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Abstract. Code reuse attacks circumvent traditional program protec-
tion mechanisms such as W ⊕ X by constructing exploits from code
already present within a process. Existing techniques to defend against
these attacks provide ad hoc solutions or lack in features necessary to
provide comprehensive and adoptable solutions. We present a system-
atic approach based on first principles for the efficient, robust detection
of these attacks; our work enforces expected program behavior instead
of defending against anticipated attacks. We define conformant program
execution (CPE) as a set of requirements on program states. We demon-
strate that code reuse attacks violate these requirements and thus can
be detected; further, new exploit variations will not circumvent CPE . To
provide an efficient and adoptable solution, we also define observed con-
formant program execution, which validates program state at system call
invocations; we demonstrate that this relaxed model is sufficient to detect
code reuse attacks. We implemented our algorithm in a tool, ROPStop,
which operates on unmodified binaries, including running programs. In
our testing, ROPStop accurately detected real exploits while imposing
low overhead on a set of modern applications: 5.3% on SPEC CPU2006
and 6.3% on an Apache HTTP Server.

Keywords: Binary analysis, static analysis, return-oriented program-
ming, jump-oriented programming

1 Introduction

Code reuse attacks are an increasingly popular technique for circumventing tra-
ditional program protection mechanisms such as W ⊕X (e.g., Data Execution
Prevention (DEP)), and the security community has proposed a wide range of
approaches to protect against these attacks. However, many of these approaches
provide ad hoc solutions, relying on observed attack characteristics that are not
intrinsic to the class of attacks. In the continuing arms race against code reuse
attacks, we must construct defenses using a more systematic approach: good
engineering practices must combine with the best security techniques.

Any such approach must be engineered to cover the complete spectrum of
attack surfaces. While more general defensive techniques, such as Control Flow
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Integrity or host-based intrusion detection, provide good technical solutions,
each is lacking in one or more features necessary to provide a comprehensive
and adoptable solution [51]. We must develop defenses that can be effectively
applied to real programs.

We present a technique based on first principles for the efficient, robust de-
tection of code reuse attacks. Our work is grounded in a model of conformant
program execution (CPE), in which we define what program states are possi-
ble during normal execution. We generate our model automatically from the
program binary; thus, no learning phase or expert knowledge is required. CPE
enforces expected program behavior instead of defending against anticipated at-
tacks; thus, new exploit variations will not circumvent CPE . CPE is based on
observable properties of the program counter and runtime callstack; a program
has CPE if, for all program states during the execution of the program, the pro-
gram counter and callstack are individually valid and consistent with each other.
Code reuse attacks execute short sequences of instructions without respect to
their location in original code; thus, these attacks deviate from our model.

Conformant program execution verifies each program state; therefore, con-
tinually validating it can result in high overhead. We address this problem with
observed conformant program execution (OCPE), which reduces overhead by
only validating program state at system call executions. We demonstrate that
this relaxed model is sufficient to detect code reuse attacks. Thus, OCPE pro-
vides an adoptable solution while still providing safety guarantees. OCPE is not
designed to handle code reuse-based mimicry attacks, which have not yet been
demonstrated in the research world or seen in the wild. We believe OCPE could
be augmented in future work to handle these attacks.

We engineer our approach using a component model based on strong binary
analysis of the code. This analysis allows us to operate on modern binaries, which
frequently are highly optimized or lack debugging information; our analysis does
not rely on information that may not be present in a modern application. We
leverage a binary analysis toolkit to identify key characteristics of the stack frame
at any instruction in the binary; this allows us to gather a full callstack via a
stackwalk at runtime. While conceptually straightforward, accurate stackwalks
are surprisingly difficult to perform on real applications. Our algorithm leverages
these stackwalks, taken at system calls, to reliably detect code reuse attacks.

We implemented our code reuse detection algorithm in a tool, ROPStop,
which operates on unmodified binaries, including running programs. We evalu-
ated ROPStop using real exploits from two classes of code reuse attacks: return-
oriented programming (ROP) and jump-oriented programming (JOP). Our re-
sults show that our tool is able to correctly identify each exploit. We tested
ROPStop with the SPEC CPU2006 benchmarks and an Apache HTTP Server
as a control group of unexploited, conventional binaries to evaluate overhead and
measure the occurrence of false positives. Our results show an average overhead
of 5.3% on and 6.3% on Apache; ROPStop reported no false positives.

We provide an overview of the challenges in detecting code reuse attacks and
existing work in this area in Section 2 and a formal description of conformant
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program execution and code reuse attacks in Section 3. Next, we describe the
technical details of our approach in Section 4. We evaluate our approach in
Section 5 and finish with a brief conclusion in Section 6.

