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Abstract. Knowing the authors of a binary program has significant
application to forensics of malicious software (malware), software sup-
ply chain risk management, and software plagiarism detection. Existing
techniques assume that a binary is written by a single author, which
does not hold true in real world because most modern software, includ-
ing malware, often contains code from multiple authors. In this paper,
we make the first step toward identifying multiple authors in a binary.
We present new fine-grained techniques to address the tougher problem
of determining the author of each basic block. The decision of attribut-
ing authors at the basic block level is based on an empirical study of
three large open source software, in which we find that a large fraction
of basic blocks can be well attributed to a single author. We present new
code features that capture programming style at the basic block level,
our approach for identifying external template library code, and a new
approach to capture correlations between the authors of basic blocks in a
binary. Our experiments show strong evidence that programming styles
can be recovered at the basic block level and it is practical to identify
multiple authors in a binary.
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1 Introduction

Binary code authorship identification is the task of determining the authors of a
binary program from a set of known authors. This task has significant application
to forensic of malicious software (malware) [29], identifying software components
from untrusted sources in the software supply chain [11], and detecting software
plagiarism [18]. Previous studies [3, 8, 38] have shown that programming styles
survive through the compilation process and can be recovered from binary code.
However, these studies operated at the program level and assumed that each
binary program is written by a single author, which is not true for real world
software and significantly limits their uses in practice. In this paper, we present
the first study on fine-grained binary code authorship identification, with con-
crete evidence showing that programming styles can be recovered at the basic



block level and it is practical to perform authorship identification on binaries
from multi-author software.

Knowing the authors of a computer program is a key capability for many
analysts. Malware analysts want to know who wrote a new malware sample and
whether the authors have connections to previous malware samples. This infor-
mation can be useful to determine the operations and intentions of the new sam-
ple. For example, if several cyber attacks use different malware written by closely
connected authors, these attacks can be related and can be a part of a bigger
offensive plot. In the domain of software supply chain risk management, ana-
lysts can identify untrusted code in the supply chain by matching programming
styles against known untrusted software such as malware. The idea of matching
programming styles can also be used for detecting software plagiarism, where
analysts can match programming styles against known code.

Identifying program authors can be performed on either source code or binary
code. Source level techniques [6, 7, 9] are not applicable when the source code
is not available, which is typically the case when handling malware, proprietary
software, and legacy code. Binary level techniques [3, 8, 38] do not have this
limitation and can be used under broader scenarios such as when only a code
byte stream is discovered in network packets or memory images.

However, existing binary level techniques assume that a binary is written by
a single author, which is not true in real world for two reasons. First, modern
software, including malware, is often the result of a team effort. Malware devel-
opment has become similar to normal software development, evolving from an
individual hacking to cooperation between multiple programmers [13, 29, 36].
Malware writers share functional components and adapt them [27, 39]. Studies
have shown that malware writers share information and code by forming phys-
ically co-located teams [28] or virtually through the Internet [1, 5, 21]. These
exchanges of information and code gradually develop into underground black
markets [2]. Malware writers can then acquire malware functional components
such as command and control, key logging, encryption and decryption, beacon-
ing, exfiltration, and domain flux, to facilitate their development of new malware
[42]. This trend indicates that current software, including malware, often con-
tains code from multiple authors.

Second, even if the source code is written by a single author, the correspond-
ing binary may contain code that is not written by this author. External library
code, such as the Standard Template Library (STL) and Boost C++ Library
(Boost), is often inlined in the binary. In addition, compilers may generate bi-
nary code that does not correspond to any source code written by this author,
such as the default constructor and destructor of a class.

When applied to multi-author binaries, existing single-author techniques have
two significant limitations. First, they can identify at most one of the multiple
authors or report a merged group identity. Second, these techniques do not
distinguish external library code or code solely generated by the compiler from
the code written by the authors, which may confuse the styles of these libraries or
the compiler with the styles of the authors. Therefore, authorship identification
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techniques must be fine-grained, identify multiple authors, and recognize library
code and compiler introduced code in a binary.

