in z′, which in turn means that y is not
the predicted label for x′. Carlini and Wagner defined function g(x′) to
measure the difference between z ′y andmaxi 6=y(z

′
i):

g(x′) = max(z ′y −maxi 6=y(z
′
i) + s, 0) (6.3)
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Intuitively, the smaller the g(x′), the more likely there will be a mispre-
diction. Here, s is a hyper-parameter to control the separation between z ′y
andmaxi 6=y(z

′
i). s is a positive value, typically ranging from 1 to 1000.

Second, the modification to the original feature vector should be mini-
mized to avoid detection. So, the number of non-zero elements in δ and
the magnitude of individual δi should also be part the optimization func-
tion. For this purpose, Carlini and Wagner used the Lq norm, defined
as

Lq(δ) = ||δ||q = (

n∑
i=1

δqi )
1/q (6.4)

The attacker chooses a value forq based on the target domain. Common
choices for q are 0, 2, and ∞. L0 measures only the number of modified
features and ignores the magnitude of changes. On the other hand, L∞
measures only the maximal magnitude of changes and ignores all other
changes. L2 balances the number of changed features and the magnitude
of changes.

In general, minimizing (6.3) and (6.4) are conflicting; the more changes
are made to x (larger value for Lq), the more likely the attack can cause
misprediction (smaller value for g(x′)). Carlini and Wagner introduced a
hyper-parameter c to balance these two conflicting optimization targets
and defined the final optimization function as

Lq(δ) + c× g(x+ δ) (6.5)

When q = 2, the optimization function (6.5) is differentiable. A general
purpose optimizer such as Adam [66] can be used to minimize (6.5) and
calculate δ. For q = 0, (6.5) is not differentiable. Carlini and Wagner de-
signed an iterative algorithm to calculate δ. In each iteration, the algorithm
uses their L2 attack to identify some features that do not have much effect
on causing misprediction and then fixes those features. The values of the
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fixed features will not change in later iterations. By iteratively eliminating
unimportant features, the algorithm identifies a small (but possibly not
minimal) subset of features that can be modified to generate an adversarial
example. They designed another iterative algorithm for q = ∞.

Finally, after calculating δ, we derive x′ = x+ δ.
For targeted attacks, denote tar as our misprediction target. The only

difference between the targeted CW attack and the untargeted version is
the definition of g. For targeted attacks, we want to make z ′tar the maximal
element in the new z′, so that tar will be the new prediction label. So,
Carlini and Wagner defined g(x′) as

g(x′) = max(maxi 6=tar(z
′
i) − z

′
tar + s, 0) (6.6)

Extension to CW Attack

To apply the CW attack to our domain, we need to make two modifica-
tions. First, the CW attack may generate feature vectors with non-integer
values. However, as discussed in Section 6.1.1, Caliskan-Islam et al. [21]
used feature counts to construct feature vectors. So, x′ should only have
integer values. A simple strategy that works well for us is to round values
generated by the CW attack to the nearest integer.

Second, we must incorporate the feature correlation information de-
rived in Section 6.2.1 into the attack. To do this, we normalize each in-
dividual feature to a Gaussian with zero mean and unit variance, merge
all correlated features into one feature, and let the CW attacks work with
only the merged features. Recall that we track linear correlation between
features; for two correlated features f1 and f2, freq(f1) = Afreq(f2) + B.
After the normalization step, A is normalized to 1 and B is normalized to
0. Therefore, we can merge them into a single feature.

We then need to determine the values of the hyper-parameters used
in CW attacks. For c and s, we perform a grid search to find a successful
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value-pair. For Lq, we use the L0 norm because we would like to mini-
mize the number of modified features rather than the magnitude of the
modifications.

We found that CW’s L0 attack often did not generate adversarial feature
vectors with the minimal number of modified features. So, we design a two-
step post-processing to further reduce the number of modified features and
the magnitude of changes. First, for each modified feature, we undo the
modification and set its value to its unmodified value. If we can still cause
misprediction, we finalize the undo of the modification. Second, for each
modified feature, we enumerate every integer between the unmodified
value and the new value. We set the value of this feature to the one that
is closest to the unmodified value and causes misprediction. As we will
show in Section 6.3, this simple post-processing strategy can effectively
reduce the number of modified features.