2 Background and Related Work

Code reuse attacks provide interesting new challenges for security researchers.
While W ⊕X guards against code injection attacks, it is insufficient to stop code
reuse attacks because such attacks do not write new code into the address space.
We describe how an attacker gains control of the program and produces a code
reuse attack. Further, we describe how an attacker locates gadgets within the
program. We conclude with a discussion of techniques that are not specifically
focused on code reuse attacks but are similar to techniques presented here.

2.1 Gaining Control of the Program

The first step of a code reuse attack is to gain control of the program counter to
divert program control flow to the first gadget. This is done by making use of an
existing vulnerability (e.g., a buffer overflow) to alter program data. Although
these vulnerabilities and possible defenses are well studied, attackers remain
able to exploit these vulnerabilities and launch attacks [51]. We assume that
an attacker will be able to find a viable entry point for launching a code reuse
attack, and do not discuss these vulnerabilities further. To ensure that program
control flow will be diverted, an attacker overwrites either the return address for
the calling function or a function pointer with the address of the first gadget.
Note that W ⊕X restricts attackers to cases where control flow targets depend
on writeable locations rather than executable locations.

If the return address is overwritten, control flow will be diverted to the gadget
when the current function returns and the new return address is loaded into
the program counter. Stack-smashing attacks such as this one have been well-
studied and techniques such as StackGuard [16] will prevent these attacks. To
be effective, this protection must be present in all program code, including the
program binary and any libraries on which it depends. These protections are
provided as options by most modern compilers, but they are frequently not
turned on by default, and can be turned off. Therefore, it is not safe to assume
these protections will be present, and frequently it is not possible for a user
to modify shared libraries (e.g., libc.so) to include them. If a function pointer
is overwritten, control flow will be diverted to the gadget when the program
invokes an indirect call or jump using the address of the function pointer.

Once control flow has been diverted to the first gadget, the code reuse attack
begins. We note that an attack might also use an existing vulnerability to modify
program data: for instance, to cause a system call to be executed with unintended
arguments. These data driven attacks [2, 14, 20] are complementary to control
flow-based attacks and are beyond the scope of our work.
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2.2 Gadget execution

Return- and Jump-Oriented Programming In ROP, each gadget is termi-
nated with a return instruction [44]. Thus, if an attacker has gained control of
the stack pointer, they can use these return instructions to cause program exe-
cution to flow from one gadget to the next. JOP attacks use the same general
technique, but gadgets are chained together with indirect jump instructions [7,9].
Thus, unlike ROP, JOP does not rely on manipulating the stack pointer; instead,
indirect jump instructions have a specified target location, often stored in a reg-
ister. This provides an extra challenge in constructing a jump-oriented attack:
gadgets must manipulate relevant register values to ensure each indirect jump
transfers control to the next gadget.

Defenses Against Code Reuse Attacks There are a variety of techniques
designed to detect code reuse attacks. Several approaches make use of a shadow
stack to prevent control flow manipulation that relies on overwritten stack val-
ues [12, 19, 23]. Others try to detect gadget execution by monitoring the length
of instruction sequences between returns [11,18]. Still others proposed monitor-
ing pairs of call and return instructions [12, 31]. These approaches each target
return-oriented attacks; however, they will not detect jump-oriented attacks be-
cause these attacks do not rely on return instructions to transfer control between
gadgets. Another common approach ensures that a function should only start ex-
ecuting at its entry point [12,29–31]. However, an attack may still hijack control
flow while conforming to these requirements, thus remaining undetected.

Each of these mitigation techniques targets specific characteristics of previ-
ously observed code reuse attacks; such features may not be intrinsic to all code
reuse attacks. In contrast, our work detects any violations of our model of confor-
mant program execution by validating known properties of the program. Thus,
evolving attack variations will not hinder our ability to detect these attacks.

Still other techniques monitor system calls to detect violations. ROPGuard [24]
is a recent tool focused on ROP attacks that checks for a valid callstack at a sub-
set of system calls. ROPGuard relies on frame pointers to traverse the callstack.
Many modern programs do not save frame pointers; thus, callstack verification is
turned off by default, leaving such programs vulnerable. By verifying conformant
program behavior at all system calls and using a robust binary analysis toolkit
to perform accurate stackwalks, our work provides a more complete approach.

2.3 Gadget discovery

Locating potential gadgets is performed by scanning a target binary for return
instructions (for ROP) or indirect jumps (for JOP). An attacker then chooses
the gadgets to use from this set potential gadgets [13, 21, 47]. This selection of
gadgets must allow the attacker to maintain command over the control flow of
the program and perform desired actions while avoiding unwanted side effects.

ASLR is a common system-level technique that randomizes the addresses at
which libraries are loaded into the address space of a process; this is particularly
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relevant for code reuse attacks because these attacks rely on known locations
for each gadget. Unfortunately, this is not sufficient to prevent a code reuse
attack. Schwartz et al. point out that not all operating systems randomize all
components within the address space, and some require an application to ex-
plicitly turn on ASLR [47]. As long as there exists some segment of code that is
not randomized, code reuse attacks are possible. Checkoway et al. demonstrated
that such attacks can be constructed even with a limited set of instructions [10].
Consequently, in real systems, we must assume that if gadgets exist in the code,
an attacker will be able to find a sufficiently powerful set to perform their attack.