Fine-grained techniques can better help analysts in real world applications.
Malware analysts can link the code written by the same author from a set of
malware samples and link the authors who cooperated in writing a particular
piece of malware. The same-author links can help build profiles of individual
malware writers and infer their distinct attacking skills and their roles in cy-
ber attacks. The cooperating-author links can help identify connections among
malware writers and infer the structure of physically co-located teams or black
markets. Malware analysts can determine who or which organization may be
responsible for a new malware sample and relate the new sample to existing
samples written by the same authors or even samples written by authors who
are linked to the identified authors. In the area of software supply chain risk
management and detecting software plagiarism, the untrusted code and plagia-
rized code may consist of only a small fraction of the whole binary, making
fine-grained authorship identification essential in these applications.

Previous single-author techniques provide a foundation for us to develop fine-
grained techniques. These techniques have cast binary code authorship iden-
tification as a supervised machine learning problem. Given a set of binaries
with their author labels as the training set, these techniques extract stylistic
code features such as byte n-grams [24, 38] and machine instruction sequences
[8, 24, 37, 38, 40], and use supervised machine learning algorithms such as Sup-
port Vector Machine (SVM) [10] or Random Forests [20] to train models to
capture the correlations between code features and author labels. The generated
machine learning models are then used to predict the author of a new binary.

To develop fine-grained techniques, three additional challenges must be ad-
dressed. First, what is the appropriate unit of code for attributing authorship?
Fine-grained candidates include the function or the basic block. However, as
programmers could change any line of code or even parts of a line, there is no
guarantee that a function or a basic block is written by a single author. There-
fore, this challenge requires us to balance how likely a unit of code is written by
a single author and how much information it carries.

Second, what stylistic code features do we need for a fine-grained unit of code?
Code features used in previous program level studies may not be applicable, or
may not be effective at a finer code granularity. As we will discuss in Section 7,
reusing code features in these program level studies does not yield good results
in our case. Therefore, it is crucial to design new fine-grained code features.

Third, how do we identify external template library code? Failing to address
this challenge may cause authorship identification algorithms to confuse library
code with their users’ code. However, existing library code identification tech-
niques are designed for only non-template library code. These techniques either
create a function fingerprint [16, 23] or build a function graph pattern based
on the program execution dependencies [33]. When a template function is pa-
rameterized with different data types, the final binary code can be significantly
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different, making function fingerprints or graph patterns ineffective. Therefore,
we need new techniques for identifying template library code.

In this paper, we present the first practical fine-grained techniques to identify
multiple authors of a binary. We summarize how we address the three fine-
grained challenges and how we capture author correlations between code within
the same binary to improve accuracy:

– To determine what granularity of authorship attribution is the most appro-
priate, we conducted an empirical study on three large and long lived open
source projects, for which we have authorship ground truth: the Apache
HTTP server [4], the Dyninst binary analysis and instrumentation tool suite
[32], and GCC [15]. Our results show that 85% of the basic blocks are writ-
ten by a single author and 88% of the basic blocks have a major author who
contributes more than 90% of the basic block. On the other hand, only 50%
of the functions are written by a single author and 60% of the functions have
a major author who contributes more than 90% of the function. Therefore,
the function as a unit of code brings too much imprecision, so we use the
basic block as the unit for attribution. See Section 3.

– We designed new code features to capture programming styles at the basic
block level. These features describe common code properties such as control
flow and data flow. We also designed a new type of code features, context
features, to summarize the context of the function or the loop to which the
basic block belongs. See Section 4.

– We made an initial step towards more effective library code identification.
This step focuses on identifying inlined code from the two most commonly
used C++ template libraries: STL and Boost. We add group identities “STL”
and “Boost” to represent the code from these libraries and let the machine
learning algorithms to distinguish them from their users. See Section 5.

– As a programmer typically writes more than one basic block at a time, we
hypothesize that adjacent basic blocks are likely written by the same author.
To test our hypothesis, we compared independent classification models, which
make predictions based only on the code features extracted from a basic
block, and joint classification models, which make predictions based on both
code features and the authors of adjacent basic blocks. See Section 6.

