
Page 1

Experiment Management Support for Performance Tuning1

Karen L. Karavanic and Barton P. Miller

{karavan,bart}@cs.wisc.edu

Computer Sciences Department
University of Wisconsin

Madison, WI 53706-1685

Abstract

The development of a high-performance parallel system or application is an evolutionary process -- both
the code and the environment go through many changes during a program's lifetime -- and at each
change, a key question for developers is: how and how much did the performance change? No existing
performance tool provides the necessary functionality to answer this question. This paper reports on the
design and preliminary implementation of a tool which views each execution as a scientific experiment
and provides the functionality to answer questions about a program's performance which span more than
a single execution or environment. We report results of using our tool with an actual performance
tuning study and with a scientific application run in changing environments. Our goal is to use historic
program performance data to develop techniques for parallel program performance diagnosis.

1 INTRODUCTION
“An experimental science is supposed to do experiments that find generalities. It’s not just supposed to tally up a long
list of individual cases and their unique life histories. That’s butterfly collecting.”

- Richard C. Lewontin [1]

The development of a high-performance parallel system or application is an evolutionary process. It may begin
with models or simulations, followed by an initial implementation of the program. The code is then incrementally
modified to tune its performance and continues to evolve throughout the applications’s life span. At each step, the key
question for developers is:how and how much did the performance change? This question arises comparing an
implementation to models or simulations; considering versions of an implementation that use a different algorithm,
communication or numeric library, or language; studying code behavior by varying number or type of processors,
type of network, type of processes, input data set or work load, or scheduling algorithm; and in benchmarking or
regression testing. Despite the broad utility of this type of comparison, no existing performance tool provides the nec-
essary functionality to answer it; even state of the art research tools such as Paradyn[2] and Pablo[3] focus instead on
measuring the performance of a single program execution.

We describe an infrastructure for answering this question at all stages of the life of an application. We view each
program run, simulation result, or program model as anexperiment, and provide this functionality in anExperiment
Managementsystem. Our project has three parts: (1) a representation for the space of executions, (2) techniques for
quantitatively and automatically comparing two or more executions, and (3) enhanced performance diagnosis abili-

1. This work is supported in part by Wright Laboratory Avionics Directorate, Air Force Material Command, USAF, under grant
F33615-94-1-1525 (DARPA order no. B550), NSF grants CDA-9024618 and CDA-9623632, and Department of Energy Grant DE-
FG02-93ER25176. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Wright Laboratory
Avionics Directorate or the U.S. Government.
.

Page 2

ties based on historic performance data. In this paper we present initial results on the first two parts. The measure of
success of this project is that an activity that was complex and cumbersome to do manually, we can automate.

The first part is a concise representation for the set of executions collected over the life of an application. We
store information about each experiment in aProgram Event, which enumerates the components of the code executed
and the execution environment, and stores the performance data collected. The possible combinations of code and
execution environment form the multi-dimensionalProgram Space, with one dimension for each axis of variation and
one point for each Program Event. We enable exploration of this space with a simple naming mechanism, a selection
and query facility, and a set of interactive visualizations. Queries on a Program Space may be made both on the con-
tents of the performance data and on the metadata that describes the multi-dimensional program space. A graphical
representation of the Program Space serves as the user interface to the Experiment Management system.

The second part of the project is to develop techniques for automating comparison between experiments. Perfor-
mance tuning across multiple executions must answer the deceptively simple question: what changed in this run of
the program? We have developed techniques for determining the “difference” between two or more program runs,
automatically describing both the structural differences (differences in program execution structure and resources
used), and the performance variation (how were the resources used and how did this change from one run to the next).
We apply our technique to compare an actual execution with a predicted or desired performance measure for the
application, and to compare distinct time intervals of a single program execution. Uses for this include performance
tuning efforts, automated scalability studies, resource allocation for metacomputing [4], performance model valida-
tion studies, and dynamic execution models where processes are created, destroyed, migrated [5], communication
patterns and use of distributed shared memory may be optimized [6,9], or data values or code may be changed by
steering [7,8]. The difference information is not necessarily a simple measure such as total execution time, but may be
a more complex measure derived from details of the program structure, an analytical performance prediction, an
actual previous execution of the code, a set of performance thresholds that the application is required to meet or
exceed, or an incomplete set of data from selected intervals of an execution.