Several prevention techniques attempt to eliminate possible gadgets in library
code via code diversification [17,28,32,36,53]. An alternative prevention strategy
seeks to create binaries or kernels that lack necessary characteristics for ROP
attacks [34, 35]. Many software diversification techniques rely on modifying the
program, library, or kernel binaries via recompilation or binary rewriting; such
modifications may not be possible in real systems. Furthermore, these techniques
do not preclude code reuse attacks, but simply challenge attackers to identify
gadgets in more sophisticated ways [51]. In contrast, ROPStop is engineered to
provide a comprehensive solution that does not require ASLR or recompilation;
ROPStop operates on unmodified binaries, including running programs.

2.4 Other Approaches

Our work is also similar to techniques that, while not focused on code reuse
attacks, may be effective against such attacks: control flow validity enforcement
and anomalous system call detection. Control-Flow Integrity (CFI) ensures that
program execution holds to a control-flow graph (CFG) derived from static anal-
ysis [1]. However, because CFI verifies each control-flow transfer during program
execution, it imposes high runtime overhead. More practical approaches, such as
Control Flow Locking (CFL) [6], Compact Control Flow Integrity and Random-
ization (CCFIR) [54], and CFI for COTS binaries [55], have other limitations.
CFL lazily verifies transfers, which greatly improves performance; however, their
technique requires statically-linked binaries, which severely limits its application.
CCFIR and CFI for COTS use binary rewriting to add verification checks at in-
direct control flow transfers. Although these approaches can be applied to shared
libraries, protections must be applied to all binary code to ensure the implied
security guarantees; any unprotected code is a potential attack target. Thus, the
user applying protections must both be aware of and able to protect all library
dependencies; this requirement can limit the applicability of these approaches.
Further, CCFIR relies on ASLR for all program code. The limitations of these
techniques prevent them from providing comprehensive defense solutions.

Host-based intrusion detection systems (IDS) use anomalous patterns of sys-
tem calls to identify attacks. These approaches rely on a learning phase [22,25,48]
or static binary analysis [26]. Unlike learning-based IDS, our work is based on
a model of what program states are possible in normal execution. Further, our
approach enforces a valid program state at each system call, rather than a valid
pattern of system calls. We note that mimicry attacks [33,42] allow an attacker
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to subvert system call monitoring by ensuring that both the call stack of each
system call and the sequence of system calls made by a compromised program
appear normal to an IDS. However, mimicry attacks rely on code injection. While
it is theoretically possible to extend a mimicry attack to employ code reuse, this
form of attack does not appear in the wild; this would require an attacker to
construct a sequence of gadgets that both executes their attack and restores the
system to a state that appears valid at the next system call. However, gadget
discovery is a difficult problem. In practice, attackers who employ code reuse
are attempting to find the shortest route to a less restrictive environment [43].
Thus, we consider mimicry attacks beyond the scope of our work.

3 Conformant Program Execution

Our work is grounded in a model of conformant program execution. We create a
definition of program state and then define requirements on that program state
that must hold true at runtime. Program executions for which these requirements
hold true are called conformant executions. Any deviation from these require-
ments during program execution indicates a non-conformant execution. We first
describe our notation, then define a model of conformant program execution,
and finally discuss how code reuse attacks will be detected as non-conformant.

3.1 Notation

A program is a set of procedures, P = {p1, . . . , pm}. I is the set of all possible
machine instructions; IP ⊆ I are the valid instructions for P . Each procedure pj
is a tuple, pj = (Ipj , entrypj , {exitpj}), where entrypj and exitpj are instructions
in Ipj that represent the entry point and the zero or more exit points for pj . To
represent valid interprocedural control flow in P , we define a call multigraph,
CMGP = (NP , EP ), where NP = P and each e = (ps, pt, i) ∈ EP is a control
flow transfer ps → pt at i where i ∈ Ips is the instruction that effects the call.

We parse the program binary using control and dataflow analysis; these anal-
yses produce a call graph and control flow graph, which are used to populate the
data structures in our model. More details are presented in Section 4. The result-
ing CMGP may be incomplete due to unknown indirect control flow at i ∈ pj .
We address this incompleteness by making conservative assumptions about this
control flow, such as that any procedure may be the target of an indirect call. In
such cases, additional edges (pj , ∗, i) may be added to CMGP , where i ∈ pj and
the target of the control flow transfer at i is unknown. For increased accuracy,
CMGP could be augmented at runtime using dynamic analysis [46]; however,
there is an increase in overhead associated with such analysis.