6.2.3 Binary modification strategies

Given a new feature vector x′ that causes misprediction, we describe how
to modify the input binary to match x′, grouping features based on the
program properties that the feature describe and the binary analysis tool
used to extract the feature. We also describe feature injection and removal
strategies for feature groups. Our modification strategies consist of binary
modification primitives supported by tools such as Dyninst [100]. Last,
we discuss how to determine which modification strategy to use for a
modified feature.

Feature injection strategies

Table 6.1 summarizes our feature injection strategies. The first column
lists the program properties we are going to inject, including machine
instructions and loading the address of a symbol or data. The second and
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Table 6.1: Summary of feature injection strategies. The first column lists the
program properties to inject. The second and third columns list the binary modi-
fication primitives used for the injection.

Program Property NDISASM radare2
Instructions I InsertNonCodeBytes(I) InsertFunction(I)

Loading symbol S NA addr = InsertSymbol(S)
InsertFunction(loading addr)

Loading data D NA addr = InsertData(D)
InsertFunction(loading addr)

Calling function F NA addr = InsertCall(F)
InsertFunction(calling addr)

third columns list the modification primitives needed to inject features
that can be extracted by NDISASM and radare2. A cell with “NA” means
that the binary analysis tool cannot extract the program property. We
discuss the non-NA cells in more details:

• Instructions extracted by NDISASM: The modification primitive
InsertNonCodeBytes(I) creates a new non-loadable section in the bi-
nary to store the bytes representing new instructions. As NDISASM
disassembles all bytes in the target binary, InsertNonCodeBytes(I)

ensures that the features are injected and the functionality is un-
changed.

• Machine instructions extracted by radare2: The modification prim-
itive InsertFunction(I) creates a new function in which we store
the inserted instructions. To ensure that radare2 disassembles the
inserted code, InsertFunction(I) creates a new code section to store
the inserted instructions, appends a return instruction at the end, and
create a new function symbol to point to the inserted instructions.

• Loading symbol S: The modification primitive InsertSymbol(S) in-
serts the symbol S into the target binary and returns the address
pointing to the symbol. It is important to properly fill in all fields
of the symbol in the symbol table, including symbol type, symbol
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Table 6.2: Summary of feature removal strategies. The first column lists the
program properties to remove or replace. The second and third columns list the
binary modification primitives for feature removal.

Program Property NDISASM radare2
Instructions I from debug-time sections Overwrite(I) NA
Instructions I from code sections Swap(I) or InsertNop(I)
Addressing loading of symbol S NA SplitAddrLoad(S)
Addressing loading of data D NA SplitAddrLoad(D)
Function call to function symbol S NA ConvToIndCall(S)

visibility, and symbol section index. Binary analysis tools may ig-
nore incomplete symbols, causing the injection to fail. We then use
InsertFunction(I) to insert code that loads the address of the new
symbol.

• Loading data D: The modification primitive InsertData(D) inserts
the specified data into the target binary. We typically need to cre-
ate a new data section to hold the injected data. Then, we use
InsertFunction(I) to insert code that loads the data.

• Calling function F: The modification primitive InsertCall(F) inserts
the specified function F into the target binary, where F can be a
function from an external library. In such case, we also need to add
information for dynamic linking into the target binary, including
a dynamic function symbol, a relocation entry, and a procedural
linkage stub (PLT) for performing the external call. Then, we use
InsertFunction(I) to insert code that calls F.

Feature removal strategies

Table 6.2 summarizes our feature removal strategies. The first column lists
the program properties we are going to remove or replace. The second and
third columns list the binary modification primitives needed for removing
a feature group:
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• Instructions I from debug-time sections: The modification primitive
Overwrite(I) overwrites the target instruction bytes to other bytes.
This strategy does not change the program functionality as debug-
time sections are not used at link-time or run-time.

• Instructions I from code sections: We design two strategies for
this feature group. The modification primitive Swap(I) checks the
operand dependencies and reorders the instructions if there is no
dependency. The modification primitive InsertNop(I) inserts a nop
instruction between the original instructions. Note that to insert a
nop instruction, we may need to relocate the original instructions to
a different location to create extra space for the nop. Therefore, we
prefer Swap over InsertNop if possible.

• Address loading of S: The modification primitive SplitAddrLoad(S)

splits the address loading instruction into two instructions so that
radare2 will not recognize the address loading. We use two instruc-
tions: loading the address minus 1 into the target register and incre-
menting the target register.