We evaluated our new techniques on a data set derived from the open source
projects used in the empirical study. Our data set consisted of 147 C binaries and
22 C++ binaries, which contained 284 authors and 900,583 basic blocks. The
binaries were compiled with GCC 4.8.5 and -O2 optimization. Overall, our new
techniques achieved 65% accuracy on classifying 284 authors, as opposed to 0.4%
accuracy by random guess. Our techniques can also prioritize investigation: we
can rank the correct author among the top five with 77% accuracy and among
the top ten with 82% accuracy. These results show that it is practical to attribute
program authors at the basic block level. We also conducted experiments to show
the effectiveness of our new code features, handling of inlined STL and Boost
code, and joint classification models. See Section 7.
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In summary, our study provides concrete evidence that it is practical to iden-
tify multiple program authors at basic block level. Our ultimate goal is to pro-
vide automated fine-grained authorship analysis and many research challenges
remain. For example, we are currently investigating the impact of compilers or
optimization flags on coding styles, and plan to handle the cases when the target
author is not in the training data, and apply our techniques to malware samples.
In this paper, we make the first step towards practical fine-grained binary code
authorship identification and significantly advance the frontier of this field.

2 Background

We discuss two areas of related work as background: designing binary code fea-
tures that reflect programming style and using machine learning techniques to
discover correlations between code features and authors.

2.1 Binary Code Features

Existing binary code features used in authorship identification describe a wide
variety of code properties, such as instruction details, control flow, data flow,
and external dependencies. These features were extracted at the function and
block level and then accumulated to the whole program level. Basic block level
features usually included byte n-grams, instruction idioms, and function names of
external library call targets [38]. Function level features mainly include graphlets
[8, 38], which represent subgraphs of a function’s CFG, and register flow graphs
[3], which captures program data flow. Here, we discuss only basic block level
features as the function level features are not applicable at the basic block level.

Byte n-grams represent consecutive n bytes extracted from binary code [24,
38]. Authorship identification techniques typically use small values for n. For
example, Rosenblum et al. [38] used n = 3 for authorship identification to capture
styles reflected on instruction details. While byte n-grams have been shown to be
effective, byte n-grams are sensitive to the specific values of immediate operands,
and do not capture the structure of programs.

Instruction idioms are consecutive machine instruction sequences [8, 24, 25,
37, 38, 40]. Besides the length of instruction idioms, many other variations have
been defined, including allowing wild cards [38], ignoring the order of instruc-
tions [25], normalizing operands with generic symbols such as representing all
immediate operands with a generic symbol [24, 38], and classifying opcodes into
operation categories such as arithmetic operations, data move operations, and
control flow transfer operations [40]. Existing techniques for authorship identifi-
cation typically used short instruction idioms, ranging from 1 to 3 instructions.

2.2 Workflow of Authorship Identification

Instead of designing complicated features to represent specific aspects of pro-
gramming styles, existing techniques [3, 8, 38] define a large number of simple
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candidate code features and use training data to automatically discover which
features are indicative of authorship. This feature design philosophy is a general
machine learning practice [17].

Based on this feature design philosophy, a common workflow used in existing
studies has four major steps: (1) designing a large number of simple candidate
features; (2) extracting the defined features using binary code analysis tools such
as Dyninst [32] or IDA Pro [19]; (3) determining a small set of features that are
indicative of authorship by using feature selection techniques such as ranking
features based on mutual information between features and authors [38]; and
(4) applying a supervised machine learning technique, such as Support Vector
Machine (SVM) [10] or Random Forests [20], to learn the correlations between
code features and authorship. Rosenblum et al. [38] used instruction, control
flow, and library call target features, and used SVM for classification. Caliskan
et al. [8] added data flow features, constant data strings, and function names
derived from symbol information, and used Random Forests for classification.

Previous projects performed evaluations of their techniques on single author
programs, including Google Code Jam, university course projects, and single
author programs extracted from Github. Rosenblum et al. reported 51% accu-
racy for classifying 191 authors on -O0 binaries from Google Code Jam and
38.4% accuracy for classifying 20 authors on -O0 binaries from university course
projects. They commented that the university course project data set was sig-
nificantly more difficult than the Google Code Jam data set, mainly because
programs in this data set contained not only code written by individual stu-
dents, but also skeleton code provided by the course professor. We believe this
actually reveals the fundamental limitation of existing program level approaches
and motivates our fine-grained techniques.

