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Abstract—Binary modification allows users to alter existing
code or inject new code into programs without requiring source
code, symbols, or debugging information. It is critically important
that such modification not accidentally create a structurally
invalid binary that has illegal control flow or executes invalid
instructions. Unfortunately, current modification tools do not
make this guarantee, instead relying on the user to manually
ensure the modified binary is valid. In addition, they fail to
provide high-level abstractions of the binary (e.g., functions),
instead requiring the user to have a deep understanding of
the idiosyncrasies of the instruction set and the behavior of
the program. We present structured binary editing, which allows
users to modify a program binary by modifying its control flow
graph (CFG). We define an algebra of CFG transformations
that is closed under a CFG validity constraint, thus ensuring
that users can arbitrarily compose these transformations while
preserving structural validity. We have implemented structured
binary editing in the Dyninst binary analysis and instrumentation
framework, creating a high-level binary modification toolkit.
We demonstrate the usefulness of our approach by creating a
hot patching tool that closes three vulnerabilities in a running,
unmodified Apache HTTPD server without interrupting the
server’s execution.

Index Terms—binary modification; binary editing; graph
transformations; binary validity

I. INTRODUCTION

Binaries are commonly held to be an execute-only program
form: rigid, lacking in clear structure, complex to extend
and difficult to modify. Today, this is not the case. With
the proper techniques, derived from a formal understanding
of the characteristics of program binaries, a binary can by
extended and modified up to and during execution of the
program. In turn, binary modification presents several benefits
when compared to source-level or compile-time modification.
Binary modification does not require source code, debugging
information, or any other information that is not directly
required to execute the program. For understanding the basic
functionality of the code, such as for program testing [1] or
dynamic patching [2], the program or its libraries may only
be available as binaries. For understanding the performance
characteristics of the code, such as for optimization [3] or
performance analysis [4], it is useful to include the effects of
compilation and linking on the program. Finally, for under-
standing the security characteristics of the code, such as for
attack detection [5], behavior monitoring [6], cyberforensics
[7], [8], and controlling execution [9], the binary is frequently
the only program form available.

Current binary modification approaches require users to
modify the program by replacing individual instructions [3],
[10]. Such approaches have three significant flaws. First, they
are not safe. They do not protect the user from accidentally
creating a structurally invalid binary that has illegal control
flow or executes invalid instructions; instead, the user must
manually ensure each change they make is valid. Second, they
do not provide an abstract, high-level model of the binary.
Instead, they represent the binary only as instructions, which
may hide aspects of program behavior that are obvious at the
basic block or function level. Third, they are not platform
independent. Instead, they require the user to thoroughly
understand both the idiosyncrasies of the instruction set and
the behavior of the program they are modifying.

In this paper, we introduce structured binary editing, in
which users modify a program binary by manipulating its
control flow graph (CFG). The core of our approach is an
algebra of CFG transformations that preserve validity of the
CFG and thus ensure the resulting CFG can be instantiated into
a new binary that has corresponding control flow. This algebra
is closed under validity, and thus these transformations can be
composed to provide powerful binary modification capabilities
without creating a structurally invalid program binary; further-
more, no instruction-level understanding is necessary.

This paper makes the following contributions:
A definition of CFG validity: A CFG is a digraph whose

nodes represent basic blocks and edges represent the control
flow relationship between those blocks. A graph is a valid
CFG if it represents a structurally valid program. A CFG
that has been derived from a structurally valid program to
be implicitly valid; however, unconstrained transformation of
such a graph does not necessarily preserve validity. We define
CFG validity as a constraint over each element in the CFG
definition, such that any graph that satisfies this constraint
represents a structurally valid program binary.

An algebra of valid CFG transformations: A graph
transformation replaces a particular subgraph of an input
graph G with a replacement graph [11], [12]. We define a
CFG transformation algebra that is closed under our validity
constraint, and provide examples of transformations from this
algebra (e.g., redirecting an edge or cloning a function). These
transformations are purposefully simple and localized to avoid
unexpected side-effects on program behavior. We demonstrate
that this algebra is closed, and thus our transformations can be



composed to perform complex modifications of the program.
One particularly challenging operation consists of inserting

new code into the program. To ensure we preserve validity,
we assume that all modification of the program is performed
by transforming the CFG. Inserting arbitrary code may allow
users to break this assumption. Instead, we define insertion
transformations that insert control flow operations, such as
conditional branches or calls. In addition, we allow users to
insert code snippets, which are single-entry, single-exit regions
of code. Once inserted, snippets can be transformed in the
same way as the original CFG. This provides users with the
capability to construct more complex code sequences (e.g.,
code that makes calls or ends in a conditional branch) by
combining snippets with CFG transformations.

