EXPERIMENT MANAGEMENT SUPPORT
FOR

PARALLEL PERFORMANCE TUNING

BY

KAREN L. KARAVANIC

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

(Computer Sciences)

at the University of Wisconsin—Madison

1999

© Copyright by Karen L. Karavanic 1999
All Rights Reserved

EXPERIMENT MANAGEMENT SUPPORT FORPARALLEL PERFORMANCETUNING
Karen L. Karavanic
Under the supervision of Professor Barton P. Miller

at the University of Wisconsin—Madison

The development of a high-performance parallel system or application is an evolutionary
process. It may begin with models or simulations, followed by an initial implementation of the
program. The code is then incrementally modified, and continues to evolve throughout the
applications’s lifespan. At each step, a key question for developersuwsand how much did
the performance changérhis question arises while comparing an implementation to models
or simulations; considering versions of an implementation that use a different algorithm, com-
munication or numeric library, or language; studying code behavior by varying number or
type of processors, type of network, type of processes, input data set or work load, or schedul-
ing algorithm; and benchmarking or regression testing. We present a design and prototype
implementation of an experiment management environment designed to answer performance
guestions that span multiple program executions from all stages of the lifespan of an applica-

tion.

We have developed a concise representation for the set of executions collected over the life
of an application. In our model, information from all experiments for one application, includ-
ing the components of the code executed, execution environment, and performance data col-

lected, is gathered in the Program Space.

We developed techniques for automating comparison between measured executions. The
structural difference operator determines differences in the source code and the runtime envi-
ronment; the performance difference operator compares performance results and reports
results that differ by more than a specified amount. We present several case studies exploring
the use of these operators with large-scale parallel applications.

We also developed a novel approach to automated performance diagnosis that uses applica-
tion data gathered in previous executions to guide the search for performance bottlenecks.
Adding historical knowledge about an application provides a means for the tool to perform
more effective diagnosis. We evaluated our technique using different versions of an MPI
application on an IBM SP/2, and found reductions of 31% to 98% in the time needed to locate

performance bottlenecks.

Acknowledgments

| thank my advisor, Bart Miller, for these past years of encouragement, guidance, and sup-
port. By guiding me through many periods of intense, deadline-driven work, he has given me

the gift of knowing my own strength and wisdom.

| thank David Wood, Marvin Solomon, and Miron Livny for their time and effort spent read-
ing my dissertation, and for providing valuable criticisms and suggestions for improving my
work. | thank my entire committee -- Marvin Solomon, Miron Livny, David Wood, and Gre-

gory Moses -- for a lively and thorough discussion of my dissertation during my defense.

| gratefully acknowledge financial support provided by the NASA GSRP Fellowship Pro-

gram, the United States Department of Energy, and the National Science Foundation.

The members of the Paradyn Performance Tools research group, past and present, have pro-
vided me with technical discussions, ideas, advice, and encouragement, and have attended
more practice talks than anyone might reasonably expect. Many other people have shared with
me technical discussions, guidance, and interesting ideas, including Douglas Pase, the mem-
bers of the IBM Parallel Tools Group in Poughkeepsie, Joann Ordille, John May, Mary Zosel,
Mary Vernon, Janet Wiener, Jerry Yan, Bob Hood, Steve Huss-Lederman, and Doug Kimmel-

man.

| am grateful to many special people who have provided me with meals, rides, beverages,
laughter, the occasional roof over my head, and lots of positive energy through the various

stages of my dissertation work: Elizabeth Webster, Richard Russell, Phil Kaveny, Mary LoSa-

iv

rdo, Mom, Beth Martinson, Terry Mika, Steve Swartz, Michael Rawdon, Doug Pase, Alain
Kagi, Doug Burger, Anne at Portabella, Rich Maclin, Beth Cole, Tia Newhall, all of my Sys-
ters, and my fellow Starfish. The folks in Nancy Pullen’s dissertators group shared their lives
with me and taught me to eat live toads.

| thank Sam Pottle for the abundance of loving encouragement, chocolate, and champagne

that saw me through.

Contents
ADSHracCt e i
AcCKnowledgments i, ..
CONtENES %
1 INtroducCtion e 1..
1.1 MOUIVALION . . e e e e 1
1.2 ContributioNS 4
1.3 ROAdMaAD . ..o 7
2 Related Work 8....
2.1 Parallel Performance TUNING e 8
2.2 Automating Parallel Performance Diagnosiscii... 10
2.3 Scientific Experiment Management 13
2.4 Comparing Program Versionsand RunNs 15
2.5 SUMMAIY . oo e 19
3 The Program SPacCet 20
3.1 The SpaceMap 22
3.2 The EventMapo e e 24
3.3 Performance Results 28
3.3 1 ThE FOCUS . ..ot 30
3.4 Retrieving Information from the Program Space 31
3.4.1 Choosing Program Events Usingthe SpaceMap 31
3.4.2 Combining EventMaps with the Structural Merge Operator 32
3.4.3 The Structural Difference Operator 35
3.4.4 The Performance Difference 36

3.4.5 Matching and Mapping ReSoUrcest 42

3.4.6 Making Selections fromthe EventMap 44
3.5 Implementation Considerations 45
3.5.1 Existing Experiment Management Systems, 45
3.5.2 Implementing the Program Space with an Object Relational DBMS 49
3.5.3 Other Implementation Strategies 50
3.6 SUMMANY . . o 51

4 Case Studies: Applying the Experiment Management Approach

to Common Performance ACHIVItIES 53
4.1 DraCo . ..ot 94
4.2 Performance Tuning a Shared Memory Application 61

4.3 Comparing Alternate Implementations: Porting a PVM Application to MPI 64

4.4 SUMMANY . .ottt et e e e e e e e e e e e 66
5 Using Historical Data in Performance Diagnosis, 68
5.1 INrodUCHION 68
5.2 Paradyn’s Performance Consultant 71
5.3 Typesof Search DIreCtives i e 74
5.4 Experimentsand ResUltS e 77
5.4.1 Using Pruning and Priority Directives, 77
5.4.2 Using Thresholds Determined from Historical Data 81
5.4.3 Using Historical Data with Different Code Versions 83
5.5 Discussion and CONCIUSIONS i 89
6 Summary and Directions for Future Research 91
6.1 Dissertation SUMMaArYt e e e 91
6.2 Directions for Future Research 92

REfEIreNCESo 95

Chapter 1

Introduction

1.1 Motivation

The development of a high-performance parallel system or application is an evolutionary
process. It may begin with models or simulations, followed by an initial implementation of the
program. The code is then incrementally modified to tune its performance, and continues to
evolve throughout the applications’s lifespan. At each step, the key question for developers is:
how and how much did the performance changé® question arises while comparing an
implementation to models or simulations; considering versions of an implementation that use
a different algorithm, communication or numeric library, or language; studying code behavior
by varying number or type of processors, type of network, type of processes, input data set or
work load, or scheduling algorithm; and benchmarking or regression testing. Despite the
broad utility of this type of comparison, the current generation of parallel performance tools
focuses on measuring the performance of a single program execution. This dissertation

describes a design and prototype implementation of a performance tool designed to answer

2
performance questions that span multiple program executions from all stages of the lifespan of

an application.

Recent work in the more general area of scientific experiment management focuses on pro-
viding the means to record data used in or generated by experiments[38,43,56]. This includes
a potentially distributed, large, and varying store of experimental data; descriptions of the
experimental methodology; and indexing information to link the data to its source. We view
performance tuning as a specialized instance of scientific experimentation, with each com-
plete or partial application execution viewed as an experiment. This changes our definition of
a performance tool from the traditional, single program execution approach to a new broader,
inherently multi-execution approach. The engineers or scientists engaged in studying and
improving the behavior of medium to large scale parallel scientific codes, are analogous to
chemists or biologists carrying out experiments at a lab bench. Each complete or partial pro-
gram run, simulation result, or program model is an experiment, analogous to the biologist’s
gene-expression experiment or the chemist’'s chromatography study. We have used this scien-
tific experimentation archetype as a basis for designing>aeriment Managemeetviron-
ment for Parallel Performance. Such an environment would be directly useful to both
application and system developers, as well as creators of models and simulation environ-
ments, and represents a qualitative change from the state of the art.

In our model, information from all experiments for one application, including the compo-
nents of the code executed, the execution environment, and the performance data collected, is
gathered in &rogram SpacePerformance data of many forms may be stored in the Program
Space, including scalars, tables, traces, and graphs. The Program Space also includes descrip-

tive data, or metadata, which characterize the execution. Examples of possible types of meta-

3

data are environment variable settings, compiler options used to build the executable, or a
description of the machine used for the run. The possible combinations of code and execution
environment form the multi-dimensional Program Space, with one dimension for each axis of
variation and one point for each individual experiment. The Program Space represents
instances of a program selected from different points in its lifetime, during which it may be
modified, ported to different architectures, tuned, or compiled with different options or using a
different compiler. Program Space views serve as a user interface to the system.

An Experiment Management tool enables exploration of this space with a simple naming
mechanism, a selection and query facility, and a set of visualizations. Examining the behavior
of more than one version of a program, or the behavior of one version of a program in differ-
ent environments, is a common task; for example, developers of libraries that will be used
across a variety of platforms require a complete performance picture in which performance on
a single platform is less important than the performance across all platforms.

Performance tuning across multiple executions must answer the deceptively simple ques-
tion: what changed in this run of the program? A key component of this work is the ability to
automatically describe the differences between two runs of a program, both the structural dif-
ferences (differences in program source code and the resources used at runtime), and the per-
formance variation (how were the resources used and how did this change from one run to the
next). The difference information is not necessarily a simple measure such as total execution
time, but may be a more complex measure derived from details of the program structure. The
items being compared may include an analytical performance prediction, a previous execution
of the code, a set of performance thresholds that the application is required to meet or exceed,

or an incomplete set of data from selected intervals of an execution.

4
These automated comparison techniques have several potential applications: they can com-

pare an actual execution with a predicted or desired performance measure for the application,
or compare dictinct time intervals of a single program execution. An example of a more com-
plex environment in which these comparison techniques might be useful is resource allocation
for metacomputing [16], the use of distributed heterogeneous computers and high-speed net-
works to perform scientific computation previously possible only on dedicated supercomput-
ers. Effective resource allocation in such an environment requires knowledge of past

performance on a variety of architectures and machine configurations.

1.2 Contributions

In this dissertation, we describe our solutions to several key problems that arise in construct-
ing a complete experiment management based performance tool: First, we developed a repre-
sentation for the space of executions; second, we developed techniques for quantitatively and
automatically comparing two or more executions, and tested them out in a variety of perfor-
mance related tasks. Finally, as further evidence of the utility of a well-organized and accessi-
ble store of application performance data, we developed and studied a new approach to
automated performance diagnosis using historic performance data and dynamic instrumenta-

tion.

The first research contribution of this thesis is a concise representation for the set of execu-
tions collected over the life of an application. In our model, information from all experiments
for one application, including the components of the code executed, the execution environ-
ment, and the performance data collected, is gathered in a Program Space. We refer to each

experiment as Brogram EventA Program Space comprises a SpaceMap, one or more Event-

5
Maps, and a collection of Performance Results. $paceMapontains descriptive data that

characterizes Program Events, distinguishing the various Program Events described in the
same Program Space. Examples of descriptive data stored in the SpaceMap are: input data set
characteristics, environment variable settings, compiler options used to build the executable, a
description of the machine used for the run, code version number, or laboratory name. Each
EventMapcontains a detailed list of one Program Event’s resources, such as individual func-
tion names and machine components. It serves as an interface to the performance results, and
provides a naming scheme for the potentially large collection of performanceRiatar-

mance Resultare measured values for an execution’s behavior, for example, total CPU time
for a specified function. The Program Space is designed to accommodate stored performance
data of many forms, including scalars, tables, traces, and graphs.

The second research contribution is a set of techniques for automating comparison between
measured executions. We developed techniques for determining the difference between two or
more program runs. Difference is computed by two operators: the structural difference opera-
tor compares two EventMaps and reports resources that differ; and the performance difference
operator compares two collections of performance results and reports results that differ by
more than a specified amount. We implemented a prototype that computes the difference oper-
ators, and performed several case studies in which we explore their use with large-scale paral-
lel applications.

The third contribution of this research is an investigation of the use of the historical data
contained in the Program Space for improving performance diagnosis. Harvesting useful his-
torical knowledge requires an available store of performance data gathered from one or more

previous program runs. Our research explores novel opportunities for exploiting this collec-

6
tion of data to focus data gathering and analysis efforts to the critical sections of a large appli-

cation. This approach allows a complex performance evaluation to be specified and conducted
with a minimum of user intervention. We present a novel approach to automated diagnosis
that uses application data gathered in previous executions to guide the search for performance
bottlenecks. This method leverages off of the repetitive nature of the performance tuning pro-
cess — it is rare for a parallel application to be examined with a performance tool only once.
Adding historical knowledge about an application provides a means for the tool to become
more effective that does not rely on assumptions about all possible applications with which it
might be used.

Our starting point was an existing diagnostic research tool, the Paradyn Parallel Perfor-
mance Tool [54]. Paradyn’s Performance Consultant performs online, automated bottleneck
detection in a single execution of a parallel or serial program. We modified the Performance
Consultant, incorporating several different types of historical knowledge about an applica-
tion’s performance into the tool's search for performance problegmsiing directiveshat
tell the tool to ignore some resources entirgdgiprities that tell the tool which aspects of the
application and run-time environment to look at first; dnaesholdshat tell the tool specific
values against which to measure the application’s actual performance. We use the directives to
guide online performance diagnosis with an enhanced version of Paradyn. We evaluated our
technique by testing different versions of an MPI application on the IBM SP/2, and found

reductions of 31% to 98% in the time needed to locate performance bottlenecks.

1.3 Roadmap

We discuss related work in the following chapter. Chapter 3 presents the Program Space, a
flexible and uniform mechanism for describing and naming selections from the space of all
executions throughout the lifetime of an application. It includes a flexible canonical represen-
tation, called Resource Normal Form, for storing the variety of program performance data for
which our automatic analysis techniques have been developed. We also describe our tech-
niques for describing, representing, and comparing multiple versions and runs of a program.
In Chapter 4 we present results of three case studies using an initial prototype implementation
of an experiment management system. In Chapter 5 we describe the use of historical perfor-
mance data in improving the diagnosis abilities of Paradyn’s Performance Consultant. We

summarize our results and discuss future research directions in Chapter 6.

Chapter 2

Related Work

In this chapter we discuss the array of research efforts most closely related to this disserta-
tion. In Section 2.1 we examine parallel performance tools. In Section 2.2 we survey
approaches for automating parallel performance diagnosis. In Section 2.3 we discuss scientific
experiment management. Section 2.4 surveys work that involves comparing different program

versions. We summarize in Section 2.5.

2.1 Parallel Performance Tuning

Performance tuning is a cyclic process that involves repeating a series of steps until accept-
able application performance is achieved: (1) formulate one or more hypotheses about appli-
cation behavior; (2) gather data to support or dismiss each hypothesis; (3) analyze that data
(by direct inspection, analytical techniques, or some combination); and (4) change the code or
the environment experimentally based on these hypotheses. Parallel applications may be tuned
many times, for example when ported to a new platform or after code revision. We can catego-
rize performance tool research efforts by identifying the particular steps (1)-(4) the tool is

designed to accomplish or guide. For the most part, performance tools are rather narrowly

9

defined as a mechanism for gathering data (step 2) or as an aide to a human formulating
hypotheses about an application’s behavior (step 1) during a single observed program run
[27,54,55,61,69,77,80]. In this common approach, much of the work is done manually by a
knowledgable expert conducting the tuning study, frequently with the use of visualization
tools [27,41,51,73]. Recently, research has focused on automating the diagnostic process
(steps 1, 2, and 3) [20,28,45,50,70]. Several projects [30,25,44,49] are attempting to redefine
performance tuning as an interactive run-time activity that may perform steering adjustments
or debugging fixes as the application runs (step 4). Completing the spectrum, there is current
research focused on complete automation of all four steps, by a tool that includes performance
measurement, analysis, and code or environment adjustments to improve performance[66].
There is also research into self-tuning applications that include code to trigger changes based
on measured performance values, either as a prelude to a full execution [75] or online as the

application is running [31].

The tools detailed above address single iterations of one or more steps in the tuning process.
Our approach is to provide a framework that can incorporate existing techniques for each step
of the performance tuning cycle, and extend the scope to include repeated iterations. Hon-
droudakis and Procter [33,34] have proposed the term “tuning in the large” to refer to this
complete process of tuning, as opposed to a single instance of running a performance tool
with one iteration of a program. Their recent survey of high performance computing profes-
sionals cited the need for maintaining performance related information from tuning sessions.
They proposed storing tuning information in a generally accessible database so that tech-

niques used in tuning similar applications might be tried by others.

10
2.2 Automating Parallel Performance Diagnosis
A variety of research projects address the issues in automating the diagnosis of parallel pro-
grams. Some of this work is limited to proposed designs and architectures for tools that might
automate the process; however there have been several tools implemented that at least par-

tially automate the diagnostic portion of the tuning task. In this section, we survey these tools.

Cray developed two tools that provide automated diagnosis of performance bottlenecks.
ATExpert [45] uses an expert system to analyze performance data gathered from their Auto-
tasking Fortran compiling environment. Performance characteristics were matched to the
source and to a set of performance rules, and the results were used to generate specific advice
for the programmer tuning the code. Cray’s MPP Apprentice [77] also generates diagnostic
feedback and advice for the programmer, necessarily more general (and therefore providing
less direct guidance to the programmer) than that of ATExpert because Apprentice is not
closely tied to a parallelizing compiler. Both of these are post-mortem tools, that is, they gen-
erate some performance measurements during the application’s execution and perform an

analysis after execution has completed.

S-Check [50,71], a tool developed at NIST, uses a partially automated approach to diagnose
performance-critical parts of large-scale applications. The tool uses artificially introduced
delays together with the statistical technique known as Design of Experiments or DEX [4] to
focus attention on synchronization points that are the cause or potential cause of performance
bottlenecks. In their approach, called Synthetic-Perturbation Screening, parts of the experi-
mental setup, such as narrowing down potentially fruitful locations to test, are done manually

through a GUI. The tool provides a single metric, sensitivity to artificially introduced delays.

11
The relationship to our experiment management system is that our system might implement S-

Check functionality as one of the types of experimentation.