Caliskan et al. improved Google Code Jam accuracy to 92% for classifying
191 authors on -O0 binaries, and 89% accuracy for classifying 100 authors on -
O2 binaries. They also evaluated their technique on single author programs from
Github and got 65% accuracy for classifying 50 authors. However, two concerns
need further investigations. First, stripping the binaries led to a decrease in
accuracy by 24%. In this work, we do not use or depend on symbol information to
derive code features. Second, the accuracy of the Github data set is significantly
lower than the accuracy of the Google Code Jam data set. They commented
two reasons: (1) the binaries from the Github data set were the results of a
collaborative effort and each binary had a major author who contributed more
than 90% of the code, and (2) the Github data set might contain third party
library code that was not written by the major author. Again, we believe our
fine-grained techniques can overcome these limitations.

3 Determining Unit of Code

Our fine-grained techniques start with determining whether the function or the
basic block is a more appropriate attribution unit. We investigated the author-
ship characteristics in open source projects to make this granularity decision.
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Our study included code from three large and long lived open source projects:
the Apache HTTP server [4], the Dyninst binary analysis and instrumentation
tool suite [32], and GCC [15]. Intuitively, the more the major author contributes
to a function or a basic block, the more appropriate it is to attribute authorship
to a single author. We quantify this intuition by first determining how much au-
thorship contribution is from its major author for all basic blocks and functions,
and then summarizing these contribution data to compare the basic block with
the function.

3.1 Determining Contributions from Major Authors

Our approach to determine the major authors and their contributions can be
summarized in three steps:

1. Use git-author [30] to get a weight vector of author contribution percentages
for all source lines in these projects. Note that well-known tools such as
git-blame [35], svn-annotate [43], and CVS-annotate [41] attribute a line of
code to the last author who changed it, regardless of the magnitude of the
change. We believe git-author provides ground truth of higher quality. The
source lines of STL and Boost were attributed to author “STL” and “Boost”,
respectively.

2. Compile these projects with debugging information using GCC 4.8.5 and
-O2 optimization, and obtain a mapping between source lines and machine
instructions. Note that the compiler may generate binary code that does not
correspond to any source line. For example, the compiler may generate a
default constructor for a class when the programmer does not provide it. We
exclude this code from our study.

3. Derive weight vectors of author contribution percentages for all machine in-
structions, basic blocks, and functions in the compiled code. We first derived
the weight vector for each instruction by averaging the contribution percent-
ages of the corresponding source lines. We then derived the weight vector of
a basic block by averaging the vectors of the instructions within the basic
block. Similarly, we derived the weight vector of a function by averaging the
vectors of the basic blocks within the function.

3.2 Study Results

To compare the function with the basic block, we plot the tail distributions of
contribution percentages from the major authors. As shown in Figure 1, 85% of
the basic blocks are written by a single author and 88% of the basic blocks have
a major author who contributes more than 90% of the basic block. On the other
hand, only 50% of the functions are written by a single author and 60% of the
functions have a major author who contributes more than 90% of the function.
Therefore, the function as a unit of code brings too much imprecision, so we use
the basic block as the unit for attribution.
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Fig. 1: Tail distributions of major author contribution. The x-axis represents
the contribution percentage from the major author. The y-axis represents the fraction
of the number of blocks or functions that have a major author who contributed more
than a given percentage.