We define an execution of P as execution(P ) = 〈m1, . . . ,mn〉, where each
mi represents an instance of program state. Program state includes elements
of machine state that are affected by program execution, including registers
and memory. We represent two elements of interest, the program counter and
the callstack, with pc(m) and callstack(m). The callstack, C, is a sequence of
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currently active stack frames, C = 〈s0, . . . , sn〉, where stop = sn is the frame
at the top of the stack associated with the currently active procedure.

We refer to a stack frame as a tuple s = (p, i, height), where p refers to the
procedure associated with the stack frame. i refers to the last executed instruc-
tion in the context represented by s. For the top stack frame, this instruction is
the program counter; for all other frames, this instruction is the call immediately
before the frame’s return address (Figure 1). height is the current height of the
stack frame. Stack frame height is based on the space needed to store saved
registers, procedure parameters, local variables, and a return address. Because
different parts of a procedure may require different amounts of local storage,
this height may vary for different parts of the procedure. Therefore the control
flow path leading to the current location within a procedure, which we denote
entryproc(s)  instr(s), affects the stack frame height. Our model does not rely
on other information, such as a saved frame pointer, because such information
may be omitted by optimizing compilers. We represent elements of each frame
with proc(s), instr(s), and height(s).

assembly

foo: . . .

call bar

. . .

. . .

return address

. . .

callstack

foo’s
stack
frame

bar’s
stack
frame

proc(s)

instr(s)
height(s)

Fig. 1. Relationship between the tuple s = (p, i, height) that represents the current
stack frame instance for procedure foo, the assembly code for foo, and the callstack.
Elements of the stack frame are represented with proc(s), instr(s), and height(s). Note
that the choice to associate the return address with the caller frame and not the callee
frame is arbitrary; this could be restated without loss of generality.

We further define Heights(i) to represent the set of valid heights possible
from all paths through the CFG from entrypj to i ∈ pj . If code modifies stack
frame height inside a loop, the height will depend on the number of loop iter-
ations, so it is possible that the size of the set is not finite. In such cases, we
assume that the stack frame height at these instructions is unknown. In princi-
ple, we could analyze the instruction sequence and build a closed form model of
such behavior. In practice, this occurrence is exceedingly rare.

3.2 Conformant Program Execution

Our model of conformant program execution should be permissive enough to
allow a program to execute valid program instructions reached via valid control
flow, while restrictive enough to allow only these valid executions and detect
code reuse attacks. We define a program to have conformant execution based
on characteristics of two program state components: the program counter pc
and the runtime callstack C. A program is conformant at a given time, i.e., a



8 Detecting Code Reuse Attacks

particular machine state mi, if each component is individually valid and if both
components are consistent. A program has conformant program execution (CPE)
if the program is conformant for all program states in execution(P ).

To verify conformance for a particular program state during execution, we ex-
amine the program counter pc and the callstack C. The program counter should
contain the address of a valid instruction. An instruction j is valid if it exists
in the set of valid instructions for program P ; valid(i) : i ∈ IP . The program
counter is valid if it points to a valid instruction; valid(pc) : valid(instr(pc)).
This requirement eliminates the use of unaligned instructions that could provide
a rich selection of unintended instruction sequences to be used in an attack [8].
Further, should W⊕X not be in place, this requirement precludes code injection
attacks, which rely on code located outside of valid code sections of the binary.

A callstack C = 〈s0, . . . , sn〉 is valid if a height requirement holds for each
frame in C and if a call requirement holds for each pair of adjacent frames.

valid(C) : ∀ s ∈ C : valid(s)

valid(sk) :

{
valid height(sk) k = n

valid height(sk) ∧ valid call(sk) 0 ≤ k < n

A stack frame has a valid height h if that height is a member of the set of valid
heights Heights(i) for the corresponding instruction. For each pair of adjacent
stack frames to meet the call requirement, the control transfer represented by
each pair must correspond to an edge in the call multigraph.

valid height(sk) : height(sk) ∈ Heights(instr(sk))

valid call(sk) : (proc(sk), proc(sk+1), instr(sk)) ∈ EP

Validating calls between procedures associated with consecutive stack frames
ensures that C represents a valid interprocedural control flow path through P .
Thus, we incorporate the goals of CFI [1] but perform verification with runtime
checks for an efficient implementation. Fratric also proposed a requirement on
callstack validity [24]. In his work, a valid callstack requires each stack frame to
have a valid return address and a valid call target, though the tool, ROPGuard,
is only able to implement the former because it relies on information often not
present in modern binaries. We discuss these technical differences in Section 4.