• Function call to S: The modification primitive ConvToIndCall(S) con-
verts a function call to S to an indirect (pointer-based) function call,
so that radare2 will not recognize the call target. ConvToIndCall(S)

uses SplitAddrLoad(S) to load the function call target and then gen-
erates an indirect call. Note that we need to save and restore the
register used for performing the indirect call if it is live at this point
in the code.

Deciding which strategy to apply

We have several criteria to determine which strategy to use for a modified
feature. Based on the sign of δi, we decide whether we need to inject (see
Table 6.1) or remove (see Table 6.2) features. Based on the address where
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the feature was extracted, we determine from which section the feature is
extracted, including debug-time sections, code sections, or data sections.

For features extracted from code sections, we determine whether the
feature describes a function call, loading a symbol, or loading data. If
none of the three cases applies, the feature describes just instructions, and
no other program property needs to be modified.

6.3 Evaluations

We evaluate several aspects of our attacks: (1) whether we can effectively
perform untargeted attacks to evade authorship identification, (2) whether
we can effectively perform targeted attacks to impersonate someone else,
(3) which features are modified in our attacks and which binary modifica-
tion strategies are commonly used, (4) whether our post-processing steps
are effective for reducing the number of modified features, and (5) why
some of our attacks failed. Our evaluations show that

• Our untargeted attacks are effective. We achieved 96% success rate
in our experiments, showing that we can effectively suppress author-
ship signals.

• The success rate of our targeted attacks are 46% on average, showing
that it is significantly more difficult to impersonate someone else.

• The top modified features describe function calls. This indicates that
authorship identification classifiers heavily rely on function calls to
identify authors. Therefore, inserting function calls that are associ-
ated with other authors is an effectively way to cause misprediction.

• Without our post-processing, there are 83 features to modify on
average. With our post-processing, there are only 10 features to
modify on average. Therefore, our post-processing procedure can
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significantly reduce the number of changed features for launching a
successful attack.

• For failed untargeted attacks, the lack of strategies for modifying CFG
features and decompiled source features is the reason for failure. For
failed targeted attacks, about a third of the cases are caused by lack
of modification strategies for CFG and decompiled source features;
the other two thirds of the cases failed because the targeted CW
attack cannot generate a feature vector that both corresponds to a
real binary and causes the required misprediction.

6.3.1 Evaluation Methodology

We evaluated our techniques by attacking classifiers trained with the tech-
niques presented by Caliskan-Islam et al. [21] (described in Section 6.1.1).
Our experiments consist of the following steps:

1. Randomly sample K authors from the Google Code Jam data set of
around 1000 authors used by Caliskan-Islam et al. [21]. This data
set consists of the source code of single-author programs, each with
an author label.

2. Compile all the programs written by the sampled authors with GCC
5.4.0 and -O0 optimization. Each author had an average of 8 binary
programs.

3. Split the binaries into a training set and a testing set, with a size ratio
of about 7:1.

4. Train a random forest classifier with the training set.

5. Perform our attack on each binary in the testing set for which the
target classifier makes the correct prediction. For each test binary, we
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perform one untargeted attack, and K− 1 targeted attacks. The tar-
geted attacks attempt to cause misprediction for each of the incorrect
authors.

We varied K from 5 to 100 to investigate how the number of training
authors impact the effectiveness of our attacks. For each value of K, we
repeated the experiments five times and report the averaged results. In
their study of evading source code authorship identification, Simko et
al. [116] varied K from 5 to 50, and commented that untargeted attacks
become easier when the number of training authors increases, and the ease
of targeted attacks does not have an obvious connection to the number of
training authors. We expand the range for K in our experiments.

We used Scikit-learn [101] for training random forest classifiers, Ten-
sorflow [124] for training substitute classifiers, and Dyninst [100] for im-
plementing our binary modification strategies.

We use success rate to measure the effectiveness of our attacks, defined
as

# of successful attacks
# of total attacks

(6.7)

An attack is successful if the binary generated by our attack caused the
target classifier to make an incorrect prediction. For untargeted attacks,
incorrect prediction means any of the incorrect authors. For targeted
attacks, incorrect prediction means the specific targeted author.

6.3.2 Evaluation Results

The first question to answer in our evaluation is how effective is our untar-
geted attack. The results are shown in Table 6.3. In this table, the second
and the third columns are the accuracy of the target classifiers and the
substitute classifiers. The fourth and the fifth columns list the the success
rate of untargeted and targeted attacks. Our untargeted attack has a 96%
success rate on average, showing that we can effectively suppress authorship sig-
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nal. However, our targeted attacks did not enjoy the same success as the
untargeted ones. Our targeted attack has a 46% success rate on average,
showing that it is significantly more difficult to impersonate a specific
programmer’s style.