Chitra [2,52] provides descriptions of the performance of multiple executions in the form of
parameterized models using semi-Markov chains and CHAID-based models. The calculation
uses data from summarized trace files. Aggregation, filtering, and reduction of model parame-
ters provide visual feedback to the tool user that focuses attention to potential problem areas.
This is one of the few multiple-execution performance tools.

Paradyn’s Performance Consultant [54] performs an automated search through an applica-
tion, inserting and removing instrumentation as it tests hypotheses to focus the programmers
attention on a small set of performance bottlenecks. It is a completely automated, single but-
ton system that requires no user interaction to complete a diagnosis. We chose the Perfor-
mance Consultant as the testbed for our technique of incorporating historical knowledge in
diagnosis, described in Chapter 5.

The Projections:Expert project [70] developed partially automated performance diagnosis
capabilities, via an automated postmortem analysis. The tool was developed for parallel pro-
grams written in the Charm object-oriented programming language. It narrows down the list
of performance problems found by estimating the reduction in execution time that would
result from removing each bottleneck, and outputs a phase-specific list of bottlenecks includ-
ing location and cause.

Several architectures have been proposed for a tool to perform automated diagnosis. The
Poirot project [28] proposed an architecture for a tool to automatically diagnose parallel appli-
cations across a range of platforms. The project ended before a prototype was developed;

however the work contributed an analysis of existing diagnostic approaches and an approach

12
to constructing a more general tool to include the methods found in several different tools.

Their design included a store of application version data. The approach combines a tool inter-
face and problem-solving environment within a knowledge-based system. Our approach dif-
fers in choosing as its foundation a scientific experiment management environment, and in
addressing the inherent multi-execution nature of performance diagnosis.

KOJAK [20] (Kit for Objective Judgement and Automatic Knowledge-based detection of
bottlenecks) is a proposed generic automatic performance analysis environment currently
under development. This work builds on Gerndt's earlier work [19] that also described a
design for an automated analysis tool, but was never implemented. The work is in early
stages; a first component, a programmable tool for event trace analysis of message passing
programs called EARL [78], has been implemented. Each specific type of analysis is imple-
mented as a TCL script. They demonstrated scripts that calculate the execution time for each
program region, locate out-of-order message-passing, and determine synchronization delays
incurred by issuing an MPI_recv before issuing an MPI_send. New scripts may be added to
target the tool to specific needs.

During the course of our work on using historical data in automated performance diagnosis,
a multi-organization effort has started in Europe, the Esprit IV Working Group on Automatic
Performance Analysis: Resources and Tools (APART). This project is focusing increased
attention to the potential benefits of automating part or all of the currently time-consuming
and difficult diagnostic process. The project is currently focused on defining the goals of per-
formance analysis [67], and the types of bottlenecks typical to parallel codes written with
OpenMP, MPI, or HPF [13]. The overall objective is a tool that will be used for completely

automated performance diagnosis on a variety of common platforms. Such a tool will require

13
some of the same infrastructure that we have been developing for our Experiment Manage-

ment system, such as a representation for program resources. As members of the group, we
are actively engaged in sharing our results and participating in their design. In contrast to the
stated goals of the working group, we have not focused on developing an inclusive set of bot-
tlenecksper se rather we have focused on the effects of adding historical knowledge given

some existing mechanism for locating bottlenecks.

2.3 Scientific Experiment Management

A variety of ongoing research efforts are attempting to provide flexible computer support for
scientific experimentation. This work can be categorized by the part of the scientific experi-
mentation process addressed: Some work focuses on support for the individual scientist in the
lab or office, while other work focuses on techniques for the organization, storage and access

for a large central data store to be accessed by a large number of distributed scientists.

Work on support for large-scale scientific data stores includes the DataFoundry project at
LLNL[15]. Researchers are developing solutions for storing large collections of scientific data
that includes the use of metadata, summary information that characterizes the much larger full
set of stored data. The Extensible Computational Chemistry Environment (ECCE) project at
Pacific Northwest National Laboratory [43] includes design and implementation of an Experi-
ment Management system for computational chemists. The project includes a focus on scien-
tific metadata, and attempts to provide a central store in which scientists record experimental
methods as well as the (raw) input and output data. They use an object-oriented database sys-

tem as the underlying storage engine. Their Basis Set Advisor stores information on different

14
algorithms that have been used to calculate chemical results, and performs an automated “best

fit” selection for chemists trying to solve related problems.

loannidis and Livny describe scientific experimentation and identify unmet technological
opportunities [37]. Their desktop experiment management system, called ZO0O[39,38], is a
proposed solution for the needs of an individual scientist’s desktop. The researchers define a
life cycle of local experimental studies, which iterates through experimental design, data col-
lection, intialization request, data analysis, and follow-up. They point to the significant and
expanded role that conceptual schemas must play in providing the rich set of data services
needed for scientific experiment support. They elevate the role of schemas, so that they can be
manipulated by the user for forming queries or used to display query answers. They chose an
object-oriented data model for their database, which sets them apart from other major experi-
ment management efforts[76]. While there is some overlap in functionality between this
project and ECCE, ECCE focuses on issues related to serving as a national repository whereas
ZOO focuses more on the process happening locally as a single scientist works. We discuss
the potential for using the ZOO system in our work in more detail in Section 3.5.

The other main branch of experiment-related research falls under the heading of electronic
notebooks. An Electronic Notebook System is “a system to create, store, retrieve and share
fully electronic records in ways that meet all legal, regulatory, technical and scientific require-
ments” [7]. The goal of completely replacing scientists notebooks entails development of sig-
nature, verification, and security features to allow use of such data as evidence, as is currently
possible with paper notebooks. The DOE 2000 Electronic Notebook Project [18] has devel-
oped electronic notebooks currently in use in a variety of sites, that enable sharing of hetero-

geneous data among geographically dispersed collaborators. They have focused on a simple

15
notebook interface through web browsers, and handling non-text data such as sketches. They

are developing a general-purpose information sharing utility, as opposed to our work which is
targeted specifically to parallel performance tuning. However, a notebook-like approach is one

possibility for an eventual GUI to our system.

2.4 Comparing Program Versions and Runs

Several research efforts have developed approaches for comparing different programs and
program executions. In this section, we briefly survey approaches that might be incorporated

into our structural and behavioral comparison operators.

The most closely related research effort to our own takes a multi-execution approach to cor-
rectness debugging, referred to as “relative debugging.” GUARD [72] compares the program
currently being debugged with a reference version of the same program, to detect differences
in variable values at user-defined points during the execution. Comparisons are made of sim-
ple or complex data types; the programs compared may be written in different languages or
run across heterogeneous environments. Program comparison is limited to user-defined
<variable name, location> pairs. They have defined difference operators for simple and com-
plex data types that can compare complex structures and factor out machine dependent data
representations. The difference operation determines only “different” or “equal”; there is no
notion of quantifying the difference. This approach, while useful in a correctness debugging
environment, is not sufficient for performance debugging.

Comparison of programs is inherent to the performance prediction problem. We seek to
include performance predictions and models in the scope of our tuning approach by broaden-

ing our definition of Program Execution to include models and predictions. Some examples of

16
predictive tools are the MK Toolkit [3] and MTOOL [21]. The MK Toolkit developed by

Block and Sarukkai automates the predictive analysis task. They compare actual versus pre-
dicted total execution time. Their work does not include any effort to compare results across
platforms, environments, or code changes. MTOOL includes a metric that compares observed
and predicted execution times at the granularity of individual basic blocks. Their approach,
useful only for memory tuning, defines the difference between predicted and observed execu-
tion time as a memory bottleneck.

A different approach to comparing program executions is found in the trace transformation
approach to performance prediction of Mendes [53]. They represent a parallel program by a
directed graph in which each node represents a trace event and each edge defines a happens-
before relation as defined by Lamport[47]. A stable program is defined as a program for which
the resulting execution graphs will always be identical or nearly identical. Similarity
between two graphs is defined as the degree of the largest isomorphic graphs that are induced
subgraphs of each of the two original graphs. The distarzetween the graphs is defined as
d = n - s, wherenis the number of vertices of each of the original graphs (so if the two origi-
nal graphs are isomorphid,= 0). This is a different approach from our method of comparing
first structural, then quantitative differences.

Two program similarity metrics are described in work by Saavedra and Smith [68]; they
developed a machine-independent model of sequential program execution to characterize both
machine performance and program execution. They developed a benchmark that consists of
abstract operations, and model the code on each platform based on the number of each type of
abstract operator included in the code. They use two metrics for program similarity: program

characteristic similarity, which is a normalized squared Euclidean distance; and execution

17

time similarity, which uses a coefficient of variation of each variable, which represents time

for a particular abstract operation. They defined thirteen parameters to be used in calculating
program similarity, which are types of operations such as memory bandwidth and single preci-
sion addition and division. Their approach might be extended to develop a program-level per-

formance distance metric for use in our experiment management system.

The Wisconsin Program Slicing Project at UW-Madison [35] has investigated methods for
determining syntactic and semantic differences between two versions of a sequential source
code. Foundational work [57,74] defined “the slice of a program with respect to a given com-
ponent c” as the set of program components that might affect the values of the variables used
at component c. Horwitz [36] described an alternative partitioning algorithm with the goal of
identifying changed parts of a sequential pascal program from an old version to a new version,
and classifying the changes as either semantic or textual. The difference between two code
versions is defined as the number of semantically or textually changed components of the new
version plus the number of new flow or control dependence edges in the graph representation
of the new version. Wang [81] developed a comparison algorithm that detects syntactic differ-
ences between two sequential Pascal program versions by constructing and comparing a vari-
ant of their parse trees. The results are visualized using a simple textual side-by-side display
of the two versions with differences color coded. Reps [64] investigated program integration,
or merging different versions of a pascal program in a semantically acceptable way. The Slic-
ing Project’s work focuses on precise characterization and identification of the differences
between two program versions. An interesting possibility for future research is to incorporate
program slicing techniques into our tool as a means of performing a more precise structural

difference of the code hierarchies.

18

Several research efforts have examined methods for using visualization of performance data
to compare different versions of programs. Rilderl at Virginia [65] have developed alter-
native methods for visualizing categorical trace data, including recent work on simultaneously
visualizing multiple traces. IPS-2 [40] allowed visualization of data from different runs,
matching them by normalizing to total execution time. Our previous work combined Paradyn
and Devise [42] to enable side-by-side, linked visualization of data from multiple executions
of a parallel application. Open problems remain, for example in matching phases of the pro-
gram across two runs of different execution time.

The problem of mapping resources between different program versions is similar to the
problem of mapping resource requirements to resources available. This problem has received
recent attention because of the advent of metacomputing environments [10, 16, 23]. In such
environments, mapping is used to fit a specified job request onto the available resources. Work
by Bruneet al at Paderborn Center for Parallel Computjbg,17] describes a language and
API for Resource and Service Description (RSD). Their goal is to provide a cross-platform
mechanism for specifying a resource request and for returning information about a machine
platform, appropriate for use in a metacomputing environment. Gehring presents an algorithm
for generating formal descriptions of the dynamic execution behavior of distributed programs,
with the goal of using these in schedules, load balancers, or routing systems. The Resource
and Service Description project has the goal of allowing resources and services to be specified
for complex heterogeneous computing systems and metacomputing environments. This
description language is designed to specify resources for both provider and requestor.

The classad matchmaking framework used for Condor [60] uses a semistructured data

model to represent both potentially available resources and resource requests. (The term semi-

19
structured data refers to data that has some structure, but for which the structure is not as

explicitly defined as in relational databases; one example is the data contained in BibTex
files[1].) The classad task is complex because, in addition to resource attributes, there are con-
straints that must be met for a match to be made. These constraints represent a variety of con-
ditions such as “only people in my research group can use my machine,” and they are

independently specified by different parties with different goals.

2.5 Summary

In this chapter we have reviewed the state of the art in research areas related to our work:
parallel performance tools, experiment management systems, and techniques for comparing
program versions or executions. Viewing Parallel Performance Tuning as a specialized
instance of scientific experiment management is a novel approach that has not previously been
investigated. Similarly, creating an adaptive parallel performance tool that changes its
approach based on historical application performance data has not been previously suggested

or implemented.

20

Chapter 3

The Program Space

The Program Spacés a representation for a collection of performance results and the vari-
ous program versions, runs, and runtime environments to which they refer. The Program
Space provides the functionality needed to name, store, and retrieve a large collection of data
pertaining to an application’s structure and behavior. It is directly useful to a developer study-
ing an application’s behavior, as a means of organizing and navigating a potentially large
amount of data. Also, it can be incorporated into performance tools to allow past performance
to be included in conclusions about current performance. At the topmost level, the Program
Space provides a way to describe program executions that allows us to distinguish between
different runs and versions of an application. At a fine-grained level, it provides a detailed
description of each individual program run that allows us to refer to specific sub parts for

which we have data. Finally, it provides a representation for the collected performance data.
In creating the Program Space we were motivated by the following design goals:

* to provide an intuitive user interface that highlights differences in application behavior

between program runs, and helps relate them to differences in code and environment;

21
 to provide a uniform naming mechanism and interface for performance data that can

accommodate a large quantity of heterogeneous, incomplete, and distributed data, and

that can be used by a variety of visualization and data exploration tools;

* to address the dynamic nature of the data (new program runs and new types of perfor-

mance results will be added over time);

* to allow an efficient and practical implementation to be built on top of commonly avail-

able database management systems;

* to provide answers to common performance related questions that cannot be addressed
by tools that incorporate only a single program run. Such questions include: What is the
scaling behavior of my code? How do the results | just gathered compare to other plat-
forms? Did the performance of this function improve when we compiled with optimiza-
tion, and if so, by how much? Are the performance requirements being met? Whats the
highest amount of 1/0 waiting time seen in a run on more than 16 nodes? How accurate

was my predictive model?

To address these goals we developed the Program Space. The Program Space contains data
describing a collection of one or more Program Event®rAdgram Events an individual
complete or partial run of a program, simulation, or predictive model. Although there may be
any number of Program Events represented in the space, all Program Events are from a related
group of code versions (as defined by the user). We do not combine unrelated programs in one
Program Space. The Program Events represented in one Program Space may be different
repeated runs with identical parameters, or they may be runs performed using modified source

code, different input data sets, or different platforms.

22
A Program Space comprises a SpaceMap, one or more EventMaps, and a collection of Per-

formance Results. ThHepaceMagontains descriptive data that characterizes Program Events,
distinguishing the various Program Events described in the same Program Space. Examples of
descriptive data stored in the SpaceMap are: input data set characteristics, platform descrip-
tion, code version number, or laboratory name. HacbntMapcontains a detailed list of one
Program Event’s resources, such as individual function names and machine components. It
serves as an interface to the performance results, and provides a naming scheme for the poten-
tially large collection of performance datBerformance Resultsre measured values for an

execution’s behavior, for example, total CPU time for a specified function.

From one point of view, the SpaceMap and EventMap each contain different classes of
information collected from different sources. From another view, they represent a unified

body of attributes over which we can query (see Section 3.4.6).

We examine each of the three components of the Program Space — the SpaceMap, the
EventMap, and the Performance Results — in more detail in the next three sections. In
Section 3.4 we describe retrieving information from the Program Space, in Section 3.5 we dis-

cuss implementation considerations, and in Section 3.6 we present a chapter summary.

3.1 The SpaceMap

The SpaceMap is an organized collectiomuétadata descriptive data that characterizes a
collection of one or more Program Events. Examples are input data set characteristics, plat-
form description, code version number, algorithm name, compiler options used, or laboratory
name. Information useful in distinguishing a particular Program Event within the entire col-

lection is considered metadata in this context. The list of attributes that serve as semantically

23

meaningful metadata varies for different applications. For this reason, we do not require any
particular attributes, or limit the total number of attributes. The only restriction on the
SpaceMap is that each execution must be uniquely specifiable by selecting some combination
of attribute values. This property is not restrictive in practice, since it may be enforced by add-
ing the attribute “EID” and assigning a unique identifier as the value for each Program Event.

Each attribute stored in the SpaceMap labels one axis in the Program Space. The possible
attribute values translate into coordinates in the resulting multi-dimensional space defined by
these axes. Each execution is therefore one point in the space, with coordinates determined by
its specific attribute values.

We illustrate this concept of a multi-dimensional space with a simple example. The Program
Space pictured in Figure 1 contains data from four Program Events with the following

attributes and values:

EID PLATFORMSIZE INPUTDATA CoODE VERSION
1 8 A original
2 16 A original
3 8 A newSolver
4 8 B original

The first column shown contains the EID. Conceptually, if we zoom in on one particular point
of the Program Space, we find an EventMap and Performance Results pertaining to a single
Program Event.

Our characterization of the complete set of application data as a multi-dimensional space

allows us to apply multi-dimensional database techniques such as the data cube operator to

24
efficiently perform queries over the Program Space. The functionality of the data cube opera-

tor [22] allows efficient aggregation operators over an N-dimensional space.

In this simplified example, we have used simple types for attribute values: integer, character,
and character string. However, in practice, values can be more complex user-defined or aggre-
gate types. For example, rather than the simple identifiers A and B used in this example for
inputData, we might describe the input data set used with a string name plus a description of
the input consisting of the size of a grid being represented, the name of the data source, and
the start time in seconds, plus the name of the file in which the actual input data set is located.
In a heterogeneous environment, attribute “platformSize,” shown here as an integer, might

instead be represented with a list of processor types and counts.

The SpaceMap serves as an interface to the data contained in the Program Space. Navigating
the SpaceMap allows the user to visualize and query the Program Space, both its structure and
its contents. Selecting a valid combination of values from the SpaceMap corresponds to
selecting one or more Program Events with data stored in the Program Space. The result of
such a selection is an EventMap display showing details of either a single program execution
or a collection of executions, depending upon how many of the stored executions match the
specification selected. We discuss extracting information from the Program Space in more

detail in Section 3.4 and underlying implementation issues in Section 3.5.

3.2 The EventMap

The EventMapcontains structural information about a Program Event gathered from com-
pile- and execution-time information. As described in the previous section, the SpaceMap rep-

resents the experiment metadata. The EventMap, on the other hand, represents the

25

Platform Size

‘

PlatformSized {8, 16}
InputDatal {A, B}
Version[J{original, newSolver}

Input Data Set

> Code Version

Figure 1: The Complete Collection of Data forms the Program Spacén this illustration each

cluster of data visualizations represents all of the data, both EventMap and Performance Results, for an
application. The numbers refer to the “EID” column of the table. The inset shows the contents of the
SpaceMap for this Program Space.

components of a program execution: the program’s structure and execution environment. A
Program Space contains one EventMap for each Program Event it describes. It represents the
program structure and serves as an index to the Performance results. As new Program Events

are added to the Program Space, new EventMaps are created, adding data for one Program

Event at each step. Definitions related to the EventMap are listed in Figure 2.