Finally, we define what is required for the program counter and the callstack
to be consistent. Given a program counter that points to a valid instruction and
a valid callstack, we need to ensure they are mutually consistent; that is, that
the callstack is valid for that program counter: consistent(i, C) : i = instr(top(C)).
These validity checks determine if a program has conformant execution:

valid(m) : valid(pc(m)) ∧ valid(callstack(m)) ∧ consistent(pc(m), callstack(m))

CPE(P ) : ∀ m ∈ execution(P ) : valid(m)

3.3 Code Reuse Attacks

We introduce a notation for code reuse attacks and discuss how our model detects
these attacks. A code reuse attack is comprised of a series of gadgets,
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A = 〈g0, . . . , gn〉. Each gadget is a tuple: gk = (Igk, entrygk, exitgk), where entrygk
and exitgk are the instructions in Igk that represent the entry point and exit point
for gk. The instructions that comprise each gadget are part of the set of possible
machine instructions I, but not necessarily part of IP [49].

Although we provide a broad definition of gadgets that spans several flavors
of code reuse attacks, there are several additional known characteristics of each
gadget. Such characteristics are often used when crafting code reuse attacks [13,
47]. The last instruction in a gadget, exitgk, must cause a control flow transfer to
the next gadget gk+1. Gadgets gk and gk+1 are chosen such that exitgk transfers
control to entrygk+1. In ROP, each exitgk is a return instruction and the address
of entrygk+1 is located at the top of the stack [49]; in JOP, exitgk is an indirect
jump instruction, where the target of the jump is entrygk+1 [7, 9].

Executing a sequence of gadgets interrupts the original execution of the pro-
gram. However, gadget execution occurs in the context of the program and may
use the original program stack. As a result, gadgets typically violate CPE in one
or more of three ways: executing invalid instructions, altering the stack, or not
following the original control flow of the program. To detect gadget execution,
and thus a code reuse attack, we must identify these violations.

First, gadgets may execute invalid instructions, either code that was injected
or misaligned instructions from the original program. We detect these invalid
instructions by examining the program counter: ∀ gk ∈ A : Igk ⊆ IP .

Second, gadgets may include instructions that alter the stack. Let
C = 〈s0, . . . , sm〉 represent the callstack prior to the execution of the first gadget,
where sm represents the top of the stack. While a gadget gk executes,
Ck = 〈s0, . . . , sn, . . . , sq〉 where 〈s0, . . . , sn−1〉 represents what remains of the orig-
inal callstack and 〈sn, . . . , sq〉 represents the effects of executing gadget code.

When g0 begins execution, sn = sm. If subsequent gadgets remove values from
the stack, 〈s0, . . . , sn−1〉 v 〈s0, . . . , sm〉, where A v B means that A is a contiguous
subsequence of B that either starts at the same initial state (i.e., s0) or is empty.
Otherwise, 〈s0, . . . , sn−1〉 = 〈s0, . . . , sm−1〉.

Each gadget must maintain the correct height in the context of the stack
frame in which it executes; the expected height for the first instruction in each
gadget, entrygk ∈ Ipj , must match the height of sn. Otherwise, the height of
frame at the top of the stack will be observably incorrect at all instructions in
the gadget. This invariant must be maintained as subsequent gadgets execute.
We detect these invalid stack frames by verifying the height of each stack frame:

∀ i ∈ Igk, gk ∈ A : height(entrygk  i) + height(sn) = height(entrypj  i),

where Igk ∈ Ipj

Third, gadgets may induce a control flow path that does not match that of the
original program. The instructions that comprise each gadget are selected from
an existing procedure; to maintain conformant execution, there must be a valid
control flow transfer from the procedure corresponding to the stack frame below
sn to the procedure that contains the gadget’s instructions. We detect these
invalid control flow paths by validating the path represented by the callstack:

∀ gk ∈ A : (proc(sn−1), pj , instr(sn−1)) ∈ EP , where Igk ∈ pj
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However, there are two ways in which an attack might be able to conform to
our model. First, there may be cases in which a loop allows multiple valid stack
heights at a particular instruction, as described in the previous section; in this
case, a gadget may be able to use an invalid stack height without detection, i.e.,

|Heights(instr(sk))| > 1 ∧ height(sk) ∈ Heights(instr(sk)) ∧
height(sk) 6= height(entryproc(sk)  instr(sk))

In our experience, such code is rare, and can be mitigated by unrolling or oth-
erwise modifying the loop such that |Heights(instr(sk))| = 1. Second, an attack
might take advantage of our conservative handling of indirect control flow to
construct unintended paths through the binary via indirect procedure calls, i.e.,

(proc(sk−1), ∗, instr(sk−1)) ∈ EP ∧ proc(sk−1) 6→ proc(sk) at instr(sk−1)

Such an attack would have to make use of existing program code using whole
procedures at a time, because executing a sequence of procedure fragments would
result in one or more invalid stack frames. Such attacks must still override the
targets of one or more indirect calls to force the execution of the program down
the path desired by the attack. For example, an attack could begin by overwriting
a table of function pointers. However, this is made more complex by the fact that
it must not only overwrite the function pointer but also overwrite the data used
to set up the parameters used at the callsite. While this strategy seems unlikely,
as we use more sophisticated analysis to refine indirect call edges, we further
reduce the likelihood of circumventing our technique.