The third part of this research is to investigate the use of the predicted, summary, and historical data contained in
the Program Events and Program Space for performance diagnosis. We are exploring novel opportunities for exploit-
ing this collection of data to focus data gathering and analysis efforts to the critical sections of a large application, and
for isolating spurious effects from interesting performance variations. Details of this are outside of the scope of this
paper.

2 PROGRAM EVENTS AND AUTOMATED COMPARISON

TheProgram Event is a representation of a program run or execution. Associated with each Program Event is a
collection of performance data. We automatically compare the changes between two (or more) Program Events with
our structural difference operator.

2.1 The Program Event

We represent a program as a collection of discrete program resources. Possible resources include the program
code, application processes, machine nodes, synchronization points, data structures, and files. Each group of
resources provides a unique view of the application. We organize the program resources into classes according to the
aspect of the application they represent, and structure each class as a tree, called aresource hierarchy.

Definition 2.1. A Program Event, E, is a forest composed of zero or more unique resource hierarchies:

❏

A resource hierarchy is a collection of related program resources. The root node of each resource hierarchy rep-
resents the entire program execution and is labeled with the name of the entire resource hierarchy. Each descendant of
the root node represents a particular program resource within that view. As we move down from the root node, each
level of the hierarchy represents a finer-grained description of the program. For example, a code hierarchy might have
one level for nodes that represent modules, below that a level with function nodes, and below that a level for loops or
basic block nodes.

In theCode resource hierarchy of Figure 1, the root level (level 0) is the program-level view of an application,
which represents the cumulative behavior of the whole program. Level 1 is the module-level view of the source code,
and level 2 is its function-level view. Each level of a resource hierarchy is a set of resources, and each level above the
leaf level is a partition of the set of nodes in the next lower level. For example, the module level of Figure 1, which

E R0 R1 … Rn n 0.≥,∪ ∪ ∪=

Page 3

contains testutil.C, main.C, and vect.C, is a partition of the set of all leaf nodes. We specify a particular level of a hier-

archy using a superscript notation:R0
1 refers to level one (the children of the root node) of resource hierarchy zero.

The Code hierarchy in Figure 1 shows the set of functions partitioned into modules:

R0
0 = {Code} R0

1 = { testutil.C, main.C, vect.C}

R0
2 = {printstatus, verifyA, verifyB, main, vect::addel, vect::findel, vect::print}.

Definition 2.2. A resource hierarchy R is a tree of the form

R = (r, T)

where r is a resource andT is the set of all children of r in the resource hierarchy:

T = {(r0,T0), (r1,T1), ... (rm,Tm)}. ❏

Figure 1 shows a sample Program Event for a parallel application calledTester. The Program Event is the set
{ Code, Machine, Process}. The Code hierarchy contains nodes that represent the program’s modules and functions; the
Machine hierarchy contains one node for each CPU on which Tester executed; and the Process hierarchy contains one
node for each process.

A resource is a representation of a logical or physical component of a program execution. A single resource
might be used to represent a particular aspect of the program or the environment in which it executes: a process, a
function, a CPU, or a variable. In Figure 1, the leaf node labeled “verifyA” represents the resource
<Code/testutil.C/verifyA>. The semantic meaning attached to a particular resource is relevant only to the programmer
and does not affect the model functionality; however, a program execution component must be uniquely represented
by a single resource. Each internal node of a resource hierarchy tree represents a set of one or more resources; for
example, <Code/testutil.C> is a single resource that represents the aggregation of the set {printstatus, verifyA, verifyB}.

A resource name is formed by concatenating the labels along the unique path within the resource hierarchy from
the root to the node representing the resource. For example, the resource name that represents function verifyA
(shaded) in Figure 1 is <Code/testutil.C/verifyA>.