We organize the program resources into classes according to the aspect of the application

they represent, and structure each class as a tree, ca=barce hierarchyqimilar to the

26

representation used in Paradyn [54]). Possible program resources include the program code,
application processes, machine nodes, synchronization points, data structures, and files. Each
class of resources provides a unique view of the application. For example, a Code hierarchy
provides a source code based view of the application, while a Machine hierarchy provides a

view of the application runtime environment.

Definition 1. AnEventMap, Ejs a forest composed of zero or more unique resource hierarchies:
EventMap E=Ry, Ry, ... R}. O

Definition 2. Aresource hierarchyr is a tree of the form
R=(T)

where ris a resource and T is the set of all children of r in the resource hierarchy:

T={(ro.To), (. Ty, - (. Tm)}- O

Definition 3. Aresource ris a pair

r=(, X)
wherel is the resource label axd] { ey, €,... g}, a set of unique event identifieis.

Figure 2: Definitions related to the EventMap.

A resource hierarchy is a collection of related program resources. The root node of each
resource hierarchy represents the complete program execution and therefore we label it with
the name of the entire resource hierarchy. Each descendant of the root node represents a par-
ticular program resource within that view. As we move down from the root node, each level of
the hierarchy represents a finer-grained description of the program. For example, a code hier-
archy might have one level for nodes that represent modules, below that a level with function

nodes, and below that a level for loops or basic block nodes.

In the resource hierarchy of Figure 3, the root level (level 0) is the program-level view of an

application, which represents the behavior of the whole program. Level one is the module-

27

level view of the source code, and level two is its function-level view. Each level of a

Module View

printstatus

Whole Program View Function View

testutil.C

Code

vect::addel

vect::finde

vect::print

Figure 3: Each level of a Resource Hierarchy represents a different view of the application.

resource hierarchy is a set of resources, and each level above the leaf level is a partition of the
set of nodes in the next lower level. For example, the module level of Figure 3, which contains
testutil.C, main.C, and vect.C, is a partition of the set of all leaf nodes. We specify a particular
level of a hierarchy using a superscript notatiagbl refers to level one (the children of the

root node) of resource hierarchy zero. The Code hierarchy in Figure 3 shows the set of func-

tions partitioned into modules:

Ry’ = {Code}
Rol = {testutil.C, main.C, vect.C}
R02 = {printstatus, verifyA, verifyB, main, vect::addel, vect::findel, vect::print}.

Figure 4 shows a sample EventMap for a parallel application calster The EventMap is

the set ode, Machine, Process}. The Code hierarchy contains nodes that represent the pro-

28
gram’s modules and functions; the Machine hierarchy contains one node for each CPU on

which Tester executed; and the Process hierarchy contains one node for each process. The
resources and hierarchies shown here follow the pattern of Paradyn data, though we can easily
incorporate data from other environments. For example, it may be natural to have process

resources as children of machine resources.

Each resource is a representation of a logical or physical component of a program execution.
A single resource might be used to represent a particular aspect of the program or the environ-
ment in which it executes: a process, a function, a CPU, or a variable. In Figure 4, the leaf
node labeled verifyA” represents the resource “functiamrifyA in module testutil.C.” The
semantic meaning attached to a particular resource is relevant only to the tool user and does
not affect the model functionality; however, a program execution component must be uniquely
represented by a single resource. Each internal node of a resource hierarchy tree represents a
set of one or more resources; for exampsiutil.C is a single resource that represents the
aggregation of the sepfintstatus, verifyA, verifyB}, and we define a measurement of CPU time
for testutil.C as the sum of CPU time fprintstatus, verifyA, andverifyB.

A resource namés formed by concatenating the labels along the unique path within the
resource hierarchy from the root to the node representing the resource. For example, the
resource name that represents function verifyA (shaded) in Figure 4Cisleftestutil.C/

verifyA>.

3.3 Performance Results

Each performance datum collected during a program execution is stored in the Program

Space as a tuple in the forey m, f, t, |, where:

29

printstatus

Machine

testutil.C

vect::addel

vect::findel

vect::print

Figure 4: EventMap for Program Tester

eis a unique Program Event identifierElD;

m is the name of thenetric which is a measurable execution characteristic, such as
CPU time;

fis thefocus a constraint specification that narrows the scope of the data to a particular
part of the application, such as one function;

t is thetime interval which specifies the time during an execution the data was col-
lected; and

r is theperformance resultyhich may be a scalar or more complex object. Each perfor-
mance result is uniquely identified by the EID, metric, focus, and time interval, and is
represented PIR(m, f, J. The collection of performance results may be heterogeneous,

and results for even a single program execution may include different types of data such

30

as time series and traces. In practice there is rarely a complete set of Performance

Results, so PR may & (null) for some valid combinations of e, m, f, and t.

We want our system to be extensible in the types of performance results that it may include.
For this reason, we allow new types of performance results to be added, with access methods

serving as a uniform interface.

3.3.1 The Focus

For a particular performance measurement, we need the ability to specify the particular parts
of a program to which it applies. For example, we may be interested in measuring CPU time
as the total for an entire program run, or as the total for a single function. We constrain our
view of the program to a selected part withacus(see Figure 5). A focus is a selection of
resources from an EventMap that follows certain restrictive rules. Selecting the root node of a
resource hierarchy represents the unconstrained view, the whole program. Selecting any other
node narrows the view to include only those leaf nodes that are descendents of the selected
node. For example, the shaded nodes in Figure 4 represent the constraint: furectignand
verifyB of processTester:2 running on any CPU. Between hierarchies, a focus defines the state
where the condition selected in each hierarchy is true at the same time. For example, selecting
machine_1 and function_foo results in narrowing the scope to data pertaining to function_foo

only as it ran on machine_1.

Because our naming of performance results is based on the EventMap’s resource hierar-
chies, we call the naming schemasource normal formWe convert a selected set of resource
nodes to resource normal form by concatenating the selections from each resource hierarchy.

For example, the shaded selection of Figure 4 is represented as:

31

Definition 4. Afocus Fis formed by selecting one resource node from each of the resource
hierarchies in an EventMap:
{ri ORM, r20RJ? 1BORSS, ... ORI
wherejx is a level of resource hierarcRy andn is the total number of resource

hierarchies. The nodes selected may be in different levels of the different
hierarchiedl]

Figure 5: Definition of a Focus.

< /Codeltestutil.C/verifyA, IMachine, /Process >.

We call the focus that results from selecting the root node of each resource hierarobgtthe

focus

3.4 Retrieving Information from the Program Space

Once we have populated a Program Space with data from a collection of Program Events,
we can view and extract that data in a variety of ways. Here we discuss some basic queries and
a few specialized operators: structural difference, discrete distance, and performance differ-
ence. Querying and viewing data from more than one execution can take the form of asking
the same question of more than one execution and comparing the answers. One of the features
of the Program Space structure is that it also allows us to ask questions that are inherently
multi-execution. We defer a discussion of implementation of the underlying storage and query

facility to Section 3.5.

3.4.1 Choosing Program Events Using the SpaceMap
First we consider questions asked by making selections over the collection of attributes and
values in the SpaceMap. Queries over this metadata are made by selecting one or more partic-

ular attribute values from the SpaceMap. The result is in the form of a filter over the Event-

32
Map that screens out all but the Program Events with the selected values. In our example of

Figure 1, selecting “Platform=8, InputData=A, CodeVersion=newSolver” yields an EventMap
representing a single Program Event, Program Event 1, whereas selecting “Platform=8" yields
an EventMap representing Program Events 1, 3, and 4. Note that there may be more than one
selection for a given result, for example, Program Event 1 is also the result of selecting “Code-

Version=newSolver.”

Questions of the form “How do these results compare to other platforms?” are asked by
specifying the different platforms, including the most recent, from the SpaceMap, then speci-

fying the particular metrics you want to compare.

3.4.2 Combining EventMaps with the Structural Merge Operator

If a selection made from the SpaceMap refers to more than one Program Event, the answer
is computed by merging two or more EventMaps to form a single representation for the multi-
ple Program Events. We combine two or more EventMaps wittSthectural Merge Opera-
tor (+). The result is a single, merged EventMap that represents two or more distinct program

executions.

To calculate the structural merge of two EventMaps;+ E,, we compare the two sets of
resource hierarchies in a top-down manner. First we isolate those resource hierarchies that are
members of both program executions by matching up common pairs of root nodes. For each
such pair, we do a level by level comparison of the two resource hierarchies, continuing in a
top down manner following the rule: if two resource hierarchy nodes match, we merge them
into one node in the result, then check the children of the two nodes, until either the leaf nodes

have been examined or we fail to find a match for a node. When a node without a match is

33
identified at any level of the hierarchy, the entire subtree rooted at the node is added to the

result and labeled with the execution’s label. Applying the structural merge operator to two
EventMaps yields a single EventMap. This result contains all resources from the original two
EventMaps, so the structural merge operation works as a hierarchical set union operation.
Some or all of the resources in the result EventMap are merged resources and represent

resources found in multiple executions.

+ (EventMap g, E,) returns EventMap

1] E « {}

2] O, T)OE

[3] if O(rj, Tj) O By, s.t. match () then
[4] E<_ED{ri+rj,Ti+Tj}

(5] Ex - E5=(5, T)

[6] elseE « E U {(r;, Ty}

[71 E-EOE

[8] return E

Figure 6: Algorithm to find the Structural Merge of two EventMaps, E; + E5

The Structural Merge Operator, takes two EventMaps as operands and yields an Event-

Map. Figure 6 shows the algorithm for the structural merge operator, which forms, B £

given two EventMaps E {(ro, To), (r1, Ty, - (th, TR} and E= {(ro, Tg), (1, T1), .. (s

T} Note that it is not required that n = m. We define a merge operatfar individual
resources in Figure 7. The comparison function used to determine if two resources match may
be defined for each resource hierarchy, and therefore may use attributes that are unique to a
particular hierarchy, as well as common attributes. As an example, we show a simple match
function in Figure 8. This match function uses resource string labels as the basis for determin-

ing resource difference. We discuss resource matching further in Section 3.4.5.

34

+ (resourceq rq) returns resource
[1] givenrg = (lo, Xg), 11 = (I3, Xy):
[2] I (lo, XO O Xl)

[3] return r

Figure 7: Merging Two Resources, { +r, Only matching pairs of resources are merged.

The structural merge operation has the following properties:
e commutativity:E; + E; =E, + E;
* associativity: £, + Ey) + Eg=E; + (Eo + Ep)
* idempotencyE, + E; = E;

It can be applied iteratively to build up a single EventMap that contains all of the resources

for any number of distinct Program Events.

match(resourceyr;) returns boolean
[1] if I;=1; then

[2] return true

[3] elsereturn false

Figure 8: Algorithm match((ry = (I;,X;), r2 = (Ij, X))

Figure 9 shows an application of the structural merge operator to two Even®&pslE,.
The top set of resource hierarchies describes exectjpand the middle set describgs.
The bottom of the figure shows the result. Resources common to both executions are lightly
shaded; €ode> and <Code/Module2> are examples of such resources. Resources unideg to
or E, are drawn darkly shaded or clear respectively; for examplepde/Module2/Bar > is
unique toE; and <Code/Module2/Car > is unique toE,. Note the results for the Semaphores

and Messages hierarchies: although both have children labeled “one” and “two”, we do not

35

want to merge these nodes; because the root nodes are different the Semaphores and Messages

hierarchies are not considered equivalent and non-equivalent hierarchies are never merged.

EventMapE;
Machine Code Process Sync Objects
Poona Modulel Module2 Tester Semaphores
Main Foo Bar One| | Two
EventMapE,
Machine Code Process Sync Objects
Poona Modulel Module2 Tester Messages
Main Foo Car One| | Two
EventMapE; + E,
Machine Code Process Sync Objects
Poona Modulel Module2 Tester Semaphores Messages
Main Foo Bar Car One| | Two One| | Two

Figure 9: An Example of the Structural Merge Operator

3.4.3 The Structural Difference Operator

The Structural Difference Operator compares two or more EventMaps and returns a list of

resources that do not occur in all of the EventMaps. Given our overall goal of comparing the

36

performance of two or more program executions, a natural first question is, how different were
the code and environments used in the two tests, and where did they differ? If we perform two
test runs using identical code running on identical, dedicated platforms, every resource hierar-
chy of the first execution has an identical counterpart in the second execution; performance
data may be meaningfully compared for every focus that is valid for one of the individual exe-
cutions. The comparison becomes more complex if we consider cases in which either the code
or the run time environment (or both) differ between our two test runs. We need to determine
the common set of valid resources. This is accomplished with the Structural Difference Oper-
ator. From the SpaceMap, the user can invoke the Structural Difference Operator. This opera-
tor takes as input two or more EventMaps and returns an EventMap that contains only nodes
that are not valid for at least one of the input EventMaps. The Structural Difference Operator
is implemented using the Structural Merge Operator (see Section 3.4.2). The result of the
merge is filtered so that only the differing resource nodes are displayed. We present examples

of the structural difference operator in Chapter 4.

3.4.4 The Performance Difference

The performance differenceperator answers the question, how did performance vary
between these two different Program Events? It automates the otherwise overwhelming task
of detecting all performance changes between two potentially large datasets. It takes as inputs
a merged EventMap, filters out resources that are not valid for all of the included Program
Events, then returns all foci for which the discrete distance metric (see Figure 10) yields an
answer of true. The list is computed hierarchically as shown in Figure 11. We iterate through

the resource nodes of the EventMap, starting with the focus that represents the entire program

37

execution, the root focus. If there is a performance difference noted, we then check more spe-

cific foci for the same metric. This metric is useful to draw attention immediately to perfor-

mance changes from one version to the next.

%true if IX—y =0
dd(xy) = gOfalse if [x— y<d
Hindefined if (x0)0O(y=0)

Figure 10: The Discrete Distance Operatoris a binary function that indicates
whether or not two specified performance results differ by more than a specified interval.
Here x and y are two different performance results. The Discrete Distance is undefined if

either performance result is null. We use the discrete distance metric as a building block
for clustering and differencing of performance results.

[4]
[5]
[6]
[7]
(8]
9]
[10]

perfdiff EventMap , metric) returns set of focus
[1] answer— {}

[2] engueudpendingQueueEventMap>getRootFocugy(
[3] while ! (isEmpty(pendingQueug

[11]return answer

currentFocus— dequeudpendingQueue
prl — PRE,, m, currentFocus, t = all)
pr2 —« PR(E,, m, currentFocust = all)
If dd(prl, pr2) = true
answer— answert] {currentFocups
for eachf in magnify(currentFocus)
engueue (pendingQueue, f)

Figure 11: Algorithm for the Performance Difference Operator perfDiff ((E; + Ep,) — (E; O E2),

m). The performance difference operator searches through the performance results for the specified
metricm and the requested executidfilsandE2, returning a list of all foci for which the results are
different. The input is an EventMap and a collection of performance results, and the output is a set of

foci.

With this approach, it is possible for detailed performance differences to go undetected. This

situation could occur if two or more performance differences cancel each other out, so that the

38
higher-level focus tests false for performance change. For example, CPU time might be higher

for one function and lower in another, with a net change of zero for the entire module. In this
case, comparison of the two modules will show no performance difference, and we will not
test the individual functions at all. The trade-off here is between the performance gain from
stopping the testing earlier, and a possibility for false negative results. We will re-examine this
issue after we have more experience with the performance difference operator applied to large

scale applications.

SIS Tl
/
A AlaadhC

S G

Figure 12: The focus provides a partial ordering of the dataThis diagram demonstrates ordering
based on the focus. The original nodes are darkly shaded and the newly added nodes are lightly
shaded. The focus on the left, the root focus, represents the whole program. The middle group contains
foci formed by taking a single step from the root focus, along each of the possible paths. The group on
the right shows the foci formed by taking a single step from one of the four foci in the middle group.
Stepping through the set of all possible foci in this way is called magnification.

We construct more specific foci using an operation we call magnify (see Figure 13). As
specified in Definition 4, a focus contains one node from each resource hierarchy. For each

resource hierarchy in the original focus, we form a set of new foci by replacing the given

39
resource with the each of its children in the next lower level of the hierarchy. The result of the

magnify operation applied to a focus is a set of foci.

givenfocus f ={rlOR jl, r20 szz, r3 0 R3J3, ...m0Qd qu”}:
[1] answer- {}

[2] fori=1ton

[3] ff-n
[4] for eachj in childrengi)
[5] answer— answefbl (#)j

[6] return answer

Figure 13: Algorithm for magnify(f). Magnify returns the set of foci constructed by making all
possible one step descents down the resource hierarchy from the given starting focus.

To ask questions such as “Are the performance requirements being met?” and “How accu-
rate was my predictive model?” you select the Program Event you are testing plus the Pro-
gram Event that represents a simulation or previous run, then apply the performance
difference operator. To ask the question “What is the scaling behavior of my code?” you might
select the different platform sizes from the SpaceMap, and apply the performance difference
operator for the relevant metric (probably Execution Time, although you might also select

something more specific).

We designed the Performance Difference Display to focus a tool user’s attention to the par-
ticular parts of the application for which behavior changed from one run to the next. Each
node represents a metric-focus pair with differing performance. Metric-focus pairs with equal
performance results are omitted. In this way, a potentially large amount of information about
application performance is distilled so the user is not overwhelmed with the full set of data. To

illustrate the performance difference operator and display, we present a simple example. We

40

CONTENTS OF EVENTMAP
main.C main
Code Machine node_01
calc.C calculate
APPLICATION DATA
MAGNIFICATION
STEP AXIsS NEwW Focus
1 Machine /Code,/Machine/node_01
2 Code /Code/calc.C,/Machine/node_01
3 Code /Code/calc.C/calculate,/Machine/node_01
Focus CPUTIME | IOTIME
oldAlgorithm: /Code, /Machine 5 sec .2 sec
newAlgorithm: /Code, /Machine 4 sec .2 sec
oldAlgorithm: /Code/main.C, /Machine/NeverDown 1 sec .2 sec
newAlgorithm: /Code/main.C, /Machine/NeverDown 1 sec .2 sec
oldAlgorithm: /Code/calc.C, /Machine/NeverDown 4 sec 0 sec
newAlgorithm: /Code/calc.C, /Machine/NeverDown 3 sec 0 sec
oldAlgorithm: /Code/main.C/main, /Machine/NeverDown 1 sec ..2 sec
newAlgorithm: /Code/main.C/main, /Machine/NeverDown 1sec .2 sec
oldAlgorithm: /Code/calc.C/calculate, /Machine/NeverDown 4 sec 0 sec
newAlgorithm: /Code/calc.C/calculate, /Machine/NeverDown 3 sec 0 sec

Figure 14: Explanation of the Performance Difference Displaywe show a complete set of
information for our example application. The top box shows the resources of the merged EventMap (in
this example the two EventMaps are identical). The middle box details the particular refinement steps.