3.4 Observed Conformant Program Execution

In this section, we define observed conformant program execution (OCPE), which
improves efficiency by verifying program states only at system call entries. Mon-
itoring at system call granularity offers two advantages. First, the system call
tracing interface provided by operating systems (e.g., PTRACE SYSCALL) cannot be
interrupted; therefore, we will receive notification of system call entry even if an
attack is in progress. Second, attacks must use the system call interface (e.g.,
exec) to modify the overall machine state; therefore, we will not miss the effects
of an attack by monitoring only at system calls. We define OCPE as follows:

is syscall(m) : callstack(m) = 〈s0, . . . , sn〉; proc(sn) invoked system call syscall(m)

observed(P ) = 〈m ∈ execution(P ) | is syscall(m)〉
OCPE(P ) : ∀ m ∈ observed(P ) : valid(m)

OCPE makes the assumption that the effects of an attack will be visible in the
program state at the point a system call is executed. As discussed in Section 2,
current code reuse attacks are not constructed to evade OCPE [13,47]. We demon-
strate in Section 5 that OCPE is effective against these attacks. Furthermore, we
believe it will be difficult for future code reuse attacks to entirely hide their
effects from our stack model, because an attack would have to both hide its own
effects as well as forge a consistent program state. Even if a future attack could
circumvent OCPE in this way, our model of CPE would detect these deviations
from normal program execution. Therefore, OCPE is an effective optimization of
CPE that greatly improves performance while preserving the power of CPE.
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4 Implementation

We have incorporated our model into a tool, ROPStop, that monitors a process
during its execution for observed conformant program execution. We use sev-
eral components from the Dyninst binary modification and analysis toolkit to
perform this runtime monitoring and verification [37], and ROPStop has been
implemented for both 32- and 64-bit x86/Linux. In total, ROPStop is approxi-
mately 3,000 lines of C++ on top of several toolkit libraries.

4.1 Process Monitoring

We perform runtime process monitoring using the ProcControlAPI process mon-
itoring and control component [40] of Dyninst. This library allows a tool process
(ROPStop) to manage one or more target processes using platform-independent
abstractions. ProcControlAPI includes the ability to control threads, set break-
points, request notifications (callbacks) at events, and read and write memory.

Using ProcControlAPI, we may either create a new process or attach to a
running process. We then register a callback function that is invoked before each
system call. Although ProcControlAPI already provides the capability to reg-
ister callback functions at various process events using the operating system’s
debug interface (ptrace), we extended the library to provide support for call-
backs at system call entry. ROPGuard [24] used an alternative approach that
instead operates on the library wrappers for system calls rather than directly on
the system call. However, this can be defeated by malicious code that directly
executes a trap instruction to invoke a system calls By using the debug interface,
we can guarantee that all system calls will trigger our callback.

ROPStop then parses the program binary and any library dependencies using
the ParseAPI control flow analysis library [39]. ParseAPI uses recursive traver-
sal parsing to construct a whole-program control flow graph [15, 52], including
sophisticated heuristics to recognize functions that are only reached by indirect
control flow and works in the absence of symbol table information [27,45]. This
CFG provides both the call multigraph (CMGP ) required by our model and the
information necessary to identify each valid program instruction (IP ).

Once the process binary has been parsed, we continue its execution. If the
process creates additional threads or launches a new process, ProcControlAPI
will monitor these also. A monitored process is stopped at each system call
entry. ROPStop checks that the program has conformant execution; ROPStop
explicitly verifies the program counter and the callstack and implicitly verifies
consistency. If the process is conformant, execution is continued. If ROPStop
detects non-conformant program state, the process is terminated.

4.2 Instruction Validity

ROPStop first verifies that the program counter points to a valid instruction
in the original program, e.g., that instr(pc) ∈ IP . This inexpensive step ensures
that an attack may not make use of unaligned instructions. We identify the basic
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block in the CFG that contains this address and disassemble the block using the
InstructionAPI instruction disassembly library [38]. If we reach an instruction
that begins at the address in the program counter, we conclude the current
instruction is valid. Otherwise, we conclude the instruction is invalid.

4.3 Callstack Validity

Next, ROPStop gathers a full stackwalk using the StackwalkerAPI library [41].
A full stackwalk must be gathered at each system call to ensure that no malicious
stack modifications have occurred since the last validity check; this step must
be completed even if two system calls occur within the same function or a single
loop. ROPStop uses StackwalkerAPI to walk the stack one frame at a time and
validate each frame before continuing the stackwalk. StackwalkerAPI represents
stack frames as pairs (r, sp), where r is a location in the program and sp is
the value of the stack pointer in that location. Given an input frame (ri, spi),
StackwalkerAPI calculates the expected previous frame (ri−1, si−1).