Table 6.3 also shows how the number of training authors K impacts
the effectiveness of our attacks. For untargeted attacks, our success rate
increases asK increases. This aligns with the observation made by Simko et
al. [116]. Untargeted attacks only need to cause misprediction against any
of the K− 1 incorrect authors. The larger the K, the more incorrect authors
our attacks can work with, and the higher the success rate. For targeted
attacks, our success rate decreases as K increases. This does not align with
the observation made by Simko et al., where they concluded that the ease
of targeted attacks does not have an obvious connection to K. In Simko
et al.’s experiments, they always performed targeted attacks against only
5 of the K authors, regardless of the value of K. In another words, their
experiments did not evaluate all possible scenarios of targeted attacks. On
the other hand, we attempted to perform targeted attacks against each of
the incorrect authors, covering all scenarios of targeted attacks.

The accuracy gap between the target classifier and the substitute classi-
fier does not obviously impact the success rate of our attack. As shown in
Table 6.3, The accuracy gap ranges from 0% to 20%. The success rates of
both untargeted and targeted attacks do not exhibit an obvious correlation
with the accuracy gap.

We then investigate what are the commonly used binary modification
strategies and what are the commonly modified features. In Table 6.4, we
list the number of times that a modification primitive is used in our untar-
geted attacks for K = 30. The most frequently used primitive is InsertCall,
indicating that the target classifiers heavily rely on function call features
to identify authors. So, inserting function calls that are associated with
other authors is an effectively way to cause misprediction. SplitAddrLoad
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Table 6.3: Evaluation results. The second and the third columns list the accuracy
of the target classifiers and the substitute classifiers. The fourth and the fifth
columns show the success rate for untargeted and targeted attacks.

K
Target classifier
accuracy

Substitute classifier
accuracy

Untargeted attack
success rate

Targeted attack
success rate

5 100% 100% 88% 88%
15 100% 80% 93% 51%
30 89% 73% 98% 47%
50 86% 69% 100% 31%

100 82% 68% 100% 14%
Average 91% 78% 96% 46%

Table 6.4: Number of times that a binary modification primitive is used in
untargeted attacks. The numbers are from the attacks for 30 training authors
(K = 30). The rows are sorted in a decreasing order.

Modification primitive Times used
InsertCall 586
SplitAddrLoad 292
InsertFunction 196
Swap & InsertNop 193
ConvToIndCall 115
InsertNonCodeByte 102
Overwrite 85
InsertData 68
InsertSymbol 45

ranks second, showing that the target classifiers also rely on features that
describe the loading of a symbol to identify authors. InsertFunction ranks
third, showing that inserting instructions that are typically seen in pro-
grams written by other authors is also effective for causing misprediction.
Swap and InsertNop serve the purpose of removing instruction features.
These two primitives have an effectiveness similar to InsertFunction, in-
dicating that removing distinct instruction sequences associated with an
author is effective for causing misprediction. Other strategies including
editing debug sections, inserting data, and inserting symbols, all play
important roles in our attacks.
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Table 6.5: The number of feature changed by our untargeted attacks. The
second column lists the average number of features changed by the L0 CW attack.
The third column shows the average number of features changed after our post-
processing.

K L0 CW attack Our post-processing
5 57 9

15 107 11
30 87 11
50 59 9

100 92 11
Average 80 10

Next, we investigate how many features we need to change to cause
misprediction. In Table 6.5, the second column shows the number of
changed features generated by the untargeted L0 CW attack, and the third
column shows the number of changed features after our post-processing
step. Before post-processing, there are 80 features to modify on average.
After the post-processing, there are only 10 features to modify on average.
Our results show that our post-processing procedure can significantly
reduce the number of changed features for performing a successful attack.