The bottom box shows the performance data.

show all of the structural and performance data for two Program Events in Figure 14. In the
top box, we show the EventMap. The code is contained in two modules, main.C and calc.C,

and two functions, main and calculate. The application ran on a single machine node. The

41

CONTENTS OF PERFORMANCE DIFFERENCE DISPLAY
1 2 3

WholeProgram[——® node 01 | calc.C [—| calculate

Figure 15: Sketch of performance difference display contents for example of Figure 1¥/e have
numbered each step to match the textual explanation.

middle of the figure shows the focus magnification that resulted in each pair of Performance
Results being checked for a difference. The Program Space contains performance data for
metrics CPUtime and IOtime, for two program versions. The second version is the result of
attempting to optimize the function calculate; the code for function main was not changed at
all between versions. performance data for this example is shown in the bottom of the figure.
In Figure 15, we sketch the contents of the Performance Difference Display that results from
applying the performance difference operator for the metric CPUtime to the two Program
Events shown. We have annotated the display by numbering the steps. The starting point is the
root focus, represented here by the left most node labeled “WholeProgram.” Step 1 in
Figure 15 represents a magnification along the Machine hierarchy, to node_01; step 2 repre-
sents a magnification along the Code hierarchy to calc.C; and step 3 represents further magni-
fication along the Code hierarchy to function calculate. We label each node with the name of
the resource that results from the magnification step taken to reach it. The Program Space con-
tains performance data for metrics CPUtime and 10time, for two program versions. We show

a snapshot of a Performance Difference Display with our prototype in Chapter 4.

42
3.4.5 Matching and Mapping Resources

In the previous section, we described the structural merge operator, and its use in general
gueries on two or more EventMaps. The matching technique we described is appropriate for
simpler cases, however, it is not sufficient for all cases. In practice, the particular resources
used often change from one run of a program to the next. For example, an 8-node application
might run on nodes 0-7 of a machine during one run and on nodes 123-130 of the same
machine on the next run. Similarly, process ID’s are likely to be different for each run. If we
are to relate performance results from a previous run to the current run, for example by using
the performance difference operator, we must be able to establish an equivalency between
(map the differently named resources. Mapping allows us to link resources from different
executions with different names, and treat them as equivalent. We have experimented with
preliminary forms of mapping, and believe that this is an area that warrants further study. Here
we discuss our current approach to mapping.

There are different approaches to resource mapping. One approach is to map conservatively.
One-to-one mappings between resource nodes that match exactly fit into this category.
Another approach is to map more aggressively, allowing mapping between nodes that are
slightly different, including one-to-many or many-to-many mappings. Which approach to use
is determined by the performance-related task being performed. For example, if we are inter-
ested in learning what has changed structurally between two runs of a program, conservative
mapping will yield the most inclusive list of changes. We might determine that performance is
differing for all program runs that include a particular machine node, pointing to a localized
failure or congestion. In constrast, when comparing the performance of two program runs,

using an aggressive mapping strategy will result in performance comparisons for a greater

43
number of pairs of resources. Mapping different machine nodes with an inexact, categorical

definition allows performance per node to be compared; mapping different versions of a func-
tion will allow the performance change that resulted from the code change to be determined.

When we apply the structural merge operator to two resource hierarchies, we inviakera
function on each pair of resources to find the nodes that differ. Resources that remain
unmatched after this step can be manually mapped. All mappings are from one EventMap to a
single virtual EventMap. In this way, we avoid the exponential explosion of maintaining a list
of mappings for each pair of EventMaps in the Program Space. Mapping of individual
resources is specified as a set of directives of the form “raapurceName virtualResource-
Name” specified by the user in an input file or through a GUI by selecting pairs of resources to
map. The virtual resource name refers to one name that will be used to refer to all resource
nodes with a mapping to the same node, regardless of the original resource name. Applying a
complete set of mappings to an EventMap yields a virtual EventMap, each node of which may
map to several differently named nodes from distinct Event Maps. This approach allows us to
use only one list of mappings for each Program Space.

We allow manual mapping of resource nodes, however, we also want the ability to map cer-
tain kinds of resource nodes automatically. Consider the Machine hierarchy. We might define
a match function (=) based on attributes, say machineNodel = machineNode2 if
machineNodel.cpu = machineNode2.cpu and machineNodel.os = machineNode2.0s. We can
map the two Machine hierarchies as follows: (1) independently divide the child nodes of each
hierarchy into equivalence classes. This can be performed by adding an intermediate level to
the hierarchy, one node for each resulting equivalence class. (2) Test selected pairs from each

hierarchy against each other for equality, matching up the equivalence classes into pairs, one

44
from each hierarchy. (3) If all of the classes pair up (that is, there is an equal number of equiv-

alence classes for each of the two original resource hierarchies), we check the cardinality of
each equivalence class. If the cardinality is equal for each pair, we consider that pair of classes

mappable (4) For each mappable pair of equivalence classes, generate a list of pair wise map-

pings.

3.4.6 Making Selections from the EventMap

Performance Results are retrieved by selecting a focus from the EventMap and a metric
from the list of available metrics for that focus. Selecting a valid focus from the EventMap
acts as a filter over the list of available metrics. The answer will contain one or more perfor-
mance results. The user performs queries over the performance results in this uniform manner,
regardless of the particular types of performance results stored for the requested metric/focus;
the answer to a query may mix results from different types of performance results. The partic-
ular EventMap used is retrieved by first selecting one or more particular Program Event(s) via

the SpaceMap.

To ask questions of the form “Did performance of function foo improve when we compiled
with optimization?” you would select the runs with optimization levels of interest from the
SpaceMap, then select function foo from the resulting EventMap, and the relevant metric (per-
haps CPU time) from the list of available metrics. The answer will include performance
results for function foo, for all of the Program Events with the selected optimization levels. To
ask “What's the highest I/O waiting time we've seen when we run on more than 16 nodes,”
select all runs with values of platform size greater than 16 from the SpaceMap, select the 1/0

waiting time metric, then aggregate over the resulting list of I/O waiting time values. To ask

45
the question “What is the scaling behavior of my code?” you might select the runs with differ-

ent platform sizes from the SpaceMap, the root focus from the EventMap, and the relevant

performance metric, for example, Execution Time.

3.5 Implementation Considerations

As with most real world problems, there is more than one approach to designing underlying
database support for the Program Space. Here we discuss the relevant issues. First we briefly
survey the features of two Experiment Management Systems, and compare them to the needs
for our experimental performance environment. Next we present a design for implementing

the Program Space. In Section 3.5.3 we briefly discuss other possible approaches.

3.5.1 Existing Experiment Management Systems

We looked at two existing approaches to providing database support for scientific experi-
mentation: the ZOO project at UW-Madison and the OPM project at Lawrence Berkeley Lab-
oratory. Each of the projects researched the particular database needs of scientists running
experiments[8, 38], and there is much similarity in the reported results. Not all of the features
mentioned by the researchers are implemented in their released tools, however, all were men-
tioned as particularly important to a full implementation of an experiment management sys-
tem. Here we list the features related to our performance environment and comment on their

applicability.

Schemasas commodity objects. In both ZOO and OPM, schemas can be manipulated,
shared, and reused by the scientist. They are stored as objects in ZOO’s meta database, and

can be accessed through a web browser in OPM. This is a radical departure from the tradi-

46
tional database approach, in which the user is not given direct access to the schema. Our per-

formance tuning environment shares the need for available schemas, to enable the schemas to
evolve over the course of experimentation.

Databasesharing. Both projects mention the need for databases to be shared by different sci-

entists and projects. Also a single experiment may involve data from multiple sources. This
sharing directly applies to our performance environment.

Queriescanspanmultiple databases. Allowing queries to span databases would enable dif-

ferent application users and developers to each have their own experimental results locally, yet
still have the ability to use results from other laboratories. (See Section 3.5.3.)

Mechanisnfor launchingnew experiments. This feature could usefully be added to our per-

formance environment, although it is not part of the current design. Experiments in our envi-
ronment are program or simulation runs with monitoring tools in place. A simple example of
the practicality of automating their launch is that a scalability study could be done with the
push of a single button.

Mechanismfor converting datafrom ASCII files into databas®@bjects. In our environment

this means the ability to add new Program Events to the database. Resource hierarchies and
performance results may all be input from ASCII files.

Levels of integrity enforcemento allow incompleteinformation or humanerror. This is a

must in our performance environment, which should allow for metric/focus pairs without any

data at all, as well as gaps in data for different time intervals in a single Program Event. For
example, the Performance Difference Operator must allow for the condition that a focus is
valid for the two Program Events being compared yet no performance results exist for that

focus.

47
Versioning. Part of the potential for our extensible resource definition approach is that

resources representing source code can be enhanced to include the actual filenames or ver-
sions of the files. Integration with functionality of a revision control system could be incorpo-
rated into the match function for such resources, and would be a useful extension.

ObjectorientedfeaturessuchasZ00’s datamodel (MOOSE) and querylanguagg FOX).

We also found a need for object oriented features, as described in more detail in the following
section.

In summary, we found much overlap between the needs of a performance study and the
needs determined for scientific experimentation. In principal, the storage engine for our sys-
tem might be implemented using either ZOO or OPM. We determined this to be impractical,
however, because neither project has produced a complete version with all of the features
needed for us to fully implement our tool. To illustrate the relationship of the Program Space
and ZOO, we present a design for our experiment management system implemented over
Z0OO0.

A schema for the Program Space is shown in Figure 16. We follow the representation used
in the ZOO documentation [76], with the addition of ovals to represent abstract data types and
user defined methods. The three main classes are EventMap, SpaceMap, and Performance
Result. Each new type of performance result stored in the database requires a new ADT be
defined for it, as a child of type PerformanceResult, with method functions for common
lookup features such as getValue (startTime, endTime) and getMaxValue(startTime, end-
Time). This enables queries to be performed over a heterogeneous collection of data.

Here are examples of queries we have been discussing, written in ZOO’s Fox query lan-

guage.

— method

_— L%lsj-rga\;?lue Q integer, character string,

———= setof " boolean, floating point
L) adt

- — — = inheritance

PerformanceResult__ getVaIue(start en@ SpaceMap

@ gp,@/y/ J &@\%dﬂme‘ w
| AttributeValue |

© O

\l/ na D alue

PDHlstogram '—CgetVaIue(start en@)

'''' é ©O ©

| EventMap |

EID | Hierarchy|_<getR00tN0de(>

0, (gewaren) > @
Resourc (getChlldren)

m
rid /na q P I’th ildren

\
I \
v %

Code Resource| Machine Resourcs

Figure 16: Schema for a Program Space containing Paradyn data.

49

1. Select zero or more EventMaps by choosing attributes from the SpaceMap. Here we show
an attribute and value selectedsatectedAttribut@andselectedValueespectively.

for ein EventMap, sn SpaceMap, av in s.members
selecte.hierarchy

where av.name sselectedAttributand av.value =selectedValuand e.eid = s.eid

2. Select zero or more Performance Results from an EventMap.

for ein EventMap, pn PerformanceResult
selectp.GetValuegtartTime endTimé

where selectedFocus p.focusand selectedMetric= p.metricand e.eid = p.eid

3. Select the greatest CPUtime for the Whole Program recorded for any Program Event

select max
(for pin PerformanceResult
selectp.GetValue(start, end)

where p.focus =rootFocusand p.metric = “CPUtime”)

3.5.2 Implementing the Program Space with an Object Relational DBMS

An object-relational database management system (ORDBMS) is a combination of a tradi-
tional relational database management system with newer object-related functionality. This
additional functionality may include user-defined abstract data types (ADTSs), user-defined
methods; constructed types such as sets, tuples, arrays, and sequences; and inheritance [59].

All of the major database vendors (IBM, Oracle, Informix) now provide some amount of
object support, in at least partial compliance with the current SQL3 draft standard[63].
Although the particulars of the implementation vary, as long as we have the necessary object

features discussed here, we can implement the program space on top of that database product.

50
At present, however, not every vendor supplies the full range of object functionality, for exam-

ple, Oracle does not provide inheritance[63].

3.5.3 Other Implementation Strategies

It is possible to use a relational database management system (RDBMS) as the storage
engine underlying an object oriented model. The ZOO project took this approach for their
experiment management software, for example. The difficulties are the amount of work
required to implement the necessary transformations from object-oriented queries to the
underlying database, and the poor performance. There are several examples of a poor fit for an
RDBMS. First is the dynamic nature of the schemas. The difficulty is that the schema is
changing over time; that is, attributes may be added after the initial database design is com-
plete. As long as the total database size is not large, this can be practically achieved by creat-
ing a new schema and copying all data as needed. However, in a traditional RDBMS the
schema is not generally manipulated by users, who typically are not familiar with the Data
Definition Language used. We want users of the system to be able to add performance result

types and resource types while using the system.

The EventMap structure and the resources it contains introduce additional difficulties for an
RDBMS. We need to define the match function for each type of resource node, or at the least
for each hierarchy. This requires an ADT for clean implementation. The Performance Results
require user-defined methods to be extensible, so that a new type of performance result may

be added to the system. This can be done with inheritance.

We would like to leave open the possibility, as a future enhancement, for a distributed ver-

sion of the Program Space that would enable scientists in different laboratories working on the

51
same application to share their performance data. There has been much recent research into

XML[26], an interface specification for describing data over the web. Because it is designed
for data interchange on the web, it includes features for handling incomplete data and varying
data schemas. An XML document is analogous to a relation in a database and a DTD is the
equivalent to a database schema. As in the scientific experiment database projects discussed in
Section 3.5.1, this approach provides direct access to the schema. Research currently under-
way will add the necessary features to make sharing data through the web a realistic alterna-
tive. For example, XML-QL [9] is a proposed query language for XML with many of the
features needed for a shared, distributed data store. In the field of chemistry, for example,
researchers have constructed the Chemical Markup Language as a set of XML definitions to

be commonly used within their research community.

3.6 Summary

In this chapter, we presented a representation for a set of related program executions called
the Program Space. The complete Program Space contains an EventMap, a collection of Per-
formance Results, plus a SpaceMap describing execution-level characteristics that allow the
different program runs and versions to be distinguished. We described the structural merge
operator, its ordered comparison of two or more program executions, and its use in building up
an EventMap that represents multiple program runs. Next we described our method for repre-
senting individual Performance Results, and operators for retrieving information from the
Program Space: simple queries, discrete distance, and performance difference. We concluded

with a discussion of implementation issues. In the next chapter we present examples of a pro-

52
totype implementation of the Program Space performing a variety of tasks common in perfor-

mance studies.

53

Chapter 4
Case Studies: Applying the Experiment Management Approach

to Common Performance Activities

Demonstrating the utility of our experiment management approach for performance studies
necessitates testing it in practical situations with existing parallel codes. To this end, we
implemented a prototype experiment management system and used it with structural and per-
formance data from parallel applications. We designed each small study as representative of
common and essential tasks carried out in laboratories involved in writing and using parallel
applications. For example, the project from which we gathered data for our first study has the
following characteristics common to many environments in which performance related studies
are carried out: The overall project is solving problems in physics, not computer science, but
to do so high end computing technology must be used; many of the scientists involved are not
primarily computer scientists; the computation is large enough that performance and scalabil-
ity are key concerns — the more efficiently the simulation can be computed, the higher the

quality of the result that can be obtained, and therefore the more useful the simulation will be;

54

and the specific algorithms underlying the code will evolve over time concurrently with the
various porting and tuning efforts.

In the first study, we used our techniques for structural and performance data to examine
results from several runs of the same program on two different platforms. The data is from a
research project involving engineers and computer scientists from the University of Wisconsin
and Syracuse University, that is developing an application to perform radiation hydrodynam-
ics simulations. We examined data from a sequential version of the application on two differ-
ent platforms. Our second study evaluated performance changes as a shared memory program
evolved through versions during a performance tuning study. Our third study used the struc-
tural difference operator to compare program versions constructed using different communi-
cation libraries.

Our prototype provides core functionality of the Program Space. It reads in resource hierar-
chies and test data from Paradyn sessions, and provides a SpaceMap, one or more EventMap
displays, a facility for retrieving and viewing performance data, and a performance difference
operator. We wrote the code using Tcl/Tk [19] extended with a tree widget [20] and the BLT

library [12].

4.1 Draco

In this study, we examined two versions of a scientific code called Draco, currently under
development by a team of researchers at the University of Rochester and the University of
Wisconsin. Developed at the Laboratory for Laser Energy, Draco is an adaptive Lagrangian-
Eulerian code to perform radiation hydrodynamics simulations, especially related to direct

laser driven inertial confinement fusion. A variety of physics packages are employed in each

55
time step to simulate the development of the system. The various computational methods

implemented in the different physics packages result in some packages being more computa-
tionaly intensive than others. The simulation code is being performance tuned and parallel-
ized. The focus of our Draco study is a sequential code version currently being improved to
enable finer-grained solutions to the physics problem being simulated to be computed.

Here we describe using our prototype tool with a sequential version of the code, written in
Fortran 90. The application was ported from SGI Irix to SPARC Solaris by Paradyn research-
ers to begin examining application performance and to allow further study of Paradyn’s
dynamic instrumentation with such a large and complex application. There are approximately
50,000 lines of source code. The 289 functions (not counting libraries) are divided into four
modules: 1d, 2d, 3d, and main. The resource hierarchies for the SPARC platform contained
10,152 nodes in total, including resource nodes representing libraries and library functions.

In the remainder of this section, we describe using the prototype to examine the data from
three runs of the Draco application: (1) an execution of the SGI version, (2) an execution of
the SPARC version, and (3) a repeated execution of (2). These different runs were assigned
EID’s, 1, 2, and 4 respectively.