2.2 Representing Performance Information in a Program Event

For a particular performance measurement, we may wish to specify certain part or parts of a program. For exam-
ple, we may be interested in measuring CPU time as the average for all executions, as the total for one entire execu-
tion, or as the total for a single function. Thefocus constrains our view of the program to a selected part. Selecting the
root node of a hierarchy represents the unconstrained view, the whole program. Selecting any other node narrows the
view to include only those leaf nodes that are descendents of the selected node. For example, the shaded nodes in

Figure 1: Program Event for Program Tester, with Three Resource Hierarchies

vect::addel

verifyB

verifyA

printstatus

mainmain.C

testutil.C

vect.C
vect::findel

vect::print

Tester:2

Tester:1

Tester:3
Process

Machine

CPU_1

CPU_2

CPU_3

CPU_4

Tester:3

Code

Page 4

Figure 1 represent the constraint: functionsverifyA andverifyB of processTester:2 running on any CPU.

Definition 2.3. A focus F is formed by selecting one resource node from each of the resource hierarchiesR:

{r1 ∈ R1
j1, r2 ∈ R2

j2, r3 ∈ R3
j3, ... rn∈ Rn

jn}
wherejx is a level of resource hierarchyRx andn is the total number of resource hierarchies. The nodes selected may
be in different levels of the different hierarchies.❏

The Program Event provides an intuitive naming scheme for program components calledresource normal form.
We convert the selected set toresource normal form by concatenating the selections from each resource hierarchy.
For example, the shaded selection of Figure 1 is represented as:

< /Code/testutil.C/(verifyA,verifyB), /Machine, /Process >.

Performance data is represented by a function of the form P(E, m, f, t):

E: a program execution as defined in Definition 2.1.
m: the name of themetric, which is a measurable execution characteristic, such as CPU time.

f: thefocus for this performance data, for example CPU time for focus < /Code/Main.C, /Machine, /Process >.

t: thetime interval, specifies when during an execution the data was collected.

P returns aperformance result (r),which may be a simple scalar or more complex object. Because data is uniquely
identified using a focus, we say the performance data is stored inresource normal form.

2.3 The Structural Difference Operator

When comparing the performance of two program executions, a natural first question is, how different were the
code and environments used in the two tests, and where did they differ? If we perform two test runs using identical
code running on identical, dedicated platforms, every resource hierarchy of the first execution has an identical coun-
terpart in the second execution; performance data may be meaningfully compared for every focus that is valid for one
of the individual executions. The comparison becomes more complex if we consider cases in which either the code or
the run time environment (or both) differ between our two test runs.We need to determine the common set of valid
resources to determine the new set of valid foci for the program.

Given two Program Events,E1 andE2 (see Figure 2) , we can calculate their structural difference. To perform a

structural comparison of two program executions, we compare the two sets of resource hierarchies in a top-down
manner. TheStructural Difference Operator,⊕, takes two Program Events as operands and yields a Program Event
Group (PEG). The result contains all resources from the original two Program Events, so the structural difference
operation works as a hierarchical set union operation. This operator can be applied iteratively to build up a single set
of resource hierarchies that characterizes any number of distinct program runs.

Figure 3 shows an application of the structural difference operator to two program eventsE1 andE2. The top set
of resource hierarchies describes eventE1, and the middle set describes E2. The bottom of the figure shows the result.
Resources common to both executions are outlined with mixed dash/dot; <Code> and <Code/Module2> are examples
of such resources. Resources unique toE1 or E2 are outlined with dot or solid boxes respectively.

[1] S ← { }

[2] ∀ (ri, Ti) ∈ E1

[3] if ∃ (rj, Tj) ∈ E2, s.t. match (ri, rj) then

[4] S ←S U { ri ⊕ rj, Ti ⊕Tj}

[5] E2 ← E2 - (rj, Tj)

[6] else S← SU {(r i, Ti)}

[7] S ← SU E2

Figure 2: Algorithm to find the Structural Difference of two Program Events,E1 ⊕ E2

Page 5

2.4 Moving Beyond the Single Execution Model

A collection of two or more Program Events is stored in a Program Event Group (PEG). The interface to the PEG
is centered around a single set of resource hierarchies, constructed using the Structural Difference Operator, which
represents the components of all of its Program Events. The collection of Program Events is stored in a multi-dimen-
sional Program Space. Users can navigate this space, visualize its form and contents, and make queries on the struc-
ture and contents. We developed two aggregation operators of particular use in viewing PEG performance data: the
list aggregation operator, when applied to a hierarchy that contains more than one selected node, yields a performance
result that is a list of values rather than a single value; and thecluster aggregation operator groups the requested per-
formance data by value – each group contains values that were within a specified∆ of each other (represented by the
average of the group).