An indirect control flow validity analysis: Program bina-
ries frequently use indirect control flow to targets that are cal-
culated at runtime. Examples of indirect control flow include
jump tables, virtual method tables, or function pointers. These
constructs present a challenge, since we cannot determine if an
indirect control flow instruction is valid by only examining the
CFG. To address this problem, we define a dataflow analysis
that determines if the destinations of an indirect control flow
instruction will be affected by a CFG transformation. If the
destinations will be changed, we attempt to determine the
new destinations and update the CFG. If our analysis fails,
we provide a spectrum of responses, from inserting runtime
monitoring code to disallowing the transformation.

We have implemented our structured binary editing ap-
proach in the PatchAPI component [13] of the Dyninst bi-
nary analysis and instrumentation framework [14], leveraging
Dyninst’s binary analysis capabilities to construct our initial
CFG. Dyninst previously only supported binary instrumen-
tation and whole-function replacement, and thus our binary
modification work is a significant extension of Dyninst’s
capabilities. Finally, we demonstrate the usefulness of our
approach by implementing a hot patching tool that we use
to apply security bug fixes to a running Apache web server
without interrupting its execution.

II. RELATED WORK

Our approach of editing a binary by transforming its CFG
is derived from previous work in both binary and compile-
time code modification. In this section, we summarize these
approaches and relate them to our work. We also describe other
binary modification approaches that do not use the CFG, as
well as binary instrumentation approaches that allow users to
inject new code into the program.

Our work extends concepts introduced by the LANCET [15]
tool of the Diablo binary modification toolkit [16]. LANCET
allows users to modify a binary by freely modifying its
CFG, such as by adding or removing edges or inserting new
basic blocks. However, LANCET does not constrain these
modifications and thus does not enforce any concept of CFG
or binary validity, instead relying on the user to ensure that
all modifications are safe. We extend the ideas introduced by
LANCET, and address the validity issue with our concept of

CFG validity. Finally, the Diablo toolkit requires input binaries
to be specially prepared with a customized compiler toolchain.
In contrast, our approach works on arbitrary binaries.

Structured binary editing is similar in may ways to compile-
time program modification. Examples of compile-time pro-
gram modification include LLVM [17] and SUIF [18]. These
tools allow users to modify the intermediate representation
(IR) used by the compiler. Since the IR is more expressive than
the CFG, these approaches often provide more modification
power while avoiding the validity concerns we address in
this work. Unfortunately, these approaches cannot be applied
to binaries without deriving an IR from the binary code.
Unless the binary includes substantial additional semantic
information, such derivation is difficult due to the complexities
involved in pointer analysis.

Binary instrumentation frameworks focus on inserting new
code into a binary program. This is typically done by al-
lowing a user to annotate a program representation with new
code. Such representations include a sequence of instructions
(software dynamic translation or SDT instrumenters) or a
CFG (patch-based instrumenters). Examples of SDT instru-
menters include DynamoRIO [3], PIN [19], and Valgrind [10];
Dyninst is an example of a patch-based instrumenter [14].
These tools assume that instrumentation does not alter the
program representation and thus do not address the validity
concern addressed in this work. This assumption holds if
instrumentation does not have any cumulative effect on the
program (e.g., by saving and restoring registers); however, if
instrumentation modifies process state the user must ensure
that the resulting binary is valid.

Some binary instrumentation frameworks also allow the
user to directly modify original code either at the instruction
or function level. Instruction-level modification, as provided
by DynamoRIO, Dyninst, and Valgrind, allows users to edit
or remove individual instructions but does not provide any
guarantee that the resulting program is valid. As a result, these
tools allow users to accidentally introduce erroneous control
transfers or corrupt address calculations used by indirect
jumps. Function-level modification, as provided by Dyninst
and PIN, allows users to replace entire functions with new
code. However, this approach is not amenable to fine-grained
modification within functions.

III. CFG

The control flow graph (CFG) is a familiar representation
of the structure of a binary program (e.g., functions and basic
blocks) and the relationship between these structures. We use
a conventional definition of a CFG as a directed graph whose
vertices represent basic blocks and whose edges represent
control paths between blocks.

