
Fine-Grained Binary Code Authorship Identification

Xiaozhu Meng
Computer Sciences Department
University of Wisconsin-Madison

Madison, WI 53706, USA
xmeng@cs.wisc.edu

ABSTRACT
Binary code authorship identification is the task of determin-
ing the authors of a piece of binary code from a set of known
authors. Modern software often contains code from multi-
ple authors. However, existing techniques assume that each
program binary is written by a single author. We present a
new finer-grained technique to the tougher problem of deter-
mining the author of each basic block. Our evaluation shows
that our new technique can discriminate the author of a basic
block with 52% accuracy among 282 authors, as opposed to
0.4% accuracy by random guess, and it provides a practical
solution for identifying multiple authors in software.

CCS Concepts
•Applied computing → Investigation techniques;

Keywords
Software forensics; Basic block level; Code features

1. INTRODUCTION
Authorship identification is the task of determining the

authors of a computer program from a set of known authors.
This task has significant application to forensics of malicious
software (malware), detecting software plagiarism, and iden-
tifying untrusted software components in the software supply
chain. Compared to source code authorship identification
[5, 6, 8, 12, 17, 30], binary code authorship identification
[2, 7, 28] can be applied under broader scenarios, such as
when the source code is not available, which is often the case
of handling malware, proprietary software, and legacy code,
or when only a code byte stream is discovered in network
packets or memory images.

Current software is often the result of team efforts. Open
source and proprietary software often contains code from
multiple authors. Even malware development has become
similar to normal software development, evolving from an
individual hacking to cooperation between multiple authors

[10, 20, 26]. Malware writers share functional components
and adapt them [18, 22, 23, 29], by forming co-located teams
[19] or through the Internet [1, 4, 16]. This trend requires
authorship identification techniques to recognize multiple
authors within a binary and understand their contributions.

However, existing techniques have assumed that each bi-
nary is written by a single author [2, 7, 28]. When applied
to multiple author binaries, they can identify at most one
of the multiple authors or report a merged group identity,
making it difficult to detect the presence of multiple authors
and detect plagiarized or untrusted code when it consists of
only a small fraction of the whole binary.

We present a new fine-grained technique to identify multi-
ple authors in a program binary. Our idea is to identify a
reasonable unit of code that can be attributed a single author.
We then divide a program binary into smaller pieces and
determine the author of each unit of code. The most obvious
candidates for the unit of code are the function and basic
block. When making this granularity decision, we consider
two factors: how well a unit of code can be attributed to a
single author and whether it contains sufficient information
for attribution. For the first factor, we conducted an empiri-
cal study on several open source projects, including Apache
HTTP Server [3], Dyninst [24], GCC [13] and other projects
from Github. Our study shows that 88% of basic blocks have
a major author who contributes more than 90% of the basic
block, while only 67% of functions have such a major author,
supporting using the basic block as the unit of code. For
the second factor, we designed a set of new basic block level
code features, covering code properties such as control flow
and data flow. In addition, we designed a new type of code
features, context features, to summarize the context of the
function or the loop to which the basic block belongs. We
evaluated our new technique on a data set derived from the
open source projects used in our empirical study. The results
show that our new technique can identify the author of a
basic block with 52% accuracy among 282 authors.

2. RELATED WORK
Existing techniques for binary code authorship identifica-

tion [2, 7, 28] share a common workflow and have four major
steps: (1) designing a large number of binary code features
to capture programming styles, (2) extracting the defined
features and converting a program binary to a feature vector
by using binary code analysis tools such as Dyninst [24] and
IDA Pro [14], (3) determining a small set of features that are
indicative of authorship by using feature selection techniques
such as ranking features based on mutual information be-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983962

1097

tween features and authors [28], and (4) applying supervised
machine learning techniques such as Support Vector Machine
(SVM) [9] and Random Forests [15], to learn the correlations
between features and authorship. We discuss the features
used in existing techniques and their evaluation results.

Existing binary code features are extracted at the function
and block level and then accumulated to the program level.
Block level features include byte N-gram [7, 28], instruction
idioms [2, 28], and library call targets [28]. We will include
these features when working at the basic block level. Func-
tion level features include Graphlets [28, 7], which represent
subgraphs of the control flow graph (CFG) of a function,
and register flow graphs [2], which perform backward slicing
on the registers in all cmp and test instructions and convert
each slice to a hash value. We cannot directly reuse these
function level features, so need new basic block level features
to capture code properties such as control flow and data flow.

Previous projects have evaluated their techniques on single
author programs. Rosenblum et al. [28] used features that
described instructions, control flow, and library call targets,
reporting 51% accuracy for classifying 191 authors on -O0
binaries. Caliskan et al. [7] added data flow features, improv-
ing this accuracy to 63% for classifying 191 authors on -O0
binaries, and 61% for classifying 100 authors on -O2 binaries.