6.3.3 Analysis of Failed Attacks

Our attack contains two key steps: feature vector modification to generate
a vector that both corresponds to a real binary and causes the required
misprediction, and input binary modification to generate a new binary
that matches the adversarial feature vector. A failure in either of the two
steps would lead to a failed attack. Feature vector modification fails when
it cannot find such an adversarial feature vector that corresponds to a real
binary and causes the required misprediction. Input binary modification
fails when it does not generate a new binary that causes the required
misprediction. We found that feature vector modification accounts for all
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the failed attacks.
We break down the reasons of why our feature vector modification

step would fail to generate an adversarial feature vector. Recall that our
feature vector modification is based on the CW attack, which generates a
feature vector that causes the required misprediction, without considering
whether the generated vector would correspond to a real binary. We
adapted the CW attack in three ways to generate vectors that correspond
to a real binary. First, as we implemented binary modification strategies
for only instruction features, the CFG features and decompiled source
code features are not modified during feature vector modification. Second,
as the value of an instruction feature represents the number of times that
this feature appears in a binary, the feature value is an integer. However,
the CW attack does not guarantee to generate integer values. So, we round
the results of the CW attacks to the nearest integer values. Third, we
capture feature correlation and merge correlated features. We can then
divide failed feature vector modification into two categories:

Lack of modification strategies for CFG and decompiled source features: It
may not be sufficient to modify only instruction features to evade
authorship identification. Failed attacks in this category need
binary modification strategies for CFG and decompiled source
features.

Insufficient handling of finding vectors corresponding to real binaries: Our
techniques for generating feature vectors that correspond to real
binaries need further improvement. For example, we currently
capture only linear correlation between features.

We found that all the failed untargeted attacks were due to not being
able to modify CFG or decompiled source features. For failed targeted
attacks, not being able to modify CFG or decompiled source features ex-
plained about 34% of the failed cases; not being able to find a feature vector
that corresponds to a real binary explained the other failed cases. Our
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analysis shows that to improve untargeted attacks, we need to continue
to design new modification strategies for CFG and decompiled source
features. To improve targeted attacks, we also need to improve the targeted
CW attack to find feature vectors that correspond to real binaries.

While our binary modification strategies were able to match all mod-
ified features, We found that they sometimes caused side effects and
changed features that should not have been changed. Fortunately, such
side effects did not impact the prediction results. The number of unin-
tended changes ranged from 0 to 20. Most of the unintended changes
were made to NDISASM instruction features. This is because our feature
injection strategies often insert new code and data sections, which in turn
requires changes to the program header of the binary. As NIDSASM dis-
assembles all the bytes in the binary, the changes in the program header
would cause unintended changes to NDISASM instruction features. It is
not surprising that such unintended changes did not impact the prediction
results as the program header is unlikely to carry authorship signals.

In summary, the our evaluations show that our attack framework is
effective for untargeted attacks and we can practically suppress authorship
signals. Performing targeted attacks is significantly more difficult than
untargeted attacks. Our results also reveal weaknesses in current author-
ship identification techniques. Many features used in current authorship
identification techniques are based on program properties that are easy to
fabricate, such as function calls and symbols. We have shown that we can
automatically modify these features, making such classifiers vulnerable to
test time attacks.

6.4 Summary

We have presented our attack framework for performing authorship eva-
sion. Our attack framework includes components for analyzing feature
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correlation, generating feature vectors to cause misprediction, and binary
modification strategies to match the generated feature vectors. Our evalu-
ations have shown that our attack framework is effective for untargeted
attacks, which is to cause misprediction to any of the incorrect authors.
Targeted attacks are significantly more difficult to achieve, which is to
cause misprediction to a specific one among the incorrect authors.

Our attack experiences show that it is not secure to rely on features
derived from program properties that are easy to modify, such as function
calls, symbols, data, and instructions. Authorship identification tech-
niques must consider the trustworthiness of the features.
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7 conclusion

Our goal of this dissertation has been to develop new fine-grained tech-
niques for binary code authorship identification and new techniques for
evading authorship identification. In this final chapter, we review our
technical contributions and describe possible future research directions.

7.1 Contributions

To the best of our knowledge, our research is the first to perform fine-
grained binary code authorship identification and the first to attempt
evading binary code authorship identification. This dissertation has de-
veloped four techniques as the main contributions:

Deriving accurate source code authorship We defined two new line-level
source code authorship models: the structural authorship, which
represents the complete development history of a line of code, and
the weighted authorship, which summarizes the structural author-
ship to a weight-vector of author contribution percentages. Our
new models overcome the limitations of the prior methods that only
report the last change to a line of code. We defined the repository
graph as a graph abstraction for a code repository. We then designed
two backward flow analyses to derive the structural authorship and
the weighted authorship. We implemented our two authorship mod-
els in a new git built-in tool git-author and evaluated git-author in
two experiments, which showed that our new authorship models
can produce more information than the existing methods and that
additional information is useful to build a better analysis tool.