A. Control Flow Abstractions

Our CFG is based on four abstractions: the interprocedural
control flow graph (consisting of basic blocks and edges) and
functions. A CFG is a directed graph G = (V,E, Ve, Vx, T ),
defined as follows; we show an example CFG in Figure 1:
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Fig. 1. An example CFG that demonstrates our notation. Blocks (b, b′, s)
are represented by boxes and edges as arrows that are labeled with their
types. We shade snippet blocks, such as s, in blue. Dashed arrows represent
intraprocedural edges, while dotted arrows represent interprocedural edges.
We summarize functions as ellipses (f ).

• The set V = B∪{v⊥} of vertices corresponding to basic
blocks B and a sink v⊥,

• The set E ⊆ V × V corresponding to control flow edges
between blocks,

• The sets Ve ⊆ V of entry vertices and Vx ⊆ V of exit
vertices, and

• The function T : E → T that associates edges with types.

We define basic blocks in the conventional way as a
consecutive sequence of instructions bi = 〈im, . . . , in〉 with
a single entry instruction im and single exit instruction in; an
instruction may belong to only one block. The in- and out-
edges of bi are denoted In(bi) and Out(bi). Unknown control
flow is represented by an edge to a unique sink v⊥ that contains
no instructions and has no out-edges.

Edges are associated with a type, which is an element in
the set T = (Dir ,Ft ,Cond ,CondFt , Ind ,Call ,CallFt ,Ret)
that represents direct, fallthrough, conditional taken, condi-
tional fallthrough, indirect, call, call fallthrough, and return
edges. Call fallthrough edges link blocks ending with calls to
their intraprocedural successors, and may be omitted if the
callee does not return.

We define a function as the blocks reachable from an
entry block traversing only intraprocedural edges. Formally,
functions are subgraphs of the CFG fi = (Vi, Ei, vi, Xi, Ti)
where Vi ⊆ V , Ei ⊆ E, vi ∈ Vi is the entry block of the
function, Xi ⊆ Vi are the exit blocks, and Ti assigns only
intraprocedural edge types.

Deriving a CFG from a binary is a difficult problem in its
own right. We assume the presence of a parsing algorithm
that can derive a CFG from the binary. The design of these
algorithms is a challenge due to the presence of both indirect
control flow that cannot be statically analyzed and data inter-
mixed with code. We use the ParseAPI [20] recursive-traversal
parser [21], [22] that follows statically determinable control
flow to discover as much code as possible, and makes use
of backwards slicing and heuristic techniques to identify the
targets of indirect jumps (e.g., jump tables [23]) and functions
that are only reached via indirect calls [24]. To our knowledge,
this algorithm has never been published.

Address Instruction
61a901 cmpl $0x0, %gs:0xc
61a909 je 61a90c
61a90b lock cmpxchg %ecx, 0x31f4(%ebx)
61a913 jne . . .

Fig. 2. Example of overlapping blocks from GNU libc on IA-32 compiled
with GNU GCC 4.x. The first conditional branch skips past a locking prefix
on the compare and exchange instruction; this results in two instructions that
overlap. Execution converges at the second branch.

The CFG resulting from this parsing may be incomplete
due to unknown indirect control flow, exceptions, and similar
constructs. For conventional binaries, this incompleteness can
be addressed by making conservative assumptions about such
control flow, such as that any function may be the target of an
indirect call, and that indirect branches are intraprocedural.
In such cases, additional edges can be added to the CFG
to represent these assumptions, and we may mark functions
as unmodifiable if they contain unknown control flow. If the
user is modifying a running process, we may augment our
static parse with dynamic analysis techniques, such as those
described by Roundy and Miller [25]. These techniques will
always present a locally complete CFG.

B. Complicating Cases

Several code structures commonly seen in binaries compli-
cate the mapping of our control flow abstractions onto the
binary code. Our goal with such structures is to hide their
complexity from the user wherever possible. We describe
how we handle two such cases: overlapping basic blocks
and overlapping functions. In this section, we define these
structures and how our abstractions map onto them.

Overlapping basic blocks occur when the same sequence
of bytes disassembles to two distinct instruction sequences,
both of which may be executed by the program. This situation
occurs in variable-length architectures because instructions can
overlap. One example of such code is shown in Figure 2,
which uses a conditional branch to optionally skip a locking
prefix on a compare and exchange instruction, resulting in two
instructions that overlap. This sequence occurs in many GCC-
compiled Linux libraries. Overlapping instruction sequences
also commonly occur in obfuscated code. We represent each
of these code sequences as distinct collections of basic blocks.
This representation allows the user to treat the overlapping
code sequences as logically disjoint sequences of instructions.