We used the Paradyn Export feature to save performance data and resource information
from several runs of the code. Export writes each internal Paradyn histogram into a file with
header information (metric, focus, time interval size, start time, number of values) followed
by a list of time/data value pairs. It also writes an index file, that provides a list of the individ-
ual data files, and a resource definition file, that lists the names of all of the resources for the
Paradyn session. Our first step was to load the application data into our prototype. We speci-

fied an application name, DRACO, that refers to the entire Program Space we are building.

56
Next we initialized each of three Program Events with a string name, the name of the directory

that contains its data files, and a list of application attributes for the SpaceMap.

Figure 17 shows two views of the resulting SpaceMap. The view on the left lists the

BHOW EventMap | SHOW EventMap |
DRACO Spacelag DRACO SpaceMap

Eih i EiD

EanELFTENSY 1

platformSize &

o3 4

rim_Dimensicns H Ccancurrenoy

EagUEniial

 platformSae
i
25
Irin
solars
1 num_Dimensicns
2

Figure 17: SpaceMap for the DRACO application.

attributes used to describe individual Program Events. The view on the right shows the same
SpaceMap with the attribute headings expanded to show a list of all of the currently valid val-

ues for these attributes. We recorded four attributes: concurrency (sequential or parallel), plat-
formSize (the number of machine nodes used in each particular program run), OS (operating
system used) and num_Dimensions (referring to the underlying physics simulation algo-
rithm). EID is a unique identifier assigned by the system to each Program Event. The first step
in navigating the experimental data is selecting attributes from the SpaceMap, then viewing

the resulting EventMap.

57

File ¥iew MMop

L

& main_output_1d_

6 maih_solver_|acebd 1d_

/6 math_sobver jacobi_rad mgd_1d_
b B maih_sodver_mor_1d_

& mhdbeid_

-5 mhdbdid

-6 mhocdid_

6 rad_trans_mgd_mcoefs_1d_

[\'E rdvalid_
U rlunid_
6 Alu_initd_
5 flux_intvoitd
'8 rgridid
06 rinterpld_
P8 mmasid_
G rrTvelTd_
i mvemid_
B rrvem_infld
i rrvheemid_
G ryitiunid
i ihermal transport_meoels 1d
5 thermal_transport_update_1d_
libc_psr.sa.1
lib=dl. 5.7
&R libdyninstAT 50,1
litTalge.1
libtak2. 501
lits Trnalai 8o, 1

IEEST——SSSEEESSSS——S————————————EFF

Figure 18: A Merged EventMap for three different Draco runs.

We chose the two Program Events from the SPARC platform by selecting “solaris” under
the OS attribute and pressing the “SHOW EventMap” button. The result is shown in
Figure 18. In this display we show the result of applying the Structural Merge Operator to the
two Program Events. Each Program Event is assigned a unique iden‘ti(i@ R). We tag
each resource in the structural display with a numeric label showing the sum of the EIDs of
the Program Events that contain that resource. In this case, we have merged Program Events

with EIDs 2 and 4, so a numeric label 2 or 4 indicate a resource unique to one Program Event

58

e TR T T

DIFF | MAP | ORIENT | DaTa | EXIT |

Structural Taflerence

— -4 graco_pd_SUMN_z{3T200_chacolata)
SR & {'-E draco_pd SUMN z{2T276 chocolate]

=l |

Figure 19: Result of the Structural Difference Operator applied to two Draco Program Events.

and a numeric label 6 indicates a resource common to both. Children of resource nodes can be
shown or hidden by clicking on the parent node. The snapshot we display here was taken after

expanding the Code module node “d_1d.so.”

Our expection is that nothing has changed between these two versions, since no source code
revisions occurred, and both times the program was run on the same machine. However, we
want a quick way to verify this. Using the merged EventMap is impractical, because it would
require us to visually check the numeric labels for all ten thousand nodes of the hierarchies.
Instead we display the Structural Difference (Figure 19). This shows us only what has
changed between the two Program Events; in this case, only the process identifiers are differ-
ent. Note that the nodes “ROOT” and “Process” appear here only as placeholders. They are
displayed to show the location of the process-related resources within the overall EventMap.
We can distinguish such placeholders by their numeric labels: a label of 6 indicates that the

resource is common to Program Events 2 and 4.

Figure 20 shows the EventMap for all three of the DRACO Program Events, with the Code

hierarchy expanded. The different program runs are distinguished by their unique identifiers:

59

i lbiprodaiso
6 ibisu.s0.1
T RO 5 linisumal.so.1
1 ibiin.es
V& lipiul 501
£l Bm.eo
& bm.5a.1
T Machine 4 ibsunmath.ga.1
'T Process v mod.go

T Bynchbject
E J

Figure 20: Merged EventMap for the three Draco Program Events (before mapping).

i
T ibdyminsiRT 801
/6 libiaiso
/6 aiE.80.1
= £ 1 ibifloso
-6 I asial g1
(-6 Wbimaxval.s0.1
L6 limintal.se.
5 i al 8.1
Jd

1 for the program run on the SGI platform, and 2 and 4 for the two program runs on the
SPARC platform. Note that the first three modules from the top of the list, 1d.so, 2d.so, and
3d.so, only occurred in the IRIX-based runs, and the modules d_1d.so and d_3d.so only
occurred in the SPARC-based runs. This is an example of common software engineering prac-
tices affecting our ability to match equivalent resources. The module d_1d.so is equivalent to

the module 1d.so from a semantic perspective, however, on one platform a slightly different

60

File View Map

ExMap: GLOBAL_EMAP

7 DEFAULT_MODULE

7 libfimaxvai.so.1
7 libfiminlal.so.1
7 libfiminvai.so.1

7 7 chocolate.cs.wisc.edu

4 draco_pd_SUN_z{27200_chocolate}
7P
rocess<< o _pd_SUN_z{27276_chocolate}
7 SyncObject

Figure 21: EventMap for the three DRACO Program Events (after mapping).

naming convention was used. Also, the functions listed in 2d.so in the IRIX version are
included in DEFAULT_MODULE in the SPARC version. We used mapping to transform the
resources so that the semantically similar modules would be considered equivalent. We
needed only three simple mapping directives to accomplish our goal:

* map /Code/d_1d.so /Code/1d.so

61
* map /Code/d_3d.so /Code/3d.so

 map /Code/2d.so /Code/DEFAULT _MODULE.

The result of this mapping is shown in Figure 21.

4.2 Performance Tuning a Shared Memory Application

The goal of this study was to test out our performance difference operator, to examine its
potential utility in a performance study. We used data from a previously completed perfor-
mance tuning study of a protein-folding application, called Fold4, developed in our Chemical
Engineering Department. The eventual target platform for the application was the SGI Power-
Challenge. The first, sequential, version of the application was written in Fortran 77. A perfor-
mance tuning study, reported in detail elsewhere [79], was conducted. The engineers ported
the application from the SGI PowerChallenge to the Wisconsin Cluster of Workstations
(COW), a cluster of SusPARGstation 20s, each with two 66-MHz Hypersparc processors and
a Myricom Myrinet interface, running Solaris release 5.4. On the COW, the application was
run on the Blizzard distributed shared memory system, and Paradyn was used to gather perfor-
mance data using Blizzard. Once tuned, the application was then ported back to the SGI Pow-
erChallenge. We analyzed the program versions and performance data from this study after it

was completed.

We ran three versions of Fold4, taken from different steps in the performance tuning study.
Version 1, the starting point of the tuning study, resulted from porting to the COW. A problem
was identified with a serial portion of this code version that consumed 40% of the execution
time on 8 nodes. The source code was modified to change to data partitioning to try to relieve

the bottleneck, resulting in Version 2. Version 2 exhibited a problem with false sharing of data

62
blocks. Data was padded and aligned to improve the cache behavior, resulting in Version 3.

We present selected results here to demonstrate the benefit of the experiment management
approach in navigating the large space of resources and data involved in a complete perfor-
mance tuning study.

To consider the changes from Version 1 to Version 2, we merged these two EventMaps and
applied the Structural Difference Operator (Figure 22). The resulting EventMap display dis-
tinguishes foci valid for both EventMaps. TiMemory hierarchy shows the data partitioning
change that occurred, in the form of eighteen new data structures storing particle data (GM-
>part_x). This restructuring was implemented to alleviate a performance bottleneck caused by
frequent data movement between nodes.

Next we applied the performance difference operator with metric memoryBlockingTime.
The Performance Difference Operator compares individual pairs of performance results and
reports any that differ by more than a specified threshold (see Section 3.4.4). It progresses
through the available performance data according to the partial order defined by resource nor-
mal form. Each magnification path is followed until no further magnification is possible or
until the measured difference in the data is within a specified delta.

In Figure 23, we present a Performance Difference Display for the protein folding applica-
tion study. This display shows that memory blocking behavior differed overall in the two runs;
further, it differed in each process, and those differences were localized to five data structures
(GM, GM->part0, GM->partl, GM->part2, GM->part3). (Note that the symbol “->” is part of the
data structure name itself, and does not imply thatis a parent node gfarto, for example, in
our resource hierarchy.) The ability to verify the performance changes at this level of granular-

ity automates what was a common and time consuming task in the actual tuning project.

63

DIFF | MAF | ORIENT | DATA | EXIT |

Structural Taflerence

3 GM
GM-part 0

N2 GM-opart_12_
{2 GM-apart_13_

Figure 22: Result of Applying Structural Difference Operator to Fold4 Versions 1 and 2.

In the actual performance study, zeroing in on the performance changes between the ver-
sions was a time-consuming task: the actual study took approximately three to four person-
weeks. Here we have demonstrated that our technique is useful for actual, not just toy, prob-
lems, and that it can be used to shorten the time required to draw meaningful conclusions
about an application’s evolving behavior. This validates the use of our technique for similar

porting/tuning efforts, which are a common facet of high performance software development.

64

File View

Performance Difference Display
Program Events: (fold4_1, fold4_2) Metric: memoryBlockingTime

Al

GM

GM->part
process1 GM->part1
GM->part2
GM-zpart3
GM
GM->part
GM-zpart1
GM->part2
GM-zpart3

WholeProgram

process3
processd

Pl |z

Figure 23: Results of the Performance Difference Operator for metric MemoryBlockingTime.

The nodes shown represent resource combinations for which there is a performance difference detected between
the Program Events. Starting at the left, the notleleProgram means that there is some performance change
between the two runs. The process nodes indicate that performance changed in some way for each of the four

processes. The next level details individual shared data strucBMeis: a shared index structure, aBkl-
>part0, GM->partl, GM->part2, andGM->part3 are the shared data structures listed in the index. The data
structures listed are those common to both runs for which memoryBlockingTime changed. This snapshot was
taken after selecting two nodespcess1 andprocess2, to see a detailed display of their children. A
visualization of the performance data for any node, showing the plots of the values for each run, can be launched
by selecting the node on this display.

4.3 Comparing Alternate Implementations: Porting a PVM Application to MPI

In this study we examine two versions of a parallel application, developed with two different
communication libraries, PVM and MPI. Our goal was to provide feedback that would be of
use to a tool user, directing their attention to the structural changes in the application. That is,
what has been changed in the application in porting it to a new communication library? The
application, ns, is a parallel message-passing FFT code that solves the Navier-Stokes equation

in three dimensions. We obtained this code from scientists at IBM Research at Haifa. Its his-

65
tory and use illustrate a typical candidate for an experiment-management based approach to

performance study — the first version of the application was written in sequential Fortran,
then it was transformed into C, parallelized using MPI, and finally rewritten using PVM. We
used two versions of the application, the MPI and PVM versions, and examined what we
could learn of the differences between the versions using our newly developed methods.

We used our tool to compare the structure of two versions of the application, before and
after a port from the PVM to the MPI message passing libraries. A scientist porting an appli-
cation wants directed feedback about the resulting changes in performance to the application,
and hopefully some idea of the cause of any performance degradation. They may or may not
be the original authors of the code, and therefore they may have only minimal knowledge of
the application design and code structure.

In Figure 24, we show the EventMap that resulted from applying the Structural Difference
Operator to EventMaps representing a 4-node run of nspvm (PVM version) and a 4-node run
of nsmpif (MPI version), both on the IBM SP-2. This display provides a quick way to see
what differed in both the code and the environment between the two runs. Figure 24 shows
two different snapshots of the resulting EventMap. In this example, the PVM version has been
assigned EID “1” and the MPI version has been assigned EID “2,” so resources common to
both are labeled with a “3.” The display on the left shows a portion ofdbde hierarchy
expanded. In theode hierarchy, three modulesfft.c, ns3d.c, andp3d.c) appear in both runs.

At the leaf level, we can see four procedurssid, andstripl, strip2, strip3) appeared only in
execution 1. Themessage hierarchy on the right shows the changes in message tag®: tggs
0_3, 0_5, ando_2 represent MPI message tags, and the rest represent the message tags for the

PVM version. By selecting a focus from the EventMap, we can display the performance data.

66

File View | File WViewr
Progrm Event Group Dhaplay Program Evenl Oreup Display

J =) | I |4

Figure 24: Resource Hierarchies for EventMap: nspvm+ nsmpif. The EventMap Display allows the
developer to navigate resource hierarchies and quickly see what differed structurally between two (or more)
program runs. The display is organized like the resource hierarchies from Figure 4 in Chapter 3, with the
addition of an integer Event Identifier (EID). Each run is labeled with a value 1, 2, 4, 8, etc. Resources that
appeared in only one run, are labeled with the EID of that run (1 or 2 in this example). Resources that appear in
more than one run are labeled with the sum of the EIDs; the resources labeled with 3 appeared both runs 1 and 2.

[Note: in this early prototype version, the term “Program Event Group” was used to refer to the EventMap.]

In this section we have shown the utility of the EventMap interface for highlighting differ-

ences in code versions necessitated by porting to a new communication library.

4.4 Summary

In this chapter we have presented examples of using our prototype to (1) examine perfor-
mance data gathered before and after a scientific application was ported to a new platform, (2)
compare implementations based on alternate communication libraries, and (3) evaluate perfor-

mance as a program evolves through versions. In each case, the use of an experiment manage-

67
ment system allowed tasks typically involved in performance tuning and developing parallel

applications to be completed simply and quickly.

68

Chapter 5

Using Historical Data in Performance Diagnosis

5.1 Introduction

This chapter describes how historical performance data, i.e., data gathered in one or more
previous executions of an application, can be used to increase the effectiveness of automated
performance diagnosis. Accurate performance diagnosis of parallel and distributed programs
is a difficult and time-consuming task. In a recent survey of scientists actively engaged in par-
allel performance tuning[33], 50% reported an average time per tuning task of several weeks
or longer. Recent research [28, 32, 70, 77] has examined possible approaches for automating,
and thereby simplifying, the process of diagnosing a single program run. We present a novel
approach to automated diagnosis that uses application data gathered in previous executions to
guide the search for performance bottlenecks. This method leverages off of the repetitive
nature of the performance tuning process — it is rare for a parallel application to be examined
with a performance tool only once. Adding historical knowledge about an application pro-

vides a means for the tool to perform a more effective diagnosis.

69
Our starting point was an existing diagnostic research tool, the Paradyn Parallel Perfor-

mance Tool [54]. Paradyn’s Performance Consultant performs online, automated bottleneck
detection in a single execution of a parallel or serial program. We modified the Performance
Consultant, incorporating several different types of historical knowledge about an applica-
tion’s performance into the tool’s search for performance problems.

We chose the Performance Consultant as our foundation for several reasons. First, using an
online tool presents all of the same challenges as other types of tools, such as trace-based
post-morem analysis and application steering, so our approach might be generalized to a wide
array of uses. Second, there are some challenges unique to an online approach, so by using
one we assure that our work might be applied to other online tools. The development of an
API for dynamic instrumentation [29] and IBM’s Dynamic Probe Class Library (DPCL) [58],
currently in beta release, that provides a set of library functions for tool developers to use to
incorporate dynamic instrumentation into their tools, suggest that more tools using an online
approach will be available in the near future.

The general search strategy used in the Performance Consultant works well for studying
new and unfamiliar applications. It provides systematic investigation of an application that
does not depend on any assumptions about the application or the runtime environment, so it
yields useful information for a wide range of programs. In practice, we noticed that the second
time we sat down with the same application, it would miss data for interesting events and pos-
sibly stop before completion due to inherent instrumentation cost limits. There is a natural
tension between a generally useful, single button approach to performance diagnosis and a
more application-specific, knowledge-dependent approach. Our goal is not to replace the Per-

formance Consultant’s single button model, rather, to augment the search strategy in cases

70

where prior knowledge of the program being studied is available. We use this knowledge to

incorporate several different types of historical performance data into the tool’s search for per-

formance problems.

The goals for this set of studies were:

Shorten the time required to identify important bottlenecks. We evaluate this strategy by
measuring and comparing the total time to find bottlenecks with and without historical
information.

Decrease the amount of unhelpful instrumentation. There is a practical limit to the total
amount of instrumentation in place at one time, to minimize inaccuracy of results due to
perturbation. Decreasing unhelpful instrumentation in some cases will allow the search to
continue where it might otherwise reach a limit and halt. We evaluate this strategy by mea-
suring the total amount of instrumentation and the time to find bottlenecks.

Determine the precise location of all significant bottlenecks. Results most useful for per-
formance tuning are obtained when testing identifies a reasonably small number of well-
defined potential problem areas. Practical limits on the total amount of instrumentation
can result in important bottlenecks not being fully explored because the limited resources
are being used to test less useful bottlenecks. We measure this by identifying a set of
important bottlenecks for a particular execution, then evaluating the effect of historical

information on finding the bottlenecks in that set.

We save performance and structural data from successive executions of an application, then

extract knowledge useful for diagnosis from this collection of data, in the form of search

directives. There are three types of directivesining directiveshat tell the tool to ignore

some resources entirelgriorities that tell the tool which aspects of the application and run-

71
time environment to look at first; artiresholdghat tell the tool specific values against which

to measure the application’s actual performance. We use the directives to guide online perfor-
mance diagnosis with an enhanced version of Paradyn. We evaluated our technique by testing
an MPI application on the IBM SP/2, with reductions of 31% to 98% in the time needed to

locate performance bottlenecks.

Next, we provide a brief description of the Performance Consultant and how we changed it.
We describe the three mechanisms for including historical data in a diagnostic tool in
Section 5.3. Then we present our experiments and results in Section 5.4. We finish with dis-

cussions and conclusions in Section 5.5.