Table 1: An overview of new basic block level features.
Code Property New block level features
Instruction (1) Instruction prefixes, (2) instruction operands, (3) constant values in instruc-

tions
Control flow (1) CFG edge types, (2) whether a block throws or catches exceptions
Data flow (1) # of live registers at block entry and exit, (2) # of used and defined registers,

(3) # of input, output, and internal registers of a block, (4) stack height delta of
a block, (5) stack memory accesses, (6) backward slices of variables

Context (1) Loop nesting levels, (2) loop sizes, (3) width and depth of a function CFG, (4)
positions of a block in a function CFG

4 New Code Features

We followed an exploratory process for designing new features: designing new
features to cover code properties that are not covered, testing new features to see
whether they improve accuracy, and keeping those features that turn out to be
useful. We have four types of new features: (1) instruction features that describe
instruction prefixes, operand sizes, and operand addressing modes, (2) control
flow features that describe incoming and outgoing CFG edges and exception-
based control flow, (3) data flow features that describe input and output vari-
ables of a basic block, stack usages, and data flow dependencies, and (4) context
features that capture the context of a basic block such as the loops or the func-
tions to which the block belongs. Our new features are summarized in Table 1.

4.1 Instruction Features

There are three new features to describe instruction details.
1. Prefix features: x86 and x86-64 instruction sets contain instruction prefixes

that reflect valuable code properties. For example, REP (repeat) prefixes are
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often used for string operations and REX prefixes are often used to address
64-bit registers. We count how many times each instruction prefix is used.

2. Operand features: Instruction operands represent the data manipulated by
programmers, so we designed instruction operand features to capture operand
sizes, types, and addressing modes. First, operand sizes capture the granular-
ity of data and may correlate to the data types operated by a programmer.
For example, a one-byte operand often represents a char data type in C.
We count the number of operands in each operand size. Second, we count
the numbers of memory, register, and immediate operands. Third, operand
addressing modes can reflect data access patterns used by programmers.
For example, PC-relative addressing often represents accessing a global vari-
able, while scaled indexing often represents accessing an array. We count the
number of operands in each addressing mode.

3. Constant value features: We count the number of constant values used in a
basic block, such as immediate operands and offsets in relative addressing.

4.2 Control Flow Features

We designed control flow features that describe the incoming and outgoing CFG
edges on three dimensions: (1) the control flow transfer type (such as conditional
taken, conditional not taken, direct jump, and fall through), (2) whether the
edge is interprocedural or intraprocedural, and (3) whether the edge goes to a
unknown control flow target such as unresolved indirect jumps or indirect calls.

In addition, for languages that support exception-based control flow such as
C++, we distinguish whether a basic block throws exceptions and whether it
catches exceptions.

4.3 Data Flow Features

Our new data flow features can be classified into three categories.
1. Features to describe input variables, output variables, and internal variables

of a basic block: We count the number of input, output, and internal registers.
To calculate these features, we need to know what registers are live at the
block entry and exit, and what registers are used and defined.

2. Features to describe how a basic block uses a stack frame: Features in this
category include distinguishing whether a basic block increases, decreases, or
does not change the stack frame, and counting the number of stack memory
accesses in the basic block. These stack frame features capture uses of local
variables. Note that stack memory accesses are often performed by first cre-
ating an alias of the stack pointer, and then performing a relative addressing
of the alias to access the stack. So, data flow analysis is necessary to identify
aliases of the stack pointer.

3. Features to describe data flow dependencies of variables: Features in this
category are based on backward slices of variables within the basic block. A
basic block potentially can be decomposed into several disjoint slices [12]. We
count the total number of slices, the average and maximum number of nodes
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in a slice, and the average and maximum length of slices. We also extract slice
n-grams of length three to capture common data flow dependency patterns.

4.4 Context Features

Context features capture the loops and the functions to which a basic block
belongs. We count loop nesting levels and loop sizes to represent loop contexts.
When a basic block is in a nested loop, we extract loop features from the inner-
most loop that contains this basic block. For function context, we calculated the
width and depth of a function’s CFG with a breadth first search (BFS), in which
we assigned a BFS level to each basic block. We also included the BFS level of
a basic block and the number of basic blocks at the same BFS level.

5 External Template Library Code

We must distinguish external library code from the code written by their users.
In the study discussed in Section 3, about 15% of the total basic blocks are STL
and Boost code. If we are not able to identify STL or Boost code, our techniques
would wrongly attribute this large amount of code to other authors.