Overlapping functions occur when multiple functions in-
clude the same basic block. Optimizing compilers frequently
share common code between functions (e.g., register restores
or error code) to increase code density. A similar case occurs
in code produced from languages that support multiple entry
points into a function (e.g., the Fortran ENTRY statement). We
represent this sharing in our interprocedural CFG by allowing
multiple functions to contain a single block and define a CFG
transformation in Section V-B that eliminates sharing. An
alternative representation of such code is as a single function
with a set of entry blocks. We chose instead to represent such
code as a set of single-entry functions (one per entry point)



to keep a consistent function representation.

C. Inserted Code

Our approach uses the CFG as a mechanism for modifying
the structure and execution of a program. However, transfor-
mation of the CFG only allows a user to modify or remove
existing code, not insert new code. We wish to support such
insertion while maximizing use of the CFG as a modification
mechanism. Specifically, we wish to prevent inserted code
from creating or destroying control flow paths, since those
operations must be performed on the CFG instead. We do
so by restricting inserted code to be single-entry, single-exit
sequences; we call such sequences code snippets. This suffices
for direct control flow; we discuss our approach for handling
indirect control flow in Section VI. Once inserted, a snippet
can be transformed as part of the original CFG. This provides
users with the capability to construct more complex code
sequences (e.g., code that makes calls or ends in a conditional
branch) by combining snippets with CFG transformations.

Formally, a snippet sj is a CFG (Vj , Ej , vj , xj , Tj) with
a single entry block vj and exit block xj ; the exit block
must have a single fallthrough edge which we link to the sink
node. Code snippets may contain internal branching, but may
not have explicit branches outside of the snippet. As a result,
inserting a snippet does not create or destroy a control flow
path. For simplicity, we presume that snippets are specified
as a CFG; however, they could be provided as a buffer of
assembly that is parsed at insertion time to create a CFG, or
in a higher level language.

IV. VALIDITY

Structured binary editing allows the user to modify a binary
program while ensuring its structural validity is preserved.
Instead of directly modifying the program, we derive a CFG
from the binary, transform the CFG, and use the transformed
CFG to instantiate a similarly modified program. By ensuring
that all transformations preserve the validity of the CFG,
we ensure the resulting program is structurally valid. In this
section, we define structural validity of binary programs and
validity of CFGs. Intuitively, a binary program is structurally
valid if it will only execute valid instructions; structural valid-
ity does not guarantee correct execution or output. Similarly, a
CFG is valid if it represents a structurally valid binary program
and can thus be used to instantiate such a program.

A. Structural Validity

For our definition of structural validity, we represent a bi-
nary program as a tuple P = (C,D) where C = 〈i0, . . . , im〉
is a sequence of instructions representing the binary code and
D represents data. We say P is structurally valid if for all
inputs, P will only execute instructions from C, and does
not treat values from D as instructions or execute unallocated
memory. We purposefully use a permissive model of validity
that allows constructs such as code in data (as C and D may
overlap) and overlapping instruction sequences, which is a
common code obfuscation concept.

b1

b2

Dir

(a) Original
CFG

b1

b2

(b) Trans-
formed
CFG

Fig. 3. An example of an invalid CFG transformation. Figure (a) shows the
original CFG, with V = {b1, b2}, Ve = {b1}, Vx = {b2}, E = {(b1, b2)},
and T mapping this edge to type Dir . Figure (b) shows the CFG with the
edge (b1, b2) removed. The second CFG is invalid, as b1 has no out-edges
and is not an exit block, and cannot be instantiated as a structurally valid
binary program. Thus, edge removal does not satisfy our constraints and is
thus an invalid transformation.

We assume the input program P is valid. This may not be
the case, either if P contains code that is modified at runtime
by the remainder of the program or if it contains intentionally
invalid instructions. In such cases, our approach will preserve
the invalidity of the program.

B. CFG Validity

Unconstrained transformation of the CFG may result in a
graph that no longer represents a structurally valid binary
program. Consider the simple example shown in Figure 3,
where a transformation has removed all of the out-edges of a
block b1. As a result, b1 has no identified successors; since b1
is not an exit node, then the graph does not represent a binary
program and thus cannot be used to instantiate one.