We have defined several new metrics particular to the multi-execution PEG. Thediscrete distance metric is a
binary function that indicates whether or not two specified performance results differ by more than a specified inter-
val. The metricdd is calculated as follows:

where x and y are two different performance results. We use the discrete distance metric as a building block for clus-

Figure 3: An Example of the Structural Difference Operator

Machine

Poona

Code

Module1 Module2

Main Foo Bar

Process

Tester

Sync Objects

One Two

Messages

One Two

Process

Tester

Machine

Poona

Code

Module1 Module2

Main Foo Car

Machine

Poona

Code

Module1 Module2

Main Foo Bar Car

Process

Tester Semaphores

One Two

Messages

One Two

Program EventE1

Program EventE2

Program Event Group (E1, E2)

Semaphores

Sync Objects

Sync Objects

Execution

E1

Execution

E2

Execution

E2E1

dd x y(,)
1 if x y– δ≥
0 if x y– δ<




=

Page 6

tering and differencing of performance results.

Theperformance difference operator takes as inputs two executions and returns a list of all foci for which the dis-
crete distance metric yields an answer of true. The list is computed hierarchically as shown in Figure 4. We iterate
through the resource nodes of the Program Event, starting with the focus which represents the entire program execu-
tion, “currentFocus.” If there is a performance difference noted, we then check more specific foci for the same metric.
We provide a display of performance difference results as part of our prototype (see Figure 7). This metric is useful to
focus attention immediately to performance changes from one version to the next.

We construct more specific foci using an operation we call magnify (see Figure 5). As specified in Definition 2.3,
a focus contains one node from each resource hierarchy. For each resource hierarchy in the original focus, we form a
set of new foci by replacing the given resource with the each of its children in the next lower level of the hierarchy.
The result of the magnify operation applied to a focus is a set of foci.

The previous two metrics aim to describewhat has changed. We would also like a metric to describehow much
performance has changed. We are currently investigating two approaches to aperformance distance metric: a Euclid-
ean distance, and a weighted average of performance result values. The goal is a quantitative measure of how much
performance differs between two or more executions, which can be used to weigh or rank performance bottlenecks.

Figure 4: Algorithm for the Performance Difference Operator perfDiff (E1, E2, m). The performance

difference operator searches through the performance results for the specified metricm and the requested Program EventsE1 and
E2, returning a list of all foci for which the results are different.

Figure 5: Algorithm for magnify(f). Magnify returns the set of foci constructed by making all possible one step descents
down the resource hierarchy from the given starting focus.

[1] answer ← {}

[2] enqueue (pendingQueue, wholeProgram)

[3] while ! (isEmpty (pendingQueue))

[4] currentFocus ← dequeue (pendingQueue)

[5] pr1 ← P(E1, m, currentFocus,)

[6] pr2 ← P(E2, m, currentFocus,)

[7] If dd(pr1, pr2) = true

[8] answer ← answer ∪ {currentFocus)

[9] for each f in magnify(currentFocus)

[10] enqueue (pendingQueue, f)

[11] return answer

given focus f = {r1∈ R1
j1, r2 ∈ R2

j2, r3 ∈ R3
j3, ... rn∈ Rn

jn}:

[1] answer ← {}

[2] for i = 1 to n

[3] f ← f - ri

[4] for each j in children(ri)

[5] answer ← answer ∪ (f + j)

[6] return answer

Page 7

3 CASE STUDIES

To test out our model on existing scientific applications, we have implemented a preliminary prototype of an experi-
ment management performance tool. The prototype was written using C++ and Tcl/Tk [19] extended with a tree wid-
get [20]. Resource hierarchy loading, display, and differencing were all implemented directly in Tcl/Tk. To test our
design we have examined data collected while tuning several parallel programs. We provide examples of using our
prototype to (1) compare implementations based on alternate communication libraries, (2) evaluate performance as a
program evolves through versions, and (3) track data for a scalability analysis. In each case, the use of an experiment
management system simplifies and speeds the programmer’s task.