Our experience with STL and Boost is that their source code looks signifi-
cantly different from other C++ code. So, our initial attempt is to add group
identities “STL” to and “Boost” to represent each of these libraries. Our results
discussed in Section 7 show that both STL and Boost have distinct styles and
we are able to identify the inlined code.

6 Classification Models

Our next step is to apply supervised machine learning techniques to learn the
correlations between code features and authorship. Commonly used machine
learning techniques such as SVM [10] and Random Forest [20] perform predic-
tion solely based on individual features. While this is a reasonable approach
when operating at the program level, it may not be the case for the basic block
level. Based on the intuition that a programmer typically writes more than one
basic block at a time, we hypothesize that adjacent basic blocks are likely written
by the same author. To test our hypothesis, we built joint classification models,
which perform prediction based on code features and who might be the authors
of adjacent basic blocks, and compare them to independent classification mod-
els, which perform prediction solely based on code features. The key difference
between the two types of models are illustrated in Figure 2.

For the independent classification models illustrated in Figure 2a, we divide
a binary into a set of basic blocks B = {b1, b2, . . . , bm}. A basic block bi is
abstracted with a tuple bi = (yi,xi), where yi is the author of this basic block
and xi is a feature vector extracted from the code of this basic block. The
training data consists of a set of binaries and we convert them to a collection
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yi−1 yi yi+1

xi−1 xi xi+1

· · · · · ·

(a) Independent classification models

yi−1 yi yi+1

xi−1 xi xi+1

· · · · · ·

(b) Joint classification models

Fig. 2: Comparison between independent classification models and joint clas-
sification models. Each basic block has an author label yi and a feature vector xi.
An edge connects two inter-dependent quantities. In both models, the author label
and feature vector are dependent. In joint classification models, the author labels of
adjacent basic blocks are also inter-dependent.

of training basic blocks Btrain. Similarly, the testing data consists of a different
set of binaries, producing a collection of testing basic blocks Btest. The author
labels in Btrain are used for training, while the author labels in Btest are not
used during prediction and are only used for evaluation. With this modeling, it
is straight-forward to use SVM to train independent classification models.

For the joint classification models illustrated in Figure 2b, we use the same
notation bi = (yi,xi) to represent a basic block, where yi is the author label and
xi is the feature vector. The key difference here is that we convert a binary to a
sequence of basic blocks B =< b1, b2, . . . , bm >, where bi and bi+1 are adjacent in
the binary. The training data and testing data contain two disjoint collections of
basic block sequences. We can then use linear Conditional Random Field (CRF)
[26] to train joint classification models.

7 Evaluation

We investigated five aspects of our new techniques: (1) whether we can recover
authorship signals at the basic block level, (2) whether our new basic block
level features are effective, (3) the impact of the number of selected features, (4)
whether the joint classification models based on CRF can achieve better accuracy
than the independent classification models based on SVM, and (5) whether we
can identify inlined STL and Boost library code. Our evaluations show that:

1. We can effectively capture programming styles at the basic block level. Our
new techniques achieved 65% accuracy for classifying 284 authors, compared
to 0.4% accuracy by random guess. If a few false positives can be tolerated,
we can rank the correct author among the top five with 77% accuracy and
among the top ten with 82% accuracy. Our results show that it is practical
to perform authorship identification at the basic block level.

2. Our new basic block level features are crucial for practical basic block level
authorship identification. Fe represents the existing basic block level features
discussed in Section 2.1, such as byte n-grams and instruction idioms; Fn
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Table 2: Summary of our experiment results. We investigated the impact of three
key components of our techniques on the accuracy: our new features, the number of
selected features, and the joint classification models. Fe represents the existing basic
block level features discussed in Section 2.1. We have four types of new features dis-
cussed in Section 4: instruction, control flow, data flow, and context features, denoted
as FI , FCF , FDF , FC , respectively. Fn = Fe ∪ FI ∪ FCF ∪ FDF ∪ FC , represents our
new feature set.