5.2 Paradyn’s Performance Consultant

Paradyn is an application profiler that uslgiamic instrumentatioto insert and delete
measurement instrumentation as a program runs. This approach results in a relatively small
amount of data, in contrast to most tracing methods that may result in (possibly unusably)
large data files. In Paradyn, a program is representegesyurce hierarchigsand specific
parts of a program are identified usingogus.This is a simpler, single execution version of
our representational scheme as described in Chapter 3; in fact, it was the starting point we
used in developing our multi-execution model. Paradyn’s Performance Consultant (PC) [32]
capitalizes on dynamic instrumentation to automate bottleneck detection during a program
execution. The PC starts searching for bottlenecks by issuing instrumentation requests to col-
lect data for a set of pre-defined performance hypotheses for the root focus or whole program.

Each hypothesis is based on a continuously measured value computed by one or more Paradyn

72
metrics, and a fixed threshold. The full collection of hypotheses is organized as a tree, where

The Performance Consultant.

CPUbound

bubba.c goat partition.c
channel.c
bubba.c
outchan.c partition.c p_copy
channel.c

anneal.c redosetmap

outchan.c delmem

graph.c overap
p_isvalid

Figure 25: A Performance Consultant search in progresShe three items belo#opLevelHypothesis
have been added as a result of refining the hypothesis. HadessiveSyncWaitingTime and
ExcessivelOBlockingTime have tested false, as indicated by node color (pink), and @éd¢bound (blue) has
tested true and has been expanded by refinement. Thelutdesc, channel.c, anneal.c, outchan.c, and

graph.c all tested false, whereas the nodeat andpartition.c tested true and were refined.

hypotheses lower in the tree identify more specific problems than those higher up.
For example, the PC starts its search by measuring total time spent doing computation, syn-

chronization, and I/O waiting, and compares these values to predefined (user set) thresholds.

73
Instances where the measured value for the hypothesis exceeds the threshold are defined as

bottlenecks

Each node in a PC search represents instrumentation and data collectionhpotee{
sis:focus) pair. If a node tests true, meaning a bottleneck is found, the Performance Consultant
tries to determine more specific information about the bottleneck. It considers two types of
expansion: a more specific hypothesis, and a more specific focus. A child focus is defined as
any focus obtained by moving down along a single edge in one of the resource hierarchies.
Determining the children of a focus by this method is referred tefisementlf a pair (h : f)
tests false, testing stops and the node is not refined. The PC refines all true nodes to as specific

a focus as possible.

Each (ypothesis : focus) pair is represented as a node of a directed acyclic graph called the
Search History Graph (SHG). The root node of the SHG represents the pair
(TopLevelHypothesis : WholeProgram), and its child nodes represent the refinements chosen as
described above. Paradyn displays the SHG in list box form; we show an example in

Figure 25.

Depending on the number of resources needed to represent an application, the number of
hypothesis/focus pairs to be explored might be quite large. To prevent the PC data requests
from overwhelming the system capacity or perturbing the application to a point where reliable
results cannot be determined, the cost of instrumentation enabled by the PC is continually
monitored. Search expansion, which generates new instrumentation requests, is halted when
the cost reaches a critical threshold, and restarted once instrumentation deletion (initiated

when nodes test false) causes the cost to return to an acceptable level.

74
5.3 Types of Search Directives
We have developed three mechanisms for including historical data in a diagnostic tool:
pruning directiveghat tell the tool to ignore some resources entir@lyorities that tell the
tool which aspects of the application and runtime environment to look at firsthaesholds
that tell the tool specific values against which to measure the applications’s actual perfor-

mance.

Pruning directivesnstruct the diagnostic tool to ignore a subtree of a resource hierarchy in
its evaluation of a specific hypothesis. They are a mechanism for conveying information about
insignificant parts of an application. The total number of hypothesis/focus pairs tested by the
Performance Consultant may become large if the total number of resources is large. In prac-
tice, this is frequently true. The top-down approach taken by the PC has the effect of exclud-
ing part of the potentially huge search space, since false nodes are never refined. Prunes
further shrink the size of the search space. For example, we can avoid the overhead of instru-
menting small, infrequently executed functions by pruning them from the search. Pruning
directives can also be used to customize the search strategy for a particular environment. For
example, the static process model of MPI version 1 [24] leads to a one-to-one correspondence
between process and machine noderf@rocess programs run enmachine nodes. It is not
necessary to investigate relative performance by both process and machine, so we can prune
out the machine hierarchy. Pruning does not dictate the overall search strategy employed —
what to examine first or next — rather it reduces the size of the total search space. One possible
side effect of pruning is incorrectly eliminating something important. For this reason we also

investigated other methods with better robustness. We investigated pruning based on historical

75
data, such as functions with short execution time and redundant hierarchies (e.g. machine

hierarchy if processes and machines map one-to-one) or sections of hierarchies. We also
investigated pruning based on general rules, such as pruningytbevject hierarchy from all

but synchronization-related hypotheses.

Priorities assign a relative level of importance to specified focus-hypothesis pairs. This
allows resources more likely to be responsible for behaviors of interest to be studied first,
allowing data to be collected for a longer time interval. Unlike prunes, priorities do not
exclude any foci from consideration; they instruct the diagnostic tool to consider certain
hypothesis-focus pairs first. Each hypothesis-focus pair is given priority: High if it tested true
in at least one previous execution; Low if it tested false in all previous executions; otherwise,
Medium. High priority pairs are instrumented at search start and are persistent (i.e., testing
continues throughout the entire program run, regardless of whether a true or false conclusion
is reached). Starting up high priority pairs immediately, rather than waiting for the default top
down search order to refine down to them, results in more control over the overall search
order. By comparison, setting priority to medium or low only ensures an ordering between the

node and its siblings.

Thresholdsare the values used to determine if a hypothesis is true or false for a given focus.
In the standard version of Paradyn, there is a threshold value that can be set by the user for
each hypothesis. The goal is to keep the number of bottlenecks reported in a practically useful
range. Reporting a large number of different bottlenecks yields inadequate guidance to the
tuning effort, i.e., what to look at first, and also drives up the cost of instrumentation. Report-

ing only one or two bottlenecks, or failing to refine the bottlenecks to a detailed level, provides

76
less information than might reasonably be obtained through simple visualization. We investi-

gated automatically setting the thresholds based on historical data.

We added new functionality to the Performance Consultant that allows hypothesis defini-
tions to be custom defined, instead of built-in as they are in the standard Performance Consult-
ant. We also added infrastructure to input search directives, and to write Paradyn session data
to files. Since Paradyn’s front end is implemented using Tcl/Tk commands, we implemented

these new features as Tcl commands, as detailed below.

¢ shg setPriority hypothesisName focus [high|medium|low]

Specifies a priority level (see Section 5.3) for the specified hypothesis-focus pair.

* whyAxis addHypo hypothesisName parent metricl metric2 threshold compari-
sonOperator expandPolicy
Adds a new hypothesis with the specified name to Paradyn’s why axis. Parent is the name
of the parent node on the whyAxis. The two metrics are used to calculate the value of the
hypothesis using performance data for a specific focus. The resulting value is compared to
a threshold via the comparison operator (>, <, or =). If specified, the expand policy dic-
tates whether the search will continue by testing the same focus with the child of the cur-
rent hypothesis, or the same hypothesis with the set of refinements to the current focus.

» whyAxis addPrune resourceName hypothesisName

Specifies a part of the search space to ignore (see Section 5.3).

¢ save data [global|phaselall] directoryName
Writes out the contents of all Paradyn time histograms to files created in the specified
directory. The options shown dictate whether global data, phase-specific data, or both will

be written.

77

* save resources all dirName

Writes the where axis contents, a list of resources, to a file in the specified directory.

* save shg [global|phase] dirName
Writes the data contained in the Performance Consultant’s search history graph to afile in

the specified directory.

5.4 Experiments and Results

We performed a set of experiments to evaluate our introduction of prior knowledge into the
Performance Consultant’s search. We investigated the effectiveness of adding pruning and pri-
ority directives to the Performance Consultant, by measuring and comparing the time to locate
the application’s performance bottlenecks with the different methods. We also studied the
advantages of using application-specific thresholds formulated using historical data, by mea-
suring and comparing the number of bottlenecks successfully diagnosed and the number of
locations instrumented to gather the needed data. Finally, we studied the use of pruning, prior-
itization, and generated thresholds in diagnosing different versions of the same application, to
simulate the common practice of performance tuning successive versions of an implementa-

tion. We describe these experiments in more detail in the remainder of this chapter.

5.4.1 Using Pruning and Priority Directives

We ran our enhanced version of the Performance Consultant on an MPI application that
solves the 2-D Poisson problem[24], running on four nodes of an IBM SP/2. First we ran the
PC on the application with no modifications, and saved the resource hierarchies, search his-

tory graph, and performance results. This run forms our base case and was allowed to run to

78
completion to identify the complete (100%) set of possible bottlenecks. Then we tested three

variations of directed searching: first we generated only pruning directives, second only prior-
ities, and third a combined version with both prunes and priorities. Identical search thresholds
were used in all runs. In each experiment, we recorded the time each bottleneck was reported
by the tool. The times we recorded are the timestamps assigned by Paradyn to the data, and
reflect execution (elapsed) time. Since Paradyn performs dynamic instrumentation, the start-
ing timestamp is determined by the instant of the instrumentation request, plus the time
required to actually insert the instrumentation into the application code. Each conclusion

about a performance hypothesis is reached only after data has been collected from the running

application for a specified minimum time interval.

% o
B'necks | . NO_ Prunes Only Priorities Only FIBIIIES S A
Directives Prunes
Found
All General Historic
25% 115.2 80.0 (-30.6% 102.4 108.8 80.0 (-30.6%0) 51.2 (-55.6%)
50% 182.4 83.2 (-54.4% 121.6 204.8 124.8 (-31.6%06) 57.6 (-68.4%)
75% 1011.2 140.8 (-86.1% 169.6 281.6 211.2 (-79.1%0) 86.4 (-91.4%)
100% 2611.2 169.4 (-93.5% 236.8 470.4 560.0 (-78.6%) 147.2 (-94.4%)

Table 1: Time (in seconds) to Find all True Bottlenecks with Search Directives

The results are reported in Table 1 and Figure 26. In Table 1, each row presents the time in
seconds for the tool to locate the percentage of total bottlenecks specified in column 1, from
25% to 100% of the total. We were most interested in measuring the time to discover all the
bottlenecks, since the more detailed level bottlenecks are particularly important and tend to be

found later in the search. Because Paradyn reports results to the tool user as the application is

79

running, we were also interested in seeing how quickly the tool would discover some or most
of the bottlenecks. Column 2 of the table reports the time needed to find bottlenecks without
any prior knowledge, which serves as the base case against which we are measuring our new
techniques. The remaining columns list results for experiments of adding different types of
search directives, as we describe in more detail below. In Figure 26 we graph percentage of
true bottlenecks found versus time in seconds, using the full set of data points for each of four

cases: no directives, prunes only, priorities only, and prunes and priorities combined.

109 4

i
= |
i)
e 1]
E
: 1]
) TE -2
(=]
2 |
1] | —Hu e |
3 o Ll B 1 es
-
. 50 —] R |
=]
1]
L 2
F! Mo il bes
el
E".- 25 1 | Prunes & |
1] | Priarithes
E N | e

a

] 500 Hlalula] 1500 2000 500

lime in Saconds

Figure 26: Percentage of True Bottlenecks found over time using different types of search
directives. Each line shows the time to find some percentage of the complete set of true bottlenecks,
from 0 to 100. Prunes included both general and historic prunes. Data from this study is also

summarized in Table 1.

The first experiment investigated the performance advantages obtained using pruning direc-
tives. We used data from previous runs to generate a list of pruning directives. Then we ran

Paradyn, providing the list of pruning directives as input to the modified Performance Con-

80
sultant. General prunes, such as pruning the /SyncObiject hierarchy from all but synchroniza-

tion-related hypotheses, are not specific to a particular application or environment. Historic
prunes, such as pruning a specific function with low execution time, are formulated based on
data gathered in one or more previous executions of the same application. We evaluated the
effects of each of the two types of pruning; the results are listed in the “Prunes Only” column
of Table 1. The use of general and historic pruning directives resulted in improvements in time
to locate 100% of the bottlenecks of 91% and 82% respectively. We see a substantial improve-
ment with either type of pruning, and note that in this case general prunes alone performed
better than historic prunes alone. The ability to specify general prunes varies with the overall
type of application. For example, since the application in this study was implemented using
MPI version 1, which has a static process model, we could add a general prune to remove the
process hierarchy, and that yielded good results. However, we would not be able to specify
this general prune for other types of applications. The combination of general and historic
yields the best results: comparing the subcolumns of “Prunes Only,” we see that it took 236.8
seconds to find 100% of the bottlenecks with general prunes, compared to 169.4 seconds with
both type of prunes, an improvement of 28%. Combining the two types of pruning directives
resulted in a reduction of 93.5% in time to locate all true bottlenecks compared to the “No

Directives” case.

In the second experiment, we studied the effects of ordering the search for bottlenecks using
priorities. We used historical data to generate priorities for each hypothesis/focus pair as out-
lined in Section 5.3. We expected that, compared to using the PC with no historical data, we
would reduce the time required to find the major (true) bottlenecks. Priorities do not reduce

the number of potential bottlenecks tested, they change the order in which the candidates are

81
tested. As shown in column 4 of Table 1, we obtained a reduction of 79% in time to locate all

true bottlenecks. The improvement is more modest than the reduction of 93.5% we obtained
using pruning directives. However, reordering the search does not introduce the possibility of
missing bottlenecks, which is an important advantage to the method over using pruning direc-

tives.

In the final experiment, we tested a combination of prunes and priorities. Our goal was to
improve on the time reduction obtained using only priorities, yet avoid the possibility of prun-
ing important tests from the search. We included general pruning of redundant and irrelevant
hierarchies, but did not include historic prunes for previously false hypothesis/focus pairs.
This combined approach may result in some retesting of false nodes, however, it will never
miss new behaviors due to pruning. We obtained a reduction of 94.4% from the base case for
finding 100% of the true bottlenecks, which is a reduction of 22 seconds from the 169 seconds

it took using pruning without priorities.

5.4.2 Using Thresholds Determined from Historical Data

We studied the behavior of the Performance Consultant while varying threshold values to
determine the potential benefit of automatically setting thresholds based on historic data. Our
application was the 2-D decomposition code from the previous section run on four nodes of an
IBM SP/2. This sample application is strongly dominated by synchronization waiting time,
which accounts for approximately 75% of the total execution time. 45% of the total execution
time for all four processors is spent waiting in functiehng2, and 20% in functiomain. This

waiting time is split between three message tagsa/1, anda/-1 (27%, 19%, and 20% respec-

82

tively). Individual processes and4 are dominated by wait time (81% and 86%) and signifi-
cant waiting also occurred in processes 1 and 2 (46% and 47%).

We investigated the quality of the PC’s diagnosis by checking for the number of these areas
reported as bottlenecks, either individually (e.g., functiam) or in combination (e.g., mes-
sage tag/o for function main). Full results are shown in Table 2. When a threshold setting
greater than 10% was used, bottlenecks we previously determined to be significant were not
reported by the PC. When the threshold was set to 12% the tool reported close to the full set of
bottlenecks; the default Paradyn setting of 20%, in contrast, resulted in 7 of the 26 bottlenecks
being missed. The third column shows how much instrumentation was used to diagnose the
program run. Setting the threshold to 12% (shaded) yields good results and also uses notice-
ably less instrumentation than a setting of 10% or 5%. The final column shows an efficiency
metric determined by dividing the number of bottlenecks found by the number of hypothesis/
pairs tested. Efficiency decreases with thresholds below 12%, an indication that lowering the
threshold below 12% increases the amount of instrumentation but does not improve the result.

In earlier studies, we found similar results for an ocean circulation modeling code using
PVM, running on SUN SPARCstations. We found an optimal synchronization threshold at
20%, from a starting point of 30% (which yielded an incomplete diagnosis). Efficiency
decreased below 20%, for example the number of metric-focus pairs instrumented was 326 for
20% and jumped to 373 for 10%. The useful threshold in this case differs from that found for
the MPI application, showing the advantage of application-specific historical performance

data.

83

Synchronization Number of Bottlenecks o
Total Number of Efficiency
Bottleneck Threshold Reported by the . .
. Hypothesis/Focus Pairy (Bottlenecks Found Pe
Setting (% of total Performance)
S Tested Pair Tested)
execution time) Consultant
30% 9 30 0.3
20% 19 66 0.29
14% 22 76 0.29
12% 25 85 0.29
10% 26 107 0.24
5% 26 105 0.25

Table 2: Bottlenecks Found with Varying Threshold ValuesNumber of bottlenecks reported are
rounded, averaged values calculated from three repeated tests. Row 4 (shaded) is a crossover point for
efficiency: increasing the number of pairs tested beyond 85 does not yield any significant gain in results.

5.4.3 Using Historical Data with Different Code Versions

We studied the use of historical performance data in the situation where the application has
been revised over time. While tuning an application, a developer repeats through a cycle of
profile-analyze-change. We performed a series of performance diagnoses using different ver-
sions of an MPI application on the IBM SP/2. The application implements an iterative Poisson
function decomposition. We used several of the different versions of the implementation pre-
sented by Groppt al[6]. In each step of the study, we used results from previous runs of the
Performance Consultant to direct subsequent PC runs. There were four versions of the appli-
cation: Version A is a 1-dimensional version that uses blocking send and receive operators;
Version B is a non-blocking 1-dimensional version; Version C performs a 2-dimensional
decomposition; and Version D runs the same code as Version C across 8 nodes (all others run
on 4 nodes). We changed all versions to compute a fixed number of iterations, rather than
stopping as soon as a solution is reached. The complete set of results for the study is contained

in Table 3, and the results are presented graphically in Figure 27.

84

438
0 B
- | 3411
B
(=]
|—
= 256
= o 7a mDrectives from D
E" 186 1021 mDirectives from C
=1}
@ mDiFectyes frarm B
E
ﬁ @mOiFectves from A
2 B 1;"5 @ o Directives
5 44 54
]
0
=1
[= 18
=k
183
|2272
0 L L] 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time in Seconds

Figure 27: Time to complete diagnosis using search directives from different application versions.
Each group of bars represents the program version being diagnosed: A, B, C, or D. The colors of the
bars indicate the source of the search directives used. See also Table 3.