We define CFG validity with constraints over each element
in the CFG definition. Let P = (C,D) be a structurally
valid program as defined above. Then a control flow graph
CFGP = (V,E, Ve, Vx, T ) for P is valid if the following
constraints hold:
• Vertex constraint: The vertex set V = B ∪ {v⊥} is valid

if every block b ∈ B is valid by the definition of basic
blocks and the sink v⊥ is unique.

• Edge constraint: The edge set E is valid if no edge has the
sink as a source and all non-exit blocks b ∈ (V \Vx) have
at least one out-edge. That is, E is valid iff @e ∈ E s.t.
e = (v⊥, bi) for some block bi and ∀bj ∈ (V \ Vx),∃e ∈
E s.t. e = (bj , bk) for some block bk.

• Entry constraint: The entry set Ve is valid iff Ve ⊆ V ,
|Ve| ≥ 1, and v⊥ 6∈ Ve.

• Exit constraint: The exit set Vx is valid iff Vx ⊆ V and
v⊥ 6∈ Vx. Unlike the entry set, the exit set may be empty
if the program never terminates.

• Type constraint: The type function T is valid if all edges
have a type, and the out-edges of each block b are labeled
in a way that corresponds to the appropriate architecture.

The type constraint is architecture-specific because each
architecture has different control flow instructions with differ-
ent characteristics; for example, PowerPC and ARM support
conditional indirect branches while IA-32 only supports un-
conditional indirect branches. We represent valid edge types,
or signatures, in disjunctive normal form, and we define



TABLE I
VALID SIGNATURES FOR IA-32/X86-64, POWERPC, AND ARM

IA-32/x86-64 PowerPC/ARM
(Dir) ∨ (Dir) ∨
(Ft) ∨ (Ft) ∨

(Cond ∧ CondFt) ∨ (Cond ∧ CondFt) ∨
(Ind+) ∨ (Ind+) ∨
(Call) ∨ (Call) ∨

(Call ∧ CallFt) ∨ (Call ∧ CallFt) ∨
(Ret+) (Ret+) ∨

(Ind+ ∧ CondFt) ∨
(Call ∧ CondFt) ∨

(Call ∧ CallFt ∧ CondFt) ∨
(Ret+ ∧ CondFt)

signatures for IA-32/x86-64, PowerPC, and ARM in Table I.
We have implemented support for IA-32/x86-64 and PowerPC;
an ARM implementation is in the planning stage.

Let Out(b) = {ei, . . . , ej} be the out-edges of a block b,
and Tb a sequence of types 〈T (ei), . . . , T (ej)〉; we represent
Tb as a sequence since multiple edges may have the same
type (e.g., indirect branches). Each sequence Tb is valid if it
satisfies the appropriate signature, and T is valid if ∀b, Tb is
valid.

As examples, let b be a block with two out-edges e1, e2. A
type function T1 that maps e1 → Cond and e2 → CondFt
is valid on IA-32, x86-64, and PowerPC. A type function T2

that maps e1 → Call and e2 → CondFt is valid on PowerPC
or ARM but not on IA-32 or x86-64. Finally, a type function
that maps e1 → Cond and e2 → Dir is not valid on either
architecture since there is no control flow instruction that can
produce both a conditional and direct out-edge.

V. CFG TRANSFORMATION ALGEBRA

The major contribution of this work is an algebra of graph
transformations for editing the structure and control flow of a
binary program. In this section, we define this algebra. We then
describe three classes of transformations: block, edge, and code
insertion, and provide examples of each class. This discussion
assumes that each transformation has no other effect on the
CFG; specifically, that indirect control flow is not changed.
We discuss our approach to handling indirect control flow in
Section VI.

Our structured binary editing algebra is a tuple BinEdit =
(GT, V C) where GT is a set of graph transformation rules and
V C represents the validity constraint defined in Section IV-A.
Briefly, a rule r : L→ R replaces an instance of the subgraph
L in a target graph G with the graph R; we represent these
rules graphically, as is typical in graph transformation [11],
[12]. A rule r is valid under the constraint V C if transforming
an input graph that satisfies V C results in an output graph
that satisfies V C. We show an example graph transformation
to demonstrate our notation in Figure 4. Finally, we define
composition of two valid rules to be valid.