Classification model Feature set Number of selected features Accuracy
SVM Fe 2,000 26%
SVM Fe ∪ FI 2,000 31%
SVM Fe ∪ FCF 2,000 33%
SVM Fe ∪ FDF 2,000 34%
SVM Fe ∪ FC 2,000 38%
SVM Fn 2,000 43%
SVM Fn 45,000 58%
CRF Fn 45,000 65%

represents our new feature set, which is a union of Fe and the new features
discussed in Section 4. The results of the first row and the sixth row in
Table 2 show that adding our new features leads to significant accuracy
improvement, adding 26% to 43%, when compared to using only Fe.

3. When operating at the basic block level, we need to select many more features
to achieve good accuracy than operating at the program level. As we will
discuss in Section 7.2, previous program level techniques have selected less
than 2,000 features. Our results show that 2,000 features significantly limit
the prediction power of our models and we can improve accuracy from 43%
to 58% by selecting about 45,000 features at the basic block level, as shown
in the sixth and seventh row in Table 2.

4. The CRF models out-perform the SVM models, but CRF requires more
training time. As shown in the last two rows in Table 2, the accuracy im-
proved from 58% to 65% when we used CRF for training and prediction.
In our experiments, SVM needs about one day for training and CRF needs
about 7 times more training time than SVM. Both CRF and SVM can fin-
ish prediction in a few minutes on binaries of several hundred megabytes.
As training new models is an infrequent operation and prediction on new
binaries is the major operation in real world applications, it is reasonable to
spend more training time on CRF for higher accuracy.

5. We can effectively distinguish STL and Boost code from other code. We
calculated the precision, recall, and F1-measure for each author in our data
set. Our results show that “STL” has 0.81 F-measure and “Boost” has 0.84
F-measure. For comparison, the average F-measure over all authors is 0.65.

7.1 Methodology

Our evaluations are based on a data set derived from the open source projects
used in our empirical study discussed in Section 3. Our data set consists of 147
C binaries and 22 C++ binaries, which contains 284 authors and 900,583 basic
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blocks. C and C++ binaries are compiled on x86-64 Linux with GCC 4.8.5 and
-O2 optimization. In practice, newly collected binaries may be compiled with
different compilers and optimization levels. We can train separate models for
different compilers or optimization levels and then apply compiler provenance
techniques [34, 37] to determine which model to use. The handling of these cases
is the subject of ongoing research.

We used Dynisnt [32] to extract code features, Liblinear [14] for linear SVM,
and CRFSuite [31] for linear CRF. We performed the traditional leave-one-out
cross validation, where each binary was in turn used as the testing set and all
other binaries were used as the training set. Each round of the cross validation
had three steps. First, each basic block in the training set was labeled with its
major author according to the weight vector of author contribution percentages
derived in Section 3. Second, we selected the top K features that had the most
mutual information with the major authors, where we varied K from 1000 to
50,000 to investigate the how it impacted accuracy. Third, we trained a linear
SVM and a linear CRF and predicted the author of each basic block in the
testing set. We calculated accuracy as the percentage of correctly attributed
basic blocks. We parallelized this cross validation with HTCondor [22], where
each round of the cross validation is executed on a separate machine.

An important characteristic of our leave-one-out cross validation is that the
author distribution of the training sets is often significantly different from the
author distribution of the testing sets. We believe this characteristic represents
a real world scenario. For example, an author who wrote a small number of basic
blocks in our training data may take a major role and contribute a large number
of basic blocks in the new binary. For this reason, we do not stratify our data
set, which is to evenly distribute the basic blocks of each author to each testing
folds, as stratifying the data set does not represent real world scenarios.

Our data set is also imbalanced in terms of the number of basic blocks written
by each author. The most prolific author wrote about 9% of the total basic blocks
and the top 58 authors contribute about 90% of the total basic blocks.

We stress that to the best of our knowledge, we are the first project to per-
form fine-grained binary code authorship identification, so there are no previous
basic block or function level techniques with which to compare. We do not com-
pare with any previous program level techniques either, as these techniques can
only attribute a multi-author binary to a single author. We experimented with
applying program level techniques to our data set to estimate the upper bound
accuracy that can be achieved by any program level technique. As a program
level technique reports one author per binary, the best scenario is to always at-
tribute all basic blocks in a binary to the major author of the binary. For each
binary in our data set, we counted how many basic blocks were written by its
major author and got an average accuracy of 31.6%, which is significantly lower
than our reported numbers.
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Fig. 3: Experiment results on the impact of the number features. The accuracy
results are based on using the new feature set Fn and SVM classification.