Given a valid stack frame sj and an expected previous frame sj−1 from Stack-
walkerAPI, we validate it as follows. We verify the height of the stack frame sj by
validating the return address of sj−1, rj−1. We define a return address to be valid
if the instruction at this address is immediately preceded by a call instruction;
this definition is also used by the ROPGuard tool [24]. ROPStop uses Instruc-
tionAPI to locate the instruction prior to the return address and identify its
type. If sj−1’s return address is valid, we conclude that the height of sj is valid,
e.g., that height(sj) ∈ Heights(instr(sj)).

This validation allows ROPStop to verify the second necessary condition for
a valid stack frame: that there exists a valid control flow transfer between the
caller (sj−1) and the current, callee frame (sj). We check the CFG constructed
by ParseAPI to verify that there is a valid call edge from the caller to the callee;
this edge must originate at the call instruction found in the previous step. This
verifies that (proc(sj−1), proc(sj), instr(sj−1)) ∈ EP .

Performing a stackwalk is not always an easy task. The debugging infor-
mation that describes stack frames (e.g., DWARF call frame information) is
frequently missing; for example, commercial binaries frequently omit this infor-
mation due to concerns about reverse engineering. Even if this debug information
is present it is frequently incomplete or incorrect; for example, compilers often
omit stackwalking information for automatically generated code.

In light of these challenges, we extended StackwalkerAPI to use dataflow
analysis to identify stack heights. This analysis begins at the entry to a function
and tracks the effects of all instructions that modify the stack heights; the result
is the set of possible stack heights for each instruction in the function. This robust
analysis enables an accurate stackwalk in the absence of debugging information.

If StackwalkerAPI reaches the bottom of the stack and does not encounter
an invalid stack frame, then we conclude that the callstack is valid. Otherwise,
we have found non-conformant program state, and the process is terminated.
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5 Evaluation

ROPStop provides protection against code reuse attacks while identifying no
false positives. We verified these characteristics with the following experiments.
First, we tested ROPStop against code reuse attacks, as well as a conventional
stack smashing attack, and show that ROPStop detects each of these attacks.
Second, we tested ROPStop against a set of conventional binaries, and show that
ROPStop results in no false positives while imposing overhead of only 5.3% on
SPEC benchmarks and 6.3% on an Apache HTTP Server.

All evaluation was conducted on a 2.27GHz quad-core Intel Xeon with 6GB
RAM, running RHEL Server 6.3 (kernel 2.6.32). All exploits were run inside
VirtualBox 4.2.0 virtual machines, running Debian 5.0.10 (2.6.32) or Ubuntu
10.04 (2.6.26); see Table 1. SPEC and Apache were run directly on the host.

Table 1. Details about each exploit and results for ROPStop’s detection of the attack.
All attacks were detected because of invalid stack frame heights; the exploit character-
istic that lead to the observed invalid program state is also provided.

Name OS Exploit Source Detected Why Invalid

17286a (ROP) Ubuntu 10.04 sickness [50] 3 Overwritten return address
17286b (ROP) Ubuntu 10.04 sickness [50] 3 Overwritten return address
Rsync (ROP) Debian 5.0.10 Schwartz et al. [47] 3 Overwritten return address
Bletsch (JOP) Debian 5.0.10 Bletsch et al. [7] 3 Gadget executing
Stack-smash Debian 5.0.10 Aleph One [3] 3 Overwritten return address

We began by testing ROPStop against known attacks; we summarize each
attack in Table 1. The 17286 ROP exploits are from http://www.exploit-db.com.
Rsync is a ROP exploit generated by the Q tool [47]. We acquired the code
necessary for this exploit from the authors; additional exploits from this work
were unavailable. Bletsch is a JOP attack [7]. Finally, we include a canonical
buffer-overflow attack, Stack-smash, to demonstrate ROPStop’s ability to detect
these attacks also. We used information provided in the original documentation
to create the vulnerable program as well as the input necessary for each exploit.

The results of testing ROPStop against these attacks are shown in Table 1.
We were successful in detecting each attack. In each case, callstack verification
failed; the height of a stack frame was found to be invalid because the return
address in the expected caller frame did not follow a call instruction.

Next, we used the SPEC CPU2006 benchmark suite and an Apache HTTP
Server (version 2.4.6) [5] to provide a control group of conventional binaries.
We applied ROPStop to the execution of these binaries to both detect any
false positives and determine how much overhead ROPStop incurs. We selected
SPEC because the execution of each benchmark is well understood and as CPU
intensive programs, any overhead imposed by ROPStop would not be hidden by
I/O. Each benchmark was run three times with the reference inputs; we report
the mean of these runs. We measured end-to-end times, which includes the time
required to generate our model as well as the runtime of the program.