The transformations in our algebra are purposefully de-
signed to be simple in order to avoid unexpected side-effects
on program behavior. We expect users to compose these simple
transformations to both create more complex transformations

b b b0

 L : R :

Fig. 4. An example graph transformation. The input subgraph L is on the
left, and the replacement R is shown on the right, separated by a double
arrow. We use solid arrows to indicate an edge that can be either intra- or
inter-procedural, and omit type labels when they are not necessary. Edges to
or from blocks not included in the transformation (such as the source edge(s)
of b) are omitted for clarity.
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(c) Block Cloning

Fig. 5. Example b lock transformations. Block splitting is shown in figure (a);
the original block b = (i1, . . . , ln) is split into two blocks b′ = (i1, . . . , im)
and b′′ = (im+1, . . . , in). Block joining is shown in figure (b), where two
blocks b, b′ are combined into one block b′′ = b ∪ b′; note that b′ may have
no other in-edges except from b. Block cloning is shown in figure (c), where
the block b is cloned creating a block b′. Note that cloning copies out-edges
but not in-edges.

and to transform more of the CFG. We must ensure that
such composition preserves structural validity. This is true
by induction. Let T1 and T2 be two valid transformations in
our algebra and G be a valid CFG. Then G′ = T1(G) must
be valid, and similarly T2(G

′) = T2(T1(G)), which is by
definition the composition of T1 and T2; therefore T1 ◦ T2 is
also a valid rule.

A. CFG Transformations

The first class of transformations alter the blocks (nodes)
in the CFG. We define four block transformations: block
splitting, block joining, block cloning, and block removal.
These transformations are shown in Figure 5; for reasons
of space, we omit block removal. Block splitting divides an
existing block into two pieces and joins the resulting blocks
with a fallthrough edge. Blocks must be split at an instruction
boundary. Block joining reverses this operation. The first block
must have a single intraprocedural out-edge that targets the
second block; thus, this edge must be typed as either direct or
fallthrough. The second block must have a single in-edge from
the first block. Block cloning creates a copy of a particular
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Fig. 6. Example edge transformation that replaces all out-edges of b with a
single out-edge to b′. All blocks may have in-edges from blocks not included
in the transformation; however, blocks with no in-edges are valid.
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Fig. 7. Insertion transformations, with the inserted snippet represented by
blocks shaded in blue. Raw insertion is shown in figure (a); the added snippet
s is not connected to the original CFG. Edge insertion is shown in figure (b);
a new snippet s is inserted between b and b′. Predicate insertion is shown
in figure (c); in the original graph b and b′ are connected by a direct or
fallthrough edge, and we introduce a conditional edge to b′′ while converting
the original edge to a conditional fallthrough. The block p represents the
predicate that selects which edge is taken at runtime.

block, including all of that block’s out-edges (but not its in-
edges). Block removal deletes a block from the graph; the
removed block must have no in-edges.

The second class of transformations alter the edges in the
CFG. Since these transformations involve no new code, they
can only alter or remove existing execution paths; we discuss
creating new paths below. We define two edge transforma-
tions: edge redirection and edge collapsing. Edge redirection
changes the target of an edge; the source is left unmodified.
Edge collapsing replaces all out-edges of a block with a single
edge to a selected target block that is typed as direct , as
shown in Figure 6. One obvious transformation that we do
not support is edge deletion, which removes an edge from
the graph. Applying such a transformation may result in an
invalid CFG, since it does not provide an alternative execution
path (Figure 3). Similarly, modifying the source of an edge is
invalid in our algebra since it may result in an invalid CFG.

The third class of transformations inserts new code into
the CFG. We must constrain such insertion to ensure that
the resulting CFG is valid; we do this by constraining the
transformations that can be used to insert code. In this work we

1 Algorithm: Function Cloning
input : A graph CFG and function f = (Vf , Ef , vf , Xf , Tf , Lf )
output: A modified graph CFG′ and new function f ′

2 CFG′ ← CFG, V ′
f ← ∅, E

′
f ← ∅, v

′
f ← v⊥, X′

f ← ∅;
3 for each block b ∈ Vf do
4 if b 6= v⊥ then
5 b′ ← BlockClone(b, CFG′);
6 else
7 b′ ← v⊥;
8 end if
9 V ′

f ← V ′
f ∪ {b

′};
10 if b = vf then
11 v′f ← b′;
12 end if
13 if b ∈ Xf then
14 X′

f ← X′
f ∪ {b

′};
15 end if
16 end for
17 for each block b′ ∈ V ′

f do
18 for each out-edge e′ = (b′, bt) ∈ Out(b′) do
19 E′

f ← E′
f ∪