3. OUR APPROACH
Our new fine-grained technique follows a similar workflow

described in the previous section with two key differences.
First, we conduct an empirical study on several open source
projects to quantify how well functions and basic blocks
can be attributed to a single author. Our study supports
using the basic block as the unit of code. Second, we design
new basic block level code features, enabling authorship
identification at the basic block level.

3.1 Determining the Unit of Code
In this study, we derive the authors and their contribution

percentages for each function and basic block from the devel-
opment history of open source projects. The more the major
author contributes, the better the code can be attributed to
a single author. Our approach to derive author contribution
percentages is to first use git-author [21] to calculates a vec-
tor of author contribution percentage for each line of code,
compile the source with debugging information using GCC
4.8.5 with -O2 optimization, map each machine instruction
back to source lines, and accumulate machine instruction
authorship to the basic block and function level.

Our study shows that 85% of the basic blocks are written
by a single author and 88% of the basic blocks have a major
author who contributes more than 90% of the basic block.
On the other hand, only 56% of the functions are written by
a single author and 67% of the functions have a major author
who contributes more than 90% of the function. Therefore,
the function as a unit of code brings too much imprecision,
so we use the basic block as the unit for attribution.

3.2 New Code Features
Existing basic block level features miss several important

properties of machine instructions, such as instruction pre-
fixes, operand sizes, and operand addressing modes, and do
not capture code properties such as control flow and data
flow. We design new basic block level features to cover these
missed code properties. We also design context features to

Table 1: An overview of new basic block level features

Code Property New block level features
Instruction Instruction prefixes, operand sizes and ad-

dressing modes, constant values
Control flow CFG edge types, whether a block throws

or catches exceptions
Data flow # of live registers at block entry/exit, # of

used/defined registers, stack height delta
of the block, data dependencies of variables

Context Loop nesting level, loop size, function CFG
width/depth

summarize the context of the function or the loop to which
the basic block belongs. Our new features are summarized in
Table 1. Here, we focus on CFG edges and context features.

To capture control flow at the basic block level, we design
features that describe the incoming and outgoing CFG edges
of a basic block in three dimensions: (1) the control flow
transfer type (such as conditional taken, conditional not
taken, direct jump, and fall through), (2) whether the edge
is interprocedural or intraprocedural, and (3) whether the
edge goes to unknown control flow target such as unresolved
indirect jumps or indirect calls.

Context features capture the intuition that the context
of a basic block such as the loop and the function to which
the basic block belongs may affect how a programmer writes
code. We design features such as loop nesting level and loop
size to summarize the context of a basic block.

4. EXPERIMENT RESULTS
We evaluated our new technique based on a data set that

contained 831,372 basic blocks, 170 binaries, and 282 authors.
All binaries were compiled by GCC 4.8.5 with -O2 optimiza-
tion. In practice, we can train separate models for different
compilers or optimization levels and then apply compiler
provenance techniques [25, 27] to determine which model
to use. We used Dynisnt [24] to extract code features and
Liblinear [11] for training and prediction. We performed the
traditional leave-one-out cross validation, where each binary
was in turn used for testing and all other binaries were used
for training. Each round of the cross validation had three
steps. First, each basic block in the training set was labeled
with its major author. Second, we selected the top 50,000 fea-
tures that had the most mutual information with the major
authors. Third, we trained a linear SVM and predicted the
author of each basic block in the testing set. We calculated
accuracy for correctly attributed code bytes and correctly
attributed basic blocks. Our new technique achieved 52%
average accuracy for both metrics. Our result is comparable
to the accuracy reported by the previous projects done at the
program level, showing authorship identification is practical
at the basic block level and our new technique provides a
practical solution for identifying multiple authors.

5. CONCLUSION
We have presented our new fine-grained technique to deter-

mine the author of a basic block. Our new technique is based
on an empirical study that supports using the basic block as
the unit for attribution and a set of new basic block level
code features. Our evaluation showed that our new technique
can identify authors at the basic block level and help analysts
perform authorship identification on multi-author software.

1098

6. REFERENCES
[1] A. Abbasi, W. Li, V. Benjamin, S. Hu, and H. Chen.

Descriptive analytics: Examining expert hackers in web
forums. In 2014 IEEE Joint Intelligence and Security
Informatics Conference (JISIC), Hague, Netherlands,
Sep. 2014.

[2] S. Alrabaee, N. Saleem, S. Preda, L. Wang, and
M. Debbabi. Oba2: An onion approach to binary code
authorship attribution. Digital Investigation, 11,
Supplement 1:S94 – S103, May 2014.

[3] Apache Software Foundation. Apache http server,
http://httpd.apache.org.

[4] V. Benjamin and H. Chen. Securing cyberspace:
Identifying key actors in hacker communities. In 2012
IEEE International Conference on Intelligence and
Security Informatics (ISI), Arlington, VA, USA, June
2012.

[5] S. Burrows. Source code authorship attribution. PhD
thesis, Melbourne, Victoria, Australia, RMIT
University, 2010.