ROPStop generated no false positives when run on the SPEC CPU2006
benchmark suite. The overhead imposed by ROPStop is shown in Figure 2;
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Fig. 2. Overhead results for SPEC CPU2006 benchmarks under ROPStop; mean rep-
resents the geometric mean of all overhead values. We omit four benchmarks, gcc,
calculix, dealII, xalancbmk; we were unable to successfully run these unmonitored.

on average, ROPStop imposes 5.3% overhead. In most cases ROPStop imposes
under 3% overhead; our highest overhead is 19.1% for tonto.

Table 2. Full results for SPEC CPU2006 benchmarks under ROPStop. The system call
rate is reported as system calls per second based on unmonitored runtimes; components
of overhead are reported as percentages of total overhead imposed (summing to 100%).

Overhead Breakdown

Benchmark System Call Rate % Overhead % Instruction % Callstack % Context
(calls/second) Imposed Validity Validity Switching

perlbench 167.8 9.6 0.2 50.7 49.1
bzip2 2.0 0.8 0.0 43.8 56.2
bwaves 3.3 1.4 0.0 31.7 68.2
gamess 29.5 2.4 0.1 59.0 40.9
mcf 3.4 1.9 0.0 51.4 48.5
milc 25.5 5.7 0.1 23.5 76.4
zeusmp 0.2 0.7 0.0 54.2 45.7
gromacs 1.5 0.6 0.0 45.1 54.9
cactusADM 7.6 1.0 0.1 52.0 47.9
leslie3d 31.4 9.2 0.1 14.2 85.7
namd 3.1 0.9 0.0 61.6 38.4
gobmk 14.0 2.2 0.1 43.6 56.4
soplex 241.5 18.1 0.2 50.8 49.1
povray 156.2 18.1 0.1 53.3 46.6
hmmer 18.6 2.6 0.1 38.8 61.1
sjeng 4.8 1.3 0.0 40.5 59.5
GemsFDTD 88.7 7.3 0.2 40.9 59.0
libquantum 0.3 0.7 0.0 50.2 49.8
h264ref 5.1 1.3 0.0 28.9 71.0
tonto 119.6 19.1 0.1 41.2 58.7
lbm 1.4 3.4 0.0 15.5 84.5
omnetpp 3.7 8.8 0.0 12.7 87.3
astar 7.2 1.3 0.1 56.7 43.3
wrf 53.2 15.7 0.0 13.4 86.6
sphinx3 18.6 2.4 0.1 38.1 61.8

The overhead imposed by ROPStop is dependent on the frequency of system
calls as well as the height of the stack. ROPStop is a separate process, rather than
in the same address space as the monitored application. Validating state at each
system call requires at least two context switches; these context switches are more
expensive than the validation checks ROPStop performs. Thus, benchmarks that
make frequent use of system calls or, to a lesser extent, have deep call stacks,
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suffer higher overhead. We report the breakdown of this overhead in Table 2.
The SPEC benchmarks vary greatly in the number of invoked system calls. The
average number of system calls is 23,635; zeusmp invokes only 140, while tonto

invokes 153,890 system calls. We omit four benchmarks, gcc, calculix, dealII,
and xalancbmk, because we were unable to run them unmonitored; we expect
these to have similar performance to our reported numbers.

We used the ApacheBench tool [4] to measure the performance of the Apache
server while being protected by ROPStop. We ran ApacheBench with various to-
tal numbers of requests to a local, static page; the number of concurrent requests
was always 100. Each request size was run twenty times; we report the mean of
these runs. For each run, we started the server, attached ROPStop, and then
ran ApacheBench. We report numbers recorded by ApacheBench, rather than
end-to-end results, because web servers are commonly long-running applications;
however, model generation times were similar to those for SPEC. ROPStop gen-
erated no false positives when run on the Apache server. The overhead imposed
is shown in Figure 3; on average, ROPStop imposes 6.3% overhead. The Apache
server made between approximately 3,000 and 60,000 system calls for the small-
est and largest total number of requests, respectively.
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Fig. 3. Overhead results for an Apache HTTPD web server run under ROPStop, mea-
sured using ApacheBench; mean represents the geometric mean of all overhead values.

6 Conclusion

We have presented a systematic approach for detecting code reuse attacks. In
contrast to current techniques, which rely on exploit characteristics that may
not be intrinsic to the class of attacks, our approach is based on first princi-
ples. We defined a model of conformant program execution; by verifying the
program counter and callstack, we were able to detect code reuse attacks, even
as they continued to evolve. To provide an efficient and adoptable solution, we
also defined observed conformant program execution, which provided the same
guarantees while only verifying program conformance at system calls. Finally,
we built a tool, ROPStop, that uses our model of observed conformant program
execution to detect code reuse attacks. Our results show that ROPStop is ca-
pable of accurately detecting real code reuse attacks. Further, when tested on a
set of modern applications, ROPStop produced no false positives and incurred
only 5.3% overhead on SPEC CPU2006 and 6.3% on an Apache HTTP Server.
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