3.1 Comparing Alternate Implementations: Porting a PVM Application to MPI

In this study we compared the structure of two versions of a parallel message-passing FFT code called ns, which
was ported from the PVM to the MPI message passing libraries. The application solves the Navier-Stokes equation in
three dimensions. A scientist porting an application wants directed feedback about the resulting changes in perfor-
mance to the application, and hopefully some idea of the cause of any performance degradation. The first step is to
provide feedback on the structural differences between the old and new versions. In Figure 6 we show the resource

hierarchies that resulted from applying the Structural Difference Operator to two Program Events, a 4-node run of
nspvm (PVM version) and a 4-node run of nsmpif (MPI version), both on the IBM SP-2. This display provides a
quick way to see what differed in both the code and the environment between the two runs. The left in Figure 6 shows
that Code, Machine, Memory, Process, andSyncObject resources appear in both Program Events. In theCode hierarchy,
three modules (dfft.c, ns3d.c, andp3d.c) appear in both runs. At the leaf, we can see four procedures (strip, andstrip1-3)
appeared only in Program Event 1. TheMessage hierarchy on the right shows the changes in message tags: tags0_1,

Figure 6: Resource Hierarchies for Program Event Group: nspvm, nsmpif.The PEG Display allows the
developer to navigate resource hierarchies and quickly see what differed structurally between two (or more) program runs. The
display is organized like the resource hierarchies from Figure 1, with the addition of an integer run identifier (RID). Each run is
labeled with a value 1, 2, 4, 8, etc. Resources that appeared in only one run, are labeled with the RID of that run (1 or 2 in this

example). Resources that appear in more run are labeled with the sum of the RIDs; the resources labeled with 3 appeared in both
runs 1 and 2.. We show here two views of the PEG: the display on the left has the module “p3d.c” expanded, while the display on

the right results from expanding the Message node to see individual message tags.

Page 8

0_3, 0_5, and0_2 represent MPI message tags, and the rest represent the message tags for the PVM version. By select-
ing any of these resources, we can display the performance data for the Program Event(s) that include that resource.

3.2 An Evolving Application: Performance Tuning a Shared Memory Application

A protein-folding application, called Fold4, was recently developed in our Chemical Engineering Department.
The tuning effort was reported in detail elsewhere [10]. We analyzed the program versions and performance data from
this study and were able to automate the identification of changes from one version to the next.

We ran three versions of Fold4, taken from different steps in the performance tuning study. The researchers con-
ducting the study had located several problems. Version 1 was a simple port to the Wisconsin Cluster of Workstations
(COW) from the SGI PowerChallenge. A problem was identified with a serial portion of the code that consumed 40%
of the execution time on 8 nodes. Version 2 changed to data partitioning to try to relieve the bottleneck. A problem
was identified with false sharing of data blocks. Version 3 padded and aligned data to improve the cache behavior. We
present selected results here to demonstrate the benefit of the experiment management approach in navigating the
large space of resources and data involved in a complete performance tuning study.

First we examined the structural differences between versions. To consider the changes from version 1 to version
2, we merged these two Program Events (by applying the Structural Difference Operator) and generated a Program
Event Group (PEG). The PEG display distinguishes foci valid for both Program Events. TheMemory hierarchy shows
that a data change of some kind occurred, since there are more data structures in the memory hierarchy for Version 2.

Next we examined the performance differences, by applying the performance difference operator to metric mem-
oryBlockingTime. The perfDiff operator pairwise compares performance data available for both Program Events. The
results are presented in the perfDiff display (shown in Figure 7). This display shows that memory blocking behavior
differed overall in the two runs; further it differed in each process, and that those differences were localized to five
data structures (GM, GM->part0-3).