We started by running the Performance Consultant on Version A without search directives,
which we denoté\, e resulting in a time to locate true bottlenecks of 2272 seconds. Next,
we repeated the diagnosis of version A, this time including general prune and priority direc-
tives generated from the previous execution. This Ajp,showed a decrease in the diagnosis

time by approximately 92%.

Next we examinedp, Version B using search directives extracted from runs of Version A,
and found a 98% improvement in diagnosis time over the original base case that used no
directives. We continued for Versions C and D, each time running the Performance Consultant

with search directives extracted from each individual prior run.

85

Source of Search Directives
None A B C D
_ A | 2272 183 (-92%)
25 |B | 4454 96 (-98%) | 135 (-97%
é § Cc | 1021 186 (-82%) 173 (-83%) 256 (-75%
< 3411 554 (-84%)| 810 (—76%|) 438 (-87%) 429 (-87%)

Table 3: Time (in seconds) to complete diagnosis with search directives from different application
versions.Some times reported are median values for several runs. Standard Deviations ranged from 3 to
17 seconds. Each row contains the data for a particular application version, A through D. Each column
contains the data for a particular source of the search directives used with the Performance Consultant.
For example, the cell found at row “C” and column “B” contains the time to diagnose C using directives
from a previous run of B. Time relative to the base version (column “None”) is shown in parentheses.

After each run of the Performance Consultant, we use the resulting search history graph and
the program’s resource hierarchies to generate search directives to be used in subsequent runs.
We added new functionality to the Performance Consultant to map focus names found in these
directives onto names valid in the current environment (see Section for a more detailed dis-
cussion of this mapping). For these tests mapping was implemented as a set of directives of
the form “mapresourceNamel resourceNamepecified by the user in an input file. After
starting Paradyn, we applied the specified mappings to the list of extracted search directives,
then read the directives into the Performance Consultant. For increased efficiency, we applied
specified pruning directives, if any, to the resulting list of search directives before we read it

into the Performance Consultant.

For the tests described in this section, we mapped each pair of machine resources so that
search directives generated in one run could be meaningfully used to refer to machine
resources discovered in a subsequent run. We also mapped functions and modules between the

different code versions, since the names had been changed for the different code versions.

86

Figure 28 shows resource hierarchies combined using the Structural Difference Operator for
two versions of the application, Versions A and B. Each resource is tagged with execution

identifier 1, 2, or 3 if the resource is found in Version A, Version B, or both, respectively.

executionMAP
File View
Program Event Group Display Mappings Used
: E‘VN‘M?DULE 3 mpe d 14 map /Code/exchngl.f /Code/nbexchng.f
o el v map /Code/exchngl.f/exchngl /Code/nbexchng.f/nbexchngl
O Windi?) i map /Code/oned.f /Code/onednb.f
1| e ! e map /Code/sweep.f /Code/nbsweep.f
2 nbsweep map /Code/sweep.f/sweepld /Code/nbsweep.f/inbsweep
3 Cod 2 nbsweep.f{z nbsweepend
2 nbexchny.f- 2 nbexchngl
1 oned.f 1 main
3 ROOT: ¥ onedbase.f 3 onedinit
3 Machi 2 onednb.f- 2 main
3 Memory 1 sweep.fi——1 sweepld
3 Process
3 SyncObject
I\I =] Vi

Figure 28: Mappings for Versions A and B.On the left we show the execution map for Versions A and

B of the Poisson decomposition application, with the Code hierarchy expanded. Each resource is tagged
with an execution identifier: resources unique to version A are labeled with “1,” those unique to version B
are labeled with “2,” and those common to both are labeled with “3.” We map unique nodes which refer to
code that was modified between versions, including a change of nhame. The mapping directives we used
are shown on the right.

Resources unigue to one execution are candidates for mapping. For example, the module con-
taining function main is named “oned.f” in Version A, and “onednb.f” in Version B. We
mapped these two resourcezde/oned.f andCode/onednb.f, SO that search directives extracted

from runs of A could be used in diagnosing runs of B. The full set of mappings we used in this
example is shown to the right of the resource hierarchies. Our mapping functionality is cur-
rently restricted to one-to-one mappings, so for example when we mapped machine names

between the 4 and 8 node runs, the result was a set of search directives including 4 of the total

87
of 8 machine nodes. This is seen in the bottom row of Table 3 as longer times required to

reach a diagnosis due to a less complete set of search directives for the 8 node machine.

In every case we tested, adding historical knowledge to the Performance Consultant greatly
improved its ability to quickly diagnose performance bottlenecks: diagnosis time was reduced
a minimum of 75% in all executions using historical knowledge.

In Table 3, each row represents the version of the application currently being diagnosed.
Each column represents the source from which we extracted the search directives used. The
first column contains the time to reach a diagnosis using no search directives, and subsequent
columns contain the time to reach a diagnosis using search directives from different sources.
We used dedicated machine time and therefore saw relatively low variability in run time for
repeated executions of the same version.

After completing the test runs, we analyzed the Performance Consultant behavior to deter-
mine how it was affected by the search directives we added. First we examined the effects of

using search directives from the base run oy, t0 diagnose a second run of A,. 81

I;re“t)t?r?g; Aonly | Bonly | Conly | A Bonly|A Conly| B, Conly| AB,C | TOTAL
High 16 13 3 10 10 9 46 107
Low 32 72 24 28 20 13 92 281
Total 48 85 27 38 30 22 138 388

Table 4: Similarity of Extracted Priorities Across Code Versions.We show here the number of priority
directives extracted from the base régne Bnone @NdCone The first row includes only directives that

assign a high priority, the second includes only directives that assign a low priority, and the bottom column

shows the combined total. Each column represents the source(s) of the priority dir&giieBnone

Chone OF some combination of these. For example, of the total 107 different high priority directives, 16

hypothesis/focus pairs tested trueAR, resulting in 81 search directives that set priority to

were unique to version A and 46 were common to versions A, B, and C.

88
high. In Ag, a total of 103 hypothesis/focus pairs tested true. 78 were pairs that tested true in

A, (and were included in the 81 search directives); of the remaining 25, 3 had been set to low
priority, 6 were intermediate level nodes not tested\jy and the remaining 16 were more
detailed/refined answers not tested\ndue to cost limits. In this case, using search directives
resulted in a more detailed diagnosis than could be performed without the directives.

Although we had anticipated search directives from different versions would not be as effec-
tive as search directives from the same version, we saw only small differences in most cases.
In fact, we were surprised to see that g performed more poorly than eith€y or Cg. We
analyzed some of the data more closely to account for this. We examined the sets of search
directives extracted from rum&,one Bnone @NdChoneto see how they differed. As shown in
Table 4, of the 388 total priority directives, 138 (36%) were common across all three sets of
directives, 160 (41%) were unique to a single set, and the remaining 90 (23%) occurred in two
out of three sets. Of the 107 total high priority directives, 46 (43%) were common to all three,
32 (30%) were unique to one, and the remaining 29 (27%) were common to two. We noticed
that most of the differences involved more detailed focuses, for example, @,g4pthe Per-
formance Consultant found the bottleneck for functenhng across all nodes, however it
failed to refine this to a particular message tag, as it did infype and found only half as
many particular node/message tag combinations as it did irAggRe The tool also found
fewer true bottlenecks in ru@,y,e 67 as compared to 81 found in réf,,eand 68 found in
runBpone

We also examined the diagnoses obtained in @<y, andCcq. The bottlenecks found did
not vary significantly between these runs. Of 115 total bottlenecks diagnosed as true by the

Performance Consultant in any of these runs, 113 were common across all three, and the

89
remaining 3 were common to two of the three. So despite the differences in the time it took to

reach the diagnosis, the Performance Consultant yielded similar answers in all three cases.

For this example, despite modifications to the communications primitives (blocking or non-
blocking), and modifications to the algorithm (1-dimensional or 2-dimensional decomposi-
tion), the bottleneck locations remained the same. Although total synchronization time and
total execution time varied between versions, the set of resources responsible for the time was

similar.

We also investigated using results from multiple previous runs to guide the current run. We
looked at two different approaches to combining search directives from different versions:
An B sets to a high/low priority only those hypothesis/focus pairs that tested true/fédsthin
Versions A and BAD B sets to a high priority those hypothesis/focus pairs that tested true in
either A or B, and sets to low priority those hypothesis/focus pairs which tested false in either
version and did not test true in A or B. We used the resulting set of directives to diagnose Ver-
sion C. In this particular example, the lists of priorities that result from the two methods of
combination have 59 common directives, with 38 additional directives uniqueit® . The
resulting diagnosis times were 176 secondsAors and 179 seconds fr . This differ-
ence is too small for us to conclude the superiority of one combination method over the other.
Which performs better is related to the similarity of the sets of directives generated using data

from runs A and B, not the similarity in code or platform of the versions.

5.5 Discussion and Conclusions

We have described a new approach to automated performance diagnosis that incorporates

knowledge from previous runs of the same application. The result is a performance tool that

90
learns from each diagnostic program run, adapting its search strategy to obtain more useful

diagnoses more quickly. We show performance gains of up to 98% obtained by incorporating
historical knowledge into the Performance Consultant’s search strategy. The results presented
demonstrate the utility of our approach for repeated performance diagnosis of similar program
runs, a common scenario when tuning parallel applications. The improvements achieved show
that our new approach to gathering and storing historical application data can be successfully

applied to the problem of automating performance diagnosis.

91

Chapter 6

Summary and Directions for Future Research

6.1 Dissertation Summary

Developing efficient parallel programs is a challenging and time consuming task. Despite
advances over the past decade in compiler and tool technology, tuning a parallel code for a
particular platform generally takes weeks or months of the time of specialists. Furthermore,
most major laboratories aggressively replace their machines with newer models to gain the
advantage of processor speed increases. This situation creates an opportunity for a tool that
would simplify the process of parallel performance tuning large-scale scientific applications.
Improvements in the ability of a tool to provide meaningful, focused feedback to a program-
mer tuning a code may result in a better implementation, and that leads to savings in machine
time, more detailed simulation results, or both. In this dissertation, we have presented a new
approach for parallel performance tools that directly addresses the key observations that the
tuning process itself is inherently repetitive, and involves more than one program execution.
Our thesis is that the scientific experiment management paradigm is a useful approach for par-

allel performance tools. Incorporation of data from multiple program executions together with

92
the ability to meaningfully and practically navigate the data is a useful approach in common

tasks related to parallel performance: porting applications, tuning for a particular platform,

comparing versions of a code under development, and investigating scalability behavior.

The major contributions of this thesis are:

the Program Space, a flexible and extensible representation for a complete multi-dimen-

sional space of program runs;

» aset of mechanisms for quantitatively and automatically comparing two or more program

runs, in terms of both structure and performance;

» a demonstration of the use of the Program Space and our program comparison methods

with large scale parallel applications under development and in use; and

» results of a study of the incorporation of historical data contained in the Program Space
into automated performance diagnosis, in which we demonstrated performance improve-
ments of up to 98% in the time needed for the tool to completely diagnose a parallel appli-

cation.

6.2 Directions for Future Research

Many interesting research ideas emerged during the course of the work described in this dis-
sertation. Here we discuss interesting potential avenues of exploration and describe some of

our ongoing work.

Work outside of the scope of this dissertation and already in progress is extending this
research in several directions. A prototype currently under development incorporates the

DEVise visualization tool [48] to allow a rich variety of visualizations to be used for navigat-

93
ing performance data, and includes the results of user interface research into techniques for

displaying the contents of the Program Space.

We are continuing to research additional approaches to resource mapping. The goal is to
automate the mapping to the furthest extent possible, while continuing to allow user-specified
mappings. We have demonstrated resource mapping performed at the start of each new execu-
tion, and further study is warranted to extend this approach to cover cases in which new
resources are discovered later in an application run. Future work might explore using richer
resource descriptions to enable more semantically meaningful mappings to be performed
automatically.

The prototype implementation can be usefully extended to include performance data gath-
ered with a variety of monitoring and predictive tools. The techniques we have developed can
be used to compare an actual execution with a predicted or desired performance measure for
the application. Incorporation of data from performance predictions or performance models
into the Program Space would add significantly to the utility of our tool. Uses for this include
performance tuning efforts, automated scalability studies, and performance model validation
studies.

In addition to its application to cross-execution studies, comparison-based performance
analysis can be used to compare distinct time intervals of a single program execution. The
ability to name, lookup, examine, and compare performance results from different time inter-
vals within one program execution has many direct applications. Both the environment and
the code may vary during the course of a single program run. In the range of computational
models now available, especially the more dynamic environments of the near future, processes

may be created, destroyed, migrated [11]; communication patterns and use of distributed

94
shared memory may be optimized [62]; data values or code may be changed by a steering

adjustment [25,46]; or loop behavior may change as matrix distribution changes over the
course of the computation [14].

We plan to investigate the incorporation of an experiment launching mechanism into a pro-
totype implementation, to allow completely automated performance diagnosis that may
involve more than one program execution. Experiment launching is a feature found in the sci-
entific experiment management systems that we examined; we believe that this technique
could be usefully incorporated into the parallel performance tuning environment, allowing us
to incorporate approaches such as design of experiments into our tool.

One of the goals of our approach is comparison, and a metric that desooNvasuchper-
formance has changed would be useful. We briefly examined approachgsetioemance
distancemetric: a Euclidean distance, and a weighted average of performance result values.
The goal is a quantitative measure of how much performance differs between two or more
executions as a whole, that can be used to weigh or rank performance bottlenecks. More
detailed study with actual examples of different types of parallel applications must be carried

out to determine which approaches will be useful here.

95

References

[1] S. Abiteboul. Querying semi-structured data. In F. Afrati and P. Kolaitis, editvoseed-
ings of The International Conference on Database Thé&xiphi, Greece, 1997.

[2] M. Abrams, A. Batongbacal, R. Ribler, and D. Vazirani. Chitra94: A tool to dynamically
characterize ensembles of traces for input data modeling and output analysis. Technical
Report Computer Science Department TR 94-21, Virginia Polytechnic Institute and State
University, June 1994.

[3] R. J. Block, S. Sarukkai, and P. Mehra. Automated performance prediction of message-
passing programsProceedings of Supercomputing ‘9&8EE Computer Society Press,
1995.

[4] G.E.P. Box, W.G. Hunter, and J.S. Hunt8tatistics for Experimenters John Wiley and
Sons, New York, 1978.

[5] M. Brune, J. Gehring, A. Keller, B. Monien, F. Ramme, and A. Reinefeld. Specifying
resources and services in metacomputing environmeatsllel Computing 24:1751—
1776, 1998.

[6] M. Brune, J. Gehring, A. Keller, and A. Reinefeld. RSD — Resource and Service Descrip-
tion. J. Schaeffer, editoHigh Performance Computing Systems and ApplicafibisCS
'98: The 12th Annual International Symposium on High Performance Computing Sys-
tems and Applicationgages 193-206. Paderborn Center for Parallel Computing, Klu-
wer Academic Publishers, 1998.

[7] CENSA. The definition of an electronic notebook system. http://www.censa.org, 1999.

[8] I.LA. Chen and V.M. Markowitz. An overview of the Object Protocol Model (OPM) and the
OPM Data Management Toolaformation System20(5):393—-418, 1995.

[9] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for
XML. Technical report, AT&T Labs, 1998.

[10] H.G. Dietz, W.E. Cohen, and B.K. Grant. Would you run it here... or there? (AHS: Auto-
matic heterogeneous supercomputiryoceedings of the International Conference on
Parallel Processingpages 217-221, 1993.

96

[11] J. Dongarra, G.A. Geist, R. Manchek, and V.S. Sunderam. Integrated PVM framework
supports heterogeneous network comput@mmputers in Physic§:166—74, 1993.

[12] G. Howlett, The BLT Toolkit. In M. Harrison et allcl/Tk Tools. O’Reilly, 1997.

[13] T. Fahringer, M. Gerndt, G. Riley, and J.L. Traff. Knowledge specification for automatic
performance analysis. Technical report, ESPRIT IV Working Group on Automatic Per-
formance Analysis: Resources and Tools (APART), http://www.fz-juelich.de/apart,
November 1999.

[14] S.J. Fink, S.R. Kohn, and S.B. Baden. Flexible communication mechanisms for dynamic
structured applicationdroceedings of IRREGULAR '9&anta Barbara, CA, August
1996.

[15] Lawrence Livermore National Laboratory Center for Applied Scientific Computing.
Datafoundry: Data warehousing and integration for scientific data management. http://
www.lInl.gov/CASC/datafoundry/, 1999.

[16] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toblierna-
tional Journal of Supercomputer Applicatioid (2):115-128, 1997.

[17] J. Gehring. Dynamic program description as a basis for runtime optimization. Technical
Report TR-002-97, Paderborn Center for Parallel Computing, Paderborn, Germany, May
1995.

[18] A. Geist, E. Mendoza, J. Myers, N. Nachtigal, and S. Sachs. DOE 2000 Electronic Note-
book Project March 1999 Status Report. http://www.epm.ornl.gov/enote/status.html,
August 1999.

[19] M. Gerndt and A. Krumme. A rule-based approach for automatic bottleneck detection in
programs on shared virtual memory systeRm®ceedings of the International Workshop
on High-Level Programming Models and Supportive Environments (HIPS '96) in con-
junction with IPPS '96pages 10-16, Hawaii, 1996. IEEE Computer Society Press.

[20] M. Gerndt, B. Mohr, F. Wolf, and M. Pantano. Performance analysis on Cray P8t:.
ceedings of the Seventh Euromicro Workshop on Parallel and Distributed Processing
IEEE, 1988.

[21] A.J. Goldberg and J.L. Hennessy. Performance debugging shared memory multiproces-
sor programs with MTOOLProceedings of Supercomputing ;9dages 481-490, Albu-
guerque, NM, November 1991.

[22] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Technical Report MSR-TR-95-
22, Microsoft Research, November 1995.

97

[23] A. S. Grimshaw, W.A. Wulf, and the Legion Team. The Legion vision of a worldwide
virtual computerCommunications of the AGMO0(1):39-45, January 1997.

[24] W. Gropp, E. Lusk, and A. Skjellunsing MPI: Portable Parallel Programming with
the Message-Passing Interfagehapter 4. The MIT Press, 1994.

[25] W. Gu, G. Eisenhauer, E. Kraemer, J. Stasko, J. Vetter, and K. Schwan. Falcon: On-line
monitoring and steering of large-scale parallel progra”P®ceedings of the Symposium
on the Frontiers of Massively Parallel ComputatidfcLean, Virginia, February 1995.