[6] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan,
C. Voss, F. Yamaguchi, and R. Greenstadt.
De-anonymizing programmers via code stylometry. In
24th USENIX Security Symposium (USENIX Security),
Washington, D.C., Aug. 2015.

[7] A. Caliskan-Islam, F. Yamaguchi, E. Dauber,
R. Harang, K. Rieck, R. Greenstadt, and A. Narayanan.
When coding style survives compilation:
De-anonymizing programmers from executable binaries.
http://arxiv.org/pdf/1512.08546.pdf, Dec. 2015.

[8] E. Chatzicharalampous, G. Frantzeskou, and
E. Stamatatos. Author identification in imbalanced sets
of source code samples. In 2012 IEEE 24th
International Conference on Tools with Artificial
Intelligence (ICTAI), pages 790–797, Athens, Greece,
Nov. 2012.

[9] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3), Sep. 1995.

[10] F. de la Cuadra. The geneology of malware. Network
Security, 4:17–20, May 2007.

[11] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. Liblinear: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, June 2008.

[12] G. Frantzeskou, E. Stamatatos, S. Gritzalis, C. E.
Chaski, and B. S. Howald. Identifying authorship by
byte-level n-grams: The source code author profile
(scap) method. International Journal of Digital
Evidence, 6(1):1–18, 2007.

[13] GNU Project. Gcc: The gnu compiler collection,
http://gcc.gnu.org.

[14] Hex-Rays. IDA,
https://www.hex-rays.com/products/ida/.

[15] T. K. Ho. Random decision forests. In 3rd
International Conference on Document Analysis and
Recognition (ICDAR), Montreal, Canada, Aug. 1995.

[16] T. J. Holt, D. Strumsky, O. Smirnova, and M. Kilger.
Examining the social networks of malware writers and
hackers. International Journal of Cyber Criminology,
6(1):891–903, Jan. 2012.

[17] R. C. Lange and S. Mancoridis. Using code metric
histograms and genetic algorithms to perform author
identification for software forensics. In 9th Annual
Conference on Genetic and Evolutionary Computation
(GECCO), London, England, July 2007.

[18] M. Lindorfer, A. Di Federico, F. Maggi, P. M.
Comparetti, and S. Zanero. Lines of malicious code:
Insights into the malicious software industry. In 28th
Annual Computer Security Applications Conference
(ACSAC), Orlando, Florida, USA, Dec. 2012.

[19] Mandiant. Mandiant 2013 Threat Report.
https://www2.fireeye.com/
WEB-2013-MNDT-RPT-M-Trends-2013 LP.html,
2013. Mandiant White Paper.

[20] M. Marquis-Boire, M. Marschalek, and C. Guarnieri.
Big game hunting: The peculiarities in nation-state
malware research. In Black Hat, Las Vegas, NV, USA,
Aug. 2015.

[21] X. Meng, B. P. Miller, W. R. Williams, and A. R.
Bernat. Mining software repositories for accurate
authorship. In 2013 IEEE International Conference on
Software Maintenance (ICSM), Eindhoven,
Netherlands, Sep. 2013.

[22] N. Moran and J. Bennett. Supply chain analysis: From
quartermaster to sunshop. https://www.fireeye.com/
content/dam/fireeye-www/global/en/current-threats/
pdfs/rpt-malware-supply-chain.pdf, Nov. 2013. FireEye
Labs White Paper.

[23] G. O’Gorman and G. McDonald. The elderwood
project. http://www.symantec.com/content/en/us/
enterprise/media/security response/whitepapers/
the-elderwood-project.pdf, Sep. 2012. Symantec White
Paper.

[24] Paradyn Project. Dyninst: Putting the Performance in
High Performance Computing, http://www.dyninst.org.

[25] A. Rahimian, P. Shirani, S. Alrbaee, L. Wang, and
M. Debbabi. Bincomp: A stratified approach to
compiler provenance attribution. Digital Investigation,
14, Supplement 1, Aug. 2015.

[26] R. Roberts. Malware development life cycle. In Virus
Bulletin Conference (VB), Oct. 2008.

[27] N. Rosenblum, B. P. Miller, and X. Zhu. Recovering
the toolchain provenance of binary code. In 2011
International Symposium on Software Testing and
Analysis (ISSTA), Toronto, Ontario, Canada, July
2011.

[28] N. Rosenblum, X. Zhu, and B. P. Miller. Who wrote
this code? identifying the authors of program binaries.
In 16th European Conference on Research in Computer
Security (ESORICS), Leuven, Belgium, Sep. 2011.

[29] B. Ruttenberg, C. Miles, L. Kellogg, V. Notani,
M. Howard, C. LeDoux, A. Lakhotia, and A. Pfeffer.
Identifying shared software components to support
malware forensics. In 11th Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment
(DIMVA), Egham, London, UK, July 2014.

[30] M. F. Tennyson. On improving authorship attribution
of source code. In 4th International Conference Digital
Forensics and Cyber Crime (ICDF2C), Lafayette, IN,
USA, Oct. 2012.

1099