3.3 A Scalability Study

In this study we compared 4 executions of a parallel global circulation message-passing code called Ocean. We
ran the same code on 2, 4, 8, and 16 nodes of the Wisconsin COW, and used the merge, cluster, and performance dif-
ference features to explore the behavior of the application while scaling. Figure 8 shows the Program Event Group
Display. This Program Event Group was built up by applying the structural difference operator twice. The set of
resource nodes it contains is the union of all resource hierarchies in the three original Program Events. The two views
of Figure 8 demonstrate our prototype’s ability to represent an application’s different environments. In this particular
study, the different runs re-used a common set of machine nodes, which is clearly shown in the first display. Nodes
labelled “cow03,” “cow04,” “cow05,” and “cow06” were common to all three executions, and are tagged with a “5.”
Nodes “cow07,” “cow08,” “cow17,” and “cow18” are all unique to the 16-node program run, and are tagged with a
“1.” The remaining machine nodes were used in both the 8- and the 16-node runs, and are tagged with a “3.” The dis-
play on the right shows the different processes. A string comparison here yields limited information, since each pro-
cess name is unique. The display demonstrates our prototype’s ability to provide an interface and naming mechanism
for the various types of program resources found in a multi-execution performance tuning environment.

We show an example of the results of a multi-execution query in Figure 9. Here we requested the metrics CPU-
time, SyncWaitTime, and IOWaitTime for three executions of the application, on 2, 4, and 8 nodes of a SUN SPARC-
station cluster. The data used here was collected using Paradyn, and is stored in the form of Paradyn histograms. The
result of the query is 9 Paradyn histograms. Here we display the result using xmgr.

4 RELATED WORK

There has been extensive work on parallel profiling tools [11,12,3,2,13], and a more limited amount of work on
tools that allow displays of performance data from multiple runs [14,21]. In the debugging area, work has been done
to find bugs by comparing the execution of a new program version to an old one by comparing program output and
user-selected variables[16]. GUARD compares the program currently being debugged with a reference version of the
same program, to detect differences in variable values at user-defined points during the execution. Comparisons are
made of simple or complex data types; the programs compared may be written in different languages or run across
heterogeneous environments. They have defined difference operators for simple and complex data types which can
compare complex structures and factor out machine dependent data representations, returning a boolean result which
indicates whether the two variable values differed at the matching points in each computation. Unlike our approach,
the programmer must separately determine points of comparison and items of comparison for each version of the pro-

Page 9

gram.

Several recent efforts have defined program similarity. MTOOL [22] includes a metric that compares observed
and predicted execution times to the granularity of individual basic blocks. Their approach, useful only for memory
tuning, defines the difference between predicted and observed execution time as a memory bottleneck. Mendes [23]
defines similarity for execution graphs used in his trace transformation approach to performance prediction. They
define similarity s between two graphs as the degree of the largest isomorphic graphs that are induced subgraphs of
each of the two original graphs. The distance d between the graphs is defined as d = n - s, where n is the number of
vertices of each of the original graphs. Saavedra and Smith [24] use two metrics for program similarity: program
characteristic similarity, which is a normalized squared Euclidean distance, and execution time similarity. These are
addressing a similar problem to our structural difference and performance difference operators, although our
approach is to provide an extensible framework for both structural and execution comparison, and to allow perfor-
mance difference to be calculated at many different levels of detail and for many different metrics.

The Wisconsin Program Slicing Project at UW-Madison [25] investigates methods for determining syntactic and
semantic differences between two versions of a sequential source code. Their focus is on precise characterization and
identification of the differences between two program versions. It is currently limited to sequential Pascal codes, and
because it examines source code only, is not useful in identifying differences between executions of the same code in
differing environments.

In the physical and life sciences, there has been work to automate and store experimental data [15]. Interactive
data exploration and scientific data visualization is the subject of much ongoing research. We restrict the scope of our
research to identifying issues particular to a multi-execution environment. We combined Paradyn and Devise [14] to
enable side-by-side, linked visualization of data from multiple executions of a parallel application. However, this ini-

Figure 7: Results of the Performance Difference Operator for metric MemoryBlockingTime.The
nodes shown represent resource combinations for which there is a performance difference detected between the Program Events.
Starting at the left, the nodeWholeProgram means that there is some performance change between the two runs. The process nodes

indicate that performance changed in some way for each of the four processes. The next level details individual shared data
structures:GM is a shared index structure, andGM->part0, GM->part1, GM->part2, andGM->part3 are the shared data structures

listed in the index. The data structures listed are those common to both runs for which memoryBlockingTime changed. This
snapshot was taken after selecting two nodes,process1 andprocess2, to see a detailed display of their children. A visualization of

the performance data for any node, showing the plots of the values for each run, can be launched by selecting the node on this
display.