[26] D. Hay. XML: What is it, anyway4ntelligent Enterprise 2(11), August 1999. http://
www.iemagazine.com/990308/onlinel.shtml.

[27] M.T. Heath and J.A. Etheridge. Visualizing the performance of parallel progi&i&
Software 8(5):29-39, September 1991.

[28] B. R. Helm, A.D. Malony, and S.F. Fickas. Capturing and automating performance diag-
nosis: the Poirot approachProceedings of the 1995 International Parallel Processing
Symposiumpages 606-613, April 1995.

[29] J.K. Hollingsworth. An application program interface for runtime code patching. Unpub-
lished technical report, 1998.

[30] J.K. Hollingsworth and B. BuckDyninstAPI Programmer’s GuideComputer Science
Department, University of Maryland, College Park, MD, release 1.0 edition, July 1997.

[31] J.K. Hollingsworth and P.J. Keleher. Prediction and adaptation in Active Harniérmy.
ceedings of the 7th International Symposium on High Performance Distributed Comput-
ing, pages 180-188, Chicago, IL, 1998.

[32] J.K. Hollingsworth and B.P. Miller. Dynamic control of performance monitoring on large
scale parallel system$roceedings of the International Conference on Supercomputing
Tokyo, July 1993.

[33] A. Hondroudakis and R. Procter. The tuner's workbench: A tool to support tuning in the
large. P. Fritzson, editoRroceedings of the ZEUS-95 Workshop on Parallel Program-
ming and Computatigrpages 212—-221, Linkoping, May 1995. IOS Press.

[34] A. Hondroudakis and R. Procter. An empirically derived framework for classifying paral-
lel program performance tuning problenf3roceedings of the SIGMETRICS Symposium
on Parallel and Distributed Toalpages 112-121. ACM Press, August 1998.

[35] S. Horwitz and T. Reps. Efficient comparison of program slioksta Informatica
28:713-732, 1991.

98

[36] S. Horwitz. Identifying the semantic and textual differences between two versions of a
program. ACM SIGPLAN Notices volume 25: Proceedings of the ACM SIGPLAN '90
Conference on Programming Language Design and Implementgtiages 234-245,
White Plains, New York, 1990.

[37] Y. loannidis and M. Livny. Conceptual schemas: Multi-faceted tools for desktop scien-
tific experiment managementinternational Journal of Intelligent and Cooperative
Information Systemd (3):451-474, December 1992.

[38] Y. loannidis, M. Livny, S. Gupta, and N. Ponnekanti. ZOO: A desktop experiment man-
agement environmentProceedings of the 22nd International VLDB Conferempages
274-285, Bombay, India, September 1996.

[39] Y. loannidis, M. Livny, E. Haber, R. Miller, O. Tsatalos, and J. Wiener. Desktop experi-
ment managemenEEE Data Engineering Bulletjrl6(1):19-23, March 1993.

[40] R. Bruce Irvin and Barton P. Miller. Multi-application support in a parallel program per-
formance tool. Technical Report CS-TR-93-1135, Computer Sciences Department, Uni-
versity of Wisconsin - Madison, February 1993.

[41] M. ltzkowitz, J. Yu, A. McNaughton, P. Orelup, and C. Hanna. Visualizing performance
on parallel supercomputers. In M.L. Simmons, A.H. Hayes, J.S. Brown, and D.A. Reed,
editors,Debugging and Performance Tuning for Parallel Computing Systemspages
181-197. IEEE Computer Society Press, 1996.

[42] K. Karavanic, J. Myllymaki, M. Livny, and B. Miller. Integrated visualization of parallel
program performance datéarallel Computing23:181-198, 1997.

[43] T. Keller and D. Jones. Metadata: The foundation of effective experiment management.
Technical report, Environmental Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 1996.

[44] D.J. Kerbyson, E. Papaefstathiou, and G.R. Nudd. Application execution steering using
on-the-fly performance prediction. In P. Sloot, M. Bubak, and B. Hertzberger, editors,
Proceedings of the High Performance Computing and Networking International
Conference and Exhibition, Lecture Notes in Computer Science #1401, pages 718-
727. Springer-Verlag, 1998.

[45] J. Kohn and W. Williams. ATExpertJournal of Parallel and Distributed Computing
18:205-222, 1993.

[46] K. Kunchithapadam and B.P. Miller. Integrating a Debugger and a Performance Tool for
Steering. In M.L Simmons, A.H. Hayes, J.S. Brown, and D.A. Reed, editmbug-
ging and Performance Tools for Parallel Computing Systems pages 53-64. IEEE
Computer Society Press, 1996.

99

[47] L. Lamport. Time, clocks and the ordering of events in a distributed systemmunica-
tions of the ACM21(7), July 1978.

[48] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic, S. Lawande, J. Mylly-
maki, and K. Wenger. Devise: Integrated querying and visual exploration of large
datasetsProceedings of ACM SIGMQMay 1997.

[49] T. Ludwig, R. Wismuller, V. Sunderam, and A. Bode. OMIS - on-line monitoring inter-
face specification (version 1.0). Technical report, Institute Fur Informatik der Technische
Universitat Munchen, February 1996.

[50] G. Lyon, R. Snelick, and R. Kacker. Synthetic-perturbation tuning of MIMD programs.
The Journal of Supercomputing5—28, 1994.

[51] A.D. Malony, D.H. Hammerslag, and D.J. Jablonowski. Traceview: A trace visualization
tool. IEEE Software8(5):19-28, September 1991.

[52] A. Mathur and M. Abrams. Toward a machine assisted software performance diagnosis
methodology. Technical Report TR 93-12, Virginia Polytechnic Institute and State Uni-
versity Department of Computer Science, 1993.

[53] C. L. Mendes. Performance prediction by trace transformatimoceedings of the Fifth
Brazilian Symposium on Computer Architeciirianopolis, September 1993.

[54] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K.Kun-
chithapadam, and T. Newhall. The Paradyn parallel performance measurement tool.
IEEE Computer28(11):37-46, November 1995.

[55] W. Nagel, A. Arnold, M. Weber, H. Hoppe, and K. Solchenbach. Vampir: Visualization
and analysis of MPI resource&aupercomputer §32(1):69-80, 1996.

[56] D. Nelson. The laboratory notebook technical manual. Technical Report LA-UR 88-
1256, Los Alamos National Laboratory, Los Alamos, NM, 1990.

[57] K.J. Ottenstein and L.M. Ottenstein. The program dependence graph in a software devel-
opment environmentProceedings of the ACM SIGSOFT/SIGPLAN Software Engineer-
ing Symposium on Practical Software Development Environmeolsme 19 ofACM
SIGPLAN Noticespages 177-184, Pittsburgh, PA, May 1984.

[58] D.M. PaseDynamic Probe Class Library (DPCL): Tutorial and Reference Gui@M
Corporation, RS/6000 Development, Poughkeepsie, New York, version 0.1 edition, June
1998.

[59] R.RamakrishnarDatabase Management System%VCB/McGraw-Hill, 1998.

100

[60] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource management
for high throughput computingProceedings of the Seventh IEEE International Sympo-
sium on High Performance Distributed Computing (HPD@3ges 140-146, Chicago,

IL, July 1998.

[61] D.A. Reed, R.A. Aydt, R.J. Noe, P.C. Roth, K.A. Shields, B.W. Schwartz, and L.F. Tav-
era. Scalable performance analysis: The Pablo performance analysis environment.
IEEE CS Press, editoRroceedings of the Scalable Parallel Libraries Conferenge
pages 135-142, Los Alamitos CA, 1993.

[62] S.K. Reinhardt, J.R. Larus, and D.A. Wood. Tempest and Typhoon: User-level shared
memory. InProceedings of the 21st Annual International Symposium on Computer
Architecture April 1994.

[63] M. Rennhackkamp. Extending relational DBMSs. DBMS Magazine, http://www.dbms-
mag.com, October 1997.

[64] T. Reps. Algebraic properties of program integrati®eience of Computer Program-
ming 17:139-215, 1991.

[65] R. Ribler, A. Mathur, and M. Abrams. Visualizing and modeling categorical time series
data. Technical report, Department of Computer Science, Virginia Polytechnic Institute
and State University, August 1995.

[66] R.L. Ribler, J.S. Vetter, H. Simitci, and D.A. Reed. Autopilot: Adaptive control of distrib-
uted applicationsProceedings of the High-Performance Distributed Computing Confer-
ence July 1998.

[67] G.D. Riley and J.R. Gurd. Requirements for automatic perfomrance analysis. Technical
report, ESPRIT IV Working Group on Automatic Performance Analysis: Resources and
Tools (APART), http://www.fz-juelich.de/apart, November 1999.

[68] R. H. Saavedra and A.J. Smith. Analysis of benchmark characteristics and benchmark
performance prediction. Technical Report Computer Science Technical Report USC-CS-
92-524, University of Southern California, 1992.

[69] S. Shende, A.D. Malony, J. Cuny, and K. Lindlan. Portable profiling and tracing for par-
allel, scientific applications using C++.Proceedings of SPDT9&ages 134-145,
Welches, OR, 1998.

[70] A.B. Sinha and L.V. Kale. Towards automatic performance analyR®ieceedings of the
1996 International Conference on Parallel Processimages 111-53—-60, 1996.

101

[71] R. Snelick, J. Jaja, R. Kacker, and G. Lyon. Synthetic-perturbation techniques for screen-
ing shared memory programS§oftware - Practice and Experienc24(8):679-701,
August 1994.

[72] R. Sosic and D. Abramson. Guard: A relative debug§eftware Practice and Experi-
ence 27(2):185-206, February 1997.

[73] A. Waheed and D.T. Rover. Performance visualization of parallel prografissializa-
tion '93, San Jose, CA, October 1993.

[74] M. Weiser. Program slicindEEE Transactions on Software Engineerji®E-10(4):352—
357, July 1984.

[75] R.C. Whaley and J. Dongarra. Automatically tuned linear algebra softReveeedings
of SC98O0rlando FL, Nov. 1998. ACM/IEEE.

[76] J. Wiener and Y. loannidis. A moose and a fox can aid scientists with data management
problems. Proceedings of the 4th International Workshop on Database Programming
Languagespages 376—398, New York, NY, August 1993.

[77] W. Williams, T. Hoel, and D. Pase. The MPP Apprentice performance tool: Delivering
the performance of the Cray T3D. In K.M. Decker and R.M. Rehmann, ediucs,
gramming Environments for Massively Parallel Distributed Systems Birkhauser,
1994.

[78] F. Wolf and B. Mohr. Earl: A programmable and extensible toolkit for analyzing event
traces of message passing programs. Technical Report FZJ-ZAM-IB-9803, Forschung-
szentrum Juelich GmbH, April 1998.

[79] Z. Xu, J. Larus, and B. Miller. Shared-memory performance profilifgoceedings of
the 6th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
Las Vegas, Nevada, June 1997.

[80] J. Yan, S. Sarukhai, and P. Mehra. Performance measurement, visualization and modeling
of parallel and distributed programs using the AIMS toolbftware — Practice and
Experience25(4):429-461, April 1995.

[81] W. Yang. ldentifying syntactic differences between two prograBudtware — Practice
and Experienceg21(7):739-755, July 1991.

	Experiment Management Support for Parallel Performance Tuning
	by
	Karen L. Karavanic

	A dissertation submitted in partial fulfillment
	of the requirements for the degree of
	Doctor of Philosophy
	(Computer Sciences)
	at the University of Wisconsin—Madison
	1999
	© Copyright by Karen L. Karavanic 1999
	All Rights Reserved
	Experiment Management Support for Parallel Performance Tuning
	Karen L. Karavanic

	Under the supervision of Professor Barton P. Miller
	at the University of Wisconsin—Madison
	1
	Introduction 1
	2
	Related Work 8
	3
	The Program Space 20
	4
	Case Studies: Applying the Experiment Management Approach to Common Performance Activities 53
	5
	Using Historical Data in Performance Diagnosis 68
	6
	Summary and Directions for Future Research 91
	1.1 Motivation
	1.2 Contributions
	1.3 Roadmap
	2.1 Parallel Performance Tuning
	2.2 Automating Parallel Performance Diagnosis
	2.3 Scientific Experiment Management
	2.4 Comparing Program Versions and Runs
	2.5 Summary
	3.1 The SpaceMap

	1
	8
	A
	original
	2
	16
	A
	original
	3
	8
	A
	newSolver
	4
	8
	B
	original
	Figure�1: The Complete Collection of Data forms the Program Space. In this illustration each clus...
	3.2 The EventMap
	Definition 1. An EventMap, E, is a forest composed of zero or more unique resource hierarchies:
	EventMap E = {R0, R1, ... Rn}. o
	Definition 2. A resource hierarchy R is a tree of the form
	R = (r, T)
	where r is a resource and T is the set of all children of r in the resource hierarchy:
	T = {(r0,T0), (r1,T1), ... (rm,Tm)}. o
	Definition 3. A resource r is a pair
	r = (l, X) where l is the resource label and X Œ {e0, e1... ei}, a set of unique event identifier...
	Figure�2: Definitions related to the EventMap.
	Figure�3: Each level of a Resource Hierarchy represents a different view of the application.
	Figure�4: EventMap for Program Tester

	3.3 Performance Results
	3.3.1 The Focus
	Definition 4. A focus F is formed by selecting one resource node from each of the resource
	hierarchies in an EventMap:
	{r1 Œ R1j1, r2 Œ R2j2, r3 Œ R3j3, ... rn Œ Rnjn}
	where jx is a level of resource hierarchy Rx and n is the total number of resource
	hierarchies. The nodes selected may be in different levels of the different
	hierarchies.o
	Figure�5: Definition of a Focus.

	3.4 Retrieving Information from the Program Space
	3.4.1 Choosing Program Events Using the SpaceMap
	3.4.2 Combining EventMaps with the Structural Merge Operator
	[1] E ¨ { }
	[2] " (ri, Ti) Œ E1
	[3] if $ (rj, Tj) Œ E2, s.t. match (ri, rj) then
	[4] E ¨E » { ri + rj, Ti + Tj}
	[5] E2 ¨ E2 – (rj, Tj)
	[6] else E ¨ E U {(ri, Ti)}
	[7] E ¨ E » E2
	[8] return E
	Figure�6: Algorithm to find the Structural Merge of two EventMaps, E1 + E2
	[2] r ¨ (l0, X0 » X1)
	[3] return r

	Figure�7: Merging Two Resources, r1 + r2. Only matching pairs of resources are merged.
	[2] return true
	[3] else return false

	Figure�8: Algorithm match ((r1 = (li,Xi), r2 = (lj, Xj))
	Figure�9: An Example of the Structural Merge Operator

	3.4.3 The Structural Difference Operator
	3.4.4 The Performance Difference
	Figure�10: The Discrete Distance Operator is a binary function that indicates whether or not two ...
	[2] enqueue (pendingQueue, EventMap->getRootFocus()
	[3] while ! (isEmpty (pendingQueue))
	[4] currentFocus ¨ dequeue (pendingQueue)
	[5] pr1 ¨ PR(E1, m, currentFocus, t = all)
	[6] pr2 ¨ PR(E2, m, currentFocus, t = all)
	[7] If dd(pr1, pr2) = true
	[8] answer ¨ answer » {currentFocus)
	[9] for each f in magnify(currentFocus)
	[10] enqueue (pendingQueue, f)
	[11] return answer

	Figure�11: Algorithm for the Performance Difference Operator perfDiff ((E1 + E2,) - (E1 Å E2), m)...
	Figure�12: The focus provides a partial ordering of the data. This diagram demonstrates ordering ...
	[2] for i = 1 to n
	[3]
	[4] for each j in children(ri)
	[5]
	[6] return answer

	Figure�13: Algorithm for magnify(f). Magnify returns the set of foci constructed by making all po...

	1
	Machine
	/Code,/Machine/node_01
	2
	Code
	/Code/calc.C,/Machine/node_01
	3
	Code
	/Code/calc.C/calculate,/Machine/node_01
	Figure�14: Explanation of the Performance Difference Display. We show a complete set of informati...
	Figure�15: Sketch of performance difference display contents for example of Figure 14. We have nu...
	3.4.5 Matching and Mapping Resources
	3.4.6 Making Selections from the EventMap
	3.5 Implementation Considerations
	3.5.1 Existing Experiment Management Systems
	Figure�16: Schema for a Program Space containing Paradyn data.

	3.5.2 Implementing the Program Space with an Object Relational DBMS
	3.5.3 Other Implementation Strategies

	3.6 Summary

	4.1 Draco
	Figure�17: SpaceMap for the DRACO application.
	Figure�18: A Merged EventMap for three different Draco runs.
	Figure�19: Result of the Structural Difference Operator applied to two Draco Program Events.
	Figure�20: Merged EventMap for the three Draco Program Events (before mapping).
	Figure�21: EventMap for the three DRACO Program Events (after mapping).

	4.2 Performance Tuning a Shared Memory Application
	Figure�22: Result of Applying Structural Difference Operator to Fold4 Versions 1 and 2.
	Figure�23: Results of the Performance Difference Operator for metric MemoryBlockingTime. The node...

	4.3 Comparing Alternate Implementations: Porting a PVM Application to MPI
	Figure�24: Resource Hierarchies for EventMap: nspvm + nsmpif. The EventMap Display allows the dev...

	4.4 Summary
	5.1 Introduction
	5.2 Paradyn’s Performance Consultant
	Figure�25: A Performance Consultant search in progress. The three items below TopLevelHypothesis ...

	5.3 Types of Search Directives
	5.4 Experiments and Results
	5.4.1 Using Pruning and Priority Directives
	Table 1: Time (in seconds) to Find all True Bottlenecks with Search Directives
	Figure�26: Percentage of True Bottlenecks found over time using different types of search directi...

	5.4.2 Using Thresholds Determined from Historical Data
	Table 2: Bottlenecks Found with Varying Threshold Values. Number of bottlenecks reported are roun...

	5.4.3 Using Historical Data with Different Code Versions
	Figure�27: Time to complete diagnosis using search directives from different application versions...
	Table 3: Time (in seconds) to complete diagnosis with search directives from different applicatio...
	Figure�28: Mappings for Versions A and B. On the left we show the execution map for Versions A an...

	Table 4: Similarity of Extracted Priorities Across Code Versions. We show here the number of prio...

	5.5 Discussion and Conclusions
	6.1 Dissertation Summary
	6.2 Directions for Future Research