Identifying multiple authors We developed new fine-grained techniques
for identifying the author of a basic block. We performed an em-
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pirical study of three open source software to compare whether we
should use the function or the basic block as the attribution unit.
Our study supported using the basic block as the attribution unit.
We designed new instruction, control flow, data flow, and context
features, handled inlined library code from STL and Boost, and cap-
tured authorship relationships between adjacent basic blocks with
CRF. Our techniques can discriminate 284 authors with 65% accu-
racy. We showed our new features and new classification models
based on CRF can significantly improve accuracy.

Identifying multiple authors in multi-toolchain scenarios We studied
the impact of the compilation toolchain on coding styles and devel-
oped new techniques to perform multi-toolchain, multi-author iden-
tification. We started with an extensive evaluation of existing multi-
author identification techniques, showing that existing techniques
did not work well in multi-toolchain scenarios. We designed two new
techniques to overcome these weaknesses: the two layer approach
that combines toolchain identification and then single-toolchain au-
thorship identification, and the unified training approach that trains
multi-toolchain authorship models based on a multi-toolchain data
set. We also applied deep learning to multi-author identification,
using raw bytes of basic blocks as input to automatically extract low
level features. Our techniques achieved 71% accuracy and 86% top-
10 accuracy for classifying 700 authors, showing that analysts can
effectively prioritize forensic investigations based on our prediction.
Our results also showed that our deep learning models consistently
outperformed traditional learning methods such as SVM. We then
tried to understand the internals of our machine learning models by
investigating the feature weights of SVM and the activations of neu-
rons in DNN. We learned interesting lessons from our investigation,
such as that unoptimized code is more difficult to attribute. These
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lessons provide valuable insights on how compilation toolchains
impact authorship styles.

Evading authorship identification We presented our attack framework
for performing authorship evasion. Our attack framework includes
components for analyzing feature correlation, generating feature
vectors to cause misprediction, and binary modification strategies to
match the generated feature vectors. Our evaluations show that our
attack framework is effective for untargeted attacks. Targeted attacks
are significantly more difficult to achieve. Our attack experiences
show that it is not secure to rely on features derived from program
properties that are easy to modify, such as function calls, symbols,
data, and instructions. Authorship identification techniques must
consider the trustworthiness of the features.

7.2 Future Directions

We see several future research directions that naturally follow this disser-
tation:

Open world techniques Authorship identification in nature is a closed
world task, as it assumes that the target author is in a set of known
authors. In real world applications, this assumption may not hold.
Therefore, open world authorship analysis is necessary for dealing
with unknown authors. Developing open world techniques can
be divided into two steps. The first step is to perform the task of
authorship clustering, with the goal of grouping the code from the
same author together. The second step is to determine which authors
are known and which authors are unknown.

Impact of code obfuscation Code obfuscation techniques are commonly
used by bad actors to defend their malware from analysis, and run-
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time packers are a prevalent type of code obfuscation tool. They
encrypt the original code into data and decrypt the code at runtime.
We see three challenges in this area. First, it is difficult to use static
binary analysis to extract code features and perform binary code
authorship identification on packed binaries. So, it is essential to
use existing unpacking techniques [68, 78, 109, 111] to unpack the
code. Second, as the unpacked binaries contain code from both the
original authors and the packer [127], authorship analysis must be
able to distinguish the original author from the packer. Third, code
from the original authors may be modified by the packer [110]. We
must be able to identify the original authors despite of the changes
made by the packer.

Evolving styles The programming style of a programmer may change
through time, which can be caused by learning new programming
patterns or incorporating new organizational programming guide-
lines. The basic idea is to compare the code written by the same
author at different points in time. Open source software repositories
record the complete develop history, so we can extract code snippets
written by the same author at different times. Then, we can investi-
gate whether the style of an author does indeed evolve through time
and, if it is the case, what factors cause such change.

Evading fine-grained techniques In Chapter 6, we described our new
techniques for evading single-author identification. The natural next
step is to attempt evading our fine-grained techniques discussed
in Chapter 4 and Chapter 5. The major challenge of evading fine-
grained identification is to design fine-grained binary modification
strategies to match adversarial feature vectors. As our fine-grained
techniques predict authors at the basic block level, fine-grained mod-
ification strategies must inject or remove features within basic blocks.
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Many of the feature injection and removal strategies presented in
Chapter 6 are not applicable as they will introduce new basic blocks.
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