7.2 Impact of features

As we mentioned before, adding our new features can significantly increase the
accuracy. We now break down the contribution from each of our new feature
type and investigate the impact of number of selected top features.

Our new features can be classified into four types: instruction, control flow,
data flow, and context features. We denote these four types of features as FI ,
FCF , FDF , and FC , respectively. To determine the impact of each feature type,
we calculated how much accuracy can be gained by adding only this type of
new feature to the existing feature set Fe. In this experiment, we used SVM
classification and selected top 2,000 features. As shown in the first row of Table 2,
the baseline accuracy of using only feature set Fe is 26%. The second to the
fifth row of Table 2 show that adding FI , FCF , FDF , and FC leads to 31%,
33%, 34%, 38% accuracy, respectively. Therefore, all of our new features provide
additional useful information for identifying authors at the basic block level,
with the context features providing the most gain.

In terms of the number of selected top features K, previous program level
techniques have shown that a small number of features are sufficient to achieve
good accuracy. Rosenblum et. al [38] selected 1,900 features. Similarly, Caliskan
et al. [7] selected 426 features.

We investigate the impact of K and find that the basic block level needs
more features. Figure 3 shows how K affects accuracy. We can see that we need
over 20,000 features to achieve good accuracy, which is significantly larger than
the number used in previous studies. While the number of selected features is
large, we have not observed the issue of overfitting: we repeated this experiment
with selecting 100,000 features and got the same accuracy as selecting 50,000
features.
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(b) Impact of training iterations on CRF

Fig. 4: Comparison between CRF and SVM. The results of both figures are based
on the new feature set Fn and selecting 45K features.

7.3 Classification model comparison

Our results show that CRF can achieve higher accuracy than SVM, but requires
more training time. Specifically, CRF can significantly improve the accuracy
for small basic blocks and modestly improve accuracy for large basic blocks.
Figure 4a shows how our techniques work with basic blocks of different sizes.
We can see that SVM suffers when the sizes of basic blocks are small, which is
not surprising as small basic blocks contain little code, thus few code features
and little information. On the other hand, CRF performs better than SVM for
all sizes of basic blocks. CRF provides the most benefits when the sizes of basic
blocks are small, where we do not have enough information from the code features
to make good prediction and have to rely on the adjacency. As the sizes of basic
blocks grow, we have more information about these basic blocks and adjacency
plays a smaller role in prediction and provides smaller accuracy improvement.
We also observe that the accuracy starts to have a large variance when the sizes
of basic blocks are larger than 30 bytes. We find that large basic blocks are few
in our data set, so their results are unstable.

The accuracy improvement of CRF comes at the cost of more training time.
In our experiments, training SVM needs about one day, while training CRF needs
about a week. As CRF training consists of iterations of updating feature weights,
there is a trade-off between training time and accuracy. Figure 4b shows how the
number of iteration of CRF training impacts the accuracy. In our experiments,
we can finish about 150 iterations per day. We need about two days for CRF to
reach the accuracy achieved by SVM in one day and need about three days for
CRF accuracy to converge.
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8 Conclusion

We have presented new fine-grained techniques for identifying the author of a
basic block, which enables analysts to perform authorship identification on multi-
author software. We performed an empirical study of three open source software
to determine the most appropriate attribution unit and our study supported us-
ing the basic block as the attribution unit. We designed new instruction, control
flow, data flow, and context features, handled inlined library code from STL and
Boost by representing them with group identities “STL” and “Boost”, and cap-
tured local authorship consistency between adjacent basic blocks with CRF. We
evaluated our new techniques on a data set derived from the open source software
used in our empirical study. Our techniques can discriminate 284 authors with
65% accuracy. We showed our new features and new classification models based
on CRF can significantly improve accuracy. In summary, we make a concrete
step towards practical fine-grained binary code authorship identification.
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