
Control and Inspection of Distributed Process Groups at Extreme Scale

via Group File Semantics

By

Michael Joseph Brim

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON

2012

Date of final oral examination: 5/11/12

The dissertation is approved by the following members of the Final Oral Committee:

Barton P. Miller, Professor, Computer Sciences

Remzi H. Arpaci-Dusseau, Professor, Computer Sciences

Michael M. Swift, Assistant Professor, Computer Sciences

Benjamin R. Liblit, Associate Professor, Computer Sciences

Rafael Lazimy, Associate Professor, Operations and Information Management

© Copyright by Michael Joseph Brim 2012

All Rights Reserved

i

To Lynn and Sage, my precious flowers.

ii
Acknowledgments

A great number of people have inspired and encouraged me along this path. It is my pleasure to

thank them for all they have done.

My advisor, Bart Miller, has guided my development throughout my graduate career. I owe to him

my abilities to approach problems critically and soundly, and to relate ideas to others in both speech

and prose. I am still in awe of his ability to know what I am thinking before I have the chance to think

it. I am grateful for his trust in me to direct my research and mentor my peers, and for his support and

advice in handling the stumbling blocks along the way.

I thank Dave Hudak, my undergraduate advisor at Ohio Northern University, for instilling the

belief that nothing less than a doctorate would suffice given my talents. I also thank him for introduc-

ing me to Guinness, which never fails to reduce my stress level.

Stephen Scott, my supervisor during my first stint at ORNL, helped me gain confidence by send-

ing me in his stead to my first conference and giving me the reigns to the OSCAR project. Stephen

encouraged me to aim high in my graduate school applications, and I will never forget his generous

recommendation letter.

My years as a member of the Paradyn group have been filled with great co-workers, far too many

mention and all of whom I consider friends. I am particularly grateful to Phil Roth and Dorian Arnold

for cooking up this wonderful piece of steak that is the basis for my research, and for letting me take

over as they moved on to bigger and better things. Vic Zandy has always been an inspiration for his

creativity in software and speaking, and was kind enough to humor me as I adapted his ideas for my

own purposes. I wish him well on his difficult journey. Special thanks goes to all of my “MRNet min-

ions”, who have helped me to become a better mentor and sounding board.

iii
I thank my committee, Remzi Arpaci-Dusseau, Mike Swift, Ben Liblit, and Rafi Lazimy, for

thoughtful questions and comments on my work. They all deserve a “good reader” badge for making

their way through my lengthy tome.

I thank John DelSignore and Steve Lawrence for bouying me as I waded through the deep waters

of TotalView.

Without the people and resources of the ORNL Leadership Computing Facility and the LLNL

Open Computing Facility, my research would not have been possible. The U.S. Department of Energy

(DOE) Operating and Runtime Systems for Extreme Scale Scientific Computation (FASTOS)1 and Soft-

ware Development Tools for Improved Ease-of-Use of Petascale Systems2 programs that funded my

work and gave me the opportunity to share my ideas with my peers in HPC, and the PEAC project

within the DOE INCITE program3 through which we have received access to leadership class

machines have both been crucial to performing my work. I would like to thank Pat Worley for serving

as PI of PEAC, and for encouraging me to use as many CPU hours as I needed (a mere 5.5 million

hours in 2011 alone).

Last, but certainly not least, I thank my family and my wife’s family for continued love and sup-

port throughout this unexpectedly long process. Although it was hard for them to understand the rea-

sons for the lengthy span, I never doubted they would be waiting to congratulate me at the end. I only

hope I have made them proud. Lynn, your capacity for patience and understanding can never be

doubted again. Sage, you are my sunshine and my joy. I love you both and will cherish you forever.

1. This work is supported in part by Department of Energy grant 08ER25842.
2. This work is supported in part by Department of Energy grants DE-SC0003922 and DE-SC0002153.
3. An award of computer time was provided by the Innovative and Novel Computational Impact on

Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leader-
ship Computing Facility located in the Oak Ridge National Laboratory, which is supported by the
Office of Science of the Department of Energy under Contract DE-AC05-00OR22725.

v

Contents

Acknowledgments . ii

List of Figures . vii

List of Tables . ix

Abstract . x

1. Introduction . 1

1.1. Motivation: From Process Groups to File Groups . 4

1.2. Contributions . 6

1.3. Organization . 10

2. Related Work . 11

2.1. Tool and Middleware Requirements for Distributed Group Operations 11

2.2. Group Operations on Files and Processes . 20

2.3. File Name Space Composition . 22

2.4. Distributed and Parallel File Access . 25

3. Group File Operations . 27

3.1. Abstractions and Semantics for Group File Operations . 27

3.2. Extensions to the Idiom . 41

3.3. Summary . 46

4. Flexible and Scalable Composition of File Name Spaces . 48

4.1. File Name Space Composition Goals . 48

4.2. A Language for File Name Space Composition . 50

4.3. Example Compositions using FINAL . 63

4.4. Summary . 69

5. The TBON File System . 71

5.1. Designing a Group File System . 71

5.2. Composing a Global Name Space . 78

5.3. Operations on Distributed Files . 80

5.4. Extensions to MRNet . 83

5.5. Evaluation . 84

vi
5.6. Kernel-level Group File Operations . 89

5.7. Summary . 96

6. Control and Inspection of Process and Thread Groups . 99

6.1. proc++ Design . 102

6.2. Evaluation . 110

6.3. Summary . 119

7. Case Study: Tools for Distributed System Administration . 121

7.1. File Replication . 122

7.2. File Inspection . 127

7.3. Process Monitoring . 134

7.4. Summary . 137

8. Case Study: Ganglia Distributed Monitoring System . 139

8.1. Architecture of the Ganglia Distributed Monitoring System . 140

8.2. Ganglia-tbonfs: A Scalable Design for Monitoring Large Clusters 143

8.3. Evaluation . 146

8.4. Summary . 150

9. Case Study: TotalView Debugger . 151

9.1. Scalability Barriers in the TotalView Architecture . 154

9.2. A Design for Scalable Group Debugging Operations in TV++ 157

9.3. Evaluation . 162

9.4. Design Recommendations to Improve Scalability . 174

9.5. Summary . 177

10. Conclusion . 178

10.1. Contributions . 178

10.2. Future Directions . 181

References . 184

vii
List of Figures

Figure 1.1 Platform for Scalable Group Operations on Distributed Files and Processes 9

Figure 3.5 Group file operation algorithm. 35

Figure 3.6 Example: Group definition. 36

Figure 3.7 Example: Load Monitor . 37

Figure 3.8 Example: Log Search . 38

Figure 3.9 Example: File Replication . 39

Figure 3.10 Two file organizations containing three types of structured data 45

Figure 4.1 Name Spaces and Paths . 52

Figure 4.2 Flac Name Space Combinators . 53

Figure 4.3 Flac Example Specifications for Mount Semantics . 53

Figure 4.4 Flac Example Specification using Location-based Service Selection 55

Figure 4.6 Path Composition Operations. 57

Figure 4.7 merge Conflict Resolution Function . 59

Figure 4.8 merge Tree Composition Operation. 60

Figure 4.12 FINAL Specifications for Private Name Spaces.. 65

Figure 4.13 file_group_merge Conflict Resolution Function. 67

Figure 4.14 Automatic File Groups: Specification and Name Space . 67

Figure 4.15 Distributed Hosts: Specification and Name Space. 68

Figure 4.16 Global Process Space. . 69

Figure 4.17 Heterogeneous Cloud: Specification and Name Space . 70

Figure 5.1 TBON-FS: A Scalable Group File System. 74

Figure 5.3 Composition of TBON-FS Global Name Space. 79

Figure 5.4 TBON Data Aggregation Function . 82

Figure 5.6 TBON-FS Global Name Space Composition Latency. 86

Figure 5.7 TBON-FS Global Name Space File stat . 87

Figure 5.8 TBON-FS Global Name Space Directory Listing . 88

Figure 5.10 File Operation Processing in Linux . 91

Figure 5.11 Group File Operation Processing in Linux . 93

Figure 5.12 User-level vs. Kernel-level Group File Operations: A Performance Model 95

viii
Figure 6.3 proc++ Host Name Space. 108

Figure 6.4 proc++ Session Name Space. 109

Figure 6.8 Group File Operations on Distributed proc++ Files . 116

Figure 6.9 tbon-dbg Group Control and Inspection Operations . 118

Figure 7.4 File Replication Scalability . 126

Figure 7.5 Parallel cat - Attributed Output without Line Equivalence Aggregation (~1.5 hosts). 129

Figure 7.6 Parallel cat - Line Equivalence using Strided Ranges (64 hosts). 130

Figure 7.7 Line Equivalence Output from pgrep. 132

Figure 7.9 Parallel grep Scalability . 133

Figure 7.10 ptop Running on Thunder . 135

Figure 7.11 Parallel top Scalability . 136

Figure 8.1 Metric Data Histories Stored in Round-Robin Databases . 141

Figure 8.2 Ganglia Monitoring and Data Storage Architecture . 142

Figure 8.3 Ganglia-tbonfs Monitoring and Data Storage Architecture . 144

Figure 8.5 CPU Utilization for Ganglia Cluster Aggregators and Host Monitors 148

Figure 8.6 Network Utilization for Ganglia Cluster Aggregators and Host Monitors 149

Figure 9.2 TotalView Client and Server Architecture. 155

Figure 9.3 TV++ Scalable Architecture . 158

Figure 9.4 proc++ Tracer Group Operation Performance . 166

Figure 9.5 TotalView Parallel Startup - IRS . 168

Figure 9.6 TotalView Process Group Control Operation Performance. 172

Figure 9.7 TotalView Process Group Breakpoint Performance . 174

Figure 9.8 Conversion from Per-Target State to Bulk State . 176

ix

List of Tables

Table 3.1 New operations for managing group files: Interface and Description 29

Table 3.2 Common Aggregations for Group Status and Data Results. 32

Table 3.3 Default Status Aggregations for Group File Operations . 32

Table 3.4 New operations for status and data aggregation: Interface and Description 33

Table 4.5 Final Composition Operations . 56

Table 4.9 nstree Interfaces . 62

Table 4.10 filesvc Interfaces . 62

Table 4.11 File Service Operation Interfaces . 63

Table 5.2 TBON-FS Client Library: Mount-related interfaces . 76

Table 5.5 TBON Topologies used in Global Name Space Experiments . 86

Table 5.9 Characteristics of the Directories Listed in Figure 5.8. 88

Table 6.1 proc++ Process Directory Contents . 103

Table 6.2 proc++ Thread Directory Contents . 103

Table 6.5 tbon-dbg Session Management Commands . 112

Table 6.6 tbon-dbg Group Management and Operation Commands . 113

Table 6.7 TBON Topologies used in tbon-dbg Experiments . 114

Table 7.1 Topologies used on Thunder . 123

Table 7.2 Topologies used on Atlas . 123

Table 7.3 Replicated File Statistics . 125

Table 7.8 pgrep Sub-task Latencies for File Groups of Size 4,096 . 132

Table 7.12 Development Time and Lines of Code for Parallel Tools . 137

Table 8.4 Topologies used on Thunder . 147

Table 9.1 User Time (seconds) for Common Group Operations using TotalView 8.9.0 152

x

CONTROL AND INSPECTION OF DISTRIBUTED PROCESS GROUPS AT EXTREME
SCALE VIA GROUP FILE SEMANTICS

MICHAEL JOSEPH BRIM

Under the supervision of Professor Barton P. Miller

At the University of Wisconsin–Madison

Tools and middleware are crucial to the effective use of large distributed systems. Middleware

enables efficient utilization of resources, and tools help to diagnose and fix problems in distributed

programs. A common requirement among tools and middleware is operating on groups of distributed

processes and files, but prior work has failed to provide a solution that both addresses the key scalabil-

ity barriers and is easy to use within new and existing software. In this dissertation, we present our

four-part solution to these problems.

First, we introduce a new programming idiom, group file operations, that eliminates iteration and

includes explicit data aggregation. The idiom extends familiar POSIX I/O operations and provides

intuitive semantics, which eases its adoption. The idiom frees developers from considerations about

how to access distributed resources or parallelize group operations. Thus, developers can focus on

devising scalable data aggregations that reduce centralized analysis.

Second, we present a flexible and efficient way to construct file groups using global name space

composition. Users specify how independent, distributed name spaces are combined to form a global

name space. Composition of hierarchical name spaces is modeled as intuitive tree operations. A merge

operation over a set of trees provides key semantics for efficient composition of directories that define

group membership.

Third, we design the TBON File System (TBON-FS) that provides scalable group file operations

xi
and global name space composition. TBON-FS leverages a tree-based overlay network to provide log-

arithmic scaling for multicast communication with remote servers and distributed aggregation of data.

Fourth, we present proc++, a synthetic file system for control and inspection of process and thread

groups. proc++ improves upon existing process control interfaces by exposing new abstractions that

hide context-sensitive information and reduce tool interactions with the operating system.

Together, these parts form a scalable platform for group operations on distributed processes and

files. We evaluate the utility and performance of this platform in a suite of new tools and two widely-

used software packages. Our evaluations show the idiom is easy to use and our platform provides

excellent scalablility for both global name space composition and group file operations.

1

Chapter 1

Introduction

Demand for computational resources to solve extremely large problems by industry, government,

and educational research scientists continues to drive the scale of existing and proposed high-perfor-

mance computing (HPC) systems to new heights. According to the most recent Top500 list of super-

computers [56], over half of the systems contain more than 8192 processors, with the current leader

having an astonishing 548,352 processors. Initiatives from around the world promise to continue HPC

system growth [38]. Furthermore, data centers routinely contain tens of thousands of server hosts.

These data centers provide the computational and storage backbone for e-commerce, cloud computing,

data warehousing and mining, and Internet search.

Tools and middleware are crucial to the effective use of large scale distributed systems, yet they

are often overlooked during the planning and deployment of these systems. Middleware such as runt-

ime environments and distributed monitoring systems enable efficient utilization of distributed

resources, while tools provide software developers and application users the ability to diagnose and fix

performance or correctness problems in the programs that execute on the distributed system. Develop-

ers of tools and middleware for distributed systems face the daunting task of enhancing or redesigning

2

their software to operate at increasingly large scale.

Tools and middleware commonly perform operations on each member of a group of distributed

processes or files. Each group operation involves a single process communicating with distributed

hosts to apply the operation to each member, and collecting status results or data produced by the oper-

ations. Often, group operation status or data results are further processed to derive information that

summarizes group behavior or to guide further operations on the group. In many tools and middleware,

both the distributed operations and data analysis need to be completed in a timespan suitable for pro-

viding interactive functionality. For large distributed groups, however, the distributed communication

and data processing required represent critical scalability barriers. Despite the common tasks involved

in performing group operations on distributed processes and files, little attention has been paid to

developing a common, scalable solution. As a result, each tool is forced to develop its own scalable

solution, which leads to replication of effort and results in techniques that are not general enough for

adoption by other tools.

Our central thesis is that by casting distributed resource access as operations on files in a global

name space, and using a new group file operation idiom we have designed for eliminating iteration and

encapsulating data aggregation during operations on file groups, we can develop a common, scalable

solution for group operations on distributed processes and files. The resulting solution should enable

tool and middleware developers to quickly create new scalable software or easily improve the scalabil-

ity of existing software.

The group file operation idiom allows us to base the actions of tools and middleware during dis-

tributed group operations on a common set of tasks: defining the file group; reading or writing the

group’s data; and (optionally) processing data read from the group. The idiom also frees developers

from considerations about how to efficiently perform distributed file access or parallelize operations

across the group. Due to the idiom’s flexibility, many tool activities can be mapped to group file oper-

3

ations. For example, group read operations can be used to gather system performance and configura-

tion data, examine system or application logs, and query host or process status information. In each of

these group read scenarios, group data aggregation can be used to further classify or transform raw,

per-member data into summarized information for all hosts or processes. Group write operations are

useful for writing messages to synthetic file systems providing operating system or process control

(e.g., sysfs and procfs on Linux), as used in distributed system management and parallel debugging

tools. Group writes can also be used for centralized management of shared-nothing clusters [114]

where software and configuration updates must be applied to the local file systems of each host.

This dissertation describes novel techniques for group operations on distributed files and pro-

cesses. These techniques have three desirable properties:

• Scalability - We develop techniques that are effective on the largest existing and upcoming sys-

tems, meaning systems containing at least tens of thousands of hosts and hundreds of thousands of

processor cores. Scalable approaches to distributed group operations, and in particular group oper-

ations used for supporting interactive tools, must avoid linear-time behavior, such as iterations that

are proportional to the size of the group, in favor of constant-time or logarithmic-time behavior.

Since data processing time often scales linearly with respect to the size of the data, scalable group

operations also must incorporate methods for reducing or limiting the amount of data gathered,

preferably in a manner that also reduces centralized analysis.

• Usability - We start with familiar abstractions: file descriptors, processes as files, and hierarchical

file paths. We extend these abstractions to provide primitives for efficient and scalable group oper-

ations on distributed files and processes. We define operations using our extended abstractions that

have clear semantics, scalable implementations, and can be naturally combined in intuitive ways to

support a wide variety of uses such as distributed process control, performance monitoring of

applications and hosts, and distributed system administration.

4

• Portability - The landscape of large distributed systems is quite diverse with respect to both the

hardware and system software employed. To enable widespread use, we base our techniques on

commonly available functionality (e.g., POSIX I/O and user-level overlay networks), making

extensions only when necessary. Further, we avoid system-level modifications in favor of user-

level approaches.

1.1 Motivation: From Process Groups to File Groups

Surprisingly, the original problem that motivated our development of the group file operation

idiom had no direct tie to file access. Rather, we were investigating approaches for scalable control and

inspection of distributed process and thread groups. Our goal was to define a common interface to

group control and inspection operations that could be easily integrated into new and existing tools and

middleware. This interface had to meet our criteria for usability and portability while also supporting

use of scalable underlying mechanisms.

Process control and inspection is the ability to manipulate or examine process (or thread) state.

Process state is a general term denoting the hardware and software resources used by a program during

execution. Group control and inspection is used by several classes of tools and middleware. For exam-

ple, application runtime environments need to control all the processes in a distributed application,

resource and performance monitors need to perform group process inspection, and online tools such as

distributed debuggers require both control and inspection of distributed process groups. (A more

detailed discussion on the classes of tools and middleware and their requirements for distributed pro-

cess group control and inspection is presented in Section 2.1.2.)

Many operating systems, including Plan 9 [93], various Unix systems [40,58], and Linux, provide

a synthetic (or pseudo) file system that enables process control and inspection. The term “synthetic”

refers to the fact that directories and files found in the file system do not exist as data on a storage

device, but instead are generated dynamically by the operating system. These file systems, collectively

5

known as proc file systems, represent each process running on a host as a directory containing various

files that can be used for specific control or inspection tasks on that process. Some proc file systems

also provide directories representing the kernel threads (also known as lightweight processes) associ-

ated with each process.

Because proc file systems are widely used, tool and middleware developers are familiar with per-

forming process control and inspection via a file system interface. Using file system interfaces has

additional benefits that meet our goals for simplicity, flexibility, and portability. File system interfaces

are simple to use and support for file access is ubiquitous in the languages commonly used to imple-

ment tools and middleware. A file system interface is agnostic to the format of data, which provides

the flexibility to operate on files containing binary data, text, or combinations of both. File system

interfaces based on POSIX I/O are also portable, a key requirement given the heterogeneity of the cur-

rent distributed system landscape. Due to these benefits, we focused our attention to providing control

and inspection of distributed process and thread groups via a file system interface, which maps to the

more general problem of scalable operations on distributed file groups.

Providing scalable group operations on large sets of distributed files is difficult due to two primary

deficiencies in current file system interfaces and implementations. First, file systems have no notion of

defining file groups and performing operations on those groups. Second, existing distributed and paral-

lel file systems use client-server communication architectures that are not scalable for a single client

operating on a large group of distributed files. We discuss each of these problems in more detail.

The lack of group abstractions and operations in existing file systems leads to iterative behavior in

tools that need to apply some sequence of operations to a large file group, as the tool must perform the

operations on each member. Such iteration serializes the time to complete operations for each member,

resulting in group operations having completion time that scales linearly with the group size. When

files are distributed, the additional cost of remote communication further slows the time to complete

6

the group operations.

Existing distributed and parallel file systems are designed with a focus on scalability in terms of

aggregate data bandwidth and storage, and in number of concurrent file system clients. The common

assumption is each client will interact with one (or a few) file servers, and thus point-to-point commu-

nication channels between the client and server(s) are used. However, we target the widespread use

case of a single client tool that needs to perform group operations on a large set of files located across

thousands of distributed servers. The choice of per-server communication channels in this case is non-

scalable, as it leads to iteration over servers and may exhaust OS resources (e.g., running out of open

file descriptors due to too many open socket connections).

1.2 Contributions

This dissertation presents several contributions that address the problems of performing scalable

operations on large distributed groups of files and processes. In this section, we provide an overview of

each contribution; detailed discussions are available in subsequent chapters.

Group File Operations We introduce group file operations, an intuitive new idiom for eliminating

iterative behavior when a single process must apply the same set of file operations to a group of related

files. The keys to the idiom are explicit identification of file groups using directories as the grouping

mechanism, the ability to name a file group as the target for POSIX I/O operations such as read and

write, and explicit semantics for aggregation of group data and status results. Group file operations

provide an interface that eliminates forced iteration, thus enabling scalable implementations on distrib-

uted files. Given underlying mechanisms for distributed data aggregation, group data and status results

can be processed in a distributed fashion that eliminates or reduces the need for centralized analysis or

large data storage.

Name Space Composition Group file operations are a solution to the obvious scalability limitations

of iterative operations on distributed files. Forming file groups efficiently is an equally important but

7

less obvious problem, as it is a precursor to the use of group file operations. To avoid iteration and pro-

vide scalable definition of file groups, we use a two step process that relies on file system name space

composition. First, tools provide a specification that is used at each independent server to generate a

custom view of the server’s local name space; the custom views are structured to naturally support effi-

cient construction of a global view. Second, the custom server views are merged into a global name

space using a composition that automatically groups related files (i.e., files providing similar data or

functionality).

Name space specifications are written using a new language called FINAL, the FIle Name space

Aggregation Language, that models hierarchical file system name space composition as operations on

trees. Inspired by the private name space manipulation operations of Plan 9 [94], FINAL provides flex-

ible composition semantics based on common tree operations such as copying, pruning, and grafting.

To support efficient composition of many trees without explicit iteration, FINAL introduces a merge

operation over set of trees, and supports customizable resolution for the name conflicts that can occur

during a merge. FINAL’s merge operation provides the key semantics required for composing file

group directories containing files from independent name spaces. Further, the merge operation maps

nicely to scalable distributed composition within a tree-based overlay network (TBON); thus, we can

use trees to compose trees.

TBON File System We design and evaluate the TBON File System (TBON-FS), a group file system

that leverages the logarithmic communication and distributed data aggregation capabilities of tree-

based overlay networks to support scalable group file operations on distributed files and scalable glo-

bal name space composition. Similar to NFS [105], TBON-FS does not provide any data storage, and

simply acts as a proxy at each file server to access the locally visible file systems. TBON-FS leverages

MRNet [101], a general-purpose TBON API and infrastructure, for scalable communication of file

system operation requests to thousands of independent servers, scalable aggregation of group data and

8

status results from group file operations, and scalable composition of its global name space. TBON-FS

also supports synthetic file systems within servers as a means for providing file-based interfaces to

arbitrary tool functionality. Because TBON-FS is implemented entirely at user-level, it is easy to

deploy on a wide variety of distributed systems.

proc++ We design and evaluate proc++, a new synthetic file system tailored for use in scalable con-

trol and inspection of distributed process and thread groups. The design of proc++ is based on the proc

file system found in Solaris, with extensions to provide abstractions that naturally encapsulate interac-

tion intensive operations, such as breakpoint management and gathering stack traces, as a means to

reducing the number of interactions between the tool and the process control layer. The primary chal-

lenges in designing proc++ were to identify the tool behaviors that were hindered by interactions with

existing process control interfaces, and to develop appropriate abstractions that enable group file oper-

ations to take advantage of newly provided tool-level capabilities. The difficulty of the latter challenge

should not be underestimated, as the placement of the abstractions within the layers of the distributed

tool hierarchy is key to enabling the parallelism necessary to scale, and choosing the proper amount of

tool functionality captured by the abstractions requires careful thought to avoid limiting their utility.

When combined as shown in Figure 1.1, our contributions form the basis for a scalable platform

for group operations on distributed files. We evaluate this platform in terms of utility and performance

in three case studies. The first case study focuses on the use of group file operations to develop several

new scalable tools for distributed system administration and monitoring. The second and third case

studies relate our experiences in integrating group file operations into two existing, widely-used soft-

ware packages: the Ganglia distributed monitoring system [67], and the TotalView parallel debugger

[100]. Our studies show our techniques to be highly scalable, requiring just a few hundred millisec-

onds to compose a global name space from forty thousand independent hosts or to perform group file

operations on over 200,000 distributed files or processes.

9

Figure 1.1 Platform for Scalable Group Operations on Distributed Files and Processes
A TBON-FS client uses group file operations on files within a global name space composed by merging the local
name spaces of independent, distributed TBON-FS servers. TBON-FS employs a tree-based overlay network
(MRNet) to provide scalable communication and distributed data processing for group file operations and global
name space composition. The client has complete control over the aggregations used for combining group status
and data results from group file operations, and provides a FINAL name space specification that is used to
organize the local name spaces at each TBON-FS server. Synthetic file systems such as proc++ can be loaded
within TBON-FS servers to provide file-based access to custom tool capabilities

����

��������	

���
����

���
����

�����	�
�����

�

��
�����

�����
����

���
�

��
����

���

���
��

�����������
����

������������
����

���������������������
������

 �����

����
!��������

������

��"��

�����

�������

�����

����������

���������	

���
��

�#�#��

10
1.3 Organization

This dissertation contains ten chapters. Chapter 2 presents a survey of tools and middleware the

use group operations on distributed files, and then discusses related work in two areas: group opera-

tions on distributed processes and files, and composition of file name spaces. In Chapter 3, we describe

the group file operation idiom, its core abstractions and semantics, and interesting idiom extensions

that increase its utility. Chapter 4 presents techniques for flexible and scalable composition of name

spaces from independent file servers. The design and implementation of TBON-FS is discussed in

Chapter 5, focusing on its support for scalable group file operations and custom global name space

composition. In Chapter 6, we present proc++, a new synthetic file system that enables scalable group

control and inspection of distributed process and thread groups. Chapter 7 relates our experience in

using group file operations for the development of new scalable tools for distributed system adminis-

tration and monitoring. Chapters 8 and 9 discuss our integration of group file operations into two real-

world tools, and evaluate the resulting scalability benefits. Chapter 8 focuses on our work with the

Ganglia distributed monitoring system, and Chapter 9 discusses our efforts using the TotalView paral-

lel debugger. We conclude in Chapter 10 with a summary of our contributions and a discussion of

future research directions.

11
Chapter 2

Related Work

The research in this thesis focuses on providing techniques for group operations on distributed

files and processes at extreme scale. To motivate our work, we begin in Section 2.1 with a survey of

existing tool and middleware requirements for group operations on distributed files and processes. The

survey confirms the widespread use of distributed group operations, yet sparse attention to scalability.

Next, we discuss prior research that relates to our contributions in two areas: group operations on

distributed files and processes are covered in Section 2.2, and composition of file name spaces is dis-

cussed in Section 2.3. We focus on previous efforts that provide useful abstractions and semantics for

group operations and name space composition, and approaches that address scalability concerns for

large distributed systems.

Finally, in Section 2.4 we compare group file operations to prior work in distributed and parallel

file access. We show that group file operations have a distinct client-server relationship that presents

unique scalability concerns not addressed by previous systems.

2.1 Tool and Middleware Requirements for Distributed Group Operations

We surveyed existing tools and middleware to determine their requirements for group operations

12
on distributed files and processes, as well as methods employed to make such operations scalable. For

both distributed files and distributed processes, we enumerate common uses for group operations and

the primary factors for each use that should be addressed by scalable solutions.

2.1.1 Requirements for Group Operations on Distributed Files

Group operations on distributed files are used commonly in tools and middleware for monitoring

processes and hosts, system administration, and processing system and application logs.

Process and Host Monitoring. Tools and middleware often access proc file systems to collect

resource usage and status information on a per-process basis. The Linux proc file system also contains

files that provide host-level resource usage and status.

Parallel application performance monitors [28,80] and distributed resource management systems

[52,89,95,110,117] read groups of these proc files to obtain processor and memory utilization informa-

tion for the parallel application processes. Performance monitors may sample resource utilization at

sub-second intervals to provide a detailed performance history, while resource management systems

are usually interested in average utilization for an entire job and thus sample less often, typically on

intervals of several minutes.

Distributed monitoring systems such as Ganglia [67], NWPerf [71], and Supermon [112] place

monitor processes on each host of a cluster. The monitor processes extract data corresponding to pre-

defined host performance metrics such as processor, memory, disk, and network utilization from proc

files. Metric data from all hosts is collected to a master host, where it may be aggregated into cluster

performance summaries. To provide metric performance histories, Ganglia and NWperf store the per-

host and cluster summary data for each metric in databases at the master host. The rate of file reads for

collecting monitoring data is usually restricted to limit overhead and perturbation of applications run-

ning on the hosts. Common intervals vary from several seconds up to a few minutes. Typically, the size

13
of monitoring data read at each host is relatively small, on the order of a few kilobytes or less.

Ganglia, NWPerf, and Supermon have addressed scalability in various ways. Both Ganglia and

NWPerf use IP multicast as a publish-subscribe mechanism for distributing new metric data from each

monitor process. Ganglia’s monitor processes read metric data at pre-determined intervals, while

NWperf initiates metric reads for monitor groups by sending a UDP packet to each monitor process.

Ganglia’s monitors are members of a multicast receiver group, which results in data for all hosts being

available at any host. Ganglia uses a central collector process per cluster that periodically contacts a

representative monitor to collect the data for all cluster hosts. As noted by Ganglia’s designers [67], its

use of IP multicast is not scalable for large clusters containing thousands of hosts, since the data sent

from every source is delivered at each multicast receiver. This leads to a large network and processing

overhead at each receiver to handle the total volume of data for the group. In contrast, NWPerf uses a

single central collector process for each cluster that subscribes to the mulitcast group. For larger clus-

ters, NWPerf suggests running several collector processes and dividing monitors among multiple mul-

ticast groups with one collector process per group. However, this approach requires each collector to

forward data to a central database host that becomes the bottleneck. As an alternative to multiple mul-

ticast groups, NWPerf proposed, but has not implemented, using a tree-based collection to increase

scalability. Supermon uses a tree of monitor processes to gather data read from files on a group of

hosts. Data is collected only upon request by a client that contacts the root of the monitor tree. None of

these prior systems address scalable aggregation of metric data for large clusters, which results in high

data processing and storage times at the central collection host for Ganglia and NWPerf or the client

for Supermon.

System Administration. Group operations for system administration are commonly found in tools for

managing large groups of similarly configured hosts [18,22]. For smaller distributed systems, the use

of shared file systems is sufficient for centralized management of software and configuration files.

14
When the distributed system contains thousands of hosts, shared file system servers can become a bot-

tleneck during file access storms, which are short periods where many hosts access the same files.

These storms are common during system boot when configuration files are accessed, and during the

launch of programs across many hosts when the executable and shared libraries are accessed. Admin-

istrators for large distributed systems may choose to have each host use a local disk for storage of files

that are likely to be accessed during a storm. This choice results in the need to keep the local files syn-

chronized across hosts when software packages are installed or updated, or the system configuration is

changed. Similarly, lack of a shared file system requires group file distribution for staging user appli-

cations, libraries, and data files in preparation for parallel job execution. Group file collection may be

employed to gather the data or log files generated by a parallel job to a central location.

Previous tools designed for synchronizing files across groups of hosts include MPISync [35],

Cfengine [22], and the C3 tools [18]. MPISync uses MPI to broadcast files from a master host to sets

of divergent slave hosts. Current MPI implementations either use broadcast capabilities provided by

specialized networks in HPC systems, or construct broadcast spanning trees using efficient point-to-

point communication. Both approaches provide the necessary scalability for file broadcast on large

systems. Cfengine is normally configured to have slave hosts copy updated files from a master via a

shared file system. On large systems, special care must be taken to schedule slave updates in a way that

avoids all slaves accessing the master concurrently. A typical approach is to form sub-groups of slaves

and stagger copies for each sub-group. This approach may require several minutes to update all slaves.

Such latencies may be acceptable for rare updates to installed software or configuration files, but they

are not tolerable for on-demand file staging. The C3 tools use multiple concurrent scp or rsync pro-

cesses to transfer files or updates, and the master host quickly becomes a bottleneck for even modest

size clusters with a hundred hosts.

Log Processing. Many tools gather and process data from system and application log files from dis-

15
tributed hosts [47,75,121]. System logs are monitored to identify hardware and software configuration

problems, misbehaving applications that are denied access to resources, and operating system failures.

Application logs are typically monitored to view completed activities or discover errors for long run-

ning computations or services.

By correlating related events across distributed hosts, administrators can identify a wide range of

problems, from systematic configuration issues to security-related events such as distributed intrusion

or denial-of-service attacks. Correlated log events can also help administrators predict imminent fail-

ures, which allows for proactive mitigation. The primary obstacles to distributed log event correlation

are collecting logs from many hosts to a central location, and performing the correlation analysis over

a large log data corpus. Swatch [47] and logtail [121] address the collection of one or more logs from

each host to a central host. Both systems simply forward log data to the central host, and neither sys-

tem is designed for use on distibuted systems containing more than a few tens of hosts. Swatch and

MultiTail [75] also support custom searches and filtering based upon regular expression matching to

reduce the data that needs analysis. Data reduction based upon equivalence is a key technique for scal-

able correlation of distributed log events, and we leverage this technique in several demonstrations of

tools for distributed system administration. MultiTail is an interactive tool that displays each log in a

separate console window, and thus is not suitable for monitoring large distributed systems.

2.1.2 Requirements for Group Operations on Distributed Processes and Threads

Group operations on distributed processes and threads are common in parallel runtime environ-

ments, tools for parallel application performance montioring and steering, and distributed debuggers.

We divide our discussion among two classes of group operations: control of process and thread groups,

and accessing data in the memory or registers of a group of processes.

Process & Thread Control. There are three common types of group control actions: (1) bringing a

16
group under control by launching or attaching to processes, (2) issuing commands to stop, continue, or

signal, and (3) handling events generated by process or thread groups.

Group process launch is often used to start application or tool processes on HPC systems, but can

also be used for system administration tasks such as running commands on a group of hosts. During

group process launch, the program arguments and environment settings must be communicated to all

participating hosts. The program executable and dependent libraries also may need to be distributed if

not located at each host or on a shared file system. Systems supporting group launch may also handle

standard I/O streams for all processes; standard input is directed to one or all processes, and standard

output and error are annotated by source process and aggregated into group streams.

Attaching to a process group is typical in tools for debugging or monitoring parallel applications.

Before attaching, information including the host and process identifiers for all target processes must be

collected by querying the parallel runtime environment. Once the processes have been identified, the

tool must distribute this information to tool daemons on each target host. In some situtations, the tool

may use group process launch to first start the tool daemons before distributing the information. Each

daemon attaches to colocated processes using the standard OS attach mechanisms.

Group process launch or attach is an important yet relatively infrequent operation for parallel

application tools. A single tool use session usually includes only one group launch or attach. Still, the

latency of these operations is highly visible to interactive users, as they must wait for completion

before using other tool functionality. The most frequent use of group process launch is found within

parallel shells [18,29,36,53,70,90,119], where users enter commands to be executed across a set of

hosts. The interval between issued commands can be as small as a few seconds. Scalable mechanisms

should focus on reducing the latency to execute or attach to large numbers of distributed processes, and

providing aggregation of application output and error streams.

After launching or attaching to processes, tools and middleware require the ability to perform job

17
control such as stopping, continuing, and signaling sets of processes or threads. Parallel application

performance tools such as Paradyn [68], DPCL [88], and MATE [72] use group control operations to

stop process groups before performing dynamic instrumentation and then continue the groups after-

wards. Similarly, distributed debuggers including TotalView [100] and DDT [2] support group stop

and continue operations. Group stop is commonly used before examining state or inserting breakpoints

or watchpoints. Group continue is used to restart execution, and can be used internally by the debugger

to support group step operations. Given their interactive use within debuggers, the latency to issue

commands is the main scalability concern for group control operations.

While under their control, tools and middleware receive and process events generated by processes

and threads. Although events are generated asynchronously, there are situations where large sets of

processes or threads will generate events in a short time period. For example, the processes of a paral-

lel application typically finish execution together, and each will generate an exit event. During parallel

application debugging, many threads may hit the same breakpoint in short succession. In such situa-

tions, it is useful (and sometimes essential) to identify similar events across processes or threads and

handle them as a group.

Among current approaches for scalable process and thread group control, group communication

via a tree or ring is most common. BProc [48], yod [17], CRE [111], and ALPS [57] use tree-structured

communication to distribute group process launch requests and supply standard input, while MPD [23]

uses ring-based communication for this purpose. CRE, ALPS, and MPD use trees to collect standard

output and error from all processes for display at the originating terminal, but provide no output reduc-

tion, although MPD provides annotation of output lines with source process.

Accessing Registers and Memory. Distributed debuggers [2,5,16,49,100,122] and parallel applica-

tion performance tools [68,72,74,82,88,98,102,107,108] often view or modify the contents of proces-

sor registers or memory for a collection of application processes or threads.

18
Distributed debuggers use group register reads to provide state or variable information for stopped

threads, while performance tools sample registers to perform statistical profiling or collect perfor-

mance counter data. Group register write operations can be used to modify the behavior of a set of

stopped threads, or by performance measurement tools to configure performance counter settings [82].

In group register reads, the set of registers to be read is distributed to all group members, and subse-

quently read values are collected. For group register write operations, the set of registers and associ-

ated values to write are communicated to all members.

Distributed debuggers read and write process memory to support group breakpoints and watch-

points, stackwalks, instruction disassembly, and inspecting or updating the values of variables and

function arguments. Parallel application performance tools can use group memory reads to sample per-

formance data across processes. Tools using dynamic instrumentation [68,72,74,82,88,108] read mem-

ory across processes to identify instrumentation points and use group memory writes to insert

instrumentation code. In group memory access operations, a request indicating the target address and

amount to be read/written is distributed to all group processes. For group write operations, the data to

write is also distributed.

Scalable approaches for performing group access to memory or registers should address both

request distribution latency and aggregation of inspection results. The Interactive Parallel Debugger

(IPD) [16], part of the Performance Monitoring Environment for the Intel Paragon [98], used a broad-

cast spanning tree that took advantage of the mesh communication network to efficiently distribute

monitoring and control requests and collect responses. Paradyn and DPCL have been updated

[102,107] to use the TBON communication facilities provided by MRNet [101], to enable scalable

communication between tool front-end and back-end processes. As a result, these performance tools

are able to scalably send group requests. For aggregation of group memory reads, Paradyn computes

checksums over memory contents and uses a custom binning aggregation to create equivalence classes

19
for processes with the same checksum, and then only transfers the actual data once for each class. The

STAT [5] debugging tool also uses MRNet for scalable aggregation of the stack traces of parallel pro-

cesses into a combined call tree. DDT [2] uses a custom tree communication architecture for scalable

request distribution and aggregation of equivalent data and stackwalks.

2.1.3 Summary of Requirements for Scalable Group Operations

From this survey, we can see that group operations on distributed processes and files are widely

used in tools and middleware. Unfortunately, there has been little prior work that directly addresses

this use case in terms of providing a general, scalable solution that is suitable for use within a wide

variety of tools and middleware. Our goal in developing the group file operation idiom and the TBON-

FS group file system was to rectify this deficiency by providing such a solution.

Among prior uses, we have identified two common scalability goals. First, group operations used

for process control or file writes typically involve small data payloads, and thus the emphasis for scal-

ability in these operations is minimizing the latency of distributing data to support interactive tools.

Second, group operations used to collect data from files or processes can benefit from distributed

aggregation as a means for reducing the memory and computational load associated with data analysis.

Many tools and middleware still use non-scalable methods such as multiple point-to-point connec-

tions from a single manager process to distributed daemon processes [90,95,100,110,117] or parallel

invocation of a remote shell [18,90,119]. Previous approaches that do consider scalability lack general-

ity in the operations supported, and are not structured so that other software with similar needs can

reuse scalable mechanisms. The two most common approaches to achieving scalability include arrang-

ing tool processes in ring or tree-based overlay networks. Typically, a master tool process that controls

the actions of slave tool processes resides at the start of the ring or root of the tree.

In ring overlays, command distribution requires O(N) steps to deliver data to N slaves. However,

many commands can be pipelined to hide some of the latency of command distribution. Rings also

20
require that every process in the ring participate in distributing commands, even when the target group

is a subset of the ring. Rings are not suited to data collection for large groups, because data from early

in the ring is copied many times and the amount of data that must be copied increases with the number

of ring processes visited. Because of the limitations of rings for data collection, systems like MPD that

use a ring for command distribution may employ a tree-based overlay network for data collection.

Tree-based overlay networks (TBONs) offer a solution to avoiding linear behaviors found in rings.

Data broadcast and gather between the master and slaves benefits from the logarithmic properties of

tree-based communication; for a balanced tree with fanout F and N leaves, broadcast and gather require

O(logF(N)) data transmissions. TBONs can also be used to reduce centralized analysis load at the

master by distributing the analysis processing among the overlay processes, assuming the analysis is

amenable to distributed hierarchical computation.

Several systems have used TBONs to take advantage of the communication and distributed data

processing benefits of trees. Most systems use special-purpose TBONs that are not intended for use by

other tools [2,16,17,23,48,57,67,111,112]. In contrast, Lilith [39] and Ygdrasil [9] were designed as

infrastructures for building parallel tools, but each makes some assumptions regarding tree topology or

communication structure that limited widespread adoption. The Multicast Reduction Network

(MRNet) [101] is a general-purpose TBON API and infrastructure that gives tools complete control

over the tree topology, the placement of overlay processes within a distributed system, the content of

data messages sent between the master and slaves, and the aggregations employed when gathering

data. Due to its flexibility, MRNet has been successfully used as the scalable substrate in a wide vari-

ety of tools [5,60,62,76,82,101] and parallel applications [6]. We also use MRNet as the scalability

vehicle for group file operations and TBON-FS.

2.2 Group Operations on Files and Processes

Our research focuses on the use case of a single program performing group operations upon a large

21
set of distributed files or processes. We review previous efforts that define useful abstractions and

semantics for such group operations.

Steere’s dynamic file sets [113] share the same motivation as group file operations for eliminating

serialization imposed by the file system interface when operating on groups of distributed files. To cre-

ate a dynamic set, a user provides a specification that names the group members. Sets provide an inter-

ator iterface that returns file descriptors one at a time. The benefit from dynamic sets versus standard

file operations comes from using a threaded distributed file system client to prefetch whole files in par-

allel. The iterator interface returns file descriptors in an order based on when fetched data arrives. This

allows operations on fully-fetched files while the system gathers other files. Scalability for large

groups is hindered by both iteration and fetching all data to the client.

Google’s MapReduce system [34] provides fault-tolerant parallel processing of large data sets con-

taining gigabytes or terabytes of data. Each data set is partitioned into many fixed-size chunks that are

stored across hundreds or thousands of Google File System (GFS) [44] servers. The programming

idiom of MapReduce involves just two user-defined operations: a map operation that is applied to

input data to produce key-value pairs, and a reduce operation that aggregates values from pairs with

similar keys. Aggregated data is stored as new files on GFS. Considering chunks as files permits a

MapReduce operation to be viewed as a group file operation where both map and reduce are combined

into a single aggregation. The MapReduce system uses a master-worker architecture. The master is

responsible for starting map and reduce tasks on the GFS server hosts and distributing information

describing the input and output files to these remote tasks. This architecture results in startup latencies

for each MapReduce computation that are on the order of one minute for a cluster containing 1,800

hosts [34]. Such startup overhead makes MapReduce a poor option for use in interactive tools that

require fast aggregation of data from large file groups.

Semantic file systems [3,42] allow users to retrieve and specify context that describes the type of

22
data contained in files and relationships between files. Some semantic file systems [42] allow users to

query file data and meta-data to dynamically create directories containing groups of files matching

some criteria. Unfortunately, these techniques for defining file groups based upon attributes and data

contents are not currently supported in distributed file systems. We believe that group file operations

can be used to support such semantic techniques on distributed, independent file systems.

2.3 File Name Space Composition

Group file operations are designed for scalable operations on files located across thousands of

independent hosts. The first step in using group file operations is to define file groups, which requires

a method of naming distributed files. File name space composition is a fundamental approach for add-

ing files from distributed name spaces to a local name space. We review prior techniques for compos-

ing hierarchical file name spaces and summarize their deficiencies when composing global name

spaces that comprise thousands of independent name spaces.

For over forty years and starting with Multics [33], operating systems have supported construction

of a rooted, hierarchical file name space from one or more underlying file services. The original UNIX

mount system call is an early example of composition that inserts a file system name space at a spe-

cific leaf path in the system’s “root” name space [99]. Later versions of mount removed the leaf path

restriction and instead replace the name space subtree rooted at the mount path with the file system

name space. File system mounts are the coarsest form of composition, as entire name space trees are

inserted or removed. Name space unions, also known as union mounts, are an extension of traditional

mounts that results in files from two name spaces being visible in the combined name space. Such

unions are supported by many systems [91,94,115,123], and can be viewed as overlaying one name

space on another. Name space unions can have shallow or deep composition semantics. In shallow

name space unions, the children of the root of each name space are unified. In deep unions, the entire

name space trees are merged (i.e., every directory that exists at the same path in both name spaces will

23
be present in the combined name space, and will contain the corresponding directory entries from both

name spaces). Because traditional and union mounts both require pair-wise composition of name

spaces, they are prohibitively expensive for generating a global name space containing thousands of

independent name spaces.

Private name spaces are custom views of a default system name space. Common uses for private

name spaces include improving user convenience by placing heavily used files near the root of the

name space or excluding unused files, and implementing security through isolation of name spaces or

omission of sensitive files. Several previous distributed file systems, including Cedar [43], Jade [97],

Prospero [78], and Chirp [116], let users create private name spaces for distributed files.

The Cedar File System uses attachments to provide local names for remote files. Remote files can

be named using a system-wide path name that includes the remote file server. Attachments are imple-

mented similar to symbolic links by storing the full path to the remote file in a local directory entry.

The Jade File System uses two types of names spaces, logical and physical, to allow users to cus-

tomize their private name space. A logical name space contains skeleton directories that serve as a vir-

tual structure for organizing user-directed mounts of physical name spaces exported by file systems.

Users may also mount portions of another user’s logical name space. Jade supports an extended ver-

sion of shallow unions by allowing users to mount multiple name spaces at the same path.

The Virtual System Model underlying the Prospero File System provides user-centric views of a

global name space. Prospero treats directories as a collection of links. A link contains a reference to a

path in the name space of a file service. Union links are provided that can be added to a directory to

merge the contents of another directory. Filters can be associated with a link to provide a new view of

a target directory. Since a directory is a collection of links, filters return such a collection. Filters may

create new virtual directories within their views. Prospero supports a few built-in filters that create vir-

tual directories based on the attributes of files in a directory, and also allows users to write filters as

24
shared library functions using the C language.

Chirp is a user-level distributed file system for use in Grid or wide-area environments. Chirp pro-

vides three distinct name spaces: a global name space with a directory per server, a private name space

created by specifying a list of mounts that associate private name space paths with paths in the global

name space, and shared name spaces that provide a virtual directory structure that has links to files in

the global name space as leaves in the name space.

Our FINAL language has its roots in the flac language [125] designed to provide mobile applica-

tions with an unchanging name space. Flac is a specification language that is used to describe a private

name space provided to applications that interface with the flac runtime environment. The flac lan-

guage uses a name space tree abstraction and tree combination operations for composing name spaces

from local and remote file services. Specifications describe both the organization of the name space

and the methods of file access to use when the application is executing in different contexts. Possible

context changes include: (1) migration of the process to a new host, (2) a change in the network con-

nectivity of the host (e.g., moving from a wireless to wired network), and (3) disconnection of the host

from the network. When a context change occurs, the flac runtime transparently adjusts the access

methods employed.

In summary, prior approaches are ill-suited to the construction of global name spaces that com-

prise tens of thousands of name spaces from independent hosts. Many prior approaches were designed

for composing a few name spaces, and thus use inefficient composition techniques such as pair-wise

composition or fine-grained directory entry manipulation. These techniques lead to iteration when

composing large sets of name spaces. Prior systems that construct a global name space often avoid

fine-grained composition by using partitioning to place each independent name space in a separate

portion of the the global name space. Partitioned name spaces lead to iteration when defining file

groups spanning multiple hosts. Finally, prior approaches adopt inflexible semantics for specific com-

25
positions, even when many valid choices may exist. For example, name space unions may have shal-

low or deep semantics, and may treat duplicate names using renaming or overlay semantics that hide

duplicates. We designed FINAL, our language for describing custom name space composition, to

address the limited flexibility and scalability of prior approaches for composing a global name space.

2.4 Distributed and Parallel File Access

Group file operations target the use case of a single client interacting with a large set of distributed

and independent file servers. As the survey of tools and middleware in Section 2.1 confirms, this use

case maps to a wide variety of tool behaviors. However, this use case is distinctly different from the

common uses of distributed file systems, parallel file systems, peer-to-peer file sharing, and Internet

file storage and caching. We discuss the key differences between group file operations and these prior

systems, focusing on access patterns, data storage, and scalability considerations.

Distributed file systems [43,50,78,97,105] provide independent clients access to shared files.

Many of these systems directly manage the disks containing data, while NFS [105] provides only a

proxy service for accessing file systems local to the server. Each client typically interacts with one or a

few servers containing the desired file volumes. For large distributed systems, each server may handle

requests from tens or hundreds of clients. Designers of distributed file systems focus on scalability in

terms of number of concurrent clients and aggregate data storage. Servers are added as necessary to

provide additional service and storage capacity, and files may be replicated across many servers to dis-

tribute load from commonly accessed files [50].

Parallel file systems [24,30,51,64,106,109] are designed to provide many cooperating clients with

shared access to large data sets that span many servers. Clients are typically parallel application pro-

cesses that perform concurrent computation using a small portion of an input data set. Clients may also

generate new data sets as a result of their computation. Each client interacts with one or a few servers

to read or write the relevant data set portions. Similar to distributed file systems, parallel file systems

26
are designed to scale in terms of clients and storage, as well as aggregate I/O bandwidth. The latter

scalability consideration limits the number of concurrent clients for a given server.

Peer-to-peer (p2p) file sharing systems [25,26], Internet file storage systems built using p2p over-

lays [32,59,103], and Internet file caches [1,54] are primarily used for wide-area distribution of fre-

quently accessed, yet rarely updated files to thousands, or even millions, of clients. From a client’s

perspective, a majority of these systems provide read-only file access. Systems supporting writes typi-

cally allow only whole-file replacement [59]. Similar to a parallel file system, a client may interact

with one or a few file servers that contain portions of a given file. Depending on the popularity of files,

the number of simultaneous clients may range from tens to thousands. Popular files are often replicated

across many servers to reduce the chance that a server will be overwhelmed by client requests. Scal-

ability in p2p systems is tied to the number of active peers willing to serve. Internet caches tend to be

deployed in a more structured fashion that attempts to place files on servers within geographic regions

as a means to limit the latency of document retrieval [1].

Compared to previous systems, group file operations have an inverted client-server ratio where a

single client accesses many servers, rather than many clients accessing one or a few servers. This

inversion is apparent when considering that the hosts containing files of interest to tools and middle-

ware are often the same hosts where traditional distributed and parallel file system clients reside, such

as the computational nodes in an HPC system. Thus, the primary scalability concerns for group file

operations are access to a large number of servers, and aggregation of data gathered from many serv-

ers. Similar to NFS, group file operations are also best viewed as a proxy for accessing memory-based

and disk-based file systems on distributed servers, rather than a file system that directly manages disks.

27
Chapter 3

Group File Operations

Group file operations are a new programming idiom for applying the same operations to each

member of a group of files using an intuitive interface based on POSIX I/O. The idiom eliminates

explicit iteration during group operations, which enables the use of scalable mechanisms to implement

operations on large distributed file groups. In this chapter, we first introduce the key abstractions and

semantics of group file operations, and then demonstrate their use in simple examples. Next, we extend

the idiom to enhance its utility; these extensions were motivated by practical experiences during the

tool and middleware case studies discussed in Chapters 7, 8, and 9.

3.1 Abstractions and Semantics for Group File Operations

The primary abstraction in the group file operation idiom is the group file, which we define as a set

of open files that are operated upon as a single entity. Section 3.1.1 covers the establishment of group

files using directories as the grouping mechanism and a new gopen operation that creates a handle for

use in subsequent group file operations. Section 3.1.2 describes the operational and error semantics of

using group files with existing POSIX I/O operations, and introduces new operations for controlling

the aggregation of group status and data results that are generated during group file operations. We

28
provide a few examples of group file operation use in Section 3.1.3 to demonstrate the idiom’s simplic-

ity and flexibility. Section 3.1.4 addresses the issues that arise from sharing group files between group-

aware and group-unaware programs.

3.1.1 Establishing Group Files

Directories are a natural and existing file system mechanism for grouping files. Placing files in the

same directory often implies a logical association, and thus there is a good chance that files in the same

directory will be operated on as a group. If a user wants to group existing files not already located in

the same directory, a new directory whose name identifies the group can be created. To add or remove

members, files are added to or removed from the group directory. Symbolic links can be used to add

existing files without moving or copying.

The key operation we have defined to enable group file operations is gopen, a new directory open

operation that on success returns a group file descriptor (gfd) to serve as a handle to the group file.

Table 3.1 documents the gopen interface, which is modeled after POSIX open. Using gopen can be

considered equivalent to calling open on each file entry in the named group directory, using the speci-

fied access flags and creation mode. A group file operation is performed by passing a gfd to a POSIX

I/O operation, such as read and write, that has a file descriptor operand. We discuss the semantics of

group file operations in the following subsection.

A gfd is essentially a view of the set of files that existed in the group directory at the time of the

gopen and were successfully opened. While gopen is executing, the named directory’s contents can-

not be changed. When gopen completes, directory entries may be added or removed to aid the creati-

ion of additional groups with similar membership. For example, after operating on a particular group

file, a program may identify a subset of the group upon which it wants to operate as a new group.

Rather than requiring a new directory to be created containing the subset's files, the program can sim-

ply remove files and call gopen again. Since the contents of a group directory can change after a group

29
file is established, the file system is not an appropriate source of accurate information about the

group’s membership. Thus, new operations are required to obtain information about the group.

Table 3.1 contains the interfaces of two new operations: gsize is used to retrieve the group’s size,

while gfiles provides a list of member files.

Special consideration is given to errors that occur during gopen. Two modes, default and best-

effort, differentiate how failures in opening individual files affect gopen's completion status. In default

mode, gopen will succeed only when all the files in the named directory can be opened. In best-effort

mode, which is specified by including a new O_BESTEFFORT value in the flags, gopen will succeed

when any of the files are successfully opened. In both modes, a failed completion will return -1 and

set errno to the error code E_GROUP.

3.1.2 Semantics of Operations Using Group Files

Our goal in defining the semantics of group file operations is to provide intuitive behavior that can

also take advantage of scalable methods when operating on distributed files. Group file descriptors

allow group file operations to use existing, well-understood POSIX I/O operations. However, existing

operations are designed for operating on individual files, and therefore our challenge is to define

int gopen(const char* dirpath, int flags, mode_t mode)

Opens all files in the group directory located at dirpath using specified access flags and creation mode.
Returns a group file descriptor, or -1 on an error. Note that sub-directories in the group directory are ignored.

int gsize(int gfd)

Returns the number of files in the group specified by gfd, or -1 on an error.

int gfiles(int gfd, char** files)

Copies directory entry names corresponding to files in the group specified by gfd into the user-allocated
array of character buffers files. The files array should be allocated to contain gsize(gfd) character
buffers, each able to hold a maximum length directory entry name. Returns zero on success, -1 on an error.

Table 3.1 New operations for managing group files: Interface and Description

30
semantics for these operations when used with a group file. We follow four guiding principles in defin-

ing the semantics for group file operations:

1. Leave existing POSIX operation interfaces unchanged to maintain familiarity and portability, and
introduce new group-specific operations only when necessary.

2. Choose default group semantics that are intuitive and handle the common case well.

3. Allow users to specify custom behavior when the default group semantics do not meet their needs.

4. Aggregate results whenever possible to improve scalability and performance, yet provide methods
for users to obtain individual results.

 Conceptually, group file operations can be considered equivalent to applying the file operation

individually to each group member. The complexity in defining group file operation semantics con-

cerns the treatment of operands and return codes. We categorize operands whose values are used only

as inputs to an operation as input operands, and those whose values are modified as output operands.

Input operands are the simplest to map to group behavior, as intuition suggests that the same val-

ues should be used when operating on each group member. For example, a write operation has only

input operands: the descriptor, a byte count, and a data buffer. A write on a gfd will copy the

requested bytes from the provided data buffer to each group member at its current offset.

In contrast, the values of output operands and return codes can differ across group members.

Henceforth, we refer to output operands as data results and return codes as status results. Given our

goals of keeping existing interfaces and providing individual results on request, the collections of data

and status results produced by each group file operation present two problems. First, existing file oper-

ations have interfaces designed to return individual results. Second, the collections have sizes that

grow linearly in the size of the group. For very large groups, the collections may have huge memory

footprints, and the processing required to analyze results can become a bottleneck that limits the

throughput of group file operations.

Our solution to these problems is to aggregate each collection into a group result; the aggregates

31
are referred to as group status results and group data results. Aggregation is the process of construct-

ing a whole from several individual parts. Data aggregation allows for the construction of a single rep-

resentation of data from multiple sources. The resulting representation may provide complete or

reduced information. Representations providing complete information allow for identifying the result

from every group member, while those providing reduced information do not. Examples of complete

representations include arrays of individual values and value-equivalence classes that record the group

members for each unique value. Reduced representations typically summarize, categorize, or filter

individual results; examples include value summaries (e.g., sum or average), bins containing member

counts for unique values or value ranges, and top-N or bottom-N value sets.

By choosing aggregations with appropriate data representations, group results can fit existing

interfaces. Group status results must take the form of a single summary value that can be returned by

the group file operation. For group data results, we observe that existing interfaces use pointers for

operands that may be modified. One straightforward method to deliver group data results is to require

users to pass a pointer to a buffer that can hold an array of individual results.

Furthermore, many forms of data aggregation are suitable for distributed computation, including

all aggregations that use the example data representations mentioned above. By computing aggregate

results in a distributed fashion, such as within a TBON, the computation required by the tool to analyze

data from the group can be greatly reduced. Aggregations that use reduced data representations also

decrease the memory footprint for group results.

A group status aggregation is passed a list of member status results, and computes a single sum-

mary value that can be returned by the group file operation. A group data aggregation is passed a list of

data buffers as pairs of the form (buffer, length), and must produce a single output data buffer and

length. To support aggregation of data that spans multiple group read operations, data aggregations

may allocate state that is passed to subsequent executions of the aggregation for the same group file.

32
Name Type Aggregation Description

status_min Status Returns the minimum status value, or -1 if any individual errors
occured.

status_max Status Returns the maximum status value, or -1 if any individual errors
occured.

status_sum Status Returns the sum of all status values, or -1 if any individual errors
occured.

status_equal Status When all status values are equal, returns the equivalent value. Other-
wise, returns zero for varied values, or -1 if any individual errors
occured.

data_concatenate Data

Treats data buffer as an array of buffers. Places data from each group
member at an offset in the buffer that corresponds to that member’s
index in the group (as returned by gindex). For per-member data of
size D and G group members, the total buffer size is G × D, and the
offset for a member with index k ∈ [0, G-1] is k × D.

Table 3.2 Common Aggregations for Group Status and Data Results

Aggregation File Operations

status_min

close, fchmod, fchown, fstat, ftruncate,
lio_listio, aio_read, aio_write, aio_suspend

These operations normally return zero upon success and -1 for an error. The
status_min aggregation produces the same behavior for group status results.

status_sum

pread, pwrite, read, readv, write, writev

These operations normally return the total count of bytes read or written upon suc-
cess and -1 for an error. Using status_sum produces a total count across all
group members on success, or -1 if any individual errors occur.

status_equal
lseek

When all member seeks land at the same file offset, status_equal will return the
common offset. Otherwise, it will return zero, or -1 if any individual errors occur.

Table 3.3 Default Status Aggregations for Group File Operations

33
For convenience, we pre-define a small set of common aggregations for processing group status

and data results. These aggregations are shown in Table 3.2. The initial set includes four status aggre-

gations and one data aggregation. In Table 3.3, we have chosen default group status aggregations for

each type of group file operation that are reasonable for common use. When a user wishes to view

more detailed status results from members, a new gstatus operation (see Table 3.4) can be used to

retrieve all individual results from the last group file operation issued on a gfd.

We expect that in common use, gstatus will be used only when the group status value indicates

unexpected behavior or an error. For example, an anomalous status for a group read using the

status_sum aggregation would be less than the expected value byte-count × gsize(gfd). The

user could then query individual results to see which members did not read the requested amount. In

the event that one or more individual operations return errors, the group status value will indicate a

int gindex(int gfd, const char* file)

Returns the index within group results of the named file for the group specified by gfd, or -1 on an error.
The index range for a group of size G is [0,G-1].

int gstatus(int gfd, long int* status_array)

Fills user-allocated status_array with the individual member status results of the last group file operation
on the specified gfd. Status values corresponding to successful completion are positive, while errors are
indicated by negative values (e.g., -EACCES). Returns the number of individual errors.

int gloadaggr(const char* library, const char* function)

Loads the named aggregation function located in the shared object file library. Returns a unique identi-
fier for the aggregation that can be used with gbindaggr, or -1 on an error.

int gbindaggr(int gfd, FileOp fop, AggrType typ, int ag, const char*
params_fmt, ...)

Binds aggregation ag to a file operation fop for the group gfd. If gfd equals -1, the binding is a default for
future groups. FileOp is an enumeration type indicating the specific file operation, such as OpRead or
OpWrite. AggrType is an enumeration type indicating ag corresponds to a status or data aggregation.
params_fmt is a format string that describes the subsequent varargs parameters; the parameters are passed
to the aggregation function each time it is run. Returns zero on success, -1 on an error.

Table 3.4 New operations for status and data aggregation: Interface and Description

34
group error state, regardless of the summary aggregation currently in use. This error status indicates to

the user that gstatus should be used to identify faulty members.

For group file operations that produce group data results, we believe the logical choice for default

aggregation is data_concatenate, which combines individual results into an array. Individual

results are then accessed in the group data result using a member file’s index as returned by the new

gindex operation described in Table 3.4. Although array concatenation is by no means the most scal-

able of aggregations, it is intuitive and functional for arbitrary data (e.g., binary data structures and

text). Users that know the format of output data a priori are encouraged to use custom aggregation for

improved performance and scalability.

We have defined two new operations in support of specifying custom aggregations, gloadaggr

and gbindaggr, with interfaces as described in Table 3.4. The former is used to load new aggregation

functions from a shared library for use with group file operations, while the latter binds aggregations to

a specific group file operation. Aggregations can be bound to group file operations for a particular

group file or as a default for future groups. gbindaggr supports optional aggregation parameters that

are passed to the aggregation each time it runs. Users can alter the behavior of an aggregation for an

existing group file by calling gbindaggr with new parameter values that are used by the aggregation

to determine the desired behavior.

Figure 3.5 lists the steps required for each group file operation. The implementation of these steps

can take advantage of parallel techniques, as we show in Chapter 5. First, the gfd is used to retrieve

group file information (line 3). The file operation is called for each group member using the supplied

input operands, and individual status values are stored (lines 7-11). The status aggregation function is

used to compute the group status result (lines 13-14). When necessary, group data results are computed

using the data aggregation function (lines 16-20). Input operands and the array of individual status

results are passed to the data aggregation so it can properly handle partial data results and errors. The

35
data aggregation function stores the group data result in the output operand. Finally, the group status

result is returned (line 21), and group data results are available in the output operands.

3.1.3 Example Uses of Group File Operations

We provide a small tutorial on the use of group file operations to explore its features. This tutorial

covers group file definition, group reads and writes, use of custom status and data aggregations, and

group error handling. The context for the tutorial is building simple tools for managing a cluster of

Linux hosts. For exposition purposes, we assume the existence of a global file name space that pro-

vides access to the local name space of each host; the global name space is partitioned and places each

host’s name space in a separate directory tree. All of tutorial code examples use the C language, and

have been simplified to elide details such as error handling.

The first step in using group file operations is to define the group. Figure 3.6 shows code for con-

structing a group directory (lines 5-16) and establishment of a group file descriptor using gopen (lines

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

int fileop(gfd, in_arg, out_arg)
{
 group_file* gf = get_group(gfd);
 int status_arr[gf->size];

 // Call fileop for each member
 for(i=0; i < gf->size; i++) {
 int fd = gf->members[i];
 o_arg = out_arg + i;
 status_arr[i] = fileop(fd, in_arg, o_arg);
 }
 // Compute group status result
 status_aggr_fn = gf->saggr(fileop);
 int grp_status = status_aggr_fn(status_arr);

 data_aggr_fn = gf->daggr(fileop);
 if(data_aggr_fn != NULL) {
 // Compute group data results
 data_aggr_fn(status_arr, in_arg, out_arg);
 }
 return grp_status;
}

Figure 3.5 Group file operation algorithm
Algorithm for applying a file operation to a group file and computing group status and data results.

36
18-20). For brevity, the rest of our tutorial examples assume a group directory has been created in this

manner, after making the necessary substitution for the target hostfile.

Our first tool example demonstrates the use of group read operations and custom data aggregation

to monitor load at cluster hosts. The hostfile for this example is /proc/loadavg, which contains a

single text line showing the one-minute, five-minute, and fifteen-minute average loads. Figure 3.7 pro-

vides code for the data aggregation function and the monitor tool. The interface to aggregation func-

tions is specified by the file system supporting group file operations. In the tutorial aggregation

examples, we use a simple interface that receives the data read from all group members as inputs, and

stores the group data result in the data buffer passed to read. We define the aggregation function inter-

face employed by TBON-FS in Chapter 5.

Our second tool example, shown in Figure 3.8, also uses group read operations and custom data

aggregation to search for lines in system logs that contain a specific phrase. The search phrase is spec-

ified using the aggregation parameters provided to gbindaggr. The hostfile for this example is

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// an array of cluster host names (populated elsewhere)
extern char* hosts[num_hosts];

// create group directory
char* hostfile = “proc/loadavg”;
char* grpdir = “/tmp/my_grp”;
int rc = mkdir(grpdir);

// define group membership using symbolic links
char member_path[PATH_MAX];
char member_link[PATH_MAX];
for(int i=0; i < num_hosts; i++) {
 sprintf(member_path, “/hosts/%s/%s”, hosts[i], hostfile);
 sprintf(member_link, “%s/%d”, grpdir, i);
 symlink(member_path, member_link);
}
// open group and retrieve size
int gfd = gopen(grpdir, O_RDONLY | O_BESTEFFORT, 0);
if(gfd == -1) report_error();
int gsz = gsize(gfd);

Figure 3.6 Example: Group definition
Common steps for defining a group of existing files using symbolic links and obtaining a group file descriptor.

37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

// load custom tool data aggregation
int aggr_id = gloadaggr(“tool.so”, “calc_load_avgs”);

// monitor loop
size_t count = LOADAVG_MAX_FILE_SIZE;
bool failed = false;
double 1min_avg, 5min_avg, 15min_avg;
do {
 // open group and bind data aggregation to read ops
 int gfd = gopen(grpdir, O_RDONLY, 0);
 gbindaggr(gfd, OpRead, AggrData, aggr_id, NULL);
 // read whole files using custom aggregation
 char buf[3 * sizeof(double)];
 ssize_t read_sum = read(gfd, buf, count);
 if(read_sum < 0) failed = true;
 else {
 // extract and record aggregated load averages
 get_load_averages(buf, &1min_avg, &5min_avg, &15min_avg);
 record_load_averages(1min_avg, 5min_avg, 15min_avg);
 }
 close(gfd);
 sleep(300); // five minutes
} while(! failed);

(a) Monitor Tool

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

struct file_data {
 void* data; // data (any format)
 unsigned file_index; // file index within group
};
void calc_load_avgs(char* params_fmt, va_list params,
 int num_inputs, struct file_data inputs[],
 char* output_buf)
{
 // calculate average of inputs
 double avg1 = 0, avg5 = 0, avg15 = 0;
 for(int i=0; i < num_inputs; i++) {
 double one, five, fiftn;
 scan_loadavg_data(inputs[i].data, &one, &five, &fiftn);
 avg1 += one;
 avg5 += five;
 avg15 += fiftn;
 }
 avg1 /= num_inputs;
 avg5 /= num_inputs;
 avg15 /= num_inputs;
 store_averages(output_buf, avg1, avg5, avg15);
}

(b) Custom Data Aggregation Function

Figure 3.7 Example: Load Monitor
A tool for monitoring load at cluster hosts using group read operations with custom data aggregation. Code for
the tool is shown in (a), and a sample aggregation function is shown in (b).

38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// load custom tool data aggregation
int aggr_id = gloadaggr(“tool.so”, “match_lines”);
char* keyphrase = “authentication failure”;

// open group and bind data and status aggregations to read ops
int gfd = gopen(grpdir, O_RDONLY, 0);
gbindaggr(gfd, OpRead, AggrData, aggr_id, “%s”, keyphrase);
gbindaggr(gfd, OpRead, AggrStatus, status_max, NULL);

// search loop
size_t count = 4096; // a page at a time
char buf[count * gsize(gfd)]; // conservative allocation
bool done = false;
do {
 // read chunks using custom aggregation
 ssize_t read_max = read(gfd, buf, count);
 if(read_max < 0) { // group error
 report_error();
 done = true;
 } else if(read_max > 0) { // not all logs have reached end-of-file
 print_matches(buf);
 } else done = true;
} while(! done);
close(gfd);

(a) Log Search Tool

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

struct file_data {
 void* data; // data (any format)
 unsigned file_index; // file index within group
}
void match_lines(char* params_fmt, va_list params,
 int num_inputs, struct file_data inputs[],
 char* output_buf, void** aggregation_state)
{
 // get phrase to match
 if(strcmp(params_fmt, “%s”) != 0) return -1;
 char* phrase = va_arg(params, char*);
 int max_lines = 100;
 char* lines[max_lines];
 for(int i=0; i < num_inputs; i++) {
 // search file data for lines that match
 char* partial_line = get_partial_line(i, *aggregation_state);
 int count = search_log_data(phrase, inputs[i].data,
 lines, max_lines, &partial_line);
 // record partial line in aggregation state
 if(NULL != partial_line)
 store_partial_line(i, partial_line, *aggregation_state);
 // append lines to output annotated with source index
 store_lines(output_buf, inputs[i].file_index, lines, count);
 }
}

(b) Custom Data Aggregation Function

Figure 3.8 Example: Log Search
A tool for finding lines in system logs that contain a key phrase. Code for the tool is shown in (a), and a sample
aggregation function is shown in (b).

39
/var/log/authlog, which records actions of a Kerberos authentication server. The tool searches for

lines indicating authentication failures. This example also demonstrates the use of an alternative status

aggregation (status_max) for group reads that is convenient for determining when all member files

have reached end-of-file. It also shows the use of aggregation state to handle partial lines that are read

across multiple operations.

Our final example in Figure 3.9 shows the use of group write operations in a tool for replicating a

configuration file across the cluster. The hostfile for this example is /etc/passwd. This example

also demonstrates the use of gstatus to aid in identifying partial or failed writes.

3.1.4 Sharing Considerations for Group Files

In our discussion so far, we have assumed a program using group file operations was group-aware

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// open group
int gfd = gopen(grpdir, O_WRONLY | O_TRUNC, 0);
int gsz = gsize(gfd);

// map input file in memory and retrieve its size
size_t file_len = 0;
char* file_buf = map_file(“/etc/passwd”, &file_len);

// copy file in 4MB chunks
size_t count = 4096 * 1024;
size_t write_sum = count * gsz;
size_t copied = 0;
do {
 // write 4MB chunk using default status aggregation (sum)
 ssize_t written = write(gfd, file_buf + copied, count);
 if(written < write_sum) {
 long int status_arr[gsz];
 int num_errors = gstatus(gfd, status_arr);
 if(written == -1)
 report_errors(num_errors, status_arr);
 else
 report_partial_writes(count, status_arr);
 break;
 } else copied += count;
} while(copied < file_len);
close(gfd);

Figure 3.9 Example: File Replication
Code for replicating a file across cluster hosts.

40
since it had to obtain a gfd. However, in Unix-based environments there are well-established methods

for sharing an open file descriptor. We review how a gfd can be shared, indicate the potential problems

of group-unaware use of a gfd, and discuss approaches for avoiding these problems.

There are three methods for sharing open file descriptors in Unix-based environments. The first

method is for a process to call fork to create a new process that is a copy of itself, where the copied

operating system state includes the descriptors. When the original process is group-aware, we assume

the created process is still group-aware and will have no problem when performing future group file

operations. The second method is for a process to call exec to replace its current address space with

the image of an executable file. In this case, the open descriptors are inherited by the new program, but

there is no guarantee that the program is group-aware. The final method involves sending a list of open

descriptors as ancillary data to a sendmsg call on a UNIX domain socket. Again, there is no guarantee

that the receiving process is aware of the presence of gfds in the list.

When a group-unaware process uses a gfd, there are three potential outcomes: (1) successful com-

pletion with no change in behavior from the program’s persepective, (2) successful completion with

non-standard behavior, and (3) silent process corruption or failed completion. The first outcome can be

expected for operations that do not have output data and where no status aggregation is performed. The

second outcome can be anticipated for operations with no output data and aggregated status results

(e.g., write and lseek), since the returned value will not match that expected by a program written

for single file operations. This mismatch may lead group-unaware programs to abort immediately due

to unexpected behavior, or to fail later on when performing actions based upon the unexpected result

value. The second outcome is also possible for operations with aggregated output data, when the

aggregated data result does not exceed the size of the output data buffer (e.g., a read using a summary

data aggregation). The third outcome can be expected for operations with an aggregated data result that

is larger than the allocated output buffer (e.g., concatenated results from read and fstat), as silent

41
process corruption or an operational failure will occur when copying aggregated results to the buffer.

To avoid the potential problems associated with the second and third outcomes, a process that

shares a gfd with another process that is not guaranteed to be group-aware should use precautionary

measures. These measures may include changing the aggregations currently associated with the file

operations on the gfd before sharing it. Appropriate aggregations would provide status and data results

consistent with their single file operation counterparts.

3.2 Extensions to the Idiom

Based on our experience with using group file operations in the tool and middleware case studies

presented in Chapters 7, 8, and 9, we identified extensions that provide further convenience and

expand the idiom’s utility. In this section, we describe extensions for improved error handling, group

duplication and subsetting, and group program execution. We briefly review each of these extensions

and their intended uses.

3.2.1 Group Error Handling

As the size of a distributed system increases, the expected time between failures of system compo-

nents decreases. Given our target systems contain tens or hundreds of thousands of hosts, it is impor-

tant to provide robust and efficient error handling semantics.

We expect users of group file operations will use familiar error handling strategies that work well

for normal file operations. For example, application-level retry is often sufficient to overcome transient

file system or network failures during operations on distributed files. When faced with extended net-

work outages or permanent host component failures, most programs will try to complete the operation

a few times before eventually giving up.

Group file operations add to the complexity of error handling by introducing situations in which

only a subset of member operations fail. As in normal file operations, we expect programs will attempt

42
to recover from group file operation failures by identifying the failed subset and having that subset

retry the operation. Because failures from different hosts may be unrelated, there is no guarantee that

the entire failed subset will recover from transient problems at the same time, nor that all failed mem-

bers will ever recover in the presence of permanent failures. When failures persist, the program may

decide to continue operating on only the non-failed members. Continued operation is possible even

when the program is using group writes, as servers are completely independent and have no consis-

tency requirements. For example, in file replication scenarios, the client program has access to the pris-

tine copy and can distribute its contents to the failed servers later on after they have recovered.

Determining group members that have experienced errors is a prerequisite to both retry and contin-

ued operation. As discussed previously, the new gstatus operation provides this information in the

form of an array of group member status values. Unfortunately, scanning the status array for errors is a

sequential operation that in the worst case requires inspecting every index. A more efficient and conve-

nient option is to provide a new gerrors operation that identifies failed members.

We consider two options for the functionality provided by gerrors. The first option is for ger-

rors to supplement gstatus by providing a list of the member indices that contain errors. The draw-

back of this option is it requires the prior use of gstatus to fetch the entire group status array, which

can be quite large, even when the program is only interested in errors. The second option is for ger-

rors to serve as an alternate to gstatus by providing a list of failed member indices and their associ-

ated error values. When the ratio of failed members to group size is small (i.e., a few percent), this

second option is preferable. However, one common error situation for group file operations involves

the failure of all member operations, such as the situation that results when trying a group write on

files that have only read-access. In such situations, the second option would require twice the space of

the gstatus array. We currently favor the first option for its simplicity and memory savings for full

group error scenarios. The current interface for gerrors follows:

43
int gerrors(int gfd, int* index_array)

The index_array operand is a user-allocated array whose length should be equal to the number of

errors, as returned by gstatus. This array is populated with the group indices for failed members.

We plan to investigate a third approach to identifying errors that is based upon an alternative ver-

sion of gstatus that returns an opaque handle to a histogram object. The histogram associates each

unique status or error value with a list of members that returned that value. We envision providing sev-

eral functions for querying the histogram to obtain information such as the set of unique values, the

member counts for each unique value, and the membership lists for each value. A histogram-based

approach to aggregation of status and error values should provide greater data scalability than the cur-

rent integer arrays used to hold values and member indices. A key to achieving our desired level of

scalability for next generation systems is to devise a compact representation for membership lists, as

groups will likely contain millions of files.

Given the ability to easily and efficiently identify failed members, the next requirement for retry or

continued operation is to generate group files representing the failed or non-failed subsets. The follow-

ing subsection discusses our proposed extensions for group subsetting.

3.2.2 Group Duplication and Subsetting

Duplicating a group file by using dup on its descriptor is likely more efficient than using gopen

on the original group directory. Following the POSIX semantics for dup, the member files represented

by the new gfd are the same as those from the original gfd, and thus share file offsets and status flags.

The question for group files is whether to share the current status and data aggregations as well.

We believe duplication could be convenient for interleaving different forms of data aggregation

while reading group files. For instance, assume member files contain structured data at known offsets,

and a tool wishes to use separate aggregations for each type of structure. As shown in Figure 3.10,

there are two file organizations to consider: (a) shows a file where all the structures of a given type are

44
located within a single range of the file’s data, while (b) shows interleaved structures of different types.

We assume files are being read sequentially and completely. With the ranged organization of (a), a pro-

gram only needs to use gbindaggr three times, before reading the data in each range. However, for

the interleaved organization of (b), a program would be forced to use gbindaggr much more often to

change the aggregation binding each time the type of data changes, which could have high overhead. A

more efficient alternative would be to create duplicate gfds, where each gfd is initially bound to one of

the necessary aggregations. Then, the program can simply switch the gfd passed to each read.

As introduced in Section 3.2.1, a useful extension to the notion of group file duplication is group

subsetting, which we define as the creation of new group files that represent subsets of the members of

an existing group file. The primary motivation for supporting group subsetting is to handle cases where

member subsets diverge from the expected behavior, such as when some members return errors or sta-

tus values indicating only a portion of the requested data was read or written. In these cases, the pro-

gram may want to operate on the subset to return it to the expected state.

Using the semantics we previously defined in Section 3.1.1 for managing group files, creating a

group file subset requires two actions. First, a directory containing the subset’s files must be created by

either modifying the original group directory entries or populating a new group directory. Second,

gopen is called using the subset group directory. Rather than forcing programs to employ this costly

sequence of actions, we added a new gsubset operation that allows for duplication of a subset speci-

fied using member indices from the original group. This operation returns a new gfd that represents the

target subset and provides the same semantics as descriptors obtained using dup on a group file. The

proposed interface is shown below:

int gsubset(int gfd, unsigned num_members, int members[])

As with whole-group duplication, programs are free to use different status and data aggregation with

the new gfd.

45
3.2.3 Group Program Execution

A common task for distributed system administration is running the same program on a set of hosts

and collecting the programs’ output. Many tools [18,29,36,53,90,119] have been created that support

this task, but few are designed for practical use on systems containing thousands of hosts. The primary

deficiency of previous tools is how collected program output is displayed to users. All prior tools pro-

vide attribution of output lines to specific hosts. To avoid user confusion caused by interleaved output

from many hosts, most tools provide an option to display all the output from a particular host in one

grouping. Such ordering by hosts at least makes the output comprehensible for large numbers of hosts,

but does not address the limited abilities of users for digesting thousands of lines of output. When pro-

grams on many hosts produce equivalent output, a few tools [29,53,90] help users by displaying only

unique sets of program output prepended by the hosts that produced each set.

To provide more flexible and scalable handling of output from distributed programs, we investi-

gated the possiblity of using the custom data aggregation capabilities of group file operations. The pri-

mary obstacle was developing a method of capturing the output of distributed processes as a gfd. Our

(a) Structures in ranges (b) Interleaved structures

Figure 3.10 Two file organizations containing three types of structured data
(a) All structures of a given type reside within a single range.
(b) Structures of different types are interleaved.

46
approach combines the functionality of two common POSIX operations, execve and popen, within a

new gexec operation that provides group launch of distributed programs. The interface of gexec is

modeled after execve, and shown below:

int gexec(const char* grpdir, char* argv[], char* envp[])

Similar to gopen, the first operand to gexec is the path of a group directory. This directory is expected

to contain links to executable programs that reside on distributed hosts. gexec launches the programs

in the directory on their respective hosts using execve, passing the supplied argument and environ-

ment vectors. It returns a gfd that can be written to provide stdin to the distributed processes and can

be read to obtain data they send to stdout and stderr. This I/O capture is inspired by popen, which

returns a file stream for writing stdin or reading stdout, but not both. Using the gfd, tools can bind

custom read aggregations that annotate, filter, or transform the programs’ output.

3.3 Summary

Group file operations are an intuitive idiom for applying operations to groups of distributed files.

The idiom addresses the two primary scalability barriers in such group operations: forced iteration and

data that grows with the size of the group. Iteration is eliminated by defining a group file abstraction

that can be used with familiar POSIX I/O operations. The idiom provides semantics for explicit aggre-

gation of group status and data results to avoid or reduce the data storage and analysis costs incurred

by tools and middleware using group file operations. Together, these features allow for scalable imple-

mentations of group file operations, as we show in Chapter 5.

One deficiency of the idiom is that it does not address scalable definition of file groups. As shown

previously in Figure 3.6, populating group directories requires iteration, which we strive to avoid. The

following chapter presents our ideas for composing custom global name spaces that automatically

group files into directories for use with group file operations.

By extending familiar POSIX I/O operations to produce the group file operation idiom, we believe

47
the learning curve for adoption within new or existing software is significantly reduced. Still, we have

identified cases where strict adherence to the existing interfaces and our attempts to mirror the utilitar-

ian style of POSIX in the new operation interfaces results in less than ideal interactions. For example,

when using custom data aggregation during a group read, it is often hard to estimate the size of the

buffer that is necessary to hold the aggregated result. Unfortunately, the semantics for POSIX read

dictate that the destination buffer is pre-allocated. It is often necessary to allocate for the largest

expected size as a prevention against buffer overruns, which can result in situations where only a small

fraction of the buffer space is actually used by the aggregated result. If we relax these semantics to

allow the group read to return a buffer rather than copy into an existing buffer, excessive allocations

can be avoided. A study of the inefficiencies in the interfaces of group file operations could help to

identify and resolve such problems.

48
Chapter 4

Flexible and Scalable Composition of File Name Spaces

The group file operation idiom uses directories as the file grouping abstraction, but does not

address scalable construction of group directories. Using conventional file system operations, populat-

ing a group directory with files requires iteration that limits scalability for large groups. In this chapter

we discuss a scalable approach to forming file groups that relies on composing the independent file

name spaces of thousands of servers into a global name space. We first discuss our goals for providing

tools and middleware the ability to compose custom global name spaces. Next we introduce FINAL,

our language for flexible and scalable composition of file name spaces. We then demonstrate FINAL’s

expressive power by using it in several interestingly diverse name space compositions.

4.1 File Name Space Composition Goals

Establishing a group file requires populating a directory with links to member files before using

gopen. Linking to distributed files requires that they are accesible using local names. We assume this

requirement is met using a distributed file system that provides a global name space. However, using

file system operations such as stat and symlink, populating the group directory requires iteration

that can take hundreds of seconds for groups containing tens of thousands of distributed files. To avoid

49
such centralized, iterative group definition, we began investigating approaches that were amenable to

scalable implementations using TBONs.

The first approach we considered was parallel path matching using regular expressions. In this

approach, a file group’s membership is defined by providing a set of regular expressions representing

paths, and the TBON is used to distribute these expressions to each distributed host. Hosts indepen-

dently evaluate the expressions to identify matching files in their local name spaces, and all of the host

matches are aggregated using the TBON to form the list of files to be included in the group directory.

Strategies based on path matching are sufficient to group files with identical or similar paths on distrib-

uted hosts, which is a common case for the file groups targeted in group file operations. Unfortunately,

the use of names as the sole matching criteria limits the ability of tools to select relevant files.

One limit of using name-based matching is that file groups are often formed based on non-name

file attributes such as size, owner, or access times. For example, a tool for processing distributed sys-

tem logs may select only those files whose size exceeds some threshold. A security auditing tool may

inspect groups of files whose modification time is within some time period, such as password database

files that were recently updated.

Another common selection criteria uses host-specific context. For example, a tool for replicating

library or executable files across distributed hosts with heterogeneous processor architectures may cre-

ate architecture-specific file groups for each library or executable. Unless the hosts place files in archi-

tecture-specific locations, paths cannot be used to create these file groups. Thus, a mechanism is

required for querying the local context at each host to determine the architecture, such as retrieving the

value of the $MACHTYPE environment variable or executing uname on Unix systems. Host context is

also important for paths that include process identifiers (pids), as would be used by tools such as paral-

lel debuggers that target a specific set of distributed processes. Since pids are not unique across distrib-

uted hosts, expressions for paths that include specific pids can result in unintended matches on

50
multiple hosts. In such use cases, alternative methods that allow tools to select files owned by a partic-

ular user or corresponding to processes executing a specific application program would be beneficial.

Our goal is to support the diverse strategies used by tools to select relevant files for grouping. To

this end, we designed an approach to group definition based on file name space composition that pro-

vides the necessary flexibility. Our approach accomodates both path-based matching as well as more

complex selections based on attributes or host context. The result is a flexible specification language

for composing custom file name spaces and a scalable system for composing a global name space by

merging thousands of independent name spaces using a TBON. The language provides programs with

composition semantics that enable efficient and natural formation of file groups, as a means for gener-

ating a name space tailored for use with group file operations.

4.2 A Language for File Name Space Composition

To meet our global name space composition goals, we developed a specification language for

describing compositions with three key qualities:

• Scalability - many name spaces can be combined using efficient distributed name space construc-

tion, avoiding centralized pair-wise operations.

• Simplicity - name space composition is easily described using a simple tree abstraction for name

spaces and a set of tree composition operators with clear semantics.

• Flexibility - many interesting compositions can be specified by combining declarative tree opera-

tions with prescriptive programming constructs.

The language provides a semantic foundation that guides our approach for scalable global name space

composition, and can be adopted by systems requiring flexible composition. Our language is named

FINAL, the File Name space Aggregation Language.

FINAL draws heavy inspiration from Zandy’s flac language [125] that was designed for describing

file name spaces for mobile applications. Flac’s treats name space composition as operations on trees,

51
which results in declarative specifications that are simple to understand. However, there are limitations

to flac’s scalability when applied to global name space composition and to its flexibility in supporting

general-purpose name space composition. FINAL addresses these deficiencies by extending flac’s

semantics to support efficient composition of many trees, and by introducing prescriptive language

constructs that provide additional flexibility in describing a wider variety of compositions.

In Section 4.2.1, we review the key design features of flac and discuss its limitations. Section 4.2.2

introduces the two main abstractions used within FINAL, name spaces and file services. Section 4.2.3

describes FINAL’s name space composition operations that are based on these abstractions.

Section 4.2.4 discusses the benefits for flexibility in specifying interesting compositions that can be

achieved by extending FINAL with prescriptive capabilities. Section 4.3 provides several examples

that demonstrate FINAL’s flexibility and its application to scalable global name space composition.

4.2.1 Flac: A Good Start

Flac, whose name is short for file access, is a language for describing the file name space used by

a mobile application. Flac treats file name spaces as a traditional tree of names, where internal vertices

are directories and files are leaves. A path is a sequence of names that represents a traversal of the tree

starting at its root and ending at the vertex corresponding to the named file or directory. Figure 4.1 pre-

sents an example name space.

Applications write specifications using flac to compose a custom file name space consisting of

files from many file services. A file service in flac is simply a name space tree. A special type of file

service, the primitive file service, represents the name space of a local or remote file system and pro-

vides operations upon its files and directories. Flac pre-defines a few primitive services such as the

local service that accesses the local file system and the smb service that remotely accesses a Win-

dows network file server.

Composition of file services is expressed using operators called combinators. Combinators operate

52
on paths and services to produce new services. As shown in Figure 4.2, combinators are provided to

get or remove the sub-tree of a service at a given path, to prepend a path to a service, and to overlay a

service on top of another service to yield a tree containing names from both. The overlay combinator

gives precedence to the top (first) service in the case of name conflicts. In every flac specification, the

keyword root immediately precedes the service definition that describes the fully-composed custom

name space. Figure 4.3 shows two specifications that describe file system mounts and union mounts.

Because mobile applications roam across hosts or networks, the file service used to access specific

files may need to change when the application moves. For example, consider an application executing

on a laptop computer that accesses a file server within a private home network. When the laptop is con-

nected to the home network, files can be accessed in the local file name space via a file server mount.

If the laptop is moved to a new location, such as the laptop user’s favorite coffee shop, then the home

network is no longer accessible and the laptop will likely connect to a new network. Given its new net-

work context, the method for accessing files on the home network file server must change to a form of

remote access, such as flac’s rpc service to a public gateway host in the home network.

Flac seamlessly supports access method transitions based on changes in the application’s host or

Figure 4.1 Name Spaces and Paths.
A name space is a rooted tree of names. A path is a tree traversal starting at the root node. In all name
space figures, we use uppercase names for directories and lowercase names for files. For the tree T, the
path /B/g yields file g.

�������	�
�

�

�

� �

�� �

	

�
�

� �

53
Figure 4.2 Flac Name Space Combinators.
This figure has been reproduced from Victor Zandy’s dissertation [125] with his permission.

L = local()
N = new_file_svc(args)
root overlay(extendtree(N,path),
 cuttree(L,path))

(a) Traditional Mount

L = local()
N = new_file_svc(args)
root overlay(extendtree(N,path),
 L)

(b) Union Mount

Figure 4.3 Flac Example Specifications for Mount Semantics.
(a) A traditional mount can be described as removing the sub-tree at the mount point in the local name
space and overlaying the new file service name space with the mount point prepended.
(b) A union mount can be described as a traditional mount where the existing sub-tree at the mount
point is not removed before overlay the new file service name space.

Service

Path
subtree(Service,Path)

overlay(cuttree(Service,Path),extendtree(subtree(Service,Path),Path)

extendtree(subtree(Service,Path),Path)cuttree(Service,Path)

54
network contexts. This support relies on a special select combinator that applications can use to

choose the appropriate file service given the current network location. Network locations can be given

as DNS host names or IP addresses, and may contain wildcards. The flac runtime detects changes in

location, and chooses the service used to access files based on the selection in the specification for the

current location. Figure 4.4 shows a simple specification that uses select to support the laptop move-

ment example described above. The select combinator also provides two other forms of selection

context. One form allows for selection based on matching the value of an environment variable, and

another selects according to the specific file operation being used (e.g., read or write).

In terms of flexibility for general-purpose name space composition, flac is limited in three ways.

First, flac has no notion of name space inspection to help in selecting relevant files or directories. For

example, there is no way to select or exclude entries in a specific directory that match a name pattern.

Second, file attributes such as the modification time or file size can not be queried to aid in selection.

Third, select is the only method for choosing among alternatives based on context. Only one of the

supported contexts, environment variables, is general enough for use in compositions outside of the

mobility domain. Because the semantics of select limit its use to evaluating simple equality condi-

tions, the possible equality values must be known in advance, and compound conditions that compare

multiple variables are not supported directly but can be emulated with nesting.

When composing global name spaces from thousands of independent name spaces, flac has

semantic limitations that prevent efficient specifications. If each independent name space is repre-

sented as a unique file service, then thousands of services must be defined. The overlay combinator

is the only way to combine these services in a single name space. Since overlay is a pair-wise com-

position, using it to compose global name spaces requires thousands of serialized operations. Further,

the name conflict resolution behavior of overlay can not be customized. Thus, there is no way to

overlay name spaces in a manner that retains more than one instance of a file at a common path. This

55
limits its use in composing group directories containing files with the same path on many hosts.

In response to the flexibility and scalability limitations of flac, we collaborated with Zandy to

design FINAL. FINAL adopts flac’s name space composition based on tree operations, and introduces

a new merging operation that supports customizable composition of many trees. This new operation

provides the semantic foundation for scalable global name space composition. FINAL replaces flac’s

limited name space selection based on domain-specific context with prescriptive language capabilities

that provide the flexibility to specify diverse compositions requiring inspection of name spaces, file

attributes, and environmental context.

4.2.2 FINAL Abstractions

As in flac, FINAL abstracts file name spaces as trees and name space composition as tree alter-

ations and combinations. We consider these trees to be name space views to distinguish them from the

physical name spaces of file services. All views used as inputs to composition operations are immuta-

ble, and operations produce new immutable views as results. The immutability of views provides clear

semantics for composition, as there are no side-effects to the input views, and views can be freely used

as inputs to many operations.

FINAL also adopts a file service abstraction that is similar to the primitive file services of flac. A

file service provides access to local or remote file systems and a set of common file system operations

(e.g., open, read, and write for files, and list for directories). Since file services are used as the

LOCAL = subtree(local(), /mount/myfilesvr)
REMOTE = rpc(myhost.isp.net, /mount/myfilesvr)
root select(location, 192.168.100.0/8:LOCAL, else:REMOTE)

Figure 4.4 Flac Example Specification using Location-based Service Selection.
When the application is running on a host connected to the private network with subnet
192.168.100.0/8, files can be accessed on the network file server mounted at /mount/myfilesvr in
the local name space. Otherwise, when connected to any other network, the remote file protocol
service (rpc) is used to access a similar mount point on a gateway host for the private network.

56
building blocks for composition, services conventionally export a view that resembles their physical

name space. If a file service removes file system entries after providing a view that contained them,

operations on those entries in the composite name space will fail.

4.2.3 FINAL Composition Operations

FINAL treats name space composition as operations on immutable trees. The composition algebra

consists of the five tree operations presented in Table 4.5. The first three operations, subtree, prune,

and extend, are modeled after the flac combinators and support common manipulations of a single

tree. These operations have two operands, a tree T and a path P. subtree(T,P) yields a view of the

sub-tree whose root is found by traversing P in T. If the target sub-tree is a single file, subtree returns

a tree consisting of a root directory whose only child is the file. prune(T,P) complements subtree,

and results in a view of T with the sub-tree rooted at P removed. extend(T,P) yields a copy of the

input tree with P prepended to its root. Figure 4.6 applies these three path operations to the example

name space of Figure 4.1. The fourth operation, graft, inserts one tree into another as shown in

Figure 4.6. graft does not have a corresponding combinator in flac, which relied on its overlay

combinator to graft trees. Because overlay must traverse both input name spaces to identify shared

Tree Composition Operator Description

subtree(Tree, Path) → Tree
Returns a copy of sub-tree at the specified path in
the input tree.

prune(Tree, Path) → Tree
Returns a copy of the tree with sub-tree at path
removed.

extend(Tree, Path) → Tree
Returns a copy of the tree with the specified path
prepended.

graft(Tree1, Tree2, Path) → Tree
Returns a copy of Tree1 with Tree2 inserted at
the specified path.

merge({Treek}, conflict_fn) → Tree
Returns a new tree that contains all unique paths
and entries returned from applying the conflict
function to all shared paths.

Table 4.5 Final Composition Operations

57
and unique paths, it is more expensive to evaluate than graft, which specifies the insertion path.

 Together, the first four composition operators can describe arbitrarily complex tree compositions.

Unfortunately, such flexibility comes with a cost when one wants to perform deep composition of two

or more trees, such as is needed for name space overlays. A deep overlay can be described by travers-

ing the trees in level order, identifying shared and unique paths. Sub-trees at unique paths can be

grafted into the result tree, while vertices common to both trees result in a vertex copied from the top-

layer service. A specification describing these overlay semantics may be extremely verbose for large

trees, and the efficiency of composing the trees would be limited to serial evaluation of the composi-

tion operations. Similarly, since graft operates on two trees, composition of a many trees would

Figure 4.6 Path Composition Operations.
The top two trees show results from applying the prune and subtree operations to the name space
of Figure 4.1 with the path “/B”. The bottom-left tree shows the result of extending the S sub-tree with
the path “/X“. The bottom-right tree shows a graft of tree P into tree X at path “/Y”.

�

�
�

� �

����������������	��

� �

�� �

���� ��!������	��

�

"����#��!$�����"��

�

"

�
�

� �

�

" %

&���
�����"�����%��

�
�

� �

� �

�� �

58
require pair-wise iteration. One of our goals for name space composition is to avoid complex specifica-

tions and serialized pair-wise composition. Instead, we favor operations that provide the required

semantics while still providing efficient and scalable composition of many trees.

FINAL’s last composition operation, merge, captures the behavior of a large class of deep compo-

sitions while supporting customizable composition semantics. To allow for efficient composition of

many trees, merge operates on a collection of trees, where the trees are combined at all levels from

their roots to leaves. The tree produced by merge contains all unique paths that occur in one input tree

but not the others, as well as the results of applying a customizable conflict resolution function to paths

that are shared among the input trees. Unique and shared paths are determined using a level-order tra-

versal across all input trees. At each level starting with the children of the roots, the conflict resolution

function is called for each path that is shared among two or more trees. The function is passed the

shared path and a list of conflicting vertices, and produces an output set of (vertex, path) pairs. Each

vertex in the output set is added to the result tree at its paired path.

Letting users define custom conflict resolution functions provides flexibility to perform fine-

grained manipulation, similar to how directory filters are used within the Virtual System Model [78],

while still describing merge compositions at a high-level. Though merge captures the behavior of

many types of deep composition, it cannot emulate shallow merges, such as the unions provided by

Plan 9 in which only first level names below the root are overlayed [94]. However, shallow merges can

be specified by merging path-extended sub-trees. Due to the common use of overlay semantics

[91,94,123], we provide a pre-defined conflict resolution function called overlay. This function out-

puts the first vertex in the conflicting input list.

Pseudocode for a conflict resolution function that uses a simple file renaming strategy is shown in

Figure 4.7; this function returns a single directory for shared directory paths, or a set of renamed files

for shared file paths. An example merge operation using this conflict function is shown in Figure 4.8.

59
FINAL’s composition operations can be used to specify a wide range of compositions in a simple,

declarative manner. For example, we show how to specify four common forms of file system mounts.

In these examples, O is the original name space, P is the path for the mount point, N is the new tree to

be mounted, and T is the resulting tree.

• A traditional mount that replaces the sub-tree of the current name space at the mount point with a

new file name space is easily specified using prune and graft:

T = graft(prune(O,P), N, P)

• A bind mount is a variation of the traditional mount that uses a sub-tree of the existing name space

rather than a new file system as the new name space to be mounted. Thus, bind mounts make a

portion of the current name space available at more than one path simultaneously. A bind mount

where P1 is the original path to the sub-tree and P2 is the new path can be specified as:

T = graft(O, subtree(O,P1)), P2)

rename_merge(shared_path, conflicts)
{
 results = [:]; // initialize empty hash table
 if(all_directories(conflicts)) {
 // return single, common directory
 results[shared_path] = conflicts[0];
 return results;
 }
 else if(all_files(conflicts)) {
 // return all files, renamed to not conflict
 for(int i=0; i < length(conflicts); i++) {
 // new path is shared path plus version
 p = shared_path + “.” + i;
 results[p] = conflicts[i];
 }
 return results;
 }
 // bad input structure
 return nil;
}

Figure 4.7 merge Conflict Resolution Function.
Renames all files having the same path by appending a version number. Conflicting directories are
merged to a single directory.

60
• A union-over mount that lays the new name space over the original name space at the mount point,

instead of replacing its contents, is specified as:

T = graft(prune(O,P), merge({N,subtree(O,P)}, overlay), P)

• A union-under mount that lays the new name space under the original name space at the mount

point, instead of replacing its contents, is specified as:

T = graft(prune(O,P), merge({subtree(O,P),N}, overlay), P)

These simple mount examples show the ease in describing common name space compositions using

FINAL’s composition operations. We now proceed to discuss the flexibility afforded for specifying

more diverse compositions that results from combining the tree algebra with prescriptive programming

Figure 4.8 merge Tree Composition Operation.
The upper three trees, A, B, and C, are merged using the conflict function of Figure 4.7, resulting in the
lower tree M. As specified by the conflict function, common directories are merged into a single
directory in M, and common files are renamed by appending a version number.

�

� �

�� �

�

� �

�

	

�
�

� �

	

�

�

� �

	

�

�

�

��'��
��(
�	��)���!�'�*'��
��+

�

� �

�

	

��

��,- �,. �,/ �,- �,. �,- �,.

,-
,.

61
capabilities. Section 4.3 provides additional example specifications that fully demonstrate the flexibil-

ity of name space composition using FINAL.

4.2.4 Prescriptive Language Capabilities

While the declarative, functional nature of FINAL’s composition operations is appealing due to its

simplicity, there exist interesting composition strategies that are hard to describe using only these oper-

ations. To meet our goals for providing flexibility in writing practical specifications, prescriptive spec-

ification constructs are necessary to support name space, file attribute, and host context queries. For

example, it would be useful to allow iteration over directory entries to find files that match some name

pattern or have sizes that exceed some threshold.

Rather than design a completely new language to add prescriptive functionality, we provide the

FINAL abstractions and composition operations within an existing programming language. Cinque-

cento [126] is a dynamically-typed functional language that supports C syntax and operators. Cinque-

cento programs are sequences of expressions that are dynamically evaluated in order. The language

provides many useful functional capabilities such as lambda expressions as well as built-in types for

high-level data structures including lists, vectors, and dictionary hashes. Cinquecento’s C-based syntax

should feel familiar to systems programmers, and its functional characteristics allow FINAL’s compo-

sition operations to be used in a natural manner. Although we consider Cinquecento a natural fit as the

basis for FINAL, it is important to note that the flexibility that results from combining FINAL abstrac-

tions and composition operations with prescriptive capabilities is not dependent on the choice of

Cinquecento. Similar benefits could be realized using other dynamically evaluated languages.

We have added two new data types to Cinquecento, filesvc and nstree, and functions that

operate on these types to support FINAL’s file service and tree abstractions. The filesvc type repre-

sents an instance of a defined file service. Table 4.10 presents the interfaces for filesvc, and

Table 4.11 presents the interfaces for the file operations supported by file services. The mkfilesvc

62
function creates a new instance of the named file service. mkfilesvc has optional parameters that can

be used to customize the service instance, such as passing host and mount point information for a

remote file service like NFS [105] or 9P [65]. For convenience, a pre-defined service named local

provides access to the local name space. Additional file services can be defined with the svcdefine

function, which associates the given service name with a set of functions implementing the service file

operations shown in Table 4.11.

The nstree data type represents a vertex in a name space tree. Each nstree corresponds to a

name space entry on some file service, and contains a path and filesvc reference. To maintain the

name space organization, each nstree has references to its parent and children nstree vertices. Ini-

tial views for a service are created using the mknstree function, which takes a filesvc operand and

Construct a tree from a file service.
mknstree(svc) → nstree

Construct an empty tree.
nulltree() → nstree

Walk path in tree to target tree. Returns nil for bad path.
treewalk(nstree, path) → nstree | nil

Retrieve names for children of tree.
treelist(nstree) → string[]

Get vertex name, file service path, or file service for tree.
treename(nstree) → string
treepath(nstree) → path
treesvc(nstree) → filesvc

Table 4.9 nstree Interfaces

Define new file service with the given name and a set of functions for the file operations in Table 4.11.
svcdefine(name, {file_op_fns}) → int

Construct an instance of the named file service; “...” is a set of service specific options.
mkfilesvc(name [, ...]) → filesvc

Table 4.10 filesvc Interfaces

63
returns the root nstree for a tree that has an identical structure to the physical name space of the ser-

vice. Table 4.9 presents interfaces for creating and using the nstree data type.

4.3 Example Compositions using FINAL

We provide example FINAL specifications for composing private and global name spaces. Speci-

fications describe a composed name space using a sequence of statements that are evaluated in order.

Statements correspond to either tree composition operations or prescriptive constructs. A special vari-

able named root is used to identify the fully-composed name space. The value assigned to this vari-

able should be of type nstree. For example, a specification to access the sub-tree of the local name

space located at the path /usr/bin would be:

LOCAL = mknstree(mkfilesvc(“local”));

root = subtree(LOCAL, “/usr/bin”);

To help distinguish the name space trees from other Cinquecento variables in the example specifica-

tions, we use variable names in uppercase for trees and lowercase for other types.

Query the status of a file with given path in the provided file service.
stat(filesvc, path) → fileattr

Open a file with given path in the provided file service according to specified access mode.
open(filesvc, path, mode) → fd

Close the file associated with the given descriptor in the provided file service.
close(filesvc, fd) → int

Read the file associated with the given descriptor in the provided file service.
read(filesvc, fd, offset, buf, count) → long int

Write the file associated with the given descriptor in the provided file service.
write(filesvc, fd, offset, buf, count) → long int

Get the entries for the given directory path in the provided file service.
list(filesvc, path) → string[]

Table 4.11 File Service Operation Interfaces

64
4.3.1 Private Name Spaces

Private file name spaces are custom views of the default file system name space. Common uses for

this customization are for user convenience or system security. For convenience, a process may select

some subset of the local name space that is necessary for execution. The reduced name space often

makes access to target files more efficient, as the files are placed closer to the root of the name space.

In the security realm, private name spaces can be used to prevent unauthorized access to files through

isolation or omission. The example specifications presented in Figure 4.12 show how FINAL can be

used to generate such private name spaces.

A common use of private name spaces is when a user wishes to substitute their own executables

for the system installed versions. Figure 4.12(a) shows how to accomplish such a task using FINAL.

Figure 4.12(b) shows the use of procedural constructs to deal with heterogeneous context. It

checks for the presence of three common paths for temporary storage within the local name space and

chooses the first available, and defaults to the user’s home directory if none of the paths were found.

This example demonstrates Cinquecento’s support for accessing the environment, which is useful for

parameterizing specifications based on context.

Figure 4.12(c) uses name space navigation and attribute inspection to generate a name space con-

taining files from the /var/log directory that have sizes larger than four kilobytes. Two functions,

treewalk and treelist, are used for name space navigation. As described in Table 4.9, each func-

tion has a nstree operand that indicates the node from which navigation begins. treewalk takes a

relative path operand, walks the path to the target nstree, and returns the target or the Cinquecento

special value nil. treelist returns a list of string values for the names of children of the current

nstree. In the example, treelist retrieves the directory entries of /var/log, and treewalk is

used within a lambda function applied to each entry. The specification also shows how to query

attribute information for the file referenced by a nstree. The query is accomplished using the stat

65
LOCAL = mknstree(mkfilesvc(“local”));
HOME = subtree(LOCAL, getenv(“HOME”));
MYBIN = subtree(HOME, “/install/bin”);
BIN = extend(MYBIN, “/usr/bin”);
REST = prune(LOCAL, “/usr/bin”);
root = merge({REST, BIN}, overlay);

(a) Substituting Personal Executables

user = getenv(“USER”);
LOCAL = mknstree(mkfilesvc(“local”));
TMP = subtree(LOCAL, “/tmp/” + user);
if(TMP == nil) {
 TMP = subtree(LOCAL, “/scratch/” + user);
 if(TMP == nil) {
 home = getenv(“HOME”);
 TMP = subtree(LOCAL, home);
 }
}
root = graft(nulltree(), TMP, “/mytemp”);

(b) Finding Temporary Storage

LOCAL = mknstree(mkfilesvc(“local”));
LOG = subtree(LOCAL, “/var/log”);
RESULT = nulltree();
check_entry = @lambda(x){
 ent = treewalk(LOG, x);
 attr = stat(treesvc(ent), treepath(ent));
 if(isfile(attr) && attrsize(attr) >= 4096)
 RESULT = graft(RESULT, ent, “/” + treename(ent));
}
entries = treelist(LOG);
foreach(check_entry, entries);
root = RESULT;

(c) Selecting Log Files

REST = mknstree(mkfilesvc(“local”));
excludes = [“/etc”, “/root”, “/sbin”, “/usr/sbin”, “/var/log”];
excl_fn = @lambda(x) {
 REST = prune(rest, x);
}
foreach(excl_fn, excludes);
root = REST;

(d) Hiding Sensitive Files

Figure 4.12 FINAL Specifications for Private Name Spaces.
(a) Substituting personal versions of executables for those provided by the system.
(b) Finding a directory providing temporary storage using local context information.
(c) Selecting log files that match some criteria using name space navigation and attribute queries.
(d) Hiding sensitive sub-trees of the name space using pruning.

66
method described in Table 4.11, which takes a filesvc and path and returns a fileattr. A file-

attr object contains information similar to a struct stat as used by the POSIX stat operation.

System administrators may desire to exclude sensitive portions of the system name space from the

view of regular user processes. The specification shown in Figure 4.12(d) supports such exclusion

using a lambda function to prune excluded paths.

4.3.2 Global Name Spaces

Global file name spaces combine many distributed name spaces into a single view that allows pro-

grams to operate on distributed files as if they were local. Such name spaces are useful in a variety of

contexts including distributed file systems, single-system image (SSI) environments, and cloud com-

puting. We present several examples that show how programs can specify global name spaces.

We assume a global name space is composed using a two step process. First, a FINAL specifica-

tion is evaluated at each independent file server to generate a server-local name space. Second, the glo-

bal name space is composed by applying the FINAL merge operator to the set of server-local name

spaces. Chapter 5 discusses our approach for implementing this process in a scalable manner within

TBON-FS. For each example, we provide the FINAL specification that is evaluated at each file server,

and show the global name space that is generated. Portions of the global name space that are not rele-

vant to the effects of local name space composition are elided.

In all examples, the file_group_merge conflict resolution function shown in Figure 4.13 is

used in the global name space merge. Similar to the rename_merge function presented in Figure 4.7,

file_group_merge produces a single directory for each common directory path. For common file

paths, however, the function produces a new directory at the common path. This group directory is

populated with the conflicting files, after renaming the files using a version number.

Our first example shows a custom name space composition for a program that wants to use group

file operations. The target group often corresponds to a file having the same path on all servers.

67
file_group_merge(shared_path, conflicts)
{
 results = [:]; // initialize empty hash table
 if(all_directories(conflicts)) {
 // return single, common directory
 results[shared_path] = conflicts[0];
 return results;
 }
 else if(all_files(conflicts)) {
 // return all files in new group directory
 for(int i=0; i < length(conflicts); i++) {
 // new file path is group directory path plus version
 p = shared_path + “/” + i;
 results[p] = conflicts[i];
 }
 return results;
 }
 // bad input structure
 return nil;
}

Figure 4.13 file_group_merge Conflict Resolution Function.
Places all files having the same path in a new group directory, and renames files using a version
number. Conflicting directories are merged to a single directory.

// overlay files within /groups
grps = [];
LOCAL = mknstree(mkfilesvc(“local”));
grps.append(subtree(LOCAL,“/proc/cpuinfo”));
grps.append(subtree(LOCAL,“/proc/meminfo”));
grps.append(subtree(LOCAL,“/var/log/syslog”));
root = graft(nulltree(), merge(grps, file_group_merge), “/groups”);

(a) FINAL Specification

/groups/
 /cpuinfo/
 /[0-99999] # files from servers 0 to 99999
 /meminfo/
 /[0-99999]
 /syslog/
 /[0-99999]

(b) Global Name Space

Figure 4.14 Automatic File Groups: Specification and Name Space.
(a) Server FINAL specification that selects target files.
(b) Global name space with files in group directories.

68
Figure 4.14 shows an example server specification that merges sub-trees corresponding to three file

paths, and the resulting global name space. After the merge, group directories have automatically been

created due to the conflict resolution employed.

Several systems [10,13,21,50,70,116] provide a global name space that is partitioned on organiza-

tional or host boundaries. Figure 4.15 shows a specification that results in a global name space orga-

nized into separate sub-trees for each host.

Figure 4.16 shows how to construct a global process space from many independent proc file sys-

tems. A renaming scheme is used to avoid conflicts between processes with the same numeric identi-

fier on different hosts, which maintains a name space that can be used by utilities like ps and top.

However, the use of this name space by existing utilities would be extremely inefficient, as they would

need to iterate over hundreds of thousands of process directories. In Chapter 7 we discuss ptop, a par-

allel version of top that uses group file operations to provide the same interactivity and features when

monitoring hundreds of thousands of distributed processes.

With the advent of cloud computing, global name spaces could be used to help manage the large

distributed computing resources provided by providers such as Amazon, Google, and Yahoo.

// get hostname from environment
myhost = getenv(“HOST”);
LOCAL = mknstree(mkfilesvc(“local”));
root = graft(nulltree(), LOCAL, “/hosts/” + myhost);

(a) FINAL Specification

/hosts/
 /host0/...
 /host1/...
 /host2/...
 /...
 /host9999/...

(b) Global Name Space

Figure 4.15 Distributed Hosts: Specification and Name Space.
(a) Server FINAL specification that prepends hostname to local name space.
(b) Global name space with hosts in separate sub-trees.

69
Figure 4.17 shows how server-local context can be used to organize files by the type of system (e.g.,

the operating system and machine architecture). Cloud system administrators could use the resulting

name space to simplify common tasks such as software installation and update.

4.4 Summary

FINAL is a language for custom file name space composition using an intuitive tree abstraction for

name spaces. FINAL provides common tree composition operations with clear semantics, as well as a

// define pid remap function
rank = getenv(“SERVER_RANK”);
@define remap_pid(pid) {
 newpid = (rank * 100000) + atoi(pid);
 return string(newpid);
}
// retrieve pids and remap
LOCAL = mknstree(mkfilesvc(“local”));
PROC = subtree(loc, “/proc”);
entries = treelist(proc);
pids = [];
for(i=0; i < length(entries); i++) {
 name = entries[i];
 if(name[0] > ‘0’ && name[0] <= ‘9’) {
 newname = remap_pid(name);
 REMAP = extend(subtree(PROC,name), “/proc/” + newname);
 pids.append(REMAP);
 }
}
// merge pids
root = merge(pids, overlay);

(a) FINAL Specification

/proc/
 /1/... # server 0, pid 1
 /...
 /100001/... # server 1, pid 1
 /...
 /9999900001/... # server 99999, pid 1
 /...
 /9999932768/... # server 99999, pid 32768

(b) Global Name Space

Figure 4.16 Global Process Space.
(a) Server FINAL specification that remaps process ids.
(b) Global name space that includes all processes.

70
new merge operation supporting deep composition of large sets of trees with customizable name con-

flict resolution. The merge operation provides the basis for efficient composition of many name

spaces and is amenable to scalable implementations within tree-based overlay networks. By combining

FINAL’s tree abstraction and operations with prescriptive language capabilities, programs are given

the flexibility to describe a wide variety of name space compositions.

// get OS and machine architecture from environment
os = getenv(“OSTYPE”);
arch = getenv(“MACHTYPE”);
// get executables and libraries
LOCAL = mknstree(mkfilesvc(“local”));
BIN = subtree(LOCAL, “/usr/bin”);
BIN = extend(BIN, “/bin”);
if(strstr(arch, “64”) == nil)
 LIB = subtree(LOCAL, “/usr/lib”);
else
 LIB = subtree(LOCAL, “/usr/lib64”);
LIB = extend(LIB, “/lib”);
// place files according to local context
MYTREE = merge([BIN, LIB], overlay);
osarch = “/os/” + os + “/” + arch;
OSTREE= graft(nulltree(), MYTREE, osarch);
root = OSTREE;

(a) FINAL Specification

/os/
 /Linux/
 /ppc64/...
 /bin/...
 /lib/...
 /x86/...
 /x86_64/...
 /Solaris/
 /sparc/...
 /sparc64/...

(b) Global Name Space

Figure 4.17 Heterogeneous Cloud: Specification and Name Space.
(a) Server FINAL specification that selects local executables and libraries.
(b) Global name space organized by operating system and machine architecture.

71
Chapter 5

The TBON File System

The group file operation idiom and FINAL provide useful semantics for operating on large distrib-

uted file groups and composing global name spaces. By avoiding explicit linear behaviors during

group operations, these semantics enable implementations based on scalable techniques. In this chap-

ter we present the TBON File System (TBON-FS), a new group file system that provides scalable

group file operations and global name space composition. We discuss the principles used to guide the

design of TBON-FS and the resulting user-level architecture in Section 5.1. Section 5.2 presents the

scalable approach used for global name space composition within TBON-FS. The mechanisms TBON-

FS uses to provide scalable group file operations are discussed in Section 5.3. We evaluate the perfor-

mance of TBON-FS for global name space composition in Section 5.5; additional evaluations of group

file operation performance are included with the case studies of Chapters 7, 8, and 9. An alternative

design that supports group file operations at kernel-level in TBON-FS clients is evaluated in

Section 5.6; this design was not pursued due to a lack of demonstrable performance improvement.

5.1 Designing a Group File System

We refer to TBON-FS as a group file system to emphasize its design as a system supporting group

72
file operations, and to clearly distinguish its target use case from existing file systems providing dis-

tributed file access, as previously discussed in Section 2.4. Our design for a group file system is guided

by three principles: scalability, flexibility, and portability. We describe the key features of TBON-FS

that are motivated by these principles, and then discuss the resulting architecture.

Scalability. Scalable approaches to distributed group operations must avoid linear-time behaviors,

such as iterations that are proportional to the size of the group, in favor of constant-time or logarith-

mic-time behavior. Since data processing time often scales linearly with respect to the size of the data,

scalable group operations also must incorporate methods for reducing or limiting the amount of data

gathered, preferably in a manner that also reduces centralized analysis.

As evident from its name, TBON-FS employs a tree-based overlay network as its primary scalabil-

ity mechanism. TBONs leverage the logarithmic properties of trees to provide scalable multicast com-

munication from a root process to leaf processes and aggregation of data gathered from leaves. In tree-

based aggregation, a function at a non-leaf tree vertex will be passed a list of input data, where each

input datum is the output produced by the function at one child. To provide scalable performance, tree-

based aggregations should be designed so that data does not grow as it flows toward the root. Thus,

aggregations that produce a constant or decreasing amount of output data at each subsequent level are

desirable. This ensures that processes near or at the root are not overloaded with data or computation.

A TBON architecture easily scales to very large distributed systems by simply increasing tree fan-

out or depth. For example, a TBON-based debugging tool [60] was the first to run at full scale on the

BlueGene/L system with over 200,000 processors. TBONs also provide natural hierarchical redun-

dancy, which has beneficial properties for recovery and reconfiguration after faults [7].

We describe how TBON-FS uses MRNet [101], a general-purpose TBON API and infrastructure,

to support global name space composition and group file operations using scalable techniques in

Section 5.2 and Section 5.3, respectively. Extensions made to MRNet to support TBON-FS are

73
described in Section 5.4.

Flexibility. TBON-FS is designed to adapt to various client use cases. Clients are given control over

several aspects of the system. Clients provide the TBON topology that dictates the structure of the tree

overlay and the placement of overlay and server processes on hosts in the distributed system. To con-

trol the contents and organization of the TBON-FS global name space, clients provide FINAL specifi-

cations that are evaluated at servers to produce local name spaces that are merged to form the global

name space. As previously described in Section 4.2, specifications are used to compose views of the

name spaces exported by FINAL file services. To further extend the scenarios where group file opera-

tions can be used, TBON-FS supports synthetic (i.e., memory-resident) file services that export file

interfaces for non-file resources on server hosts. For example, the proc++ synthetic file service pre-

sented in Chapter 6 provides file-based control and inspection of process and thread groups. When

used with the scalable group file operations provided by TBON-FS, proc++ enables debugging of

large parallel applications as we show in Chapter 9.

Portability. TBON-FS employs a purely user-level architecture, which enhances its portability and

eases deployment. In contrast, kernel-level approaches are often platform-specific, limiting the type of

distributed systems on which they can be used. Further, it is difficult and sometimes impossible to con-

vice the owners of distributed systems to deploy kernel-level changes. User-level approaches are also

easier to develop, test, and debug.

As shown in Figure 5.1, the architecture of TBON-FS consists of a library that is linked into client

programs, server processes that run on distributed hosts, and the TBON that connects the client to serv-

ers. All TBON and server processes run in the context of the user executing the client program. This

enables TBON-FS to rely on existing user authentication and access control mechanisms provided by a

distributed system. As a result, TBON-FS can be used only on hosts to which the user can authenticate,

and TBON-FS servers have the same permissions as the user when performing file operations.

74
Figure 5.1 TBON-FS: A Scalable Group File System.
The figure provides a more detailed view of the TBON-FS architecture previously introduced in Figure 1.1.
Client programs link with the libtbonfsclient library. The library provides group file and name space
operations on entries in the TBON-FS global name space, which is a merged view of local name spaces at each
TBON-FS server. The MRNet infrastructure, which consists of libmrnet and the TBON internal processes, is
used to connect the client to servers. Each server provides a proxy service that translates requests received from
the client into operations on entries in the local name space. Server local name spaces are composed from file
services that have been registered with TBON-FS.

��������	������

��������

��������

�������	
�
�
�
�
�����
���
������
�	���

�
��

��
�����
��
������������
�	��

�������

��

������

���

��
�����
��

�
��

��
�����
��

�������	
�
�����
�	���

�������

�
	���

����
 �����

!��������

�������
���"��

���	
��

�#�#��

��	��

��	��

�
�����
��
�����
�	���

�	
�����"	��
�	��
�	��

����
�	���!��$%

75
The client library exports C language interfaces for common file system functions including

mounts, directory listings, status queries, and file I/O operations. The library also provides the new

functions defined in Chapter 3 for use during group file operations, such as gopen and gstatus. Only

group-aware versions of the file I/O operations are provided; these functions use the name prefix

“gfo_” to clearly distinguish them from their standard single file counterparts. Single file operations

are supported by simply treating them as operations on a group of size one.

To initialize TBON-FS, a client program first calls mount_tbonfs. As shown in Table 5.2, this

function is modeled after the Linux mount function and has parameters for providing the mount point,

the type of file system, mount flags, and the file system options. Included in the options passed to

mount_tbonfs is the pathname of a file that describes the TBON topology. The client library instan-

tiates an MRNet network using the provided topology, which results in the launch of all TBON internal

processes and the TBON-FS servers.

A TBON-FS server is a proxy that provides operations on files and directories within a local name

space. The local name space is composed by evaluating a FINAL specification provided by the TBON-

FS client. Files and directories within this name space are exported by FINAL file services, which pro-

vide access to physical or synthetic file systems that are responsible for managing data storage. Each

file service supports the operations previously defined in Table 4.11, and is implemented as a shared

library.

Before a file service can be used in a specification, it must first be registered by the client using the

tbonfs_register_service function defined in Table 5.2. This function has operands that define

the name of the new file service, the shared library containing the service operations, and the names of

initialization and finalization functions for the service. Upon calling tbonfs_register_service,

the client distributes the operands to all servers, who attempt to load the shared library and find the

addresses of the initalization and finalization functions. The servers then call the initialization function

76
int mount_tbonfs(const char* source, const char* mountpoint,
 const char* fstype, unsigned long mountflags,
 const void* options)

Initializes TBON-FS according to the supplied parameters. Returns 0 on success. If an error occurs, -1 is
returned and errno is set.

The source parameter specifies the pathname of a file containing a FINAL specification that is evaluated at
each TBON-FS server to construct its local name space. The mountpoint parameter indicates the path in
the TBON-FS client name space at which the composed global name space will be rooted.

The fstype parameter should be set to “tbonfs”.

The mountflags parameter is used to specify a few common file system mount flags that have been
assigned new semantics for use with TBON-FS. MS_RDONLY indicates that TBON-FS should support only
read access. MS_NOEXEC indicates that programs cannot be executed on TBON-FS servers using gexec.
MS_REMOUNT is used when TBON-FS has already been initialized, but the client wishes to add new com-
posed global name spaces within the client name space by providing a new source and mountpoint.

The options parameter is used to pass file system options as a C-string containing pairs of the form
“option=value” separated by semi-colons. On the first call to this function, options must contain a pair
of the form “TOPOLOGY_FILE=pathname” to indicate the file containing the TBON topology.

int unmount_tbonfs(const char* mountpoint)

Unmounts the portion of the client name space rooted at mountpoint. If mountpoint is null, all active
mountpoints are unmounted and TBON-FS is shut down. Returns 0 on success. If an error occurs, -1 is
returned and errno is set.

int tbonfs_list_servers(char** hosts)

Returns the number of servers. If hosts is non-null, it is expected to be an array of char* with length
equal to the number of servers. The array is filled with the server hostnames.

int tbonfs_server_rank(char* hostname)

Returns the unique rank assigned to the server indicated by hostname, or -1 if hostname is null or
invalid. Server ranks are assigned within the range [0, #_of_servers).

int tbonfs_register_service(const char* svcname, const char* svclib,
 const char* svcinit, const char* svcfini)

Registers a new FINAL file service with name svcname. The shared library named by svclib will be
loaded at all servers, and the initialization and finalization functions, svcinit and svcfini, will be
located within the library. Returns 0 on success, or -1 if registration failed.

Table 5.2 TBON-FS Client Library: Mount-related interfaces

77
to obtain an object that is used to make requests of the file service. The finalization function is used to

safely clean up the state of the file service, and is called by a server when the view containing the ser-

vice is unmounted. The local service that provides access to local file systems is automatically regis-

tered when each server is started.

All communication between client and servers takes place in the context of an MRNet stream,

which is a multicast-reduction channel defined over a set of leaf processes (i.e., the servers). Each

stream is defined to use specific data synchronization and transformation filters when data travels from

leaves to the root. A synchronization filter controls how stream data received at a parent process in the

TBON is treated before being passed to the transformation filter that implements the data aggregation.

Custom synchronization and transformation filters can be implemented by MRNet users, which is cru-

cial for supporting the custom data aggregation semantics of group file operations.

Calls to client library functions generate requests that are multicast to servers via the TBON. Serv-

ers then process the requests in parallel. Requests for group metadata are satisfied directly by a server,

while group file operation requests are handled by making requests of one or more underlying file ser-

vices. Results generated during request processing are sent back to the client using the TBON. The

TBON aggregates results from all involved servers to produce a single result that is delivered to the

client library.

The streams used for request distribution and response aggregation are chosen based on the request

type. A global control stream is used for broadcasting requests to all servers and collecting their

responses, as is necessary for requests involving name space mounts, file service registrations, and cre-

ation of group files. A control stream for each group file is established during gopen that allows for

sending group file operation requests to only those servers that contain member files. Both client and

servers record the aggregations bound to operations on a group file, so that the appropriate data aggre-

gation streams are used to process group data and status results. The client library creates these streams

78
on demand when they are first used for a particular group file.

5.2 Composing a Global Name Space

The TBON-FS global name space is a composed view of the local name spaces at servers. This

view is private to the client process, and is composed by applying a FINAL merge operation to the set

of server local name spaces. Each server’s local name space is constructed according to a FINAL spec-

ification provided by the client. The pathname of the file containing the specification is given as the

source operand to mount_tbonfs. As previously introduced in Section 4.2, a merge composition

produces a name space that contains unique paths from all input name spaces as well as the results

from applying a conflict resolution function to shared paths that exist in multiple input name spaces.

TBON-FS uses two methods to improve the scalability of global name space composition. First, it

uses the TBON to multicast the specification to servers, who initiate construction of their local name

spaces in parallel. Second, it evaluates the results of the merge composition lazily when specific paths

are accessed, such as during calls to gopen or stat or when listing directories. Lazy merging avoids

the need for the client to keep the entire global name space in memory, which is a potential scalability

barrier for large name spaces.

Lazy merging is implemented by using an MRNet stream for pathname resolution. After stripping

the prefix corresponding to the mount point in the global name space, a target pathname is multicast to

servers on this stream. Servers query their local name space to check if the target exists. If the target is

found, each server sends a response on the stream that includes attributes for the matching directory

entry and the server’s rank. The aggregation used by this stream implements the semantics of the

merge operation to combine matches from all servers. To resolve conflicts, TBON-FS uses the

file_group_merge algorithm previously defined in Figure 4.13. As shown in Figure 5.3, this algo-

rithm produces a single directory for each directory path that exists in multiple server name spaces. For

file paths that exist on multiple servers, the algorithm produces a new synthetic directory at the shared

79
path, and populates it with the conflicting files after renaming them using a version number. TBON-FS

uses the rank of the server from which a file originated for the version number. TBON-FS uses

file_group_merge to make it easy for clients to generate the group directories used in group file

operations. To create a group directory, the client simply needs to design a FINAL specification that

results in the member files having the same path in all server local name spaces..

TBON-FS is able to use lazy merging due its choice of a conflict resolution function that only gen-

erates synthetic directories for shared file paths. Since files are always leaves in the name space, there

is no possibility that synthetic directory paths unknown to servers will be accessed when resolving

paths corresponding to a target file’s ancestors in the name space. This allows TBON-FS servers to

Figure 5.3 Composition of TBON-FS Global Name Space.
The global name space visible to a TBON-FS client is a merged view of the local name spaces. To resolve
conflicts due to shared file paths, TBON-FS generates synthetic directories containing the conflicting files,
which are renamed using the rank of the server from which they originate.

+���'��
��(-�.�/)�����*
�0� *'��
��

�

	

��

�

. /�

. /

� �

��

- /

�

- /.

�����$�

����1�0�2

�2!�����1�

3�0� �

����1�0�2

�������	
��
��

������	���
	����

�

� �

�� �

-

�

� �

�

	

�
�

� �

.

�

�

� �

	

�

�

/

�������	�
��
�	�����	���
	����
�

80
treat directory listings for a path that maps to a file as a valid request that returns the file.

5.3 Operations on Distributed Files

TBON-FS uses three key techniques to improve the scalability of group operations on distributed

files. Briefly, these techniques are:

• Use multicast streams for all communication with distributed hosts. Unicast communication is

never used as it leads to iterative, non-scalable behavior.

• Use distributed data aggregation to reduce memory use and computational load at the client.

• Keep servers completely unaware of each other. Server independence ensures that operations can

be executed in parallel across servers, and eliminates the potential for costly distributed consensus.

In this section, we discuss how these techniques are applied within the protocol used between the client

and servers to process group file operations.

The group file operation idiom allows for parallel execution when member files are distributed

across many file servers. With both gopen and group file operations, each file server can operate inde-

pendently on target files in their local name space. To take advantage of the independence of servers,

TBON-FS employs a synchronous protocol where the client library multicasts requests to a set of serv-

ers and then waits to receive an aggregated response from all targeted servers.

The use of a synchronous protocol simplifies interactions between the client and servers, which

results in a design that is easier to maintain and extend. A synchronous design also helps to quickly

identify performance bottlenecks and provides strong motivation for eliminating them when found.

Somewhat unexpectedly, this synchronous protocol works well even for POSIX asynchronous I/O

operations such as aio_read and lio_listio, due to their use of synchronous actions for starting

operations, completion notification, and result collection. An extra benefit of supporting asynchronous

I/O is that lio_listio is useful for batched delivery of a series of group file operation requests,

which reduces network utilization and may improve the latency for completing the requests.

81
The TBON-FS request-response protocol is similar to classical remote procedure calls [14], but

extends the RPC idiom to enable a single request to be processed on many remote hosts. Requests

include a tag that identifies the desired action by servers. Auxiliary data values needed to satisfy the

request, such as the operands to a group file operation, are also included with the request. Upon receiv-

ing a request, the tag is used to identify a handler function that is called by the server. The handler

function extracts the auxiliary data from the request, performs the desired action, and sends generated

results back to the client.

Results produced at servers are aggregated within the TBON before being delivered to the client.

The aggregation used is dependent upon the request type. For example, name space lookup results are

aggregated by a stream providing the semantics of the FINAL merge operation, while group file oper-

ation status and data results are processed using the aggregations bound to the operation by the client.

As is necessary for all tree-based computations, the interface to TBON-FS aggregation functions is

structured to support hierarchical execution. In tree-based aggregation, a function at a non-leaf tree

vertex will be passed a list of input data, where each input datum is the output produced by the func-

tion at one child. TBON-FS uses the file_data structure shown at the top of Figure 5.4 to pass input

data. This structure contains raw or aggregated file data and a list of group file member indices. We

define raw data as unprocessed data that has been read from files at the servers. For raw data, the mem-

ber list will contain a single integer denoting the origin file index (i.e., the value that is returned by

gindex). With aggregate data, the list will contain each of the indices that contribute to the aggregated

result. The aggregation function accepts an array of file_data structures as an input, and stores

aggregated results in a single file_data output structure. An example TBON-FS aggregation func-

tion is shown in Figure 5.4. This is a modified version of the aggregation function used in the custom

load average calculation from Figure 3.7. Custom aggregation functions defined by users for use in

group file operations are required to provide the same interface.

82
Aggregated data is never cached within TBON-FS. This policy was chosen for two reasons. First,

the typical data access pattern used for group file reads is sequential, mirroring that of single file reads.

Thus it is unlikely that the same data will be read again. Second, in scenarios when data is read more

than once, either the client is using a different aggregation to supplement the information gleaned dur-

struct file_data {
 unsigned data_len; // length of data
 void* data; // data (any format)
 unsigned files_len; // number of files
 int* files; // group file indices
}

int calc_load_avgs(char* params_fmt, va_list params,
 unsigned num_inputs, struct file_data inputs[],
 struct file_data* output,
 void** aggregation_state)
{
 // calculate average of inputs
 double avg1 = 0, avg5 = 0, avg15 = 0;
 unsigned total_num_files;
 for(unsigned u=0; u < num_inputs; u++) {
 int nfiles = inputs[u].files_len;
 void* idata = inputs[u].data;
 if(nfiles == 1) {
 // scan raw file data
 double one, five, fiftn;
 scandata(idata, &one, &five, &fiftn);
 avg1 += one;
 avg5 += five;
 avg15 += fiftn;
 } else {
 // data contains aggregated loads
 double* avgs = (double*) idata;
 avg1 += avgs[0] * nfiles;
 avg5 += avgs[1] * nfiles;
 avg15 += avgs[2] * nfiles;
 }
 total_num_files += nfiles;
 }
 avg1 /= total_num_files;
 avg5 /= total_num_files;
 avg15 /= total_num_files;

 // prepare output data
 allocate_output_data(output);
 store_averages(output, avg1, avg5, avg15);
 fill_output_file_list(inputs, output);
}

Figure 5.4 TBON Data Aggregation Function
An example data aggregation function that supports hierarchical execution.

83
ing the prior reads, or the client expects that the file data has changed. In both cases, caching of the

previous result provides no benefit.

TBON-FS also avoids caching global state for group files at the client. We define global state as

complete information about some aspect of the group, such as the list of all member files. We assume

the size of global state data grows with the group size. For large groups, keeping global state at the cli-

ent requires significant memory use, and can lead to high computational load when scanning data to

extract information for an individual member. To avoid such inefficiencies, the client library keeps

only summary information such as the group size for each group file. When global state is required,

such as when gstatus or gfiles is used, the TBON is used for on-demand, efficient collection of

information from the servers.

5.4 Extensions to MRNet

During the development of TBON-FS, we extended the capabilities of MRNet. Although features

were added to meet specific TBON-FS requirements, all extensions are general-purpose and have sub-

sequently been used in other MRNet-based tools.

MRNet originally provided data aggregation only within root and internal processes of the TBON.

However, executing aggregation functions at the leaves is an important technique for scalable data

management. For example, when filtering is used to select only relevant data, executing the filter at the

data source keeps unused data from being sent over the network. The ability to query local host context

at the data source is also useful, such as when mapping a numeric user id to the associated user’s name.

For these reasons, we extended MRNet to support data aggregation at leaves.

We further extended MRNet’s data aggregation capabilities by adding the concept of aggregation

function parameters. Parameters are defined by the root process for a particular data stream, and pro-

vide persistent data inputs to the stream’s aggregation function. Each time the stream executes its

aggregation function at any TBON process, the parameter values are passed as inputs. Thus, parame-

84
ters can be used to control the behavior of aggregation functions. For example, an aggregation function

that performs data binning can use parameters to control the number or width of bins. The root process

is free to set new parameter values at any time during the stream’s lifetime, which is useful for feed-

back-based control. Although aggregation parameters are rarely used internal to TBON-FS, they have

proved useful for many client data aggregations during group file reads.

The last two extensions to MRNet were motivated by the need to deliver polling events from serv-

ers to the client in a timely manner. Because a separate event stream is used for each group file, the

TBON-FS client needed a mechanism for being notified when data was available on a particular event

stream. Originally, MRNet provided notification when any stream had data available. As such, we

added per-stream data notifications to the MRNet API. The second “extension” was implementing the

time-out based synchronization filter described in the very first MRNet paper [101]. Although the API

guide for all MRNet software releases indicated this filter was supported, it was never implemented

until required by TBON-FS.

5.5 Evaluation

Group file operation performance is dependent upon both the target file group and the data aggre-

gations employed, which are both chosen by TBON-FS clients. As such, the case studies of Chapters

7, 8, and 9 serve to evaluate the scalability and performance of group file operations. Here, we evaluate

the scalability of global name space composition within TBON-FS, and the performance of name

space inspection operations on the composed name space.

The four global name space compositions presented in Chapter 4 were used to evaluate TBON-FS.

We refer to these name spaces as “automatic-groups”, “distributed-hosts”, “global-

proc”, and “heterogeneous-cloud”, respectively. We briefly review the contents of each name

space; the name spaces can be seen in Figures 4.14, 4.15, 4.16, and 4.17. The “automatic-groups”

name space contains group directories representing the collection of files from every server that exist

85
at three common paths. Each composed group directory has one entry per server. The “distrib-

uted-hosts” name space places each server’s name space in a separate sub-tree rooted at

/hosts/<hostname>, similar to the partitioned global name spaces found in many distributed file

systems. The “global-proc” name space places process directories from the proc file systems of

many servers within a single global /proc. Process directories are renamed to indicate the server rank

and process id. The “heterogeneous-cloud” name space organizes a collection of heterogenous

machines in a cloud environment according to their operating system and processor architecture. This

name space is structured to ease software upgrades for machine-dependent executables and libraries.

The system used for the evaluation was JaguarPF, a Cray XT5 system located at Oak Ridge

National Laboratory. JaguarPF contains over 18,688 compute nodes. Each node contains two six-core

AMD Opteron 2435 processors and 16GB of DDR2-800 memory, for a total of 224,256 processing

cores. Nodes are connected in a three-dimensional torus topology by a high-bandwidth, low-latency

SeaStar 2+ network. The balanced TBON topologies used for each experiment size are found in

Table 5.5. Topologies are given as the fan-out for each level starting with the root. TBON-FS servers

were run on separate hosts from those running the internal tree processes. Twelve servers were run on

each host (one per available processor) to virtually increase the number of available hosts. Reported

results represent averages of ten measurements.

Our first experiment measured the time to construct the global name space. We measured the total

latency observed at the client, and the per-server time to evaluate the FINAL specification and con-

struct the server’s local name space. Figure 5.6 shows the results for the four compositions.

Figure 5.6(a) shows the average time in microseconds to construct each server’s local name space, and

Figure 5.6(b) shows the total latency for global name space composition as observed at the client.

Across all scales, servers require little time to construct their individual name space, regardless of the

input specification. At the client, we see excellent performance, as we are able to compose the global

86
Number of
Servers

TBON Topology
(fan-out per tree level)

2592 2 × 36 × 36

5184 4 × 36 × 36

10368 8 × 36 × 36

20736 16 × 36 × 36

31104 24 × 36 × 36

46656 36 × 36 × 36

Table 5.5 TBON Topologies used in Global Name Space Experiments

Figure 5.6 TBON-FS Global Name Space Composition Latency
(a) Average time to evaluate the FINAL specification and construct the local name space at individual servers.
(b) Global name space composition time observed by the TBON-FS client.

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(m

ic
ro

se
co

nd
s)

Number of Servers (thousands)

(a) Server Local Name Space Evaluation

distributed-hosts

automatic-groups

global-proc

heterogeneous-cloud

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(m

ill
is

ec
on

ds
)

Number of Servers (thousands)

(b) Client Global Name Space Composition

distributed-hosts

automatic-groups

global-proc

heterogeneous-cloud

87
name space for over 45,000 servers in approximately 250 milliseconds.

The next two experiments were conducted to evaluate the performance of name space inspection

operations within composed global name spaces. Inspection operations were used on regular files and

directories that reside at a single server host, as well as synthetic group directories that contain files or

directories from many servers.

Figure 5.7 shows the time to stat a regular file residing on a single server within each of the four

global name spaces. Because the TBON-FS client has no knowledge of the particular server on which

a target file resides, the pathname for the target is multicast to servers. The server that contains the tar-

get then returns the requested status information. As expected, the time required does not vary much as

the number of servers is increased, or across the four name spaces. The slight uptrend in the time can

be attributed to increased fan-outs in the TBON at larger scales, which affect the time necessary to

multicast the pathname. We attribute the occasional latency spikes to random interference from other

applications using the JaguarPF network.

Figure 5.8 reports the time to gather the list of entries for directories within the global name

Figure 5.7 TBON-FS Global Name Space File stat
Average time in milliseconds to stat a single file in each of the four global name spaces.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(m

ill
is

ec
on

ds
)

Number of Servers (thousands)

distributed-hosts

automatic-groups

global-proc

heterogeneous-cloud

88
spaces. Table 5.9 describes the relevant characteristics of the target directories, including the name

space in which they are found and information about the number and type of entries.The first four

directories in the table are synthetic group directories that contain entries from many servers. The last

directory, “/proc/1”, is a regular directory from a single server. The results indicate that the time to

Figure 5.8 TBON-FS Global Name Space Directory Listing
Average time to list the entries of various group directories and a regular directory in the global name spaces.
Table 5.9 provides additional information describing the listed directories.

Directory Path Global Name Space # Directory Entries Description of Entries

/hosts distributed-hosts #servers one directory per server

/groups/meminfo automatic-groups #servers one file per server

/os/Linux heterogeneous-cloud 3 platform directories:
x86, x86_64, ppc64

/proc global-proc #servers × ~100 one directory for each
process on every server

/proc/1 global-proc 28 contents of Linux
/proc/1/ directory

Table 5.9 Characteristics of the Directories Listed in Figure 5.8

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(m

ill
is

ec
on

ds
)

Number of Servers (thousands)

/hosts

/groups/meminfo

/os/Linux

/proc

/proc/1

89
list a directory is proportional to the number of entries. This linear behavior is expected, due to the

need to copy the name of each directory entry to a buffer in the client. From the figure, it is clear that

listing group directories such as “/proc” that contain millions of entries is an expensive operation and

should be avoided. We also see that the time to list the regular directory is similar to that observed

when applying stat to a regular file.

5.6 Kernel-level Group File Operations

Early on in the design of TBON-FS, we considered an alternative kernel-level approach for sup-

porting group file operations at clients. We first discuss the potential transparency and performance

benefits of kernel-level client support, and then describe our design for extending the Linux operating

system to support group file operations. Next, we describe our experience with a prototype implemen-

tation of this design that failed to provide the expected performance benefits. This experience moti-

vated our decision to focus on a purely user-level client design. As such, the kernel-level client

implementation is not used in our case study evaluations, and it is safe for readers who are not inter-

ested in the details to skip this section.

Although our user-level approach to supporting TBON-FS clients eases development and

improves portability, there are transparency limitations compared to a kernel-level implementation.

One limitation is that existing programs that have not been linked with the library cannot access and

use TBON-FS files. Dynamic library interposition [31] could be used to enable this by redirecting file

system calls to the corresponding client library functions. Although we have not implemented this

technique, it is quite common and we do not foresee any obstacles. Another limitation in using a

library is that it is difficult to provide functionality that uses signals to notify the client program, such

as is supported by POSIX asynchronous I/O.

A kernel-level TBON-FS client would eliminate these limitations, but requires extending the file

system call interfaces of the operating system to support group file operations. However, extensions

90
that are specific to one file system are generally considered taboo. Thus, the argument for kernel-level

support requires additional benefits. We hypothesized two such benefits. First, kernel-level support

provides an opportunity for other distributed or parallel file systems to directly support group file oper-

ations, which may lead to improved performance and scalability when operating on large groups of

distributed files. Second, when operating on groups of local files, kernel-level support may provide

improved performance versus a series of user-level file operations that require many costly transitions

and data copies between kernel and user space.

Based on these potential transparency and performance benefits, we designed extensions to Linux

that provide basic support for group file operations. Our design requires no changes to existing group-

unaware file systems, but allows for new group-aware file systems such as TBON-FS to directly sup-

port group file operations. The design also ensures that the performance of single file operations is not

adversely affected.

Modern operating systems use a file system abstraction layer that maps a general file system inter-

face onto a variety of file system implementations. The Virtual File System (VFS) layer in Linux

defines a common file model [15,63] that provides abstractions for files, directories, links, inodes,

superblocks, and file operations, and requires file systems to conform to these abstractions. Our design

extends the VFS layer, and is likely applicable to other operating systems that use a similar file system

abstraction layer. Figure 5.10 shows how file operations are mapped to functions within specific file

systems in Linux. When a user application performs a file operation, the corresponding system call

provided by the operating system is executed. System calls are redirected to functions within the VFS

layer that map the common file operations to calls to specific file system functions. From an object-ori-

ented perspective, the VFS mapping is similar to having methods of a virtual base class resolve to

implementations in a derived class object.

The Linux system call layer uses the file descriptor to retrieve a pointer to the struct file for

91
the target file. This pointer is then passed along with the other system call operands to a VFS layer

function for the current operation (e.g., vfs_read for a read operation). The VFS layer function then

examines the contents of a file_operations structure that is referenced by the struct file. The

file_operations structure is used to indicate which operations a specific file system implements,

and contains function pointers for each file operation supported by the VFS. When initially loaded, a

Figure 5.10 File Operation Processing in Linux
A read by a user level application results in the execution of the sys_read system call. sys_read looks up the
struct file for the given file descriptor and then calls the Virtual File System function vfs_read. vfs_read
checks that the file system for the target file supports the read operation, and then calls the appropriate function
within the file system.

sys_read(fd, buf, count)
{
 struct file* filep = fget(fd);
 if(filep != NULL)
 return vfs_read(filep, buf, count);
 else return EBADF;
}

vfs_read(filep, buf, count)
{
 ... // check OK to write count bytes to buf

 struct file_operations* fops;
 fops = filep->f_op;
 if(fops->read != NULL)
 return fops->read(filep, buf, count);
 else return ENOSYS;
}

reiserfs procfs ext3

System
Call

Layer

Virtual
File

System
Layer

File
Systems

ext3_read reiser_read procfs_read

92
file system registers an instance of this structure that contains the addresses of the functions that it

implements and null pointers for unimplemented functions. All files have their struct file initial-

ized to point to the file_operations structure for the file system in which they reside. If the VFS

layer function finds a valid function pointer for the current operation, it calls that function with the

operands supplied to the system call. If the target file system provides no implementation, then either a

generic VFS implementation of the operation is used or an error indicating the operation is not sup-

ported is returned .

Our design adds two new fields to struct file to support group file operations. These fields are

present only when the kernel has been configured to support group file operations. The first field is a

pointer named group_data that references a newly defined struct group_file. This new struc-

ture records information about a group file including the access flags, group size, and group directory

path. This structure also contains fields for three arrays that store the name, last operation status code,

and struct file pointer for each group member. During gopen, the group_data field is set to an

instance of struct group_file that has been initialized with the appropriate group information.

The second field is named gf_op and points to a newly defined struct group_file_operations.

The group_file_operations structure contains function pointers for both group-aware versions of

the standard file operations and the new functions used during group file operations. File systems

directly supporting group file operations register an instance of this structure when loaded.

To support group file operations even when the underlying file system does not provide an imple-

mentation, our design also extends the VFS layer function for each operation. These extensions simply

iterate to call the single file operation and record the status result for each member. Group status and

data results are generated using the default status aggregations from Table 3.3. Custom status and data

aggregations are not supported, but can easily be implemented by the client at the user-level.

Figure 5.11 shows how single and group file operations are processed in our modified Linux VFS.

93
Figure 5.11 Group File Operation Processing in Linux
The Linux VFS layer was extended as shown to support group file operations. Code in the dashed box is newly
added for group read operations; similar code was added to support other group file operations within their
corresponding VFS layer functions. Operations on group files are detected by the presence of a non-null
group_data field in the struct file for the target. When the underlying file system is group aware, it
provides an implementation of the group file operation that is used by the VFS layer function. Group operations
on files in group unaware file systems are supported by iterating over group members.

vfs_read(filep, buf, count)
{
 struct group_file* gf = filep->group_data;
 if(gf != NULL) {
 struct group_file_operations* gfops;
 gfops = filep->gf_op;
 if(gfops->read != NULL) {
 // use group read op from group-aware fs
 return gfops->read(gf, buf, count);
 }
 else {
 // iterate using single file ops
 for(i=0; i < gf->size; i++) {
 ssize_t rc;
 struct file* fp = gf->member_fps[i];
 bufp = buf + (count * i);
 rc = vfs_read(fp, bufp, count);
 gf->member_status[i] = rc;
 }
 // calculate and return group status
 return group_status_sum(gf);
 }
 }

 ... // check OK to write count bytes to buf
 struct file_operations* fops;
 fops = filep->f_op;
 if(fops->read != NULL)
 return fops->read(filep, buf, count);
 else return ENOSYS;
}

Virtual
File

System
Layer

File
Systems ext3

ext3_read

tbonfs
tbonfs_group_read

procfs
procfs_read

Group Unaware Group Aware

94
After receiving the struct file pointer from the system call, the VFS layer function for the current

operation checks to see if the target is a group file by testing if group_data is null. If the file is not a

group file, the VFS layer function proceeds to execute the existing single file code as originally shown

in Figure 5.10. If a group file is identified, the group_file_operations structure referenced by the

gf_op field is consulted. If the current group operation is supported by the underlying file system, as

indicated by a valid function pointer, then that function is called and passed the struct group_file

and system call operands. Otherwise, the VFS layer function uses the general support provided by our

extensions that iterate over group members.

To test our second hypothesis that kernel-level group file operations would improve performance

versus user-level iteration, we measured the performance of a prototype implementation of this design

when using group file operations on local files. Our implementation was based on a stock Linux

2.6.27.5 kernel [61], and provided support for group read, write, lseek, and close operations.

Performance benchmarking was done using two versions of a simple application that performed

group operations on 1,024 files residing within a directory on an ext2 file system. The first version of

the application used a traditional loop structure to operate on group members. Within each loop itera-

tion, a file was opened, a read operation was issued, and the file was closed. The second version used

group file operations, and consisted of a single gopen, a group read, and a group close. The total

walltime to execute all operations on the group was measured using gettimeofday. The host system

for our experiments had a dual-core AMD Opteron 1214 running at 2.2GHz and 3GB of DDR2 RAM.

Unexpectedly, the performance of the application using group file operations was roughly 10%

worse than the looping application. To identify the source of the slowdown, we instrumented our mod-

ified kernel to collect the time spent in various activities during gopen and group file operations. Our

investigation revealed that the overhead of intializing group state during gopen was significant, and

was the overriding factor in the slowdown. Figure 5.12 presents a performance model and the mea-

95
Assume the following model parameters:
N : number of files in a group
T : latency of trapping into and out of the kernel during a system call
So : latency of an open on a single file
Sr : latency of a read on a single file, including data access and copy to user space
Sc : latency of a close on a single file
Go : latency of managing state for a single group member during gopen
Gr : latency of managing state for a single group member during a group read
Gc : latency of managing state for a single group member during a group close

For user-level iteration, the total latency for using open, read, and close on a group of N files is approxi-
mately:

USER ≅ 3TN + N(So + Sr + Sc)

For kernel-level iteration, the total latency for using gopen, read, and close on a group of N files is
approximately:

KERNEL ≅ 3T + N(So + Sr + Sc) + N(Go + Gr + Gc)

For kernel-level iteration to outperform user-level iteration, we have:

KERNEL ≤ USER
3T + N(So + Sr + Sc) + N(Go + Gr + Gc) ≤ 3TN + N(So + Sr + Sc)
3T + N(Go + Gr + Gc) ≤ 3TN
N(Go + Gr + Gc) ≤ 3TN - 3T

Since we assume N >> 1, 3TN - 3T approximates 3TN, and thus we have:

N(Go + Gr + Gc) ≤ 3TN
 (Go + Gr + Gc) ≤ 3T

We observed the following values for our implementation:

Go ≅ 3000 ns, Gr ≅ 10 ns, Gc ≅ 10 ns
T ≅ 90 ns

Using these values, we can see that 3020 ns is not less than 270 ns. However, our model is not depen-
dent on a constant number of system calls. If we substitute a variable number of system calls C for 3 in our
equations, and assume all system calls except gopen require approximatley the same time Gk = 10 ns
for managing group state, then we have:

Go + CGk ≤ CT
(Go ÷ C) + Gk ≤ T
(Go ÷ C) ≤ T - Gk
(Go ÷ (T - Gk)) ≤ C

Finally, substituting the observed values again and solving for C:

(3000 ÷ (90 - 10)) ≤ C
37.5 ≤ C

Thus, at least 38 system calls on the same group are necessary to overcome the gopen overhead.

Figure 5.12 User-level vs. Kernel-level Group File Operations: A Performance Model

96
sured activity values for a sequence of group file operations. This model shows that the seqence of

operations must be relatively long, on the order of 40 operations, to overcome the performance degra-

dation due to management of group state within the kernel implementation. Unfortunately, none of the

potential use cases we considered for group file operations on local files, such as accessing proc files to

support ps and top, would require more than a few operations per group.

5.7 Summary

TBON-FS is designed as a scalable, flexible, and portable group file system. TBON-FS leverages

a tree-based overlay network to provide both scalable definition of file groups using global name space

composition and scalable operations on file groups. The current implementation has been shown effec-

tive for use on distributed systems containing tens of thousands of hosts, and design decisions were

made with systems containing millions of hosts in mind. By adopting a purely user-level design for cli-

ent and servers, TBON-FS improves its portability and avoids the problems of deploying system-level

modifications. TBON-FS gives clients control over the composition of its global name space to ensure

that target file groups are created efficiently. Using synthetic file services loaded into TBON-FS serv-

ers, clients can further extend their use of scalable group file operations to non-file resources.

The current TBON-FS design also has some limitations related to flexibility in merging name

spaces, fault tolerance, and its reliance on a single user mode of execution. We discuss these limita-

tions and our plans for addressing them in future work.

In our study of global name space composition, we have focused on a single type of merge compo-

sition that places distributed files that have the same path into a single directory in the global name

space. This composition is key to creating the directories that define the membership of group files.

Our implementation of global name space composition and path resolution within TBON-FS

(described in Section 5.2) reflects this limited focus. To fully support the customizable merge seman-

tics provided by FINAL, this implementation requires a few extensions. First, our merge aggregation

97
must be modified to use a user-provided function for conflict resolution. This is a simple change that is

easily supported by our current TBON infrastructure. Second, since custom conflict resolution func-

tions may create new synthetic directories at arbitrary paths within the global name space, our merge

aggregation must keep track of these new directories so that subsequent path resolution requests are

properly satisfied. This tracking will likely require caching portions of the composed global name

space in the aggregation state at TBON processes. Third, once name space caching is in place, we must

study and implement cache invalidation policies that can handle dynamic name spaces whose contents

can change over time. A common example of a dynamic name space is the name space provided by a

proc file system, which has entries corresponding to processes that are created and removed as pro-

cesses begin and end execution.

A design for fault tolerance should accompany any scalable system design, since faults occur with

increasing frequency as the size of a system is scaled up. In the current design of TBON-FS, we have

not explicitly addressed fault tolerance. TBON-FS relies on the fault tolerance capabilities of MRNet

to provide automatic TBON reconfiguration after failures of internal tree processes. Still, TBON-FS

server process (or host) failures are expected to be common on next generation systems due to their

scale. Thus, a thorough examination of the survivability of TBON-FS in the presence of server failures

and server restart strategies are needed. MRNet also provides mechanisms for recovering aggregation

data cached at processes that fail. Since TBON-FS does not currently cache data within the TBON, we

have not used these data recovery mechanisms. Future aggregations that do employ caching will

require appropriate use of these mechanisms.

TBON-FS executes all processes within a single user context, which simplifies its design and

enables it to use existing distributed system authentication and access control. Still, this single user

mode of operation limits the use of TBON-FS in distributed system services such as job launching that

require elevated privileges to start processes for multiple users. Although TBON-FS can be run in the

98
context of a system administrator, no mechanisms exist in TBON-FS for ensuring user isolation. Thus,

system services that use TBON-FS would need to provide the necessary security mechanisms. We plan

to investigate the changes required to TBON-FS when used in such system services. The single user

approach is also incompatible with use cases that span administrative domains with disjoint user iden-

tities, such as arises in the use of computational grid systems and commercial clouds. To support multi-

domain use, TBON-FS requires a method for clients to specify credentials that should be used for

TBON processes running in each domain, and associated mechanisms that use these credentials when

launching processes and accessing file systems.

99
Chapter 6

Control and Inspection of Process and Thread Groups

The previous three chapters describe the group file operation idiom, the use of name space compo-

sition for efficiently creating directories used to define group files, and the TBON-FS group file sys-

tem that provides scalable group file operations and global name space composition. Together, these

three pieces provide a general framework that tools and middleware can use for scalable operations on

distributed files. In this chapter, we describe a fourth piece that maps operations on processes and

threads to file operations. When combined, these four pieces provide a scalable framework for control

and inspection of distributed process and thread groups.

For over a quarter-century, operating systems have provided synthetic file systems for control and

inspection of processes [40, 58, 93]. Abstracting processes as files allows tools to locate and perform

control and inspection operations on processes using standard file system operations, and thus avoids

creating a litany of special-purpose ioctl or system calls for exchanging control commands or pro-

cess data between user- and kernel-space. Existing utilities that read or write files can be used for con-

trol and inspection, such as using cat on Linux hosts to view the process status information available

in /proc/pid/status. The proc file system, or procfs for short, was introduced with 8th-edition

100
UNIX [58] and refined by Plan 9 [93]. Current operating systems that provide a procfs use a layout

similar to that pioneered in Plan 9. In the Plan 9 procfs, a directory exists for each process running on

the host. Files that can be used for control and inspection of a specific process are located within these

per-process directories. In some implementations, such as in Solaris and Linux, the lightweight pro-

cesses used to support user threads are also included as directories containing files for control and

inspection. Lightweight process directories exist as sub-directories of their associated process.

Given that existing proc file systems already provide file-based interfaces for control and inspec-

tion of processes and threads, it is easy to assume we can simply use group file operations on these

existing files to achieve our goals for scalable control and inspection. Unfortunately, the abstractions

provided by existing proc file systems can limit or even prevent the use of scalable group file opera-

tions. In response to these problems, we have designed a new synthetic file service named proc++. The

primary challenges in designing proc++ were to identify the tool behaviors that were hindered by inter-

actions with existing procfs abstractions, and to develop new abstractions that enable efficient and

widespread use of group file operations. The difficulty of the latter challenge should not be underesti-

mated, as the placement of the abstractions within the layers of the distributed tool hierarchy is key to

enabling the parallelism necessary to scale, and choosing the proper amount of tool functionality cap-

tured by the abstractions requires careful thought to avoid limiting their utility.

Existing procfs abstractions correspond to OS and hardware state for each process or thread. Thus,

procfs operations are typically primitives for reading or updating this state, such as stopping or con-

tinuing the execution of processes and threads, and reading or writing memory and registers. Since

procfs operations involve access to low-level state, the operands to these operations often correspond

to state values such as specific virtual memory addresses. A requirement for using group file opera-

tions is that the same operand values must be used for all group members. Unfortunately, operand val-

ues are often based on context specific to a process or thread, and may vary across targets. For

101
instance, parallel debuggers often map a code source line to a memory address. Due to address space

randomization employed by many operating system program loaders [12], the program’s code may be

mapped at different base locations in the address space. Similarly, operating systems may randomize

the base address of a thread’s stack or heap, resulting in varied locations for program data and vari-

ables. Varied addresses prevent the use of simple group file operation sequences such as performing a

group seek to a common memory address before doing a group read or write. To overcome context

variations, a tool may identify and operate on sub-groups of members sharing the same operand val-

ues. Although custom group file operation aggregation may be useful in identifying sub-groups, the

overhead necessary to deal with large amounts of variation can be substantial. In the worst case, each

sub-group will contain exactly one member, and the tool is forced to use non-scalable iteration.

When implementing tool-level functionality such as breakpoint management and gathering stack

traces, the use of low-level procfs abstractions results in possibly long sequences of interactions with

procfs. For example, to insert a breakpoint in a group of processes, a debugger will stop the processes

that were running, read and write the process address spaces, and finally continue processes if neces-

sary. We refer to such tool activities as interaction-intensive operations. Even when group file opera-

tions are used to apply each procfs operation, the tool activity incurs the latency of several rounds of

network communication. Further, some tool activities are implemented as sequences that include feed-

back, where the results of one operation are used to determine the next operation. A common example

of an activity involving feedback is gathering thread stack traces, where the next process address to

read is dependent upon previously read values. When the values used for feedback decisions vary due

to context, the tool again must choose between handling the variation by keeping track of sub-groups

or falling back to iteration.

In this chapter we describe proc++, a new synthetic file service providing control and inspection

of process and thread groups. proc++ addresses the problems that hinder the efficient scalable execu-

102
tion of group file operations on existing proc file systems by exporting abstractions designed to elimi-

nate context variations and encapsulate interaction-intensive activities. Section 6.1 discusses the

design and implementation of proc++. When combined with TBON-FS and group file operations,

proc++ provides a scalable debugging platform. In Section 6.2, we show that group file operations on

distributed proc++ groups provide scalable performance suitable for interactive debugging of the larg-

est of applications, currently demonstrated on applications with over 200,000 processes.

6.1 proc++ Design

proc++ provides functionality similar to Solaris procfs, which is widely regarded to provide the

most complete set of abstractions among existing implementations. It provides abstractions for pro-

cesses, lightweight processes, events, address spaces and associated mappings, hardware register sets,

open files, signals, exceptions, system calls, and watchpoints. Together, these abstractions give tools

the greatest flexibility to achieve the desired control and inspection actions. Like the Solaris procfs,

proc++ files use binary data for the structured commands written to control files and for data returned

from reading inspection files. The proc++ organization of process directories with thread subdirecto-

ries, and the names for various files, are also modeled after Solaris (whose interface was also adopted

by AIX and IRIX). There are, however, significant departures from the Solaris design to support our

new abstractions (Section 6.1.1), and to aid in composition of a global proc++ name space whose lay-

out is tailored for easy use with group file operations (Section 6.1.2).

Tables 6.1 and 6.2 list the proc++ files found in process and thread directories, respectively. Each

table entry shows the path of the file within the process/thread directory, the supported access modes,

and the functionality the file provides. Files that support write access are used for control, and those

supporting read access are used for inspection. Many of these files will be familiar to users of Solaris

procfs. We have intentionally used the same file names when the files can be expected to provide sim-

ilar functionality to Solaris.

103
6.1.1 proc++ Abstractions

proc++ provides several abstractions not previously found in existing procfs implementations.

These abstractions are designed to solve the two problems faced when using group file operations on

files from existing proc file systems. First, they are context insensitive to reduce variations due to pro-

cess- and thread-specific context, which enables group file operations to use the same operand values

for all group members. Second, they encapsulate sequences of procfs operations that are commonly

FILE RD WR FUNCTIONALITY

as/map y n A map of the regions (e.g., code, data, stack, heap) of the
address space and their backing files if applicable.

as/mem y y Read/write access to the address space.

as/image/imagename y y Read/write access to the portion of as/mem where the named
executable or library image has been mapped.

ctl n y Issue process control operations such as stop, continue, or
signal. Insert or remove breakpoints.

events y n A queue of thread events that have stopped the process.

status y n General process status information.

threads/ - - Directory containing thread directories.

Table 6.1 proc++ Process Directory Contents

FILE RD WR FUNCTIONALITY

ctl n y Issue thread control operations such as stop or continue, or
enable/disable singlestep mode.

event y n The last event that occured on the thread.

reg/fpr y y Read/write access to the floating point registers.

reg/gpr y y Read/write access to the general purpose registers.

reg/pc y y Read/write access to the program counter register.

reg/sys y y Read/write access to the system-specific registers.

stacktrace y n The current stack trace for a stopped thread.

status y n General thread status information.

Table 6.2 proc++ Thread Directory Contents

104
used for tool activities. Our design attempts to provide abstractions that are flexible to enable their use

as primitives for building higher-level tool functionality. Further, we strive to avoid excessively

increasing the cost, in terms of computation and memory use, of performing control and inspection

operations on target hosts (viz., hosts containing target processes and threads).

The primary example of both varied context and interaction-intensive tool activities involves

accessing memory locations that correspond to code or data. Often, the tools accessing memory rely on

auxiliary information sources to generate the target addresses. For example, symbol tables are used to

locate specific functions or global data variables, and debug information encoded in executables dur-

ing compilation can be used to determine the locations of function local variables or members within

data structures. These information sources often represent memory addresses as expressions that can

be used to compute the target address at runtime by filling in observed values for expression variables

such as the base address where a code section has been mapped or the value of a hardware register.

Such expressions are thus useful for handling varied context.

proc++ provides an abstraction for the address space of a process that uses a simple base+offset

expression. The address space is considered as a collection of images. We define an image as a contig-

uous region of the address space that contains the code and data of a program executable or a shared

library. proc++ exposes one file for each executable and library image. The zero offset for each image

file corresponds to the base address of its address space mapping. Tools can use group file operations

to seek to and read or write code or data located at known offsets within the image file. For example, to

read the value of a program global variable across a group of processes, the tool first determines the

offset for the variable by examining the program symbol table. The tool then uses a group seek to that

offset within the image file for the program executable, followed by a group read to gather and possi-

bly aggregate the values.

Although not yet supported in proc++, the base+offset scheme for memory addresses can be

105
extended to support additional types of bases such as the values of specific registers or the base address

for the process stack or heap. These extensions would be useful to provide context insensitive access to

data structure members and stack or heap variables.

proc++ also introduces two new abstractions, breakpoints and stack traces, that encapsulate inter-

action-intensive tool activities. These abstractions move decision logic typically used by the tool front-

end to the proc++ service on each target host. Although this move results in slightly increased memory

use by the service, it greatly simplifies the implementation of tool activities and ensures that the tool

will not become a bottleneck due to the increased processing necessary to handle sequences of opera-

tions and potentially varied context.

In proc++, breakpoints are attributes of a process address space. Tools can explicitly create and

remove breakpoints, which results in the appropriate actions to safely update the process address

space. Breakpoint locations are specified by providing the name of the image containing the location

and a set of associated offsets. A set of offsets is used to handle cases where a source code line maps to

multiple instruction addresses. The tool also provides a unique identifier that names the breakpoint.

Event records generated by proc++ indicate the active breakpoint by including the provided identifier.

The stack trace abstraction introduced by proc++ uses a new stacktrace file present in the

directory for each thread. When read, this file provides a stack trace as a list of frames. Each frame is a

3-tuple of addresses representing the frame base address, the frame stack pointer, and the frame return

address. By directly providing stack traces, proc++ eliminates the need for tools to use the typical long

sequence of address space and register reads. The typical method can be extremely costly when gather-

ing stack traces for groups of distributed threads, due to the added latency of distributed communica-

tion and the wide variability in the memory addresses that need to be read, which reduces the ability of

tools to employ scalable group file operations for those memory inspection operations. Another benefit

of providing stack traces is that it enables tools to use scalable aggregations, such as the call-graph tree

106
merging used by STAT [5], to process the traces during group read operations.

The last abstraction introduced by proc++ involves access to hardware registers. proc++ provides

four separate files representing four common register classes: general-purpose registers (GPR), float-

ing-point registers (FPR), system-specific registers, and the program counter (PC) register. Using these

files, tools can obtain exactly the set of register values they need, rather than being forced to read the

contents from all registers as is the case for Solaris procfs. Separate files also enable the use of custom

aggregations for each class of register, which could be useful for many data analysis tasks. For exam-

ple, the calculations necessary to identify register value skew across distributed processes are quite dif-

ferent for integer versus floating-point data. Having a separate file for just the PC is an optimization for

the common debugging task of finding the addresses of stopped threads, and permits the use of effi-

cient clustering of equal PC values.

6.1.2 proc++ Global Name Space

The proc++ name space is organized to work in conjunction with the global name space composi-

tion used by TBON-FS. The goal is to produce a global proc++ name space that is tailored for use with

group file operations; this is accomplished by ensuring that tools never need to manually create and

populate the group directories used to define group files. To meet this goal, proc++ uses two strategies.

First, it places files that are expected to be operated upon as a group at the same path on all hosts, so

that TBON-FS will generate synthetic group directories containing these files. Second, when a tool

creates a new process or thread group, proc++ automatically generates group directories corresponding

to each of the files found in a process/thread directory, and populates those directories with symbolic

links the the associated file for each group member. The links have names that encode the host, pro-

cess, and thread (if applicable) of the target member file. Tools provide a name for each new group that

is used to ensure that the group directories exist at the same path across all hosts. Because TBON-FS

merges the contents of directories located at shared paths, all the members from every host are placed

107
in the same directory within the global proc++ name space.

Unlike previous procfs implementations, proc++ exposes host information within its name space.

Directories for processes executing on a given host are placed within a host-specific sub-tree, as shown

in Figure 6.3. The use of host-specific sub-trees has two benefits when composing a global proc++

name space. First, since processes are isolated by host, name space conflicts due to distributed pro-

cesses that share the same process ID are avoided. Second, tools using the global name space can eas-

ily identify the subset of distributed processes running on a specific host, and can quickly locate files

for host-specific processes or threads.

proc++ provides a session abstraction that is used to manage a set of processes that are being con-

trolled. A tool front-end specifies exactly the set of processes it needs to operate upon, such as the pro-

cesses of a particular parallel application. Processes are added to a session by writing messages to the

session’s ctl file with instructions to either launch a new process or attach to a set of existing pro-

cesses. Newly added processes are then visible in the proc++ name space. Once finished operating on

processes, a tool can detach them from the session. A tool may employ multiple sessions to manage

groups of processes corresponding to different programs, such as may be found in multiple-program

multiple-data (MPMD) parallel applications.

Sessions also serve as the container for defining process or thread groups, which are given first-

class status in proc++. Each session contains predefined groups representing all processes and all

threads; processes and threads are automatically added to these predefined groups when they are added

to the session. Users can create custom, named groups and manage their membership using structured

messages written to a session’s ctl file. Group membership is specified as a list of 3-tuples; each tuple

identifies a host, process, and optional thread. As shown in Figure 6.4, each process or thread group

exists as a sub-directory of a session’s groups directory. Each process or thread group directory con-

tains the set of sub-directories that proc++ automatically generates for each file.

108
Figure 6.3 proc++ Host Name Space.
To prevent name space conflicts for processes on different hosts having the same process id, proc++
places process directories within host-specific sub-trees

�����

�����

	
��

	

	
���

����

��

�����

�������

	
��

���

���

���

���	

���

���

������

������

�

���

�����

����������

������

���

���

��

���

 ��

109
Figure 6.4 proc++ Session Name Space.
Sessions are containers for the pre-defined groups “allprocs” and “allthreads”, as well as user-
defined groups. Process and thread group directories contain sub-directories for each control or
inspection file. These sub-directories contain symbolic links to the relevant files for each group
member.

��������

���	
�

���
��
�

��

�����

����������

��

�

�

�

��

��

���

��

������

����	�

���

����

����

��

�����

���
����
�

�
�

�
�

�������	�

���

110
6.1.3 proc++ Implementation

proc++ is implemented as a FINAL file service that can be plugged into TBON-FS servers. The

functionality provided by proc++ files is built upon ProcControlAPI [85], a cross-platform library for

control and inspection of processes and threads. Generation of thread stack traces uses StackWalker-

API [86], a cross-platform library for walking function call stacks.

ProcControlAPI provides platform-independent interface classes for processes, threads, and

events. ProcControlAPI supports common procfs control and inspection operations such as stopping

and continuing processes, reading and writing process memory or thread registers, and reporting stop

events. Additionally, ProcControlAPI provides advanced capabilities for detecting system events such

as process fork and exec, thread creation and deletion, and shared library load and unload. Event

notifications are delivered using a callback system that allows users to register handler functions for

any subset of the supported event types.

For many proc++ control and inspection operations, ProcControlAPI already supported the

required functionality. However, we needed to extend ProcControlAPI’s capabilitites to support break-

point insertion/removal and thread stepping. We chose to extend ProcControlAPI to provide cross-

platform breakpoint management and stepping, rather than complicate the proc++ internal design by

adding platform-specific code. A deficiency of ProcControlAPI is that it does not provide information

on the address space mappings for the code and data sections of a program’s executable and dependent

libraries. proc++ currently gathers this mapping information directly from the operating system.

6.2 Evaluation

During the development of the proc++ file service, we also constructed tbon-dbg, a command-line

parallel debugger that serves as a test harness for using group file operations and TBON-FS with

proc++. Although initially designed for feature testing, we were able to extend its capabilities for use

in large-scale performance evaluations. The capabilities of tbon-dbg are described next, followed our

111
evaluation of the performance of group file operations on distributed proc++ files.

6.2.1 tbon-dbg Parallel Debugger

The command-line interface (CLI) of tbon-dbg is built using the GNU readline library [96], which

provides advanced line editing and command history for CLI programs. Similar to a conventional

command-line debugger, users enter commands at the tbon-dbg prompt, and any output is printed

before the next prompt is displayed. tbon-dbg also supports sending command output to a Unix pipe or

file, a feature that has proved useful for validating large output.

tbon-dbg supports multiple concurrent sessions and many process and thread groups per session.

All debugging commands are associated with either the focus session, or the focus group. Users may

change the focus session or focus group at any time. Table 6.5 presents the commands supported for

session management, and Table 6.6 shows the commands available for group managment and focus

group operations. Absent from tbon-dbg’s command set are single-target debugging operations. To test

single-target debugging operations, a user must define a singleton group and use group operations.

In addition to its debugging capabilities, tbon-dbg also gives users the ability to navigate the

proc++ global name space. Similar to a conventional shell, users can issue cd, ls, and pwd commands

to explore the name space. Although not necessary for parallel debugging tasks, this navigation capa-

bility has proven useful for debugging problems in the name space composition of TBON-FS.

Three new capabilities were added to tbon-dbg so that it could be used for large-scale performance

evaluation of group file operations on distributed proc++ files. First, we added support for scripted

execution, which is necessary when experiments must run in non-interactive environments such as the

batch job systems used by large HPC systems. Second, we added the ability to launch a parallel appli-

cation using the HPC system’s parallel runtime. Finally, we instrumented the command processing

engine to collect timing data and generate a log file that reports the latency for each command issued.

112
6.2.2 proc++ Evaluation

Our goal for evaluating proc++ is to show that it can be used as the basis for building scalable tools

that require control or inspection of distributed process and thread groups. To this end, our experiments

used tbon-dbg to perform a set of common debugging tasks on a parallel application as we increased

the number of application processes. These tasks include attaching to the application’s processes, issu-

ing group control commands such as stop, continue, and step, inserting and removing breakpoints,

reading register values, and processing events.

During each tbon-dbg run, we measured the latency of operations at two levels of detail. The first

was the latency of individual group file operations, as measured within the TBON-FS client library.

The second level was tbon-dbg command latency as reported in its performance log. A single tbon-dbg

command typically involves many operations to gopen the target group, bind any needed aggrega-

tions, perform a sequence of group file operations, and close the group.

Experiments were run on the JaguarPF Cray XT5 system [77] located at Oak Ridge National Lab-

oratory. JaguarPF has 18,688 compute nodes. Each node contains two six-core AMD Opteron 2435

COMMAND COMMAND DESCRIPTION

session [id] Change the focus session to id, when provided. Otherwise, display the id
of the focus session.

session create id Create a new session named id.

session remove id Remove the session named id.

attach host:pid[,...] Attach list of host processes to the focus session.

detach host:pid[,...] Detach list of host processes from the focus session.

kill host:pid[,...] Kill list of host processes, and remove them from the focus session.

attachcmd exename Attach to all processes on all hosts that are executing exename to the
focus session.

detachcmd exename Detach all processes in the focus sesssion that are executing exename.

killcmd exename Kill all processes in the focus sesssion that are executing exename.

Table 6.5 tbon-dbg Session Management Commands

113
COMMAND COMMAND DESCRIPTION

group [id] Change the focus group to id, when provided. Other-
wise, display the ID of the focus group.

group create id type Create a new group within the focus session named
id. type is used to indicate a process or thread
group; valid values are “proc” or “thr”.

group remove id Remove the group named id from the focus session.

group add host:pid[,...] Add list of host processes to the focus group.

group add host:pid:tid[,...] Add list of host threads to the focus group.

group del host:pid[,...] Remove list of host processes from the focus group.

group del host:pid:tid[,...] Remove list of host threads from the focus group.

group ctl cont|stop Continue or stop the focus group, which should be a
process group.

group ctl step|nostep Enable or disable single-step mode. The focus group
should be a thread group.

group events Display all events that have occured on the focus
group since the last time the command was issued. The
focus group should be a process group.

group map Display the address space mappings for the focus
group, which should be a process group.

group readmem addr count Read count bytes at memory address addr in the
focus group, which should be a process group.

group readimg image offset count Read count bytes at offset within image. The
focus group should be a process group.

group break image offset Insert a breakpoint at offset within image. The
focus group should be a process group.

group clearbreak image offset Clear a breakpoint at offset within image. The
focus group should be a process group.

group readreg gpr|pc Display the general-purpose or program counter regis-
ter values. The focus group should be a thread group.

Table 6.6 tbon-dbg Group Management and Operation Commands

114
processors and 16GB of DDR2-800 memory, for a total of 224,256 processing cores. Nodes are con-

nected in a three-dimensional torus topology by a high-bandwidth, low-latency SeaStar 2+ network.

The TBON topologies used for each experimental scale are shown in Table 6.7. One TBON-FS

server was placed on each target node. Reported measurments are the minimum latency across multi-

ple runs at each scale. We report minimum rather than average latency due to frequent interference

from other applications using the JaguarPF network that results in random spikes in observed latencies.

The target application we used is the implicit radiation solver (IRS), a general diffusion equation

solver applied to radiation transport. IRS is one of the applications from the ASC Sequoia Benchmark

Codes [8]. Although IRS can use both MPI and OpenMP, IRS was configured to use only MPI. One

MPI process was placed on each of the twelve cores per compute node. IRS requires the total number

of processes to be equal to for an integer .

NUMBER OF
APPLICATION PROCESSES

NUMBER OF
SERVERS

TBON TOPOLOGY
(FAN-OUT PER TREE LEVEL)

1,728 144 8 × 18

4,096 342 18 × 19

8,000 667 23 × 29

13,824 1,152 32 × 36

39,304 3,276 7 × 13 × 36

54,782 4,590 9 × 17 × 30

74,088 6,174 7 × 21 × 42

97,336 8,112 8 × 26 × 39

125,000 10,440 10 × 29 × 36

157,464 13,122 18 × 27 × 27

195,112 16,280 20 × 22 × 37

216,000 18,000 20 × 25 × 36

Table 6.7 TBON Topologies used in tbon-dbg Experiments

k3 k 2≥

115
Figure 6.8 shows the performance of group file operations for runs with up to 216,000 application

processes (18,000 nodes). The top graph (a) reports the time necessary for operations used to manage

groups, including opening and closing a group, and binding an aggregaton for use with group read

operations. The middle graph (b) shows the time required to perform group write operations with vari-

ous data sizes. The bottom graph (c) presents group read times for various data sizes and aggregations.

All three group management operations in Figure 6.8(a) exhibit good performance up to the scale

tested. The varied performance between the three operations is attributable to the amount of data

broadcast and gathered. The nearly flat line for group close shows the performance that can be

achieved when the data sent is minimal and the reply uses a simple summary aggregation. The time for

gbindaggr includes creation of the new aggregation stream and a simple request-reply that is similar

to that used by group close. As is evident from comparison to the close line, stream creation adds a

linear component to the total latency. Similar to gbindaggr, the time for gopen includes a new

request stream creation, as well as additional linear processing on the TBON-FS client. Despite their

linear components, the slopes for both gopen and gbindaggr are small enough that the operations are

projected to provide sub-second latencies for applications containing over one million processes.

The group write operations of Figure 6.8(b) exhibit performance similar to that of gbindaggr.

For the small sizes (less than 100 bytes) of proc++ control messages, group write operations show lit-

tle deviation. Again, the linear behavior is due to creation of a stream for aggregating operation status

codes. In practice, group write operations will only incur this linear cost for the first write on the

group, as subsequent operations will use the same status aggregation stream. Subsequent operations

can be expected to provide excellent scaling behavior similar to the group close.

The choice of data aggregation for group read operations has a large impact on performance, as

shown in Figure 6.8(c). Group read operations that use the default concatenation aggregation per-

form an order of magnitude worse than those that use scalable equivalence aggregations. The benefits

116
Figure 6.8 Group File Operations on Distributed proc++ Files
Time required for various operations for group management, writing to control files, and reading
inspection files.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 0 20 40 60 80 100 120 140 160 180 200 220

T
im

e
(s

ec
on

ds
)

Application Size (thousands of processes)

(a) TBON-FS Group Management Operations

gopen
gbindaggr
close

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 0 20 40 60 80 100 120 140 160 180 200 220

T
im

e
(s

ec
on

ds
)

Application Size (thousands of processes)

(b) TBON-FS Group Write Operations

write 16 B
write 24 B
write 96 B

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 0 20 40 60 80 100 120 140 160 180 200 220

T
im

e
(s

ec
on

ds
)

Application Size (thousands of processes)

(c) TBON-FS Group Read Operations

read 8 B with equivalence
read 12 KB with equivalence
read 128 B with concatenate

117
of equivalence aggregation are substantial even for large read counts. For instance, at 200,000 pro-

cesses, a group read of 128 bytes with concatenation takes one second, while a group read of 12

kilobytes that uses an equivalence aggregation finishes in one-tenth of a second.

Figure 6.9 presents the performance of tbon-dbg’s group control operations and group inspection

operations. Each tbon-dbg group operation requires at least three group file operations: a gopen, a

group read or write, and a group close. When an equivalence aggregation is employed during

group inspection, gbindaggr is also used.

As shown in Figure 6.9(a), tbon-dbg group control operations have performance that can be esti-

mated with high precision by adding the times for the underlying gopen, write, and close opera-

tions. Since the overhead of stream creation during gopen and the first group write dominate the

performance, it is beneficial for oft-used groups to be held open to avoid this initialization overhead.

The tbon-dbg group inspection operations shown in Figure 6.9(b) also include the time spent pro-

cessing data results on the client so they can be printed in the command output. In our experiments,

command output was sent to /dev/null to avoid any cost for local file system access. For concate-

nated data, the processing involves iteration over the result for each group member. When data has

been placed into equivalence classes, processing costs are much lower as tbon-dbg simply needs to

print the membership of each class, and the number of classes is usually small. In the figure, we see

that GPR register set collection using concatenation requires over 1.5 seconds to gather and print

approximately 26 megabytes of data (128 bytes per group member, to hold sixteen 64-bit register val-

ues) at the largest scale. Event collection using concatenation performs only slightly better due due a

smaller read count (96 bytes per group member, to hold up to four 24-byte event records). In contrast,

collecting the same event data using an equivalence aggregation reduces the latency by over 50%. The

best performance in Figure 6.9(b) comes from using an equivalence aggregation to gather program-

counter register values from a thread group. This curve represents the best-case scalability for using a

118
Figure 6.9 tbon-dbg Group Control and Inspection Operations
Time required to complete common debugging tasks using distributed proc++ files

0.00

0.10

0.20

0.30

0.40

 0 20 40 60 80 100 120 140 160 180 200 220

T
im

e
(s

ec
on

ds
)

Application Size (thousands of processes)

(a) Scalable Debugger Control Operations

Attach to all processes
Execute a process group control command (e.g., stop, continue)
Execute a thread group control command (e.g., step)
Set a breakpoint in all processes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

 0 20 40 60 80 100 120 140 160 180 200 220

T
im

e
(s

ec
on

ds
)

Application Size (thousands of processes)

(b) Scalable Debugger Inspection Operations

Collect all GPR registers from all threads
Collect and find equivalent PC registers from all threads
Collect events from all processes
Collect and find equivalent events from all processes

119
value equivalence aggregation, as all threads were stopped at the same address.

6.3 Summary

The design of proc++ was motivated by observing that many tool activities are hindered by inter-

actions with existing procfs abstractions, and new abstractions were required to enable efficient and

widespread use of group file operations. Abstractions were carefully designed to be context-insensitive

and to place functionality at the appropriate layer of the distributed tool hierarchy, which enables the

parallelism needed to scale. When combined with group file operations and TBON-FS, proc++ pro-

vides excellent scalability for a wide-vareity of group control and inspection operations. A simple par-

allel debugger we have developed using proc++ is able to provide sub-second latencies for common

group debugging tasks at over 200,000 processes.

We intend to distribute proc++ as open-source software to serve as the basis for the implementa-

tion of other scalable tools. Before the first public release of proc++, however, we need to finish imple-

menting a subset of core functionality that was not required for our evaluation. This functionality

includes generating thread stack traces using StackWalkerAPI and providing process and thread status

information including resource usage.

To improve the utility of proc++, we plan to extend its interface to provide support for user-level

threads. We also plan to extend our use of abstractions to overcome problems related to varied context.

Finally, although ProcControlAPI and StackWalkerAPI support multiple platforms, proc++ has been

used only on x86 and x86-64 hosts running the Linux OS. In future releases, we will add support for

the other platforms supported by the underlying libraries; support for IBM BlueGene platforms is cur-

rently the highest-priority target.

121
Chapter 7

Case Study: Tools for Distributed System Administration

Our first case study is designed with two primary goals. First, we wish to demonstrate the ease of

using the group file operation idiom in the construction of new scalable tools. Since ease-of-use is a

qualitative and often subjective measure, we attempt to quantify the benefits of using the idiom by

reporting the time required to develop the tools and relevant source code metrics. Second, we evaluate

the performance of our implementation of group file operations within the TBON-FS group file system

on large distributed systems.

The context chosen for this case study is scalable tools for administration and monitoring of dis-

tributed systems. In particular, we developed parallel versions of common Unix utilities such as cp,

grep, and top. The focus on parallel command-line tools is motivated by our previous work in the

Cluster Command & Control (C3) tool suite [18], which itself was inspired by the efforts of the Paral-

lel Tools Consortium [46,87]. These prior works introduced useful techniques for denoting the sets of

hosts targeted by a parallel tool and for delimiting output generated on specific hosts. Unfortunately,

the implementations used in previous efforts provide no mechanisms for aggregating tool output to

reduce the amount of data collected to the user’s host. Thus, further data processing to aid in analysis

122
or presentation to the user is relegated to centralized computation, which represents a critical scalabil-

ity barrier for large distributed systems.

In this chapter, we describe the parallel tools we have constructed using group file operations and

evaluate their performance on two large clusters. When applicable, we discuss the custom data aggre-

gations employed by the tools to avoid centralized data analysis; these aggregations leverage the scal-

able mechanisms for distributed aggregation within TBON-FS. Our tools fall into three classes

representing their intended uses. Section 7.1 discusses two tools for replicating files across distributed

hosts. Section 7.2 introduces several tools that provide scalable display of data retrieved from distrib-

uted files. Section 7.3 describes two tools that provide scalable monitoring of remote processes. We

conclude in Section 7.4 with a summary of the observed qualitative and quantitative benefits of using

group file operations and TBON-FS to construct scalable tools for managing distributed systems.

All experimental results were collected on two Linux clusters, Thunder and Atlas, located at

Lawrence Livermore National Laboratory. The 1024-node Thunder cluster uses a Quadrics QsNetII

Elan4 interconnect, and each node has four 1.4GHz Intel Itanium2 processors and 8GB of memory.

The 1152-node Atlas cluster has nodes containing eight 2.4GHz AMD Opteron processors and 16GB

of memory, and uses a 4X-DDR Infiniband interconnect. Due to job resource limits, we could use up to

493 and 700 nodes at a time on Thunder and Atlas, respectively. To overcome this limit, we ran all

Thunder experiments with four TBON-FS servers per node and Atlas experiments with eight servers

per node. In all experiments, the TBON-FS client tool and internal tree processes were run on nodes

separate from those hosting TBON-FS servers. The topologies used during experiments on each clus-

ter are shown in Tables 7.1 and 7.2.

7.1 File Replication

There are two basic approaches to managing homogenous configurations of hosts in large distrib-

uted systems, file replication or file sharing. With replication, files are kept on disks local to each host

123
and must be updated if the global configuration changes, such as when new applications are installed

or a system configuration file is updated. When file sharing is employed, a distributed or parallel file

system serves the files to all hosts and changes only need to be applied centrally.

Unfortunately, on very large systems, the file sharing approach can become a bottleneck. In situa-

tions where a majority of clients request the same file at the same time, the server may not be able to

service all requests in a timely manner. A common example of this situation occurs when an entire dis-

tributed system is restarted and every host needs to access the same set of startup files. To avoid these

situations, administrators often replicate a small set of oft-accessed files.

To improve the scalability of file replication and global configuration updates, we have developed

NUMBER OF
TBON-FS
SERVERS

TBON TOPOLOGY
(FAN-OUT PER TREE LEVEL)

576 24 × 24

784 28 × 28

1,024 32 × 32

1,280 8 × 10 × 16

1,536 6 × 16 × 16

Table 7.1 Topologies used on Thunder

NUMBER OF
TBON-FS
SERVERS

TBON TOPOLOGY
(FAN-OUT PER TREE LEVEL)

1,024 4 × 8 × 32

2,048 8 × 8 × 32

3,072 8 × 12 × 32

4,096 8 × 16 × 32

Table 7.2 Topologies used on Atlas

124
parallel versions of both cp and rsync:

• pcp uses group write operations to multicast a source file to all servers.

• psync uses the rsync block checksum comparison algorithm [32] to identify differences between

the servers’ copies of a file and the source file on a client, and only multicasts the data that has

been changed or added. psync uses group read operations with an aggregation that checksums file

data blocks. The aggregation identifies sub-groups of servers whose file data is identical. The

block checksums for each sub-group are compared to the source file, and updated data is multicast

using a group write. In homogenous environments with one unique group, the computational load

for psync on the client is similar to rsync with a single server.

During the development of psync, we also created a new tool named pchecksum that performs

checksumming to identify groups of files with equivalent contents. pchecksum is useful for quick

identification of divergent files across distributed hosts.

We evaluated the performance of pcp and psync in terms of replication time for three file sizes on

the Atlas cluster. Table 7.3 shows the size of each file. To support our experiments using psync that

only distribute file updates, the files were chosen by looking for configuration files in /etc that had

been modified recently on Atlas. We selected files where both the current and previous versions were

available. The previous version was used as the copy at all servers, while the client source file was the

current, modified version.

For comparison, we measured the time required for every destination host to use the cp command

to copy the file from an NFS and a Lustre file system. Lustre [109] is a parallel file system designed

for providing a large number of clients concurrent access to large data sets whose data is spread across

many servers. The cp tasks were launched in parallel using the srun command of SLURM [110],

which is the system used on Atlas for launching serial and parallel programs. To account for the over-

head of srun, we measured the time to run a trivial program, hostname, in parallel at each experi-

125
mental scale, and subtracted that time from the NFS and Lustre copy times.

Two versions of pcp were tested, one using synchronous group write and one using asynchronous

group write. In all experiments, synchronous pcp was faster, so we report only those results, although

the asynchronous version still outperformed the parallel cp from NFS and Lustre. All cp and pcp

experiments use /dev/null as the destination file to avoid the effects of local disk writes.

Figure 7.4 shows the replication times for each of the three files. pcp is always the fastest, and

shows logarithmic performance as we increase the number of destinations. Lustre comes in second, but

shows poor linear scaling. We speculate that Lustre’s poor performance stems from the relatively small

files being accessed, which are not likely to be partitioned across many servers. Thus, all hosts are

forced to copy the file from a single Lustre data server. Interestingly, NFS does not exhibit linear scal-

ing, but is an order of magnitude slower than pcp. We expected the parallel copy from NFS to have

similar linear behavior to Lustre, but we think that caching of file blocks at the NFS client hosts is mit-

igating many of the remote requests to the NFS server. Caching effects would also help to explain why

some NFS copies at larger scales occasionally complete slightly faster than at smaller scales.

For the two smaller files, psync is faster than the parallel copy from NFS at all but the largest

psync

FILE
SIZE

(BYTES)

NEW / MODIFIED
DATA

(BYTES)

BLOCK MATCHES
META-DATA

(BYTES)

TOTAL DATA
TRANSMITTED

(% OF TOTAL SIZE)

/etc/fstab 7,063 1,579 216 25.4%

/etc/passwd 38,742 1,025 1,332 6.1%

/etc/services 559,563 3,531 19,548 4.1%

Table 7.3 Replicated File Statistics
Reports the total size of each file. When replicated with psync, only new data and meta-data for
unchanged file blocks are multicast to TBON-FS servers. The size of new data and meta-data is given
for each file, and the sum of these two sizes is reported as a percentage of the total file size.

126
Figure 7.4 File Replication Scalability
Compares the scalability of file replication for three files using pcp and psync, which multicast file
data from the source host to destination hosts, versus parallel invocation of cp on destination hosts to
pull the files from NFS and Lustre.
(a) Time to replicate /etc/services.
(b) Time to replicate /etc/passwd.
(c) Time to replicate /etc/fstab.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 1000 1500 2000 2500 3000 3500 4000

T
im

e
(s

ec
on

ds
)

Number of Destinations

(a) /etc/services

pcp

psync

NFS cp

Lustre cp

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 1000 1500 2000 2500 3000 3500 4000

T
im

e
(s

ec
on

ds
)

Number of Destinations

(b) /etc/passwd

pcp

psync

NFS cp

Lustre cp

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 1000 1500 2000 2500 3000 3500 4000

T
im

e
(s

ec
on

ds
)

Number of Destinations

(c) /etc/fstab

pcp

psync

NFS cp

Lustre cp

127
experimental scales, even though it must read and checksum all of the destination files. For the largest

file, the overhead of checksumming and comparing more than five hundred 1024-byte blocks becomes

too costly. However, psync sends much less data over the network by only transmitting new data and

information detailing the matched blocks. Table 7.3 reports the bytes sent by psync as a percentage of

the file sizes. Due to its network savings, psync is an attractive option for updating files on systems

where the network is highly-utilized, yet computation is comparatively cheap.

7.2 File Inspection

Many command-line utilities are used by system adminstrators for inspecting text-based files cor-

responding to configuration files and system logs. Common examples include cat, head, tail, and

grep. In this section, we describe our parallel versions of these utilities that are designed for operating

on large groups of distributed files.

Because users are not likely to be happy with digesting thousands of lines of output, all of our par-

allel utilities use an aggregation based on line equivalence. This aggregation identifies each unique line

found in any member file. Unique lines are accompanied by a list of member files that contained the

line. Member files are represented as strided ranges of group file indices, where each range has a start

index, stride, and count. Each equivalence class generated by the aggregation can be printed on a sin-

gle line that includes the member ranges and the unique line’s text, as shown in the following format:

(start,stride,count)[,...] unique-line-text

This format is human-readable for cases involving significant equivalence, and is amenable to further

text-processing using scripts when necessary.

A strided range representation has benefits over simple ranges because it can compactly represent

periodic intervals of varying size. A notable example of this benefit is in cases of odd-even behavior,

when all odd indices share the same value and all even indices share a different value. Using simple

ranges to represent odd-even behavior devolves into a list of every index, while the same behavior can

128
be represented using just two strided ranges.

In its base form, the line-equivalence aggregation does not distinguish between lines that may be

repeated, such as may occur when an error is indicated many times in a system log. To help distinguish

such repetitions, we added the ability to prepend the line numbers from source files. When line num-

bers are used, both the line’s number and text are used to determine uniqueness. Keeping track of the

number of lines processed and partial lines from individual member files was the biggest challenge in

implementing the aggregation.

7.2.1 Parallel cat and head

The first utility we created using the line-equivalence aggregation was pcat, a parallel version of

cat. pcat takes the name of a target file as an operand, and then creates a group file representing the

target file on every server host. Data is processed by a loop that uses group reads of file blocks until all

the data has been read. Users can optionally specify the block size to use during reads. The line equiv-

alence classes generated during each group read are printed at the end of each loop iteration. Figures

7.5 and 7.6 show the benefits of using line equivalence with strided membership ranges in pcat.

pcat supports an option for dumping the mappings of group member indices to distributed files to aid

in further processing and line attribution.

Using pcat as a starting point, it was easy to create phead, our parallel version of head. We sim-

ply extended the line-equivalence aggregation with a parameter that indicates the maximum line num-

ber. Once each member file has produced the maximum number of requested lines, the aggregation

function simply ignores subsequent data.

7.2.2 Parallel grep

One of the most useful Unix utilities is grep. System administrators use grep for various tasks

including searching configuration files, scanning system and application logs for interesting or alarm-

129
(
0
)

n
f
s

3
9
8
7
7
8

2

-

L
i
v
e

0
x
0

(
0
)

l
o
c
k
d

7
4
2
7
0

1

n
f
s
,

L
i
v
e

0
x
0

(
0
)

n
f
s
_
a
c
l

2
6
4
7

1

n
f
s
,

L
i
v
e

0
x
0

(
0
)

a
u
t
h
_
r
p
c
g
s
s

4
4
8
9
5

1

n
f
s
,

L
i
v
e

0
x
0

(
0
)

s
u
n
r
p
c

2
4
4
0
4
6

1
8

n
f
s
,
l
o
c
k
d
,
n
f
s
_
a
c
l
,
a
u
t
h
_
r
p
c
g
s
s
,

L
i
v
e

0
x
0

(
0
)

a
c
p
i
_
c
p
u
f
r
e
q

7
9
5
5

1

-

L
i
v
e

0
x
0

(
0
)

f
r
e
q
_
t
a
b
l
e

4
8
8
1

1

a
c
p
i
_
c
p
u
f
r
e
q
,

L
i
v
e

0
x
0

(
0
)

m
p
e
r
f

1
5
5
7

1

a
c
p
i
_
c
p
u
f
r
e
q
,

L
i
v
e

0
x
0

(
0
)

n
v
i
d
i
a

1
1
9
3
3
0
2
9

2
6

-

L
i
v
e

0
x
0

(
P
)

(
0
)

i
2
c
_
i
8
0
1

1
1
2
3
1

0

-

L
i
v
e

0
x
0

(
0
)

i
2
c
_
c
o
r
e

3
1
2
7
6

2

n
v
i
d
i
a
,
i
2
c
_
i
8
0
1
,

L
i
v
e

0
x
0

(
0
)

i
T
C
O
_
w
d
t

1
3
6
6
2

0

-

L
i
v
e

0
x
0

(
0
)

i
T
C
O
_
v
e
n
d
o
r
_
s
u
p
p
o
r
t

3
0
8
8

1

i
T
C
O
_
w
d
t
,

L
i
v
e

0
x
0

(
0
)

e
1
0
0
0
e

2
1
9
5
0
0

0

-

L
i
v
e

0
x
0

(
0
)

i
7
c
o
r
e
_
e
d
a
c

1
8
1
8
4

0

-

L
i
v
e

0
x
0

(
0
)

e
d
a
c
_
c
o
r
e

4
6
7
7
3

1

i
7
c
o
r
e
_
e
d
a
c
,

L
i
v
e

0
x
0

(
0
)

e
x
t
4

3
6
4
4
1
0

1

-

L
i
v
e

0
x
0

(
0
)

m
b
c
a
c
h
e

8
1
4
4

1

e
x
t
4
,

L
i
v
e

0
x
0

(
0
)

j
b
d
2

8
8
8
3
4

1

e
x
t
4
,

L
i
v
e

0
x
0

(
0
)

a
h
c
i

4
0
4
5
5

2

-

L
i
v
e

0
x
0

(
1
)

n
f
s

3
9
8
7
7
8

2

-

L
i
v
e

0
x
0

(
1
)

l
o
c
k
d

7
4
2
7
0

1

n
f
s
,

L
i
v
e

0
x
0

(
1
)

n
f
s
_
a
c
l

2
6
4
7

1

n
f
s
,

L
i
v
e

0
x
0

(
1
)

a
u
t
h
_
r
p
c
g
s
s

4
4
8
9
5

1

n
f
s
,

L
i
v
e

0
x
0

(
1
)

s
u
n
r
p
c

2
4
4
0
4
6

1
8

n
f
s
,
l
o
c
k
d
,
n
f
s
_
a
c
l
,
a
u
t
h
_
r
p
c
g
s
s
,

L
i
v
e

0
x
0

(
1
)

a
c
p
i
_
c
p
u
f
r
e
q

7
9
5
5

1

-

L
i
v
e

0
x
0

(
1
)

f
r
e
q
_
t
a
b
l
e

4
8
8
1

1

a
c
p
i
_
c
p
u
f
r
e
q
,

L
i
v
e

0
x
0

(
1
)

m
p
e
r
f

1
5
5
7

1

a
c
p
i
_
c
p
u
f
r
e
q
,

L
i
v
e

0
x
0

(
1
)

i
2
c
_
i
8
0
1

1
1
2
3
1

0

-

L
i
v
e

0
x
0

(
1
)

i
2
c
_
c
o
r
e

3
1
2
7
6

2

i
2
c
_
i
8
0
1
,

L
i
v
e

0
x
0

.
.
.

N
O
T
E
:

T
H
I
S

F
I
G
U
R
E

W
O
U
L
D

N
E
E
D

T
O

B
E

4
0

T
I
M
E
S

B
I
G
G
E
R

T
O

S
H
O
W

C
O
N
T
E
N
T

F
O
R

A
L
L

6
4

H
O
S
T
S

Fi
gu

re
 7

.5

Pa
ra

lle
l c
a
t

 -
A

tt
ri

bu
te

d
O

ut
pu

t w
ith

ou
t L

in
e

E
qu

iv
al

en
ce

 A
gg

re
ga

tio
n

(~
1.

5
ho

st
s)

Th
e

fig
ur

e
sh

ow
s h

ow
 th

e
co

nt
en

ts
 o

f t
he

 L
in

ux
 /
p
r
o
c
/
m
o
d
u
l
e
s

 fi
le

, w
hi

ch
 li

st
s t

he
 c

ur
re

nt
ly

 lo
ad

ed
 k

er
ne

l m
od

ul
es

, w
ou

ld
 b

e
pr

in
te

d
us

in
g
p
c
a
t

 o
n

a
cl

us
te

r o
f 6

4
ho

st
s i

f n
o

lin
e

eq
ui

va
le

nc
e

ag
gr

eg
at

io
n

w
as

 u
se

d.
 F

or
 c

la
rit

y,
 w

e
ha

ve
 sh

ow
n

al
l l

in
es

 fr
om

th
e

sa
m

e
so

ur
ce

 to
ge

th
er

, a
lth

ou
gh

 in
 p

ra
ct

ic
e

lin
es

 fr
om

 d
iff

er
en

t s
ou

rc
es

 m
ay

 b
e

in
te

rle
av

ed
. T

o
fu

lly
 d

is
pl

ay
 th

e
co

nt
en

ts
 fr

om
al

l 6
4

cl
us

te
r h

os
ts

, t
hi

s f
ig

ur
e

w
ou

ld
 h

av
e

ne
ed

ed
 to

 b
e

fo
rty

 ti
m

es
 la

rg
er

.

130
(
0
,
1
,
6
4
)

n
f
s

3
9
8
7
7
8

2

-

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

l
o
c
k
d

7
4
2
7
0

1

n
f
s
,

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

f
s
c
a
c
h
e

4
6
8
5
9

1

n
f
s
,

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

n
f
s
_
a
c
l

2
6
4
7

1

n
f
s
,

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

a
u
t
h
_
r
p
c
g
s
s

4
4
8
9
5

1

n
f
s
,

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

s
u
n
r
p
c

2
4
4
0
4
6

1
8

n
f
s
,
l
o
c
k
d
,
n
f
s
_
a
c
l
,
a
u
t
h
_
r
p
c
g
s
s
,

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

a
c
p
i
_
c
p
u
f
r
e
q

7
9
5
5

1

-

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

f
r
e
q
_
t
a
b
l
e

4
8
8
1

1

a
c
p
i
_
c
p
u
f
r
e
q
,

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

m
p
e
r
f

1
5
5
7

1

a
c
p
i
_
c
p
u
f
r
e
q
,

L
i
v
e

0
x
0

(
0
,
8
,
8
)

n
v
i
d
i
a

1
1
9
3
3
0
2
9

2
6

-

L
i
v
e

0
x
0

(
P
)

(
0
,
1
,
6
4
)

i
2
c
_
i
8
0
1

1
1
2
3
1

0

-

L
i
v
e

0
x
0

(
0
,
8
,
8
)

i
2
c
_
c
o
r
e

3
1
2
7
6

2

n
v
i
d
i
a
,
i
2
c
_
i
8
0
1
,

L
i
v
e

0
x
0

(
1
,
1
,
7
)
,
(
9
,
1
,
7
)
,
(
1
7
,
1
,
7
)
,
(
2
5
,
1
,
7
)
,
(
3
3
,
1
,
7
)
,
(
4
1
,
1
,
7
)
,
(
4
9
,
1
,
7
)
,
(
5
7
,
1
,
7
)

i
2
c
_
c
o
r
e

3
1
2
7
6

2

i
2
c
_
i
8
0
1
,

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

i
T
C
O
_
w
d
t

1
3
6
6
2

0

-

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

i
T
C
O
_
v
e
n
d
o
r
_
s
u
p
p
o
r
t

3
0
8
8

1

i
T
C
O
_
w
d
t
,

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

e
1
0
0
0
e

2
1
9
5
0
0

0

-

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

i
7
c
o
r
e
_
e
d
a
c

1
8
1
8
4

0

-

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

e
d
a
c
_
c
o
r
e

4
6
7
7
3

1

i
7
c
o
r
e
_
e
d
a
c
,

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

e
x
t
4

3
6
4
4
1
0

1

-

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

m
b
c
a
c
h
e

8
1
4
4

1

e
x
t
4
,

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

j
b
d
2

8
8
8
3
4

1

e
x
t
4
,

L
i
v
e

0
x
0

(
0
,
1
,
6
4
)

a
h
c
i

4
0
4
5
5

2

-

L
i
v
e

0
x
0

Fi
gu

re
 7

.6

Pa
ra

lle
l c
a
t

 -
Li

ne
 E

qu
iv

al
en

ce
 u

sin
g

St
ri

de
d

R
an

ge
s (

64
 h

os
ts

)
Th

e
fig

ur
e

sh
ow

s t
he

 re
su

lts
 o

f u
si

ng
 p
c
a
t

 w
ith

 li
ne

 e
qu

iv
al

en
ce

 a
nd

 st
rid

ed
 ra

ng
e

m
em

be
rs

hi
p

lis
ts

. C
om

pa
re

d
to

 F
ig

ur
e

7.
5,

 w
e

se
e

th
at

 th
e

en
tir

e
ag

gr
eg

at
ed

 c
on

te
nt

s f
ro

m
 a

ll
64

 h
os

ts
 fi

ts
 w

ith
in

 th
e

sa
m

e
sp

ac
e

as
 th

at
 re

qu
ire

d
fo

r p
rin

tin
g

a
si

ng
le

 h
os

t’s
 fi

le
 c

on
te

nt
s.

Fu
rth

er
, t

he
ag

gr
eg

at
io

n
re

ve
al

s t
ha

t o
ne

 o
f e

ve
ry

 e
ig

ht
 h

os
ts

 in
 th

e
cl

us
te

r c
on

ta
in

s a
n

N
vi

di
a

G
PU

, w
hi

ch
 re

su
lts

 in
 th

e
n
v
i
d
i
a

 m
od

ul
e

be
in

g
lo

ad
ed

an
d

th
e
i
2
c
_
c
o
r
e

 m
od

ul
e

de
pe

nd
in

g
on

 n
v
i
d
i
a

.

131
ing events, and gathering host or process information. Leveraging grep on distributed files helps iden-

tify configuration differences, correlate distributed events, and monitor resource use. Thus, we have

developed pgrep. For simplicity, it currently supports text string searches rather than regular expres-

sions. pgrep employs a modified version of our line-equivalence aggregation. This version introduces

an aggregation function parameter that denotes the search string.

We compared pgrep on TBON-FS files to standard grep on files served by NFS for the same

number of files searched. In each experiment, we measured the completion latency in seconds and the

size of the generated output for matching lines. We searched files stored in both disk and memory, and

used searches that returned few or many unique matches. services-udp searched for the abundant

string "udp" in the /etc/services file. meminfo-Total searched for "MemTotal" in /proc/mem-

info. This search returns a single line that is the same across all hosts in a homogeneous environment

such as Atlas. meminfo-Free searched /proc/meminfo for "MemFree". Since the amount of free

memory is highly variable at runtime, this search returns many unique lines. Figure 7.7 shows a few

lines of the pgrep output for each search.

As shown in Figure 7.9, grep exhibits the expected linear scaling in latency and output size. Due

to pgrep’s equivalence aggregation, latency is logarithmic and the number of output lines is simply

the number of unique lines across all hosts. As a result, pgrep’s output is smaller in size and easier to

interpret than grep, and provides up to an order of magnitude reduction in cases with significant simi-

larity across files. For pgrep, latency includes the time for three sub-tasks: (1) initialize the file group

using gopen and gbindaggr, (2) read the files using the equivalence aggregation, and (3) print the

aggregated results. In Table 7.8, we report the sub-task latencies observed during pgrep searches on

groups of 4096 files. We note that for smaller files the pgrep latency is dominated by the time to ini-

tialize the group file.

132
(a) services-udp

(0,1,4096) novastorbakcup 308/udp # Novastor Backup
(0,1,4096) irc 194/udp
(0,1,4096) ni-ftp 47/udp # NI FTP
(0,1,4096) hdap 263/udp # HDAP
(0,1,4096) link 245/udp ttylink
...

(b) meminfo-Total

(0,1,4096) MemTotal: 15528448 kB

(c) meminfo-Free

(1080,1,3),(1084,1,2) MemFree: 15098640 kB
(3419,3,2) MemFree: 15107204 kB
(2762,1,3) MemFree: 15103764 kB
(2872,1,1) MemFree: 15096484 kB
(2627,1,1) MemFree: 15086596 kB
(2675,1,1) MemFree: 15099176 kB
(1560,5,2) MemFree: 15104080 kB
(2440,1,2),(2443,1,1) MemFree: 15102052 kB
(2722,1,1) MemFree: 15121824 kB
(2931,1,2) MemFree: 15095204 kB
(1728,1,8) MemFree: 15113272 kB
...

Figure 7.7 Line Equivalence Output from pgrep
(a) Searching /etc/services for “udp” results in one output line per match at all 4096 servers.
(b) Searching /proc/meminfo for “MemTotal” results in one output line representing all 4096 servers.
(c) Searching /proc/meminfo for “MemFree” results in one output line for each unique value.

SUB-TASK LATENCY (MILLISECONDS)

SEARCH GROUP INIT GROUP READ PRINT OUTPUT

services-udp 102 780 4

meminfo-Total 113 7 < 1

meminfo-Free 118 21 < 1

Table 7.8 pgrep Sub-task Latencies for File Groups of Size 4,096

133
Figure 7.9 Parallel grep Scalability
Latency and output size for three searches using pgrep on TBON-FS files and grep on NFS files.

0

10

20

30

40

50

60

 1024 2048 3072 4096

T
im

e
(s

ec
on

ds
)

Group Size (# files)

(a) Latency - services-udp

grep

pgrep

 250

 500

 750

 1000

 1250

 1500

 1024 2048 3072 4096

Si
ze

 (
m

eg
ab

yt
es

)

Group Size (# files)

(b) Output Size - services-udp

grep

pgrep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 1024 2048 3072 4096

T
im

e
(s

ec
on

ds
)

Group Size (# files)

(c) Latency - meminfo-Total

grep

pgrep

 0

 50

 100

 150

 200

 250

 1024 2048 3072 4096

Si
ze

 (
ki

lo
by

te
s)

Group Size (# files)

(d) Output Size - meminfo-Total

grep

pgrep

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 1024 2048 3072 4096

T
im

e
(s

ec
on

ds
)

Group Size (# files)

(e) Latency - meminfo-Free

grep

pgrep

 0

 50

 100

 150

 200

 250

 1024 2048 3072 4096

Si
ze

 (
ki

lo
by

te
s)

Group Size (# files)

(f) Output Size - meminfo-Free

grep

pgrep

134
7.2.3 Parallel tail

The tail utility with the "-f" option can be used to follow system log activity in real-time. Exist-

ing software enhances this use of tail to include monitoring multiple files [75] and multiple hosts

[121], and to highlight interesting lines of output [47,75]. Combining all three enhancements, we

developed ptail for following large distributed file groups. To improve correlation of events across

hosts and reduce output, we extended our line equivalence aggregation with an option to strip host-spe-

cific information (e.g., host name and process IDs) from lines using the syslog message format. Cor-

relation of distributed events can benefit applications such as identifying misconfigured network

services (e.g., many clients of the service notice a problem and generate an identical error) and security

(e.g., distributed intrusion or denial-of-service attacks).

We used a synthetic log generator to evaluate ptail. The log generator controls the rate and the

percentage of equivalent entries. ptail significantly reduces the number of output lines by combining

equivalent log entries. For a group of size hosts, log entries generated per host, and a percentage

 of equivalent events, the total number of output lines is reduced to from the total

lines generated . Aggregated output eases analysis and reduces the storage needed to keep logs.

7.3 Process Monitoring

For many administration tasks, it is useful to know which processes are using the most resources.

top is a simple yet powerful utility for displaying resource utilization by processes on a single host.

We created ptop to provide similar functionality for many distributed hosts. ptop gathers information

from files in the Linux proc file system. Custom data aggregations are used to calculate summaries and

support the sorting and filtering capabilities of top. To give greater insight into distributed resource

use, we added two new grouping facilities that summarize across processes executing the same pro-

gram, both for a specific user and across all users. When grouping, one can view total, average, or

maximum utilization. A screenshot of ptop executing on Thunder is shown in Figure 7.10. In the fig-

G L

P L 1 P–()G P+()

L G×

135
ure, ptop is displaying the top-twenty CPU users and reporting averages for CPU and memory utiliza-

tion. On the otherwise unloaded cluster hosts, we see that the group of 4,096 tbonfs-server

processes is using the most CPU at 1.5% on average across all hosts.

Using ptop, one can answer many interesting questions: what application is using the most resi-

dent memory pages, what is the average CPU utilization for my parallel application’s processes, and

which users are playing solitaire? Furthermore, a parallel version of ps could easily be constructed

ptop - Thu Apr 24 22:46:36 2008
1024 hosts up 96430.24 days, load average: 0.30, 0.13, 0.08
Tasks: 338112 total, 4347 run, 333765 sleep, 0 stopped, 0 zombie
CPU: 4096 cpu(s), 78.72% user, 0.86% sys, 0.00% nice, 19.65% idle, 0.76% wait
Mem: 8441839552k total,1071405120k used,7370434432k free, 169090944k buffers
Swap: 17182572544k total, 71227968k used,17111344576k free, 200221184k cached
 USER %CPU %MEM COMMAND
------------ -------------- -------------- -----------------
 brim1 1.48 @4096 0.06 @4096 tbonfs-server
 root 0.13 @1024 0.01 @1024 spd
 root 0.00 @856 0.00 @856 ksoftirqd/1
 root 0.01 @392 0.00 @392 elan4_mainint
 root 0.00 @884 0.00 @884 ksoftirqd/2
 root 0.03 @92 0.00 @92 ptlrpcd
 root 0.01 @416 0.00 @416 ksoftirqd/0
 root 0.00 @1016 0.00 @1016 ksoftirqd/3
 root 0.00 @436 0.01 @436 syslog-ng
 root 0.00 @272 0.00 @272 kjournald
 ntp 0.00 @980 0.03 @980 ntpd
 root 0.00 @404 0.01 @404 munged
 root 0.00 @60 0.00 @60 ll_ping
 root 0.00 @1020 0.01 @1020 lrmmond
 root 0.00 @124 0.00 @124 ep_comms
 root 0.00 @724 0.00 @724 irqbalance
 root 0.00 @68 0.00 @68 kqswnal_sched
 root 0.00 @1008 0.00 @1008 ldlm_cn_17
 root 0.00 @1008 0.00 @1008 ldlm_cn_16
 root 0.00 @1008 0.00 @1008 ldlm_cn_15

Figure 7.10 ptop Running on Thunder
Similar to top, ptop provides summary information for the state of processes and resource use in the
upper portion of its display and specific process information in the lower portion. However, in ptop
summaries are calculated across all processes from all servers, and aggregate information for groups of
processes running the same program are displayed. As shown in the screenshot, ptop is currently
monitoring over 330,000 processes located across the 1,024 hosts of Thunder, which contains 4,096
processors and over 8 terabytes of memory. We also see that the group of 4,096 TBON-FS server
processes is using 1.5% of the CPU and 0.06% of memory on average. To generate all of the data
shown in this ptop display, over one million Linux /proc files were read and aggregated.

136
from the ptop source, as the functionality of ps is a subset of that of top.

To evaluate ptop, we measured average latency to collect and aggregate process information and

average CPU utilization at TBON-FS servers. On Thunder, we ran ptop for 60 seconds with and with-

out command grouping, using delay intervals of 5, 10, and 30 seconds (top’s default is 5 seconds) and

reporting the top 100 processes. Performance with and without grouping was indistinguishable, so we

report the results for the grouping case. Figure 7.11(a) shows that ptop can aggregate resource utiliza-

tion for group files representing hundreds of thousands of distributed processes (several hundred pro-

cesses per host) in less than 300 milliseconds. The latency scales logarithmically compared to the

group file size. Since seven group files are read each time ptop updates its display, ptop requires just

over two seconds per update. As a result, ptop can provide the same default delay interval as top.

Figure 7.11(b) shows that TBON-FS server CPU use was under 0.5% for the 30 second interval in

all experiments. Thus, we believe ptop can be used for low-impact, continuous monitoring. Based on

Figure 7.11 Parallel top Scalability
(a) Average time to for ptop to complete a group read operation that aggregates process information
from Linux /proc files.
(b) Average CPU utilization at each TBON-FS server during use of ptop with varied refresh delays.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 100 200 300 400 500 600

T
im

e
(s

ec
on

ds
)

Number of Processes (thousands)

(a) Group Read Performance

group read

0.0

0.5

1.0

1.5

2.0

 100 200 300 400 500 600

%
 C

PU
Number of Processes (thousands)

(b) Server CPU Utilization

delay=5sec

delay=10sec

delay=30sec

137
ptop’s low-overhead performance, we were motivated to develop a benchmarking tool called

tbonfs_bench that samples the CPU and memory utilization of a set of distributed processes. In our

Ganglia case study presented in the next chapter, we used tbonfs_bench to collect the resource use

of TBON-FS processes. Thus, we can use trees to monitor trees.

7.4 Summary

Overall, group file operations appear to be quite easy to use for creating new scalable tools for

managing distributed systems. The performance of these parallel command-line tools generally

matched our expectations for the first demonstrations of the idiom and and its associated TBON-FS

implementation. The results showed the potential for scalability provided by group file operations and

TBON-FS, but also revealed that group file initialization, particularly the latency of gopen, required

further attention and performance optimization. The improved performance for gopen previously pre-

sented in Chapter 6 was a result of this optimization effort.

To help quantify ease-of-use, we report the approximate development time and relevant source

LINES OF CODE

PARALLEL TOOL
DEVELOPMENT

TIME TOTAL
GROUP FILE
OPERATIONS

CUSTOM DATA
AGGREGATION

pcp 1 day 219 24 N/A

psync 1 week 820 60 252

pchecksum 1 day 364 37 115

pcat, phead 2 days 318 20 160

ptail 2 days 410 22 205

pgrep 1 day 356 20 191

ptop 1 week 1,455 83 834

tbonfs_bench 1 day 492 31 255

Table 7.12 Development Time and Lines of Code for Parallel Tools

138
code metrics related to our use of group file operations in Table 7.12. Source code metrics are shown in

terms of lines of code (excluding blank lines and comments) measured using cloc [27]. We show the

total lines of code, as well as lines corresponding to use of group file operations and the implementa-

tions of custom data aggregation functions. The two most complex tools, psync and ptop, were

developed in just one week each. The other tools required just one or a few days to develop due to the

simplicity of using group file operations to accomplish the desired task, and because we were able to

re-purpose or extend previously developed custom data aggregations. Developing custom data aggre-

gations was by far the most time-consuming activity, and the associated aggregation function code rep-

resents a large percentage of the total code for each parallel tool. We expect this to be the case for most

new tool development using group file operations.

139
Chapter 8

Case Study: Ganglia Distributed Monitoring System

Our second case study is designed to evaluate the ease of integrating group file operations and

TBON-FS within an existing middleware system, as well as the resulting benefits to performance and

scalability. In this study, we chose to use the Ganglia Distributed Monitoring System [67] for two rea-

sons. First, Ganglia is open-source, widely-used, and known to have problems with monitoring large

clusters containing many thousands of hosts. Thus, any improvements from our work will benefit

many existing users, and should enable new deployments on large clusters. Second, Ganglia gathers

much of its metric data from files and computes summary statistics over this data from many hosts,

which equates nicely with the goals of scalable group file operations.

We discuss the Ganglia architecture and its scalability barriers in Section 8.1. The architecture of

Ganglia-tbonfs, our modified version of Ganglia that uses group file operations to collect and aggre-

gate metric data, is presented in Section 8.2. We evaluate the performance of Ganglia-tbonfs versus

Ganglia 3.0.4 in Section 8.3. The chapter concludes in Section 8.4 with a summary of our integration

effort and its benefits for performance and scalability, and a short discussion of potential further

improvements.

140
8.1 Architecture of the Ganglia Distributed Monitoring System

Ganglia is designed to monitor resource utilization of distributed hosts and provide system admin-

istrators with a history of the measured data for individual hosts and groups of hosts. Common metrics

monitored by Ganglia include the utilization of the processors, memory, network, and local disks at

each host. Ganglia aggregates data to provide statistical summaries such as minimum, maximum, and

average values for clusters and grids. A cluster is a group of hosts, and a grid is group of clusters or

other grids. Thus, Ganglia provides a hierarchical monitoring infrastructure that can support organiza-

tions that have many distributed systems and hierarchical administrative structures, such as is common

in government research labs and universities.

Metric histories are supported by using round-robin databases (RRDs) to store measured metric

values. An RRD is a fixed-sized database that stores data for a period of time broken into fixed-length

intervals [104]. Because they are fixed-size, RRDs use a first-in first-out (FIFO) strategy for data stor-

age. As new data is added to an RRD that is fully populated, the new data overwrites the oldest data.

To provide a long metric history, several RRDs can be used for each metric as shown in Figure 8.1.

Each RRD records metric data at a different granularity. At the finest level of detail, data may be kept

for the last day broken into fifteen-minute intervals. Further RRDs contain coarser-grained data that

represents an aggregation over a smaller granularity, such as the days in the last month and the months

in the last two years. Ganglia uses default periods and intervals for each metric that are designed for

low-overhead monitoring, but also gives the system administrator the ability to define custom periods

and intervals for metrics.

As shown in Figure 8.2, Ganglia uses a hierarchical architecture that matches the organizational

hierarchy of the systems being monitored. An aggregator process (gmetad) is associated with each

cluster and grid. The gmetads are organized as a tree, with grid parents collecting metric data from

their child clusters and grids. Monitoring processes (gmond) are run on each host. Within a cluster, the

141
gmonds use IP multicast as a publish-subscribe mechanism for replicating newly measured metric

data. Metric data sent from each gmond on the multicast socket is received and stored at the other

gmonds, which results in data for all hosts being available at any host. The gmetad for a cluster selects

a representative gmond that it contacts to collect the data for all cluster hosts. Metric data is encoded

using XML when transferred between parent and child gmetads, and between a cluster gmetad and a

representative gmond.

There are three scalability barriers in the Ganglia architecture. First, as noted by Ganglia’s design-

ers [67], its use of IP multicast is not scalable for large clusters containing over 2000 hosts. Because

metric data published by every gmond is delivered and cached at all gmonds in the cluster, every

gmond incurs network, memory, and processing utilization that grows with the total volume of data for

all cluster hosts. Second, metric data for all hosts is transmitted from the representative gmond to the

cluster gmetad. Since this XML data has size that grows in proportion to the number of hosts in the

cluster, the time required to parse the XML to extract the per-host data increases linearly with the clus-

Figure 8.1 Metric Data Histories Stored in Round-Robin Databases
A round-robin database is a fixed size buffer that holds metric data collected during period of time.
The period is broken into intervals of fixed-length, such as fifteen-minute intervals within a span of
one day as shown in the top RRD. To provide a long metric history, multiple RRDs can be used that
provide finer-grained data for recent periods, and more coarse data for long-term periods. RRDs
holding long-term data are constructed by aggregating the data from shorter periods.

15

min. One Day

One Month
1

day

1

month Two Years

142
Figure 8.2 Ganglia Monitoring and Data Storage Architecture
Ganglia uses two types of processes: monitor processes (gmond) on each host and aggregator
processes (gmetad) associated with each cluster and grid that compute summaries and store metric data
in round-robin databases (RRDs) for each host, cluster, and grid. Aggregator processes are organized
as a tree whose structure often corresponds to an organizational structure. The figure shows an
example structure that could be used for monitoring hosts, clusters, and grids within departments of the
University of Wisconsin. Within a cluster, gmonds distribute metric data amongst themselves using IP
multicast. A cluster gmetad contacts a representative gmond (indicated by the thick outline) via TCP to
collect data for all cluster hosts. Grid gmetads also use TCP to collect summary data from their
children clusters and grids.

UW

Comp Sci

Physics

GLOW

GLOW

DB

CSL

gmetad

grid RRD

cluster RRD

host RRD

gmond

TCP socket

IP multicast

143
ter size. Third, the cluster gmetad iterates over the metric data for all hosts to compute metric summa-

ries for the cluster. Grid gmetads are less problematic, since most grids contain a relatively small

number of child clusters or grids. Thus, grid gmetads are not likely a bottleneck when collecting and

aggregating metric data from their children and storing the metric summaries.

8.2 Ganglia-tbonfs: A Scalable Design for Monitoring Large Clusters

Ganglia-tbonfs addresses the two main scalability barriers in the original Ganglia architecture by

making the entire communication architecture tree-based and distributing the work of cluster gmetads

across processes in the tree. As shown in Figure 8.3, Ganglia-tbonfs replaces the existing IP multicast

among gmonds with tree-based communication to TBON-FS servers. Group file operations are used

by the root gmetad process to read and aggregate metric data from files on the server hosts. For metrics

whose data is not already found in files, such as disk utilization, we created synthetic files to provide

the necessary data. These synthetic files are implemented by a FUSE [115] user-level file service. At

the time of the Ganglia case study, our FINAL synthetic file services had not yet been devised, which

led to our dependence on FUSE.

The use of group file reads for metric collection results in a move from the original push architec-

ture used within a cluster to a pull architecture. In the original design, each gmond consulted a local

configuration file to know when to collect and multicast data for each metric. Then, the gmetad for a

cluster would poll the representative gmond on a regular basis, every 15 seconds by default, to collect

recently updated data. In Ganglia-tbonfs, these two actions are combined into periodic collections of

metric data initiated by the root gmetad. The root gmetad obtains the metric collection intervals from a

configuration file and identifies collection groups, which are sets of metrics sharing the same interval.

The collection intervals for each metric can still be customized, but different intervals cannot be used

at separate hosts. In practice most Ganglia users do not use different intervals at separate hosts, so this

restriction has little impact.

144
When it is time to collect data for a collection group, the group files needed for each metric in the

collection group are established and read. The aggregations used with group read operations extract the

relevant data and then aggregate the per-host data into cluster and grid summaries. Because the compu-

Figure 8.3 Ganglia-tbonfs Monitoring and Data Storage Architecture
The Ganglia-tbonfs architecture substitutes TBON-FS servers for all gmonds, and TBON internal
processes for non-root gmetads. The root gmetad uses group file operations to collect metric data.
Aggregations running within TBON processes are used to compute metric summaries for clusters and
grids, and also to store data within RRDs. In contrast to the original Ganglia design, Ganglia-tbonfs
allows for placing host metric RRDs at multiple hosts, which helps to parallelize the overhead of
writing the metric data for each host.

UW

Comp Sci

Physics

GLOW

GLOW

DB

CSL

gmetad-tbonfs

grid RRD

cluster RRD

host RRD

TBON process

TBON-FS server

145
tation to generate summaries is spread across the tree processes, the associated processing necessary at

a gmetad is reduced. Further, we use structured binary data for metrics and metric summaries rather

than the original XML encoding, and thus avoid the overhead of XML parsing.

To remove the bottleneck that occurs when a cluster gmetad stores metric data from all hosts in

RRDs, we extended Ganglia-tbonfs to distribute the per-host metric RRDs across internal tree pro-

cesses. Spreading the host RRDs across multiple processes helps to parallelize much of the iteration to

store data. In the current implementation, all the internal processes at a pre-configured level in the tree

store the host metric RRDs for the servers found in their respective sub-trees. Cluster and grid metric

RRDs are still placed at the hosts running their associated gmetads.

Our distribution of host metric RRDs also required changes to the web-based user interface Gan-

glia provides for viewing host, cluster, and grid information. In the original design, a web server pro-

cess is run on the host containing the RRDs, or the RRDs are placed on a shared file system accessible

to the web server. This requirement results from the use of PHP scripts run by the web server to invoke

rrdtool, which is the utility that reads the RRDs and generates the requested metric history graphs.

In Ganglia-tbonfs, we cannot assume it is easy to run a web server on the hosts where internal tree pro-

cesses are located, nor that those hosts have access to a file system shared with the web server host.

Thus, we simplified the design to remove this RRD placement constraint.

To support our distributed RRDs, we replaced the logic that previously directly invoked rrdtool

from the PHP scripts with queries to the root gmetad to obtain the requested graphs. When a query

requests a graph whose data is found in remote RRDs, the root gmetad uses group file operations on a

new synthetic file that is created at each monitored host. Group write operations on these files are used

to multicast the query parameters. During these group writes, internal processes use special down-

stream aggregations that allow them to snoop on the write operands. Each internal process examines

the write buffer to determine if it owns the RRDs containing the requested data. If so, it invokes rrd-

146
tool to generate the graph and store it within a memory buffer in the aggregation function’s persistent

state. After the group write of the query, the root gmetad performs a group read to obtain the generated

graph. The same aggregation used with the group write is used with this group read, so that the internal

process can retrieve the cached graph from the aggregation state and add the graph data to the result

buffer. Since the data for any single query resides entirely within the RRDs of one internal tree pro-

cess, only one process will add graph data to the result buffer during the group read.

8.3 Evaluation

Our evaluation compares Ganglia 3.0.4 to Ganglia-tbonfs to determine the performance and scal-

ability effects resulting from incorporating group file operations and TBON-FS. Experiments were

conducted on the Thunder cluster located at Lawrence Livermore National Laboratory, a 1024-node

cluster using a Quadrics QsNetII Elan4 interconnect, with each node having four 1.4GHz Intel

Itanium2 processors and 8GB of memory. Thunder limits each job to using up to 493 nodes.

Our experiments focus on measuring CPU and network utilization at the hosts running the cluster

gmetad and monitors. As Thunder nodes do not have local disks, we were unable to test the benefits of

distributing the RRDs across the internal tree processes. We ran both versions for thirty minutes using

the default metric collection intervals.

We used tbonfs_bench, previously introduced in Chapter 8, to collect CPU utilization for all

processes. To measure network utilization, we instrumented Ganglia to record total bytes sent or

received, and used the built-in MRNet performance metrics that provide total bytes sent or received for

Ganglia-tbonfs. When running Ganglia, we measured the performance of the gmetad for the cluster,

the representative gmond, and the average performance of all non-representative gmonds. For Gan-

glia-tbonfs, we measured the cluster gmetad and the average performance of the TBON-FS servers that

act as monitors. Each internal tree process ran on one of the monitored hosts. The TBON-FS topolo-

gies used during experiments at each scale are shown in Table 8.4.

147
Figure 8.5 shows the observed CPU utilization by aggregator processes and monitor processes as

we increase the number of monitored hosts. Figure 8.5(a) shows the CPU use by cluster aggregator

processes. We see that Ganglia-tbonfs reduces the CPU use at the cluster gmetad by 50% versus Gan-

glia 3.0.4. This decrease is attributable to the use of distributed TBON computation for summarizing

metrics for the cluster. Even after this decrease, the Ganglia-tbonfs gmetad is still using 50% of a CPU

to store metric data for hosts and the cluster in RRDs. In the curve for the original Ganglia gmetad, we

observe a peak in the utilization at 256 hosts, after which point the utilization decreases. We hypothe-

size that at this point the gmetad has reached its maximum rate of storing metric data to the RRDs.

Figure 8.5(b) shows the CPU use by monitoring processes in both versions. For the original Gan-

glia, we separate the performance for the representative gmond from the average of all non-representa-

tive gmonds. As expected, the CPU use at non-representative gmonds grows linearly with the number

of monitored hosts as each process receives and stores metric data from all other hosts. We observe

that the CPU use curve for representative gmond follows the same pattern as the gmetad. This behavior

supports our hypothesis that the gmetad is busy storing data to RRDs, which results in reduced

requests to the representative for metric data. In Ganglia-tbonfs, CPU use starts at roughly 0.4% for 64

hosts and decreases at the larger scales. Again, we believe this decrease is due to reduced requests for

NUMBER OF
MONITORED

HOSTS

TBON TOPOLOGY
(FAN-OUT PER TREE LEVEL)

64 1 × 64

128 2 × 64

256 4 × 64

384 6 × 64

492 12 × 41

Table 8.4 Topologies used on Thunder

148
metric data from the cluster gmetad as it stores more data in RRDs.

Figure 8.6 shows the network utililization due to reads and writes for aggregators and monitors.

Figure 8.6(a) shows that Ganglia-tbonfs reduces the amount of data read at the cluster gmetad by an

order of magnitude. It also shows the same peak observed for CPU utilization in the original gmetad. If

the gmetad was not busy with storing data to RRDs, we would expect both the original gmetad and

gmetad-tbonfs to show increased read rates as the size of the cluster grows. Figure 8.6(b) shows that

the original gmetad has no measurable write activity. This graph also shows that the write rate of

gmetad-tbonfs is directly tied to the first-level fan-out of the tree, with roughly 1KB of data written per

child. All data written by gmetad-tbonfs corresponds to sending requests for reading metric data.

Figure 8.5 CPU Utilization for Ganglia Cluster Aggregators and Host Monitors
(a) Utilization by gmetads within Ganglia 3.0.4 and Ganglia-tbonfs.
(b) Utilization by gmonds in Ganglia 3.0.4 and TBON-FS servers in Ganglia-tbonfs. The ‘gmond rep’
curve shows the utilization by the representative gmond that sends metric data to the gmetad. The
‘gmond’ curve is the average of all non-representative gmonds.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400 450 500

%
 C

PU
 U

til
iz

at
io

n

Monitored Hosts

(a) Aggregation Processes

gmetad
gmetad-tbonfs

0.0

1.0

2.0

3.0

4.0

5.0

 0 50 100 150 200 250 300 350 400 450 500

%
 C

PU
 U

til
iz

at
io

n

Monitored Hosts

(b) Monitor Processes

gmond
gmond rep
tbonfs_server

149
Figure 8.6 Network Utilization for Ganglia Cluster Aggregators and Host Monitors
(a) Utilization due to reads by gmetads within Ganglia 3.0.4 and Ganglia-tbonfs.
(b) Utilization due to writes by gmetads within Ganglia 3.0.4 and Ganglia-tbonfs.
(c) Utilization due to reads by gmonds in Ganglia 3.0.4 and TBON-FS servers in Ganglia-tbonfs.
(d) Utilization due to writes by gmonds in Ganglia 3.0.4 and TBON-FS servers in Ganglia-tbonfs.

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500

N
et

w
or

k
U

til
iz

at
io

n
(K

by
te

s/
se

c)

Monitored Hosts

(a) Aggregation Processes - Read

gmetad
gmetad-tbonfs

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500
N

et
w

or
k

U
til

iz
at

io
n

(K
by

te
s/

se
c)

Monitored Hosts

(b) Aggregation Processes - Write

gmetad
gmetad-tbonfs

0.0

0.5

1.0

1.5

2.0

 0 100 200 300 400 500

N
et

w
or

k
U

til
iz

at
io

n
(K

by
te

s/
se

c)

Monitored Hosts

(c) Monitor Processes - Read

gmond
gmond rep
tbonfs_server

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500

N
et

w
or

k
U

til
iz

at
io

n
(K

by
te

s/
se

c)

Monitored Hosts

(d) Monitor Processes - Write

gmond
gmond rep
tbonfs_server

150
The network utilization due to reads by monitoring processes is shown in Figure 8.6(c). As

expected, the read rate increases linearly with cluster size for gmonds in the original Ganglia due to the

use of IP multicast. Network reads by TBON-FS servers correspond to receiving requests for metric

data from the gmetad, which arrive at a rate of approximately 1 KB per second.

The graph of Figure 8.6(d) shows data written by monitor processes. The representative gmond in

the original Ganglia sends metric data at nearly the same rate as received at the cluster gmetad. In con-

trast, the non-representative gmonds and the TBON-FS servers send very little data due to the low-

overhead metric collection rates.

8.4 Summary

With no previous knowledge of the Ganglia source code, our initial integration of group file oper-

ations and TBON-FS required just two weeks. The speed of the integration was helped by the clean

and simple code architecture of Ganglia, but is also a testament to the simplicity of using the group file

operation idiom. The group file abstraction helped to easily define metric collection groups, and to

associate with each group custom data aggregations that are used to compute metric summaries for

clusters and grids.

After this initial integration, we measured the performance of Ganglia-tbonfs on a local cluster.

Our experiments at that time and those presented above revealed the severe bottleneck posed by stor-

ing data to RRDs at cluster gmetads. Based on this observation, we further developed Ganglia-tbonfs

to distribute host RRDs across multiple hosts and eliminate this bottleneck.

Overall, we achieved good performance and scalability benefits from incorporating group file

operations. We reduced the CPU and network utilization at cluster gmetad processes by half while stil

maintaining the low overhead at monitored hosts. Given the low overhead of monitor processes in

Ganglia-tbonfs, we believe the default metric collection rates could be increased to provide finer-

grained monitoring data.

151
Chapter 9

Case Study: TotalView Debugger

Our final case study evaluates the integration of group file operations, TBON-FS, and proc++

within the TotalView parallel debugger. TotalView is a mature piece of software that represents the

efforts of many developers over many years. It has a large code base with many functional modules

that interact in complex ways. As a result, it is a challenge to understand the entire functionality of the

debugger, even for its most senior developers. To successfully modify even a subset of its behavior

requires careful analysis to identify the related code and its interactions with other parts of the system.

TotalView has also been continuously optimized to improve performance, which lessens the probabil-

ity of identifying simple changes that yield great benefits (often referred to as “low-hanging fruit”).

Instead, performance and scalability gains are likely to require asymptotic improvements to the algo-

rithms employed. TotalView thus represents an ideal study of the true effort required to apply our tech-

niques to improve the scalability of a real tool.

TotalView has been considered the de-facto HPC parallel debugger for over twenty years due to its

availability on the highest-performing computing systems of the day: from the Cray supercomputers of

the 1980s and the Intel Paragon in the 1990s, through the rise of commodity-hardware clusters in the

152
late 1990s and early 2000s, to today’s large integrated IBM BlueGene and Cray systems containing

hundreds of thousands of processors and specialized networks. As a result, TotalView has developed a

large user base consisting of commercial, government, and academic institutions across the globe.

Despite its widespread use, TotalView has known scalability limitations in debugging very large

parallel applications. From a user’s perspective, these limitations result in common debugging opera-

tions having latencies that increase linearly with the size of the application, as shown in Table 9.1. The

table shows the user-observed time for common group debugging operations such as attaching to a par-

allel application, stopping and stepping process groups, and managing process group breakpoints.

TotalView version 8.9.0 (TV8.9), released in November of 2010, was used to collect the data shown in

Table 9.1. This was the most recent production version available on the JaguarPF system at the time of

our evaluation. Although TV8.9 is fairly responsive at these application sizes, the tasks exhibit laten-

cies that grow linearly with the number of target processes. Given that current HPC systems support

applications with hundreds of thousands of processes, and that users of interactive tools are rarely will-

ing to wait for minutes at a time for an operation to complete, TotalView’s operational latencies effec-

tively reduce its use to a small fraction of a large system. Unfortunately, this represents a severe

impediment to the analysis and debugging of many important parallel applications that only encounter

problems at very large scales. Thus, TotalView is an ideal candidate for evaluating the performance

DEBUGGER GROUP OPERATION

APPLICATION SIZE (# PROCESSES)

1,728 2,744 4,096 8,000 10,648

Attach to processes 24.150 29.851 56.751 96.350 137.375

Stop processes 0.008 0.012 0.018 0.035 0.047

Single-step processes 0.453 0.812 1.262 2.417 3.335

Insert breakpoint 0.603 0.964 1.483 3.014 4.286

Remove breakpoint 0.077 0.125 0.191 0.402 0.591

Table 9.1 User Time (seconds) for Common Group Operations using TotalView 8.9.0

153
and scalability benefits of integrating group file operations, TBON-FS, and proc++.

In this chapter, we describe the four main activities of our TotalView study:

1. We identify the root causes of non-scalable behavior through measurment and analysis of the soft-

ware architecture. Section 9.1 describes the architecture of TV8.9, which is used as the basis for

our study, and the associated barriers to scalability.

2. We design and integrate solutions based on group file operations that improve the performance and

scalability for a core subset of debugger operations on groups of processes and threads. To define

the core operations, we assume a common debugging session wherein a user attaches to a parallel

application, inserts and removes breakpoints, issues process group control commands, examines

process memory and thread register contents, collects thread stack traces, and finally detaches or

terminates the parallel application. Our solutions use group file operations on distributed proc++

files, and we have nicknamed the resulting research prototype TV++. We discuss the design of

TV++ in Section 9.2.

3. We evaluate the performance of TV++ while debugging very large MPI applications with up to

150,000 processes. For comparison purposes, we use an unmodified version of TotalView (TV-

orig) and a prototype of another scalable version of TotalView under development at Rogue Wave

that directly integrates MRNet (TV-mrnet). Our evaluation presented in Section 9.3 confirms the

scalable performance of group file operations on distributed proc++ files as previously seen in

Chapter 6, but also reveals that significant barriers to the debugger’s scalability still remain in the

form of iterative actions within the client process during group operations.

4. Although a complete overhaul of the client was an untenable task for this study, we summarize the

observed inefficiencies and propose remedies that leverage scalable group file operations. We also

provide recommendations for improving scalability in areas that we did not directly address, such

as presentation of information to users. Our recommendations are presented in Section 9.4.

154
9.1 Scalability Barriers in the TotalView Architecture

The TV8.9 architecture is shown in Figure 9.2. A user interacts with a debugger client process via

a graphical or command-line interface. The client handles user requests for individual and group oper-

ations on targets (i.e., processes and threads). A debug server process is deployed on each host where

targets are located. Debug servers are lightweight RPC servers that handle requests for control and

inspection of specific targets from the client.

The client consists of three major layers of functionality. the user interface (UI) layer supports the

process, thread and group abstractions exposed by the graphical (GUI) and command-line (CLI) inter-

faces, and provides debugging operations on these abstractions. The debugger layer maps the user-

level abstractions to the machine-independent internal abstractions used to model execution and

debugging status. This layer implements the individual and group operations provided by the UI layer

by making requests of the tracer layer, which translates machine-independent requests into operations

on specific targets. The tracer layer consists of set of tracer modules, one per remote host. Each module

uses RPCs to access the OS process control layer within the debug server on the associated host.

There are three critical scalability barriers in the architecture of TV8.9. Briefly, these scalability

barriers are: (1) a 1-to-N communication structure, (2) a design that employs a heavyweight client to

keep servers lightweight, and (3) inconsistent treatment of group operations within the layers of the cli-

ent and servers. We discuss each of these problems in more detail.

Communication between client and servers employs direct channels implemented using TCP sock-

ets. TV8.9 thus has a 1-to-N communication structure that is typical of non-scalable tools, where the

tool front-end (viz., the client) has individual communication channels to each tool server. For opera-

tions on target groups that are the common use case for a parallel debugger, this structure results in

iterative behavior to send requests to servers and to gather operation results.

TV8.9 uses a heavyweight client design to keep debug servers lightweight. By heavyweight and

155
lightweight, we are referring to the amount of local resource utilization necessary to provide the sup-

ported functionality. It is commonly expected that all target host resources will be available for use by

parallel application processes. Thus, a lightweight server design has long been favored as a means for

lessening the impact on the target application by using a minimal amount of local resources.

TV8.9 servers maintain little state about local targets, and thus use little memory. Further, servers

Figure 9.2 TotalView Client and Server Architecture
TotalView has a 1-to-N communication architecture that connects the client to a large number of debug
servers. The server on each host containing targets uses the local OS process control layer to support
requests from the client for operations on individual processes or threads. State for each process and
thread is maintained at all three layers of the client, and group state is maintained at the top two layers.
The code boxes within the top two layers show how debugger group operations initiated by a user are
implemented. At the UI layer, operations on groups result in calls to group operations within the
debugger layer. The debugger layer group operation iterates to call the appropriate tracer level
operation for each member and update target state using the result returned by the tracer. The UI layer
uses the result returned by the debugger layer group operation, which typically consists of a success or
failure value, to update its state for each target.

Process State

Thread State

Group State

foreach(targ in grp)
{

tracer = targ.getTracer()
result = tracer.op(args)
targ.update(result)

}

Tracer Layer

Debugger

Layer

User

Interface

Layer

dbgGrp = grp.getDebugGrp()

result = dbgGrp.groupOp(args)

foreach(targ in grp)

targ.update(result)

debug

server

appappappapp

TotalView Client

OS Process

Control Layer

Operations

TCP Sockets

debug

server

appappappapp

debug

server

appappappapp

debug

server

appappappapp

debug

server

appappappapp

debug

server

appappappapp

Client

S

appappapp

S

appappapp

S

appappapp

S

appappapp

… … …

156
only use the processor when actively handling a request from the client, and return the results of OS

process control layer operations directly to the client without additional processing. Unfortunately, by

keeping servers lightweight, the resource utilization of the client is increased. The client maintains

state for every host, process, and thread involved in the parallel application. This state is spread across

all three layers, and consists of:

1. Execution status for every process and thread − This status denotes whether the target is running,

stopped, or held. For processes, the status also includes information about the address space map-

pings (i.e., the regions of memory containing the code and data for the program executable and

dependent libraries) and a list of the process’ threads. Additional status information for stopped

threads includes the contents of the general-purpose (GPR) registers and the stop reason (e.g.,

received a signal, or hit a breakpoint).

2. Debugging status for every process and thread − For processes, this status includes the breakpoints

and watchpoints that have been applied and a cache of recently read memory locations. For

threads, the debugger tracks intermediate states that occur when a thread transitions between the

execution states seen by users. For example, intermediates states for transitions from a thread

stopped at a breakpoint to running would include states such as restoring the original instruction,

single-stepping, and replacing the breakpoint.

3. Host status − This status includes the host’s name, IP address, and a set of identifiers indicating the

targets that reside on the host.

Together, the execution and debugging status allow for determining the appropriate actions required

when the user issues a command for debugging an individual or a group of targets, and provide the

necessary context for generating the values for operands to OS process control layer operations.

Initialization and update of state for large numbers of targets requires iterative client actions, and

the resulting memory footprint and processing overhead can be substantial. Additionally, because

157
tracer layer operations often use process- or thread-specific information such as virtual addresses, the

client must calculate the correct address for each target before making a request. Such context-specific

calculations lead to even more client overhead during group operations.

TV8.9 uses process and thread groups as a primary abstraction. By default, a user is presented with

groups representing all processes, all threads, and processes running the same program executable. A

user can also form custom process and thread groups. Debugging operations are applied to groups

unless the user explicitly selects an individual process or thread target. Despite its focus on groups, the

treatment of group operations at the various implementation layers is inconsistent. The most glaring

omission is the lack of group operation support in the tracer layer, which forces the debugger layer to

iterate in its use of the tracer layer and prevents the use of scalable mechanisms. This omission also

hampers interactions with individual servers, since even operations involving many targets on the

same server require a separate request and reply for each target. Conversely, some group operations,

such as attaching the debugger to a group of processes, are implemented using iteration within the UI

layer. Finally, because tracer layer operations are a thin veneer for OS process control operations,

many debugging operations such as planting a breakpoint or gathering a thread stack trace require

many RPCs between the client and each server. The reliance on OS-level debugging primitives pre-

cludes efficient implementations that reduce the number of client-server interactions during such

debugging operations.

9.2 A Design for Scalable Group Debugging Operations in TV++

The design of TV++ addresses each of the three scalability barriers in the original architecture.

TV++ replaces the existing 1-to-N communication structure and debug servers with TBON-FS. The

debugging functionality previously provided by debug servers is supported by using TBON-FS to

access the proc++ file service on each target host. The use of proc++ moves some of the burden of tar-

get state management to servers, and enables debugger group operations to be implemented using the

158
new abstractions proc++ provides to eliminate context sensitivity and reduce client-server interactions.

The client design was also modified to support group operations at all layers, thereby allowing the use

of group file operations for implementing tracer functionality at the lowest layer. An overview of the

resulting TV++ architecture is shown in Figure 9.3. Below, we discuss the key design characteristics of

TV++ and the relevant integration activities.

Since the tracer layer encapsulates both remote communication and low-level operating system

debug interfaces, we decided to implement a new type of tracer module that would use TBON-FS to

access servers that provide debugging support through the proc++ file service. We call this new tracer

Figure 9.3 TV++ Scalable Architecture
TV++ replaces the existing 1-to-N communication architecture and debug servers with TBON-FS. The
client debugger layer and tracer layer at the client have been updated to support new group operations.
Within the proc++ tracer module, group file operations on remote proc++ files are used to implement
the group debugging operations.

Process State

Thread State

Group State

rep = grp.getRepresentative()
tracer = rep.getTracer()
result = tracer.groupOp(args)
foreach(targ in grp)

targ.update(result)

proc++

Tracer

Debugger

Layer

User

Interface

Layer

dbgGrp = grp.getDebugGrp()

result = dbgGrp.groupOp(args)

foreach(targ in grp)

targ.update(result)

TotalView Client

TBON-FS

proc++ proc++ proc++ proc++ proc++ proc++

appappappapp

Group File Operations

appappappapp appappappapp appappappapp appappappapp appappappapp

OS Process

Control Layer

Operations

159
the proc++ tracer. As is required for all tracer modules in TV8.9, the proc++ tracer maintains informa-

tion about the remote hosts, processes, and threads under its control. The tracer additionally keeps

information on process and thread groups. For each group, this information includes a set of active

group file descriptors and the group handle that is used to uniquely identify a group and query its mem-

bership. The current proc++ tracer implementation supports operations only on the two most common

groups, all processes and all threads, even though proc++ can support arbitrary custom groups. In prac-

tice, these two groups were sufficient to demonstrate the functionality required by our target use case.

To remedy the inconsistencies in the support for group operations within the layers of the client,

and to enable the use of group file operations for implementing user-level debugger operations on pro-

cess and thread groups, TV++ adds new group methods (as necessary to support the operations in our

target use case). A list of our extensions follows.

• We added a new type of handle that represents a group of processes or threads. The debugger layer

passes handles to the tracer layer to identify debug targets.

• Methods used to support attaching the debugger to a group of processes were added to the debug-

ger and tracer layers. Two versions of group attach are supported by the proc++ tracer. The first

version takes a list of the target processes to attach to as an input operand. The second version

takes the path name of an executable and attaches to all processes on all the server hosts that are

running that executable.

• Process group memory read and write operations were added at all layers. Two versions of these

operations are supported. The first version operates on virtual memory address, while the second

uses the context-insensitive base+offset abstraction provided by the proc++ image files.

• Process group breakpoint insertion and removal were added to the tracer layer. Previously, break-

point management required sequences of individual address space reads and writes. The new

group breakpoint operations utilize the explicit breakpoint support in proc++.

160
• Process group stop and continue operations were added to the tracer layer.

• Thread group single-step and step-from-breakpoint were added to the tracer layer.

When using the new group methods, any necessary changes to the client state for each group mem-

ber are made in the same iterative manner as used by the existing software. Though much of this target

state is made redundant by the move to using proc++, these updates were necessary to ensure the

debugger continued to work as expected. Later in Section 9.4, we propose an approach to state man-

agement designed to improve the scalability of allocation and updates.

The proc++ tracer is currently the only tracer module that implements the new group methods. To

avoid frequent opening and closing of oft-used group files, the proc++ tracer maintains a set of group

file descriptors that are created during the process group attach operation and remain open until the

processes are detached or killed. These descriptors correspond to groups of proc++ files used for con-

trolling processes and threads, gathering thread events, and accessing memory and registers.

When servicing a group tracer operation, the tracer queries the target group’s information object to

see if there exists a cached group file descriptor for the relevant group file. If a cached descriptor is

found, it is used to complete the required group file operations for the current tracer operation. Other-

wise, the tracer uses gopen to establish the file group, and optionally binds the aggregation to be used

for group reads. Often, a single group write or group read with default aggregation is all that is

required. For these situations, the tracer implements convenience routines for group reads and writes

that perform the entire sequence of group file operations (i.e., gopen, optional lseek, read or

write, and close) for a group file whose directory path is given as an operand.

The proc++ tracer uses custom group read equivalence aggregations to provide scalable summa-

ries of program counter register values, thread events, and process address space mappings. A simple

equivalence aggregation is used to generate lists of threads that share the same PC register value.

Threads are represented using their index within the group file used for accessing the regs/pc files in

161
proc++ thread directories. Strided ranges are used for compact thread lists. A sample of two PC equiv-

alence classes representing 10,000 threads is shown below.

(0,1,5000) 0x5adc0

(5000,1,5000) 0x5adc8

An event read from the events file within a proc++ process directory is a tuple that identifies the

eventing thread and the event details, and has the form:

((host_id, process_id, thread_id), event_type, event_data, event_addr)

The thread associated with the event is given as a 3-tuple containing the host, process, and thread IDs.

The event_type indicates the reason a thread has stopped, such as due to a signal or hitting a break-

point. The event_data field contains auxiliary data associated with specific event types, such as the

signal number or breakpoint ID. The event_addr is the value of the PC register, which indicates the

address where the thread is stopped. For event types such as process fork or exec or the loading of a

shared library, the address is irrelevant, and event_addr is set to zero. To generate event summaries,

the tracer uses an aggregation that associates a list of target threads with each unique event. Event

uniqueness is determined by comparing all three fields of an event. An example of an event summary

for 10,000 threads hitting the same breakpoint, whose ID is 4, is shown below.

((0,1920,1920),...,(9999,24365,24365)) (PROCPP_BREAKPOINT, 4, 0x5adc0)

To aggregate executable and library address space mappings read from the as/map files in proc++

process directories, equivalence classes are formed for images that are mapped at the same base

address. Each mapping equivalence class associates a list of processes with the name and base address

for an image. Process lists are represented as strided ranges of group file indices, similar to the PC

equivalence aggregation. A few sample classes are shown below.

(0,1,10000) (myexe, 0x5ac00)

(0,1,10000) (mylib.so, 0x70c00)

(0,1,5000) (libc.so.6, 0x90a00)

162
(5000,1,5000) (libc.so.6, 0x90c00)

9.3 Evaluation

To evaluate the benefits of using group file operations and TBON-FS in TV++, we measured its

performance for debugging an MPI application as we increased the number of processes. As in our

evaluation of TBON-FS and proc++ in Chapter 6, we used the IRS benchmark from the ASC Sequoia

Benchmark Codes [8]. The application was run in pure-MPI mode and one process was placed on each

compute node core. IRS requires the total number of processes to be equal to for an integer .

For comparison, we measured the performance of two other versions of TotalView. The first ver-

sion, which we refer to as TV-orig, is built from the same source code as TV++. Both TV-orig and

TV++ are based upon a snapshot of the TotalView source code taken in February of 2011, a couple

months after the release of TV8.9. The code that uses the proc++ tracer and the newly added group

methods at the various client layers can be enabled at compile time.

The second version, which we refer to as TV-mrnet, is a prototype version under development at

Rogue Wave that directly integrates MRNet (without using TBON-FS or proc++). This version is

intended to support debugging of applications with up to 32,000 processes. MRNet is used to replace

the existing TCP sockets to each debug server. To avoid extensive server changes, requests from the

client and server responses use the existing protocol format. Similar to TV++, extensions were made to

the tracer layer to support group operations and enable the use of MRNet’s scalable multicast. How-

ever, some group debugger operations, including attaching to processes and process group continue,

have not yet been converted to use group tracer operations. These operations still use iteration to uni-

cast messages from the client to individual servers. TV-mrnet uses custom data aggregation for com-

pact encoding of PC register values, but no other forms of data aggregation are employed.

All three versions were built on a Linux x86-64 host located at Rogue Wave using the GCC 3.3.3

compiler suite with optimization enabled and without debug information.

k3 k 2≥

163
Experiments were run on the JaguarPF Cray XT5 system [77] located at Oak Ridge National Lab-

oratory. JaguarPF contains 18,688 compute nodes, each with two six-core AMD Opteron 2435 proces-

sors and 16GB of DDR2-800 memory. Nodes are connected in a three-dimensional torus topology by a

high-bandwidth, low-latency SeaStar 2+ network. For TV++, we used the same tree topologies as our

previous proc++ experiments (see Table 6.7). Because large compute node allocations for interactive

debugging are hard to acquire on JaguarPF, we employed the TVscript facility that permits runs of

TV8.9 in batch environments. A TVscript is simply a sequence of CLI commands.

We measured performance using TV8.9’s built-in performance metric system. This system pro-

vides the ability to record the wall time used by a region of sequential code; the region can be explic-

itly defined using start and end delimiters or implicitly associated with the scope of a function or block.

At the end of TotalView’s execution, or when explicitly requested by a script command, the perfor-

mance summaries for recorded metrics are written to a file. For each metric, the performance summary

includes the number of times the code region was executed, statistics such as minimum, maximum,

and average latency computed from all executions, and a histogram showing the distribution of laten-

cies. The results presented below correspond to the smallest value for average latency observed across

a small number of runs at each application size.

A script provided by Rogue Wave for evaluating TotalView’s performance when debugging the

IRS application was used to drive our experiments. The IRS script runs the debugger through a

sequence of eight subtests representing common group debugging actions, and measures the elapsed

time for each subtest. The actions performed within each subtest are:

1. Launches the parallel application, attaches to all processes, and waits for all processes to come to a

stable state. Time for this subtest can be divided into three primary activities: time to launch the

parallel application, time to gather the list of processes, and the time to attach to all processes

2. Create a breakpoint in all processes. This subtest is used three times to insert breakpoints corre-

164
sponding to three source locations.

3. Run all processes to a breakpoint. This subtest is used three times to run to each of the breakpoints.

4. Step all processes past the first breakpoint.

5. Perform a step to run to the next source line on all processes. This subtest is used twice.

6. Remove a breakpoint from all processes.

7. Perform a next to run to the next source line without following function calls on all processes. This

subtest is used twice.

8. Perform a run-out to exit the current function on all processes.

TV++ completely supports the actions of the IRS script, which confirms our choices for core function-

ality, and demonstrates that TV++ is suitable for basic debugging of real applications.

Our evaluation measured performance during two phases of executing the IRS script. The first

phase, which we refer to as parallel-startup, corresponds to subtest 1. The second phase, which we call

group-operations, corresponds to subtests 2 through 8. During each phase, we collected performance

data at two levels of detail:

1. Micro-level performance of proc++ tracer group operations - We measured the time spent in the

tracer group operations. These times include the use of group file operations and the management

of tracer state for processes and threads. Measurements use newly added performance metrics for

each group tracer operation. We also added metrics to some single-target tracer operations to help

identify when they were being used unexpectedly. Results for micro-level measurements are pre-

sented in Section 9.3.1

2. Macro-level performance of debugger group operations - We measured the time taken by internal

routines within the UI and debugger layers that implement group debugger operations initiated by

users. For the majority of operations, TotalView already contained the necessary metrics. When

more detail was needed to determine where time was being spent in a long running group opera-

165
tion, we added new metrics to provide the necessary insight. Results for macro-level measure-

ments are presented in Section 9.3.2

9.3.1 Micro-level proc++ Tracer Performance

Figure 9.4 shows the time required by tracer group operations in three classes: (a) group operations

used exclusively during parallel-startup, (b) group operations used for controlling the behavior of pro-

cesses and threads, and (c) group operations used for inspecting the state of processes and threads.

During parallel-startup, the three proc++ tracer group operations shown in Figure 9.4(a) are used.

The first operation, “launch servers”, includes the time spent to launch a debug server on each of the

target hosts. Server launch occurs as part of the mount of TBON-FS by the proc++ tracer. The second

operation, “attach processes”, includes the time to do a group attach to all the processes in the applica-

tion, as well as the time to gopen the process and thread group files that are kept open for the duration

of the application. The third operation, “gather address maps”, shows the time to gather and calculate

equivalence classes for the address space mappings of the application executable and shared libraries.

The time to launch debug servers dominates the tracer group operations used during startup. On

Cray systems, the ALPS parallel runtime environment [57] must be used to co-locate tool processes

with application processes. Unfortunately, this means that there is little that can be done to eliminate

the linearly increasing time behavior exhibited during server launch. In contrast, the time to attach pro-

cesses scales fairly well even though the list of processes that is distributed to all servers grows with

the application size. Gathering address space mappings for all processes shows sub-linear behavior,

but still requires over ten seconds for more than 156,000 processes. We believe that further improve-

ments to the internal data representations used for the mapping equivalence classes in our aggregation

can greatly improve the time of encoding and decoding this data at all TBON processes. Related

improvements in the format used to record mapping information at the client may also be beneficial.

Figure 9.4(b) shows the performance of proc++ tracer operations used for controlling process and

166
Figure 9.4 proc++ Tracer Group Operation Performance
(a) Latency of group operations used during parallel-startup.
(b) Latency of group control operations.
(c) Latency of group inspection operations.

0

20

40

60

80

100

120

140

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

ec
on

ds
)

Application Size (# processes in thousands)

(a) proc++ Tracer Group Startup Operations

launch servers
attach processes
gather address maps

0.00

0.05

0.10

0.15

0.20

0.25

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

ec
on

ds
)

Application Size (# processes in thousands)

(b) proc++ Tracer Group Control Operations

plant breakpoint
unplant breakpoint
continue processes
stop processes
singlestep threads

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

ec
on

ds
)

Application Size (# processes in thousands)

(c) proc++ Tracer Group Inspection Operations

gather events
gather GP registers
gather PC registers
cache all registers

167
thread groups. The tracer operations shown include planting and removing breakpoints, stopping and

continuing processes, and single-stepping threads. Because they are based on scalable group writes,

tracer operations on process groups exhibit excellent performance. Single-stepping a thread group

requires both a group write and a group read to gather thread step events. The total latency for single-

stepping is dominated by the linear time at the client to record the thread events.

The performance of tracer operations used for process and thread group inspection is shown in

Figure 9.4(c). These operations include gathering events from all processes and GPR and PC register

contents from all threads. We break out the time the client spends iterating to store individual register

contents (“cache all registers”) from the time to gather registers to clearly show its contribution. The

inspection operations using equivalence aggregation (“gather events” and “gather PC registers”) show

sub-linear behavior. In contrast, collecting GPR contents using data concatenation scales linearly.

Overall, the performance of the proc++ tracer group operations match that observed during our

previous proc++ evaluation. Thus, these results confirm the scalability benefits that can be gained

when using group file operations on distributed proc++ files accessed via TBON-FS.

9.3.2 Macro-level Debugger Group Operation Performance

TV8.9 uses the system’s parallel runtime environment (e.g., ALPS on Cray) to launch the parallel

application, and then extracts the MPI process table from the runtime’s starter process (e.g., aprun on

Cray). The process table maps the host and process ID for each application process to its MPI rank. A

rank is a logical identifier used to name processes for communication in MPI. TotalView then brings

the processes under its control through a series of four steps. The latency of the main tasks within each

step are shown in Figure 9.5 for each of the three versions of TotalView.

One of the most obvious observations to be made from Figure 9.5 is that TV-orig is limited in the

number of application processes that can be debugged. In our experiments, the largest application size

we could reliably debug using TV-orig was 11,520 processes (just 5% of JaguarPF’s capacity). This

168
Figure 9.5 TotalView Parallel Startup - IRS
(a) Latency of launching and connecting debug servers (step 1).
(b) Latency of attaching to parallel application processes (step 2) and waiting for a stable state (step 3).
(c) Latency of reading symbol information for all processes and inserting event breakpoints (step 4).
(d) Cumulative latency for parallel startup.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

ec
on

ds
)

Application Size (# processes in thousands)

(a) Step 1: Launch and Connect Servers

TV-orig
TV-mrnet
TV++

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

ec
on

ds
)

Application Size (# processes in thousands)

(b) Steps 2 and 3: Attach and Stabilize Processes

attach - TV-orig
attach - TV-mrnet
attach - TV++
stabilize - TV-orig
stabilize - TV-mrnet
stabilize - TV++

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

ec
on

ds
)

Application Size (# processes in thousands)

(c) Step 4: Final Setup of Processes

read symbols - TV-orig
read symbols - TV-mrnet
read symbols - TV++
thread events - TV-orig
thread events - TV-mrnet
thread events - TV++

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

ec
on

ds
)

Application Size (# processes in thousands)

(d) Total Parallel Startup

TV-orig
TV-mrnet
TV++

169
limitation is due to the use of the select system call for monitoring socket connections to debug serv-

ers and the system limit for the size of the file descriptor sets that are used as its operands. On Jag-

uarPF and most Linux systems, the descriptor set size is a compile-time constant in the operating

system kernel, with 1,024 being the default value. Due to this system limit, TV-orig can only be used to

debug applications using slightly less than 1,024 hosts (12,288 processes). This limit on the number of

monitored file descriptors can be remedied by using poll instead of select, but this will not improve

the performance at scale. TV++ and TV-mrnet do not have this limitation, due to their use of TBONs

for communicating with servers.

In the first step, debug servers are launched on each participating host and communication

between the client and servers is established. As shown in Figure 9.5(a), this phase has linear behavior

that is primarily attributable to the time required to launch servers using ALPS. TV++ shows a rela-

tively uniform reduction in latency of about 20 seconds versus TV-mrnet. This reduction is due to tun-

ing that was done in TV++ to improve the overhead of initializing host state on the client .

During the second step, the client initializes some state for each process that will be attached,

instructs and waits for each server to attach to local processes, and finally updates the state for all pro-

cesses. The performance of this phase is shown by the “attach” curves in Figure 9.5(b). Both TV++

and TV-mrnet significantly reduce the time for attaching all processes versus TV-orig, due to the bene-

fits of using a TBON to distribute attach requests. Unfortunately, the overall scaling behavior appears

quadratic. We attribute this behavior to the need to initialize and update the process state at the client.

The cost of state management is only magnified by the fact that process state is spread across all three

layers of the client.

Events for processes stopped during attach and newly identified threads are gathered and pro-

cessed by the client during the third step, and the parallel application is brought to a stable state. The

performance for this phase is shown by the “stabilize” curves in Figure 9.5(b). TV++ outperforms TV-

170
mrnet and TV-orig during this phase by generating the process stop and thread creation events directly

within the proc++ tracer during process attach, whereas the other two versions generate these events in

the server tracers and must incur the cost of gathering them to the client. The TV++ curve thus is

strictly the time spent at the client processing events, which can be quite substantial.

In the fourth step, symbol information for the program executable and dependent shared libraries

is collected, and special breakpoints used for internal handling of process fork/exec events, shared

library load and unload events, and thread creation and destruction events are inserted into all pro-

cesses. Figure 9.5(c) shows the performance for these tasks. The “read symbols” curves include the

time to read symbol information and insert breakpoints for handling fork/exec and library events. The

“thread events” curves show the time required to insert breakpoints for user-level thread library events.

Because proc++ automatically generates events for fork/exec and library load/unload, TV++ does not

try to insert the internal breakpoints for these events, which results in a large time savings. The “thread

events” time is roughly equivalent for TV++ and TV-mrnet, and represents the time to issue a series of

memory inspection operations on each process to determine that no user-level thread package is

present (since IRS was run without threading).

Figure 9.5(d) shows the cumulative latency of the four startup phases for each version. At the larg-

est scale, improvements in TV++ result in approximately 200 seconds of savings, but the overall star-

tup time is nearly twenty minutes due to all of the client iteration bottlenecks.

In the second phase of the IRS script (subtests 2-8), we measured the performance of group debug-

ging operations used for process control. The group control operations tested are those employed by

the IRS script subtests, which includes stop, continue, step, next, and run-out. We also measured the

performance of creating and removing breakpoints. These measurements closely approximate the per-

formance that a user would observe during interactive debugging.

Figure 9.6 shows the performance for the group control operations. For each operation, we show

171
the scaling behavior up to 100,000 processes in the graphs on the left, and magnified views on the right

for up to 16,000 processes. The magnified views are useful for seeing the performance of TV-orig. As

is evident from the left graphs, each group control operations exhibits linear or worse scaling behavior.

For group stop, shown in Figure 9.6(a, b), the TV++ and TV-mrnet latencies are reasonable at less

than 600 and 500 milliseconds, respectively, for nearly 100,000 processes. However, as previously

shown in Figure 9.4, the time to actually stop the remote processes using the proc++ tracer is less than

20 milliseconds. Since this is a user-directed group stop, the debugger ensures that all processes have

stopped by waiting for stop events from all targets. Thus, the remaining client time is spent waiting for

these events and updating process state for each received event. We do not know the exact reason why

TV-orig and TV-mrnet outperform TV++ during group stop operations. We believe the cause may be

related to the 100 millisecond timeout period used by the proc++ tracer while waiting for events. In

retrospect, this timeout period is a poor choice for the low-latency Cray network.

Process group continue operations in TV8.9 are implemented using a weak stop followed by a

continue on each process. A weak stop is a stop request that does not update the user visible process

state, and is used to ensure that pending events are handled before continuing a process. For processes

with threads currently stopped due to hitting a breakpoint, the threads are stepped over the breakpoint

during the continue. Due to all of the work that is done for a group continue, it takes approximately ten

times as long as a group stop as shown in Figure 9.6(c, d). A majority of this time is spent within the

client iterating over target processes and their threads to determine what actions are necessary. In

TV++, we have eliminated a large portion of this iteration by having proc++ automatically step threads

over breakpoints when a process is continued. The result of this enhancement is a better slope for

TV++ versus TV-mrnet. Still, the scaling behaviors for all versions are linear due to the iteration

involved in processing events during the weak stop.

TV8.9 implements group step, next, and run-out using temporary breakpoints. A temporary break-

172
Figure 9.6 TotalView Process Group Control Operation Performance
(a, b) Latency of group stop operations.
(c, d) Latency of group continue operations.
(e, f) Latency of group step, next, and run-out operations.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

ds
)

Application Size (# processes in thousands)

(a) Process Group Stop

TV-orig
TV-mrnet
TV++

0.00

0.05

0.10

0.15

0.20

 0 2 4 6 8 10 12 14 16

Application Size (# processes in thousands)

(b) Process Group Stop (zoom)

TV-orig
TV-mrnet
TV++

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

ds
)

Application Size (# processes in thousands)

(c) Process Group Continue

TV-orig
TV-mrnet
TV++

0.00

0.10

0.20

0.30

0.40

0.50

 0 2 4 6 8 10 12 14 16

Application Size (# processes in thousands)

(d) Process Group Continue (zoom)

TV-orig
TV-mrnet
TV++

0

5

10

15

20

25

30

35

40

45

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

ds
)

Application Size (# processes in thousands)

(e) Process Group Step/Next/Run-out

TV-orig
TV-mrnet
TV++

0.0

1.0

2.0

3.0

4.0

5.0

 0 2 4 6 8 10 12 14 16

Application Size (# processes in thousands)

(f) Process Group Step/Next/Run-out (zoom)

TV-orig
TV-mrnet
TV++

173
point is placed at the address of the next machine instruction associated with the next program source

line, and at the addresses of instructions whose control flow is not known in advance such as condi-

tional jumps. Threads are then run to these breakpoints, and the debugger checks to see if the current

program counters for all the process group’s threads have reached the next source line. Threads that

have reached the source line are held as the process is repeated for threads that have not. Instructions

with unknown control flow are processed using machine instruction single-stepping to stop threads at

the control flow target.

In our measurements all of these operations performed similarly, so we report only the results for

the fastest group step, which involves the use of a single temporary breakpoint. The latency of this

group step is shown in Figure 9.6(e, f). The performance of all three versions is dominated by client

processing to analyze instructions and handle temporary breakpoint events, since the cost of creating,

planting, and removing breakpoints is comparatively small, as we discuss next.

Figure 9.7(a) shows the latency to create breakpoints at source and address locations. Breakpoint

creation is an activity performed strictly at the client, and simply iterates over the process group mem-

bers to update their state. For source-level breakpoints, this client processing exhibits quadratic scaling

behavior. Address-level breakpoint creation, as is used for temporary breakpoints, performs much bet-

ter but still has linear scaling. At nearly 100,000 processes, creation of a source-level breakpoint takes

over two minutes, while an address-level breakpoint requires just under ten seconds.

Figure 9.7(b) shows the time necessary to plant and remove breakpoints in process groups. In TV-

orig and TV-mrnet, planting breakpoints requires fetching and storing the existing machine instruc-

tions at the target address and then writing the breakpoint instruction, and removing breakpoints writes

back the original instruction. TV++ uses the explicit breakpoint support in proc++ that transparently

handles the details of replacing instructions. TV++ thus outperforms TV-mrnet, but both still show lin-

ear scaling due to an iteration within the client to update the breakpoint state for each process.

174
9.4 Design Recommendations to Improve Scalability

Our evaluation of TV++ has revealed that the performance and scalability gains from integrating

group file operations and TBON-FS can easily be hidden by iteration still present in the client. Thus,

we can see that Amdahl’s law [4], which generally states that benefit from parallelizing the work done

Figure 9.7 TotalView Process Group Breakpoint Performance
(a) Latency of creating a process group breakpoint at a specific source code line or memory address.
Although hard to see, TV-orig performs identically to TV++ and TV-mrnet up to 8000 processes.
(b) Latency of planting and removing breakpoints in a group of remote processes.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

ec
on

ds
)

Application Size (# processes in thousands)

(a) Process Group Breakpoint Creation

source line - TV-orig
source line - TV-mrnet
source line - TV++
address - TV-orig
address - TV-mrnet
address - TV++

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

ec
on

ds
)

Application Size (# processes in thousands)

(b) Process Group Breakpoint Plant and Remove

plant - TV-orig
plant - TV-mrnet
plant - TV++
remove - TV-orig
remove - TV-mrnet
remove - TV++

175
by an application is limited by the fraction of work that remains serial, also applies to the implementa-

tion of tools for distributed systems. In this section, we suggest approaches targeted towards reducing

the iterative behavior in the client that limits its performance at scale.

Because the client maintains up-to-date status for every target process and thread, and target state

is split across three layers, the client spends a large amount of time to initialize and update the state at

each layer. There are two common causes for state updates, user-initiated debugging actions and pro-

cessing of events. For user actions, the client typically updates state while it iterates to make tracer

requests for each target. Updates are also applied during the serialized event processing at the client.

Completely eliminating these iterative behaviors in the client would require a substantial re-design

of the management of target state. Ideally, target state would be maintained within debug servers and

scalable group file operations would be used to collect and aggregate the state for groups of processes

and threads. However, moving target state to servers also requires servers to be active in the decisions

regarding the appropriate control or inspection tasks for a given debugging operation. For example, the

current logic for process continue operations identifies threads at breakpoints that must be stepped

over before issuing the continue request. TV++ can provide this functionality at servers since proc++

is breakpoint-aware. Given appropriate knowledge, servers could directly support operations such as

source-level step or next and generation of stack traces. Unfortunately, such an overhaul would require

a long development effort, which is a big investment for an established product with regular releases.

A stop-gap measure to improve state management would be the use of bulk allocation and updates.

In bulk state management, per-target data structures (or objects) are replaced by a collection of arrays,

with one array per field in the original structure. Figure 9.8 shows an example of converting a data

structure containing three fields to a collection of three field arrays. Each target is assigned a unique

index that is used with all field arrays. Using this data organization, a single large memory allocation

per field replaces the iterative allocation of many small structures. A field array can be initialized or

176
updated using a single large memory copy operation, preferably from a buffer generated using a scal-

able aggregation of remote target data.

A second recommendation for reducing the cost of state management is to avoid data caching.

Such a notion may seem counterintuitive to designers of distributed systems, since caching is well-

regarded for avoiding the cost of remote data access when data is not expected to change. However,

caching for large numbers of targets results in huge memory costs and extra computation to store and

invalidate the data for each target. TV8.9 caches the contents of memory and registers, but does not

always use all of the cached data. When analyzing data for large groups, it may be much faster to use a

scalable group file operation to fetch and aggregate data on demand rather than to iterate over cached

data. An interesting area for future research is evaluating the benefits of caching data within TBON

internal processes as a means for reducing the latency of on-demand fetching and the load at servers.

Figure 9.8 Conversion from Per-Target State to Bulk State
(a) The target_state structure contains three data fields. Pointers to instances of this structure are
maintained for each target in targets. The unique ID for a target (target_id) is used to index
within targets.
(b) Each of the three data fields of target_state are converted into arrays that hold the values for
all targets. The unique ID for a target is used to index within each field array.

target_id

targets

struct {
int a;
int b;
float c;

} target_state;

(a) Per-target State Structures (b) State Field Arrays

target_state_b

target_state_c

target_state_a

target_id

177
Finally, we have not addressed the scalability of displaying process and thread status information

in the graphical or command-line user interfaces. It is our belief that attempts to provide per-target data

for large groups result in unintelligible displays. The obvious alternative is to display information cor-

responding to groups of targets. The challenges for constructing such group displays are to identify the

groups (i.e., sets of targets that share some characteristic) and to generate compact representations for

the associated group membership and data. We believe group file operations could be used extensively

for both group identification and generating compact data representations as the basis for scalable

group visualizations.

9.5 Summary

The design and integration of group file operations, TBON-FS, and proc++ within TV8.9 was a

long process that spanned two years, largely due to the learning curve required to understand a large,

complex piece of software. This understanding was crucial to successful modification of the software.

The most significant design and development time was spent adding the new group operations at the

various client layers. Given these additions, it was fairly easy to use group file operations to implement

the group operations. As shown in our micro-level proc++ tracer results, group file operations perform

very well at large scales. Unfortunately, as revealed in our macro-level group operation results, the per-

formance benefits are hidden by remaining serial behaviors in the client.

178
Chapter 10

Conclusion

Many tools and middleware perform group operations on distributed processes and files. Prior

work has failed to provide a common solution that both addresses the key scalability barriers in distrib-

uted group operations and is easy to use within new and existing software. Our goal for this research

was to develop a scalable, easy-to-use, and portable method for performing group operations on dis-

tributed processes and files. We desired a method that enables developers to quickly create new scal-

able software and that is easy to integrate within existing software to improve its scalability. To meet

our scalability goals, this method had to employ techniques that are effective on the largest existing

and upcoming systems, meaning systems containing at least tens of thousands of hosts and hundreds of

thousands of processor cores. In this chapter, we review our technical contributions that meet these

goals and discuss opportunities for further investigation and improvement.

10.1 Contributions

Our approach to group operations on distributed processes and files was designed to have three

desirable properties: scalability, usability, and portability. We achieve scalability by avoiding linear-

time behavior, such as iterations that are proportional to the size of the group, in favor of constant-time

179
or logarithmic-time behavior. Since data processing time often scales linearly with respect to the size

of the data, our approach incorporates methods for reducing or limiting the amount of data that is gath-

ered to a central location for further processing or analysis. To encourage widespread use and improve

portability, we based our techniques on familiar and commonly available abstractions and functional-

ity. When extensions to this common base were necessary to achieve scalability, we strove to retain

clear semantics and intuitive behavior. Our approach consists of four main contributions:

Group File Operations. We introduced group file operations, an intuitive new idiom for eliminating

iterative behavior when a single process must apply the same set of file operations to a group of related

files. The keys to the idiom are explicit identification of file groups, the ability to name a file group as

the target for POSIX I/O operations, and explicit semantics for aggregation of data and status results

produced by these operations. Group file operations provide a familiar interface that eliminates forced

iteration, thus enabling scalable implementations on groups of distributed files. Given underlying

mechanisms for distributed data aggregation, group data and status results can be processed in a dis-

tributed fashion that eliminates or reduces the need for centralized analysis or large data storage.

Name Space Composition. Forming file groups efficiently is an important precursor to the use of

group file operations. To avoid iteration during group definition, we proposed a scalable technique for

defining file groups that relies on composing file system name spaces. Name space composition is sup-

ported using a new specification language called FINAL, the FIle Name space Aggregation Language.

FINAL models hierarchical name space composition as operations on trees, and provides flexible com-

position semantics based on common tree operations such as copying, pruning, and grafting. To sup-

port efficient composition of many trees without explicit iteration, FINAL introduces a merge

operation over set of trees, and supports customizable resolution for the name conflicts that can occur

during a merge. FINAL’s merge operation provides the key semantics required for composing directo-

ries containing files from independent name spaces. Further, the merge operation maps nicely to scal-

180
able distributed composition within a tree-based overlay network.

TBON File System. We designed and evaluated the TBON File System (TBON-FS), a group file sys-

tem that leverages the logarithmic communication and distributed data aggregation capabilities of tree-

based overlay networks to support scalable group file operations on distributed files and scalable glo-

bal name space composition. TBON-FS uses MRNet [101], a general-purpose TBON API and infra-

structure, for scalable communication of file system operation requests to thousands of independent

servers, scalable aggregation of group data and status results from group file operations, and scalable

name space composition. TBON-FS gives its single client the ability to construct a private, global view

of distributed name spaces that is tailored for group file operations. Using synthetic file services loaded

into TBON-FS servers, a client can further extend its use of scalable group file operations to non-file

resources. Because TBON-FS is implemented entirely at user-level, it is easy to deploy on a wide vari-

ety of distributed systems. Since TBON-FS executes from a single user context, it can rely on existing

authentication and file system access control mechanisms.

proc++. We designed and evaluated proc++, a new synthetic file system tailored for use in scalable

control and inspection of distributed process and thread groups. Similar to existing proc file systems,

proc++ provides files that can be used for control and inspection of processes and threads. The primary

challenges in designing proc++ were to identify the tool behaviors that were hindered by interactions

with existing process control interfaces, and to develop appropriate abstractions that enable group file

operations to take advantage of newly provided tool-level capabilities. Abstractions were carefully

designed to place functionality at the appropriate layer of the distributed tool hierarchy, which enables

the parallelism needed to scale. The resulting abstractions are context-insensitive and naturally encap-

sulate interaction intensive operations, such as breakpoint management, as a means to reducing the

number of interactions between the tool and the process control layer.

We combined these four research contributions to form a scalable platform for group operations on

181
distributed processes and files. We have demonstrated the performance and scalability benefits of this

platform in several new tools for distributed system administration and monitoring and two existing,

widely-used software packages. Our experimental results show this platform provides excellent perfor-

mance for operations on groups with over 200,000 distributed processes (or files). At this scale, group

file operations can achieve latencies on the order of 250 milliseconds, which is suitable for interactive

tool and middleware tasks. Further, when using scalable data aggregations such as equivalence classes

or simple statistical summaries, our results project that group file operations on groups with over one

million members should complete in under one second.

10.2 Future Directions

Throughout this dissertation, we have identified future research and development activities that

provide opportunities for improving the performance, usefulness, and applicability of our approach to

scalable group operations on distributed processes and files. We briefly review the most important

activities for group file operations and TBON-FS, and then discuss additional avenues for fruitful

investigation.

By extending familiar POSIX I/O operations to produce the group file operation idiom, we believe

the learning curve for adoption within new or existing software is significantly reduced. Still, we have

identified cases where strict adherence to the existing interfaces and our attempts to mirror the utilitar-

ian style of POSIX in the new operation interfaces results in less than ideal interactions. A study of the

inefficiencies in the interfaces of group file operations could help to resolve such problems.

TBON-FS is currently limited to a single type of merge composition that places distributed files

that have the same path into a single directory in the global name space. This composition is key to

creating the directories that define the membership of group files. More general support for the seman-

tics of the FINAL merge composition requires investigating techniques for caching portions of the

composed global name space within the TBON and associated cache invalidation strategies to handle

182
dynamic server name spaces.

The current design of TBON-FS provides limited fault tolerance, as only failures of internal tree

processes are properly handled. Since TBON-FS server process (or host) failures are expected to be

common on next generation HPC systems that contain millions of components, and network and host

failures are already prevalent in wide-area systems and data centers containing commodity clusters, a

thorough examination of the survivability of TBON-FS in the presence of server failures is needed. In

particular, we need to study techniques for automatic server restart after failures.

The error semantics of group file operations could also be improved to handle less reliable sys-

tems. For example, group file operations are synchronous and will not complete until every group

member has finished the requested operation. During periods of temporary network disconnection or

extreme server host load, a single member can delay the entire group operation for an extended period

of time. We plan to investigate adding customizable timeout semantics to group file operations that

would allow for returning partial group results from the non-delayed members.

Our case studies have focused on tools and middleware that needed low latency group operations

and performed relatively small data accesses. There are many other classes of distributed operations on

groups of files that do not have these properties. For example, large-scale data analysis as found in

Map-Reduce style computations or data mining and clustering is used to process huge amounts of data

and does not require instantaneous results. Further, analysis results are often too large to be held within

the memory of a single client system, which would seem to preclude the use of the group file opera-

tions for large-scale data analysis. We would like to study common analyses performed in these sys-

tems to identify potential use cases that could be accomplished using group file operations and TBON-

FS. Analyses that produce summarized information that is small in size relative to the input data sets

are obvious targets, and approaches that analyze data in a pipelined, streaming fashion may also be

applicable. Similar to our Ganglia effort, we may be able to use TBON processes to store large analysis

183
results on disks across many hosts to further reduce the client’s burden.

One could also envision building a scalable key-value storage system using group file operations

and TBON-FS. A hierarchical key space represented as file paths would be easily supported. Group

write operations could be used to automatically replicate and distribute key-value tuples across many

servers. Group read operations could quickly satisfy requests for specific keys, ranges of contiguous

keys, and even searches over the values of all keys. Current distributed key-value stores are designed

to support multiple clients reading and writing data simultaneously, and as such they provide rigorous

consistency properties. To support multiple storage clients that may reside on many hosts, new seman-

tics and a design for sharing both the global name space and group file descriptors will likely be

required. In particular, mechanisms for ordering group file operations among clients will be crucial to

ensuring consistency, as will associated strategies for fault-tolerance during replication.

184
References

[1] “Akamai Edge Platform: Application Acceleration that Delivers Content and Applications
Quickly, Reliably, and Securely”, http://www.akamai.com/html/technology/edgeplat-
form.html, January 2012.

[2] Allinea Software, “Allinea DDT - the debugging tool for parallel computing”,
http://www.allinea.com/products/ddt, December 2011.

[3] Alexander Ames, Nikhil Bobb, Scott A. Brand, Adam Hiat, Carlos Maltzahn, Ethan L. Miller,
Alisa Neeman, Deepa Tuteja, “Richer File System Metadata Using Links and Attributes”,
Mass Storage Systems Technologies (MSST2005), April 2005.

[4] Gene Amdahl, “Validity of the Single Processor Approach to Achieving Large-Scale Comput-
ing Capabilities”, AFIPS Conference Proceedings 30, 1967, pp. 483-485.

[5] Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory Lee, Barton P. Miller, and
Martin Schulz, “Stack Trace Analysis for Large Scale Applications”, International Parallel &
Distributed Processing Symposium, March 2007.

[6] Dorian C. Arnold, Gary D. Pack and Barton P. Miller, "Tree-based Overlay Networks for Scal-
able Applications", 11th International Workshop on High-Level Parallel Programming Mod-
els and Supportive Environments (HIPS 2006), April 2006.

[7] Dorian C. Arnold and Barton P. Miller, “Scalable Failure Recovery for High-performance
Data Aggregation”, International Parallel and Distributed Processing Symposium, April
2010.

[8] “ASC Sequoia Benchmark Codes”, https://asc.llnl.gov/sequoia/benchmarks/.

[9] Susanne M. Balle, John Bishop, David LaFrance-Linden, and Howard Rifkin, “Ygdrasil:
Aggregator Network Toolkit for Large Scale Systems and the Grid”, Para 2004 Workshop on
State-of-the-Art in Scientific Computing, June 2004. Appears as Lecture Notes in Computer
Science 3732, J. Dongarra et al. (Eds.), Springer-Verlag, Berlin/Heidelberg, Germany, 2006,
pp.207-216.

[10] Mohammad Banikazemi, David Daly, and Bulent Abali, “Sysman: A Virtual File System for
Managing Clusters”, 22nd Large Installation System Administration Conf. (LISA ‘08), pp.
167-174, November 2008.

[11] Amnon Barak and Oren La’adan, “The MOSIX multicomputer operating system for high per-
formance cluster computing”, Future Generation Computer Systems 13, 4-5, March 1998, pp.
361-372.

[12] S. Bhatkar, D. DuVarney, and R. Sekar, “Address obfuscation: An efficient approach to com-
bat a broad range of memory error exploits”, 12th USENIX Sec. Symp., August 2003, pp. 105–
120.

185
[13] Andrew D. Birrell, Andy Higsen, Chuck Jerian, Timothy Mann, and Garret Swart, “The Echo
Distributed File System”, Research Report 111, Digital Equipment Corporation, September
1993.

[14] Andrew D. Birrell and Bruce Jay Nelson, “Implementing Remote Procedure Calls”, ACM
Transactions on Computing Systems 2, 1, February 1984, pp. 39-59.

[15] Daniel P. Bovet and Marco Cesati, Understanding the Linux Kernel (2nd ed.), O’Reilly and
Associates, Inc., 2003, ISBN 0-596-00213-0.

[16] D. Breazeal, K. Callaghan, and W.D. Smith, “IPD: A Debugger for Parallel Heterogeneous
Systems”, ACM/ONR Workshop on Parallel and Distributed Debugging, pp. 216-218, May
1991.

[17] Ron Brightwell and Lee Ann Fisk, “Scalable Parallel Application Launch on Cplant”,
ACM/IEEE SC 2001 (SC ‘01), November 2001.

[18] Michael Brim, Ray Flanery, Al Geist, Brian Luethke, and Stephen L. Scott, “Cluster command
& control (c3) tool suite”, Parallel and Distributed Computing Practices 4, 4, December
2001, Nova Science Publishers, pp. 381-399.

[19] Michael J. Brim and Barton P. Miller, “Group File Operations for Scalable Tools and Middle-
ware”, 16th Intl. Conf. on High-Performance Computing (HiPC 2009), December 2009.

[20] Michael J. Brim, Barton P. Miller, and Vic Zandy, “FINAL: Flexible and Scalable Composi-
tion of File System Name Spaces”, Intl. Workshop on Runtime and Operating Systems for
Supercomputers 2011 (ROSS'11), May 2011.

[21] D.R. Brownbridge, L.F. Marshall, and B. Randell, “The Newcastle Connection or UNIXes of
the World Unite!”, Software-Practice and Experience 12, 1982, pp. 1147-1162.

[22] Mark Burgess, “A Site Configuration Engine”, USENIX Computing Systems 8, 3, 1995.

[23] Ralph Butler, William Gropp, and Ewing Lusk, “A Scalable Process Management Environ-
ment for Parallel Programs”, Recent Advances in Parallel Virtual Machine and Message Pass-
ing Interface - Lecture Notes in Computer Science 1908, Springer, September 2000, pp. 168-
175.

[24] Philip H. Carns, Walter B. Ligon, III, Robert B. Ross, and Rajeev Thakur, “PVFS: A Parallel
File System for Linux Clusters”, 4th Annual Linux Showcase and Conference, pp. 313-327,
October 2000.

[25] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A distributed anonymous informa-
tion storage and retrieval system”, Workshop on Design Issues in Anonymity and Unobserv-
ability, pp. 311-320, July 2000.

[26] Clip2 and The Gnutella Developer Forum, “The Annotated Gnutella Protocol Specification
v0.4”, http://rfc-gnutella.sourceforge.net/developer/stable/index.html, January 2012.

[27] “CLOC -- Count Lines of Code”, http://cloc.sourceforge.net/, October 2011.

[28] “Clumon Performance Monitor”, National Center for Supercomputing Applications (NCSA),
http://clumon.ncsa.uiuc.edu/doc-info.html.

186
[29] “ClusterIt”, http://www.garbled.net/clusterit.html, January 2012.

[30] Peter F. Corbett and Dror G. Feitelson, “The Vesta parallel file system”, ACM Transactions on
Computer Systems (TOCS) 14, 3, August 1996, pp. 225-264.

[31] Timothy W. Curry, “Profiling and tracing dynamic library usage via interposition”, USENIX
Summer 1994 Technical Conference, June 1994.

[32] F. Dabek, F. Kaashoek, D. Karger, R. Morris, and I. Stoica, "Wide-area cooperative storage
with CFS", SIGOPS Oper. Sys. Rev. 35, 5, December 2001, pp. 202-215.

[33] R.C. Daley and P.G. Neumann, “A General-Purpose File System for Secondary Storage”, Pro-
ceedings of the November 30--December 1, 1965, fall joint computer conference, part I
(AFIPS ‘65), pp. 213-229, December 1965.

[34] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters", 6th
Symposium on Operating Systems Design and Implementation, December 2004.

[35] Narayan Desai, Rick Bradshaw, Andrew Lusk, and Ewing Lusk, “MPI Cluster System Soft-
ware”, 11th European PVM/MPI Users’ Group Meeting (EuroPVM/MPI 2004), September
2004. Appears as Lecture Notes in Computer Science 3241, D. Kranzlmüeller et al. (Eds.),
Springer-Verlag, Berlin/Heidelberg, Germany, September 2004, pp.277-286.

[36] Narayan Desai, Andrew Lusk, Rick Bradshaw, and Ewing Lusk, “MPISH: A Parallel Shell for
MPI Programs”, 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS ‘05), April 2005.

[37] DOE Exascale Initiative, “A DOE Laboratory plan for providing exascale applications and
technologies for critical DOE mission needs”, July 2010. http://computing.ornl.gov/work-
shops/scidac2010/presentations/r_stevens.pdf.

[38] European Exascale Software Initiative, “Investigation Report on Existing HPC Initiatives”,
September 2010. http://www.eesi-project.eu/pages/menu/publications/investigation-of-hpc-
initiatives.php.

[39] D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C. Armstrong, “Lilith: Scalable Execution of
User Code for Distributed Computing”, 6th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC ‘97), pp. 305-314, August 1997.

[40] R. Faulkner and R. Gomes, “The Process File System and Process Model in UNIX System V”,
USENIX, Dallas, Texas, January 1991.

[41] Joan M. Francioni and Cherri M. Pancake, “High Performance Debugging Standards Effort”,
Scientific Programming 8, 2000, pp. 95-108.

[42] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole, Jr., “Semantic
file systems”, 13th ACM Symposium on Operating Systems Principles (SOSP ‘91), pp. 16-25,
October 1991.

[43] David K. Gifford, Roger M. Needham, and Michael D. Schroeder, “The Cedar File System”,
Communications of the ACM 31, 3, March 1988, pp. 288-298.

[44] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System”, 19th
ACM Symposium on Operating Systems Principles, October 2003.

187
[45] Andrzej Goscinski, Mickael Hobbs, and Jackie Silcock, “GENESIS: an efficient, transparent
and easy to use cluster operating system”, Parallel Computing 28, 4, April 2002, pp. 557-606.

[46] William Gropp and Ewing Lusk, "Scalable Unix Tools on Parallel Processors", Scalable High-
Performance Computing Conference, pp. 56-62, May 1994.

[47] S. Hansen and E. Atkins, “Automated System Monitoring and Notification With Swatch”, 7th
USENIX Conference on System Administration, pp.145-152, November 1993.

[48] Erik Hendriks, “BProc: The Beowulf distributed process space”, 2002 International Confer-
ence on Supercomputing, pp. 129-136, June 2002.

[49] Robert Hood, “The p2d2 Project: Building a Portable Distributed Debugger”, ACM SIGMET-
RICS Symposium on Parallel and Distributed Tools (SPDT ‘96), May 1996.

[50] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and M.
West, “Scale and Performance in a Distributed File System”, ACM Transactions on Computer
Systems 6, 1, February 1988.

[51] James V. Huber, Jr., Christopher L. Elford, Danial A. Reed, Andrew A. Chien, and David S.
Blumenthal, “PPFS: A High Performance Portable Parallel File System”, 9th ACM Interna-
tional Conference on Supercomputing, pp. 385-394, July 1995.

[52] IBM Corporation, “IBM LoadLeveler: User’s Guide”, September 1993.

[53] IBM Corporation, “Parallel System Support Programs for AIX: Command and Technical Ref-
erence, Volume 1, Version 3 Release 5”, May 2003.

[54] Sitaram Iyer, Antony Rowstron, and Peter Druschel, “Squirrel: A decentralized peer-to-peer
web cache”, PODC 2002, July 2002.

[55] Jasmina Jancic, Christian Poellabauer, Karsten Schwan, Matthew Wolf, and Neil Bright,
“dproc - Extensible Run-Time Resource Monitoring for Cluster Applications”, International
Conference on Computational Science (ICCS 2002), April 2002. Appears as Lecture Notes in
Computer Science 2330, P.M.A. Sloot et al. (Eds.), Springer, Berlin/Heidelberg, Germany,
2002.

[56] “June 2011 | TOP500 Supercomputing Sites”, http://top500.org/lists/2011/06, June 2011.

[57] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing, “The Application Level Placement
Scheduler”, Cray User Group, May 2006.

[58] T. J. Killian, ‘‘Processes as Files,’’ USENIX Summer Conference Proceedings, June 1984.

[59] John Kubiatowicz et al., “OceanStore: An Architecture for Global-Scale Persistent Storage”,
ASPLOS 2000, November 2000.

[60] Gregory L. Lee, Dong H. Ahn, Dorian C. Arnold, Bronis R. de Supinski, Matthew Legendre,
Barton P. Miller, Martin Schulz, and Ben Liblit, "Lessons Learned at 208K: Towards Debug-
ging Millions of Cores", Supercomputing 2008 (SC’08), November 2008.

[61] Linux Kernel 2.6.27.5, http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.27.5.tar.bz2.

188
[62] German Llort, Juan Gonzalez, Harald Servat, Judit Gimenez, and Jesus Lebarta, “On-line
detection of large-scale parallel applications’s structure”, International Parallel & Distributed
Processing Symposium (IPDPS 2010), April 2010.

[63] Robert Love, Linux Kernel Development (2nd ed.), Novell Press, Indianapolis, Indiana,
2005, ISBN 0-672-32720-1.

[64] S.J. LoVerso, M. Isman, A. Nanopoulos, W. Nesheim, E.D. Milne, and R. Wheeler, “sfs: A
parallel file system for the CM-5”, Summer 1993 USENIX Technical Conference, pp.291-305,
June 1993.

[65] Lucent Technologies, “Introduction to the Plan 9 File Protocol”, 2010, http://plan9.bell-
labs.com/magic/man2html/5/0intro.

[66] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, “TAG: a Tiny AGgregation Service
for Ad-Hoc Sensor Networks,” Fifth Symposium on Operating Systems Design and Implemen-
tation (OSDI), December 2002.

[67] Matthew L. Massie, Brent N. Chun, and David E. Culler, “The ganglia distributed monitoring
system: design, implementation, and experience”, Parallel Computing 30, Elsevier B.V., 2004,
pp. 817-840.

[68] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth, R.
Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam and Tia Newhall, “The Paradyn
Parallel Performance Measurement Tool”, IEEE Computer 28, 11, November 1995, pp. 37-46.
Special issue on performance evaluation tools for parallel and distributed computer systems.

[69] Ron Minnich, “V9FS: A Private Name Space system for Unix and its uses for Distributed and
Cluster Computing”, 1st Conference Francaise sur les Systemes d’Exploitation (CFSE ’1),
June 1999.

[70] Ron Minnich and Andrey Mirtchovski, “XCPU: a new, 9p-based, process management system
for clusters and grids”, 2006 IEEE International Conference on Cluster Computing, Septem-
ber 2006.

[71] Ryan Mooney, Kenneth P. Schmidt, R. Scott Studham, and Jarek Nieplocha, “NWPerf: A Sys-
tem Wide Performance Monitoring Tool for Large Linux Clusters”, 2004 IEEE International
Conference on Cluster Computing (CLUSTER 2004), pp. 379-389, September 2004.

[72] Anna Morajko, Oleg Morajko, Tomàs Margalef, and Emilio Luque, “MATE: Dynamic Perfor-
mance Tuning Environment”, 10th International Euro-Par Conference (Euro-Par 2004),
August 2004. Appears as Lecture Notes in Computer Science 3149, Marco Danelutto et al
(Eds.), Springer, Berlin/Heidelberg, Germany, January 2004, pp. 98-107.

[73] Christine Morin, Renaud Lottiaux, Geoffroy Vallée, Pascal Gallard, Gaël Utard, R. Badrinath,
and Louis Rilling, “Kerrighed: A Single System Image Cluster Operating System for High
Performance Computing”, 9th International Euro-Par Conference (Euro-Par 2003), August
2003. Appears as Lecture Notes in Computer Science 2790, Harald Kosch et al (Eds.),
Springer, Berlin/Heidelberg, Germany, January 2003, pp. 1291-1294.

[74] Philip J. Mucci, “DynaProf Users Guide Release 0.8”,
http://www.cs.utk.edu/~mucci/dynaprof/dynaprof.html, November 2002.

189
[75] “MultiTail”, http://www.vanheusden.com/multitail/.

[76] Aroon Nataraj, Allen D. Malony, Alan Morris, Dorian C. Arnold, and Barton P.Miller, “A
Framework for Scalable, Parallel Performance Monitoring using TAU and MRNet”, Interna-
tional Workshop on Scalable Tools for High-End Computing (STHEC 2008), June 2008.

[77] National Center for Computational Sciences, “National Center for Computational Sciences >>
Jaguar”, http://www.nccs.gov/computing-resources/jaguar/.

[78] B. Clifford Neuman, “The Prospero File System: A Global File System Based on the Virtual
System Model”, Computing Systems 5, 1992, pp. 407-432.

[79] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, "Pig Latin: A Not-So-Foreign
Language for Data Processing", SIGMOD ’08, 2008.

[80] Hong Ong, Rajagopal Subramaniyan, Chokcahi Leangsuksun, and R. Scott Studham, “Open-
WLC: A Scalable Workload Characterization System”, High Availability and Performance
Computing Workship (HAPCW), October 2005.

[81] Hong Ong, Jeffrey Vetter, R. Scott Studham, Collin McCurdy, Bruce Walker, and Alan Cox,
“Kernel-level single system image for petascale computing”, ACM SIGOPS Operating Sys-
tems Review 40, 2, April 2006, pp. 50-54.

[82] “Open | SpeedShop”, http://oss.sgi.com/projects/openspeedshop/.

[83] “OpenPBS Technical Overview”, http://www.openpbs.org/overview.html.

[84] “OpenSSI (Single System Image) Clusters for Linux”, http://www.openssi.org/, August 2006.

[85] Paradyn Parallel Performance Tools, “ProcControlAPI Developer’s Guide, Beta 1“, March
2011, ftp://ftp.cs.wisc.edu/paradyn/releases/release7.0/doc/ProcControlAPI.pdf.

[86] Paradyn Parallel Performance Tools, “StackwalkerAPI Programmer’s Guide, Release 2.0“,
March 2011, ftp://ftp.cs.wisc.edu/paradyn/releases/release7.0/doc/stackwalker.pdf.

[87] “Parallel Tools Consortium”, http://web.engr.oregonstate.edu/~pancake/ptools/flyer.html,
March 1996.

[88] D. Pase, “Dynamic Probe Class Library (DPCL): Tutorial and Reference Guide, Version 0.1”,
IBM Corporation Technical Report, Poughkeepsie, NY, June 1998.

[89] “PBS Professional 7.1”, Altair Engineering, http://www.altair.com/software/pbspro.htm.

[90] “PDSH - Parallel Distributed SHell”, Lawrence Livermore National Laboratory UCRL-
CODE-2000-009, http://www.llnl.gov/linux/pdsh/pdsh.html, February 2003.

[91] Jan-Simon Pendry and Marshall Kirk McKusick, “Union mounts in 4.4BSD-lite”, USENIX
Technical Conference, 1995.

[92] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, "Interpreting the Data: Parallel Analysis
with Sawzall", Scientific Programming 13, 4, October 2005, pp. 277-298.

[93] Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey, “Plan 9 from Bell Labs”, UK
UUG Summer 1990 Conference, pp. 1–9, July 1990.

190
[94] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil Winterbottom, “The Use
of Name Spaces in Plan 9”, 5th ACM SIGOPS European Workshop: Models and Paradigms
for Distributed Systems Structuring, September 1992.

[95] “Platform LSF HPC”, Platform Computing, http://www.platform.com/Products/Plat-
form.LSF.Family/Platform.LSF.HPC.

[96] Chet Ramey, “The GNU Readline Library”, http://www.gnu.org/s/readline.

[97] Herman C. Rao and Larry L. Peterson, “Accessing Files in an Internet: The Jade File System”,
IEEE Trans. on Software Engineering 19, 6, 1993, pp. 613-624.

[98] Bernhard Ries, R. Anderson, W. Auld, D. Breazeal, K. Callaghan, E. Richards, and W. Smith,
“The Paragon Performance Monitoring Environment”, 1993 ACM/IEEE Conference on Super-
computing, pp. 850-859, November 1993.

[99] Dennis M. Ritchie and Ken Thompson, “The UNIX time-sharing system”, Communications of
the ACM 26, 1, 1983, pp. 84-89.

[100] Rogue Wave Software, “The TotalView Family Brochure: Comprehensive tools for verifying,
debugging, and optimizing complex applications”, May 2011. http://www.rough-
wave.com/products/totalview-family/totalview/resources/brochures-and-datasheets.aspx.

[101] Phillip C. Roth, Dorian C. Arnold, and Barton P. Miller, "MRNet: A Software-Based Multi-
cast/Reduction Network for Scalable Tools", SC2003, November 2003.

[102] Philip C. Roth and Barton P. Miller, “On-line Automated Performance Diagnosis on Thou-
sands of Processes”, ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP ‘06), March 2006.

[103] A. Rowstron and P. Druschel, "Storage management and caching in PAST, a large-scale, per-
sistent peer-to-peer storage utility", SIGOPS Oper. Sys. Rev. 35, 5, December 2001, pp. 188-
201.

[104] “RRDTool”, http://en.wikipedia.org/wiki/RRDtool.

[105] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon, “Design and
Implementation of the Sun Network Filesystem”, Summer 1985 USENIX Technical Confer-
ence, pp. 119-130, June 1985.

[106] Frank Schmuck and Roger Haskin, “GPFS: A Shared-Disk File System for Large Computing
Clusters”, 1st USENIX Conference on File and Storage Technologies, January 2002.

[107] Martin Schulz, Dong Ahn, Andrew Bernat, Bronis R. de Supinski, Steven Y. Ko, Gregory Lee,
and Barry Roundtree, “Scalable dynamic binary instrumentation for Blue Gene/L”, ACM
SIGARCH Computer Architecture News 33, 5, December 2005, pp. 9-14.

[108] Martin Schulz, John May, and John Gyllenhaal, “DynTG: A Tool for Interactive, Dynamic
Instrumentation”, 5th International Conference on Computational Science (ICCS 2005), May
2005, pp. 140. Appears as Lecture Notes in Computer Science 3515, Vaidy S. Sunderam et al
(Eds.), Springer, Berlin/Heidelberg, Germany, 2005.

[109] Philip Schwan, “Lustre: Building a File System for 1,000 Node Clusters”, 2003 Linux Sympo-
sium, July 2003.

191
[110] “Simple Linux Utility for Resource Management”, Lawrence Livermore National Laboratory
UCRL-WEB-217616, http://www.llnl.gov/linux/slurm/overview.html.

[111] Steve Sistare, Don Allen, Rich Bowker, Karen Jourdenais, Josh Simons, and Rich Title, “A
Scalable Debugger for Massively Parallel Message-Passing Programs”, IEEE Parallel and
Distributed Technology 2, 2, Summer 1994.

[112] Matthew J. Sottile and Ronald G. Minnich, “Supermon: a high-speed cluster monitoring sys-
tem”, IEEE International Conference on Cluster Computing (CLUSTER 2002), September
2002.

[113] D. C. Steere, "Exploiting the Non-Determinism and Asynchrony of Set Iterators to Reduce
Aggregate File I/O Latency", SIGOPS Oper. Sys. Rev. 31, 5, December 1997, pp. 252-263.

[114] Michael Stonebraker, “The Case for Shared Nothing”, Database Engineering 9, 1, 1986.

[115] Miklos Szeredi, 'FUSE: Filesystem in user space”, http://fuse.sourceforge.net.

[116] Douglas Thain, Christopher Moretti, and Jeffrey Hemmes, “Chirp: a practical global filesys-
tem for cluster and Grid computing”, Journal of Grid Computing 7, 1, March 2009, pp. 51-72.

[117] “TORQUE Resource Manager 2.0”, Cluster Resources, http://www.clusterre-
sources.com/pages/products/torque-resource-manager.php.

[118] A. Tridgell and P. Mackerras, “The rsync algorithm”, Australian National University Techni-
cal Report TR-CS-96-05, June 1996.

[119] Junichi Uekawa, “DSH - dancer’s shell / distributed shell”, http://www.net-
fort.gr.jp/~dancer/software/dsh.html.en, December 2008.

[120] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel, “The LOCUS
distributed operating system”. SIGOPS Oper. Syst. Rev. 17, 5, December 1983, pp. 49-70.

[121] John Walker, “logtail: Watch Multiple Log Files on Multiple Machines”, http://www.fourmi-
lab.ch/webtools/logtail/, November 1997.

[122] Greg Watson and Craig E. Rasmussen, “A Strategy for Addressing the Needs of Advanced
Scientific Computing Using Eclipse as a Parallel Tools Platform”, Los Alamos National Labo-
ratory Technical Report LA-UR-05-9114, December 2005.

[123] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan, David P. Quigley, Erez
Zadok, and Mohammad Nayyer Zubair, “Versatility and Unix Semantics in Namespace Unifi-
cation”, ACM Trans. on Storage 2, 1, February 2006, pp. 74-105.

[124] Erez Zadok and Jason Nieh, “FIST: A Language for Stackable File Systems”, USENIX Annual
Technical Conference, June 2000.

[125] Victor C. Zandy, "Application Mobility", Ph.D. dissertation, University of Wisconsin-Madi-
son, 2004.

[126] Vic Zandy and Dan Ridge, “First-class C Contexts in Cinquecento”, IDA CCS Technical
Report, April 2008. http://cqctworld.org/docs/cqct.pdf.

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Control and Inspection of Distributed Process Groups at Extreme Scale via Group File Semantics
	Introduction
	1.1 Motivation: From Process Groups to File Groups
	1.2 Contributions
	Figure 1.1 Platform for Scalable Group Operations on Distributed Files and Processes

	1.3 Organization

	Related Work
	2.1 Tool and Middleware Requirements for Distributed Group Operations
	2.1.1 Requirements for Group Operations on Distributed Files
	Process and Host Monitoring
	System Administration
	Log Processing

	2.1.2 Requirements for Group Operations on Distributed Processes and Threads
	Process & Thread Control
	Accessing Registers and Memory

	2.1.3 Summary of Requirements for Scalable Group Operations

	2.2 Group Operations on Files and Processes
	2.3 File Name Space Composition
	2.4 Distributed and Parallel File Access

	Group File Operations
	3.1 Abstractions and Semantics for Group File Operations
	3.1.1 Establishing Group Files
	Table 3.1 New operations for managing group files: Interface and Description

	3.1.2 Semantics of Operations Using Group Files
	Table 3.2 Common Aggregations for Group Status and Data Results
	Table 3.3 Default Status Aggregations for Group File Operations
	Table 3.4 New operations for status and data aggregation: Interface and Description
	Figure 3.5 Group file operation algorithm

	3.1.3 Example Uses of Group File Operations
	Figure 3.6 Example: Group definition
	Figure 3.7 Example: Load Monitor
	Figure 3.8 Example: Log Search
	Figure 3.9 Example: File Replication

	3.1.4 Sharing Considerations for Group Files

	3.2 Extensions to the Idiom
	3.2.1 Group Error Handling
	3.2.2 Group Duplication and Subsetting
	Figure 3.10 Two file organizations containing three types of structured data

	3.2.3 Group Program Execution

	3.3 Summary

	Flexible and Scalable Composition of File Name Spaces
	4.1 File Name Space Composition Goals
	4.2 A Language for File Name Space Composition
	4.2.1 Flac: A Good Start
	Figure 4.1 Name Spaces and Paths
	Figure 4.2 Flac Name Space Combinators
	Figure 4.3 Flac Example Specifications for Mount Semantics
	Figure 4.4 Flac Example Specification using Location-based Service Selection

	4.2.2 FINAL Abstractions
	Table 4.5 Final Composition Operations

	4.2.3 FINAL Composition Operations
	Figure 4.6 Path Composition Operations
	Figure 4.7 merge Conflict Resolution Function
	Figure 4.8 merge Tree Composition Operation

	4.2.4 Prescriptive Language Capabilities
	Table 4.9 nstree Interfaces
	Table 4.10 filesvc Interfaces
	Table 4.11 File Service Operation Interfaces

	4.3 Example Compositions using FINAL
	4.3.1 Private Name Spaces
	Figure 4.12 FINAL Specifications for Private Name Spaces.

	4.3.2 Global Name Spaces
	Figure 4.13 file_group_merge Conflict Resolution Function
	Figure 4.14 Automatic File Groups: Specification and Name Space
	Figure 4.15 Distributed Hosts: Specification and Name Space
	Figure 4.16 Global Process Space.
	Figure 4.17 Heterogeneous Cloud: Specification and Name Space

	4.4 Summary

	The TBON File System
	5.1 Designing a Group File System
	Figure 5.1 TBON-FS: A Scalable Group File System.
	Table 5.2 TBON-FS Client Library: Mount-related interfaces

	5.2 Composing a Global Name Space
	Figure 5.3 Composition of TBON-FS Global Name Space.

	5.3 Operations on Distributed Files
	Figure 5.4 TBON Data Aggregation Function

	5.4 Extensions to MRNet
	5.5 Evaluation
	Table 5.5 TBON Topologies used in Global Name Space Experiments
	Figure 5.6 TBON-FS Global Name Space Composition Latency
	Figure 5.7 TBON-FS Global Name Space File stat
	Figure 5.8 TBON-FS Global Name Space Directory Listing
	Table 5.9 Characteristics of the Directories Listed in Figure 5.8

	5.6 Kernel-level Group File Operations
	Figure 5.10 File Operation Processing in Linux
	Figure 5.11 Group File Operation Processing in Linux
	Figure 5.12 User-level vs. Kernel-level Group File Operations: A Performance Model

	5.7 Summary

	Control and Inspection of Process and Thread Groups
	6.1 proc++ Design
	Table 6.1 proc++ Process Directory Contents
	Table 6.2 proc++ Thread Directory Contents
	6.1.1 proc++ Abstractions
	6.1.2 proc++ Global Name Space
	Figure 6.3 proc++ Host Name Space.
	Figure 6.4 proc++ Session Name Space.

	6.1.3 proc++ Implementation

	6.2 Evaluation
	6.2.1 tbon-dbg Parallel Debugger
	Table 6.5 tbon-dbg Session Management Commands
	Table 6.6 tbon-dbg Group Management and Operation Commands

	6.2.2 proc++ Evaluation
	Table 6.7 TBON Topologies used in tbon-dbg Experiments
	Figure 6.8 Group File Operations on Distributed proc++ Files
	Figure 6.9 tbon-dbg Group Control and Inspection Operations

	6.3 Summary

	Case Study: Tools for Distributed System Administration
	Table 7.1 Topologies used on Thunder
	Table 7.2 Topologies used on Atlas
	7.1 File Replication
	Table 7.3 Replicated File Statistics
	Figure 7.4 File Replication Scalability

	7.2 File Inspection
	7.2.1 Parallel cat and head
	Figure 7.5 Parallel cat - Attributed Output without Line Equivalence Aggregation (~1.5 hosts)
	Figure 7.6 Parallel cat - Line Equivalence using Strided Ranges (64 hosts)

	7.2.2 Parallel grep
	Figure 7.7 Line Equivalence Output from pgrep
	Table 7.8 pgrep Sub-task Latencies for File Groups of Size 4,096
	Figure 7.9 Parallel grep Scalability

	7.2.3 Parallel tail

	7.3 Process Monitoring
	Figure 7.10 ptop Running on Thunder
	Figure 7.11 Parallel top Scalability
	Table 7.12 Development Time and Lines of Code for Parallel Tools

	7.4 Summary

	Case Study: Ganglia Distributed Monitoring System
	8.1 Architecture of the Ganglia Distributed Monitoring System
	Figure 8.1 Metric Data Histories Stored in Round-Robin Databases
	Figure 8.2 Ganglia Monitoring and Data Storage Architecture

	8.2 Ganglia-tbonfs: A Scalable Design for Monitoring Large Clusters
	Figure 8.3 Ganglia-tbonfs Monitoring and Data Storage Architecture

	8.3 Evaluation
	Table 8.4 Topologies used on Thunder
	Figure 8.5 CPU Utilization for Ganglia Cluster Aggregators and Host Monitors
	Figure 8.6 Network Utilization for Ganglia Cluster Aggregators and Host Monitors

	8.4 Summary

	Case Study: TotalView Debugger
	Table 9.1 User Time (seconds) for Common Group Operations using TotalView 8.9.0
	9.1 Scalability Barriers in the TotalView Architecture
	Figure 9.2 TotalView Client and Server Architecture

	9.2 A Design for Scalable Group Debugging Operations in TV++
	Figure 9.3 TV++ Scalable Architecture

	9.3 Evaluation
	9.3.1 Micro-level proc++ Tracer Performance
	Figure 9.4 proc++ Tracer Group Operation Performance

	9.3.2 Macro-level Debugger Group Operation Performance
	Figure 9.5 TotalView Parallel Startup - IRS
	Figure 9.6 TotalView Process Group Control Operation Performance
	Figure 9.7 TotalView Process Group Breakpoint Performance

	9.4 Design Recommendations to Improve Scalability
	Figure 9.8 Conversion from Per-Target State to Bulk State

	9.5 Summary

	Conclusion
	10.1 Contributions
	10.2 Future Directions

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