Page 10

tial effort did not address the problems in trying to match phases of the program across two runs of different execution
time, it simply displayed the two runs without any ability to correlate a point in one graph with the corresponding

Figure 8: Resource Hierarchies for Program Event Group: ocean.This Program Event Group represents three
executions of the PVM application “ocean” run on 4, 8, and 16 nodes, and is the result of performing two consecutive structural

difference operations. We show here two views of the PEG: the display on the left has the module “machine” expanded, while the
display on the right results from expanding the process node.

Figure 9: Results of the metrics CPUtime, IO_Time, and Sync_Wait for a Program Event Group.

Page 11

point of execution in the other graph. IPS-2 [21] allowed linked visualization of data from different runs, matching
them by normalizing to total execution time. Ribler, Abrams et al Virginia [26] have developed alternative methods
for visualizing categorical trace data, including recent work on visualizing multiple traces simultaneously.

Our representation of a Program Space, use of an experiment management infrastructure, and automated com-
parison of program runs represents a new direction in defining a performance tool that more closely maps to the
actual process programmers must go through to tune their codes, and that uses automation to focus the user’s atten-
tion into small critical areas of change.

5 CONCLUSIONS

Taking an experiment management view of performance tuning allows us to describe an application’s behavior
throughout its lifetime and across a variety of environments and code ports. Our multi-execution view provides much
valuable feedback for the scientist developing or maintaining a parallel code. We are currently working to expand the
prototype described here, with a richer set of data types, a web-based interface to service developers engaged in geo-
graphically distributed cooperative program development and use, and additional performance displays. We are inves-
tigating the use of an object oriented database for data storage, and exploring techniques to improve Paradyn’s on-the-
fly diagnosis capabilities using feedback from our experiment management system.

6 REFERENCES

[1] D. L. Wheeler. Top population geneticist delivers scathing critique of field.The Chronicle of Higher Educa-
tion, February 14, 1997.

[2] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L. Karavanic,
K. Kunchithapadam, and T. Newhall. The Paradyn parallel performance measurement tool.IEEE Computer,
28(11):37–46, November 1995.

[3] D. Reedet al. Scalable performance analysis: The Pablo performance analysis environment. I. C. Press, editor,
Proc. Scalable Parallel Libraries Conference, pages 135–142, Los Alamitos CA, 1993.

[4] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.International Journal of Super-
computer Applications, 1997, to appear.

[5] J. Dongarra, G. Geist, R. Manchek, and V. Sunderam. Integrated PVM framework supports heterogeneous net-
work computing.Computers in Physics, 7:166–74, 1993.

[6] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and typhoon: User-level shared memory.21st Annual
International Symposium on Computer Architecture, April 1994.

[7] W. Gu, G. Eisenhauer, E. Kraemer, J. Stasko, J. Vetter, and K. Schwan. Falcon: On-line monitoring and steer-
ing of large-scale parallel programs.Symposium on the Frontiers of Massively Parallel Computation, McLean,
Virginia, February 1995.

[8] K. Kunchithapadam and B. P. Miller. Integrating a Debugger and a Performance Tool for Steering, inDebug-
ging and Performance Tools for Parallel Computing Systems. IEEE Computer Society Press, 1996. ed. by
M.L Simmons, A.H. Hayes, J.S. Brown, and D.A. Reed.

[9] S. Fink, S. Kohn, and S. Baden. Flexible communication mechanisms for dynamic structured applications.IR-
REGULAR ’96, Santa Barbara, CA, August 1996.

[10] Z. Xu, J. R. Larus, and B. P. Miller. Shared-memory performance profiling.6th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Las Vegas, Nevada, June 1997.

[11] J. Yan, S. Sarukhai, and P. Mehra. Performance measurement, visualization and modeling of parallel and dis-
tributed programs using the AIMS toolkit.Software – Practice and Experience (SPE), 25(4):429–461, April
1995.

[12] W. Williams, T. Hoel, and D. Pase. The MPP Apprentice performance tool: Delivering the performance of the
Cray T3D.Programming Environments for Massively Parallel Distributed Systems, Monte Verita, 1994.

[13] M. Heath and J. Etheridge. Visualizing the performance of parallel programs.IEEE Software, 8(5):29–39, Sep-
tember 1991.

[14] K. L. Karavanic, J. Myllymaki, M. Livny, and B. P. Miller. Integrated visualization of parallel program perfor-

Page 12

mance data.Parallel Computing, 23(1997) 181-198.

[15] Y. Ioannidis and M. Livny. Conceptual schemas: Multi-faceted tools for desktop scientific experiment man-
agement.International Journal of Intelligent and Cooperative Information Systems, 1(3):451–474, December
1992.

[16] R. Sosic and D. Abramson. Guard: A relative debugger.Software Practice and Experience, to appear.

[17] J. Kohn and W. Williams. ATExpert.Journal of Parallel and Distributed Computing, 18:205–222, 1993.

[18] J. K. Hollingsworth and B. P. Miller. Dynamic control of performance monitoring on large scale parallel sys-
tems.International Conference on Supercomputing, Tokyo, July 1993.

[19] J.K. Ousterhout.Tcl and the Tk Toolkit. Addison-Wesley Publishing Company, Reading, MA, 1994.

[20] A. Brighton. “The Tree Widget” inTcl/Tk Tools. O-Reilly and Associates, Inc.to appear, 1997.

[21] R. Bruce Irvin and Barton P. Miller. Multi-Application Support in a Parallel Program Performance Tool. Tech-
nical Report #CS-TR-93-1135, February 1993, Computer Sciences Department, University of Wisconsin -
Madison.

[22] A. Goldberg and J. Hennessy. Performance debugging shared memory multiprocessor programs with MTOOL.
Proceedings of Supercomputing ’91, pages 481–490, Albuquerque, NM, November 1991.

[23] C. L. Mendes. Performance prediction by trace transformation.Fifth Brazilian Symposium on Computer Archi-
tecture, Florianopolis, September 1993.

[24] R. H. Saavedra and A. J. Smith. Analysis of benchmark characteristics and benchmark performance prediction.
Technical Report Computer Science Technical Report USC-CS-92-524, University of Southern California,
1992.

[25] S. Horwitz and T. Reps. Efficient comparison of program slices.Acta Informatica, 28:713–732, 1991.

[26] R. Ribler, A. Mathur, and M. Abrams. Visualizing and modeling categorical time series data. Technical report,
Department of Computer Science, Virginia Polytechnic Institute and State University, August 1995.

7 AUTHOR BIOGRAPHIES

Karen L. Karavanic is working toward a doctoral degree in the Computer Sciences Department at the University of
Wisconsin, Madison. She received BA and MS degrees in computer science from New York University and the
University of Wisconsin, respectively. Karavanic holds a NASA Graduate Student Research Fellowship.

Barton P. Miller received his B.A degree in Computer Science from the University of California, San Diego in 1977,
and M.S. and Ph.D. degrees in Computer Science from the University of California, Berkeley in 1979 and 1984,
respectively. Since 1984, he has been at the University of Wisconsin–Madison, where he is a Professor in the
Computer Sciences Department. His research interests include parallel and distributed program measurement
and debugging, extensible operating systems, network management and naming services, and user interfaces.
He currently directs the Paradyn Parallel Performance Tool project, developing next-generation performance
tools for both massively parallel computers and workstation clusters. Miller is Program co-Chair of the 1998
ACM/SIGMETRICS Symposium on Parallel and Distributed Tools, and was General Chair of the 1996
ACM/SIGMETRICS Symposium on Parallel and Distributed Tools. He also twice chaired the ACM/ONR Work-
shop on Parallel and Distributed Debugging, and is on the editorial boards of IEEE Transactions on Parallel
and Distributed Systems, Computing Systems and the International Journal of Parallel Processing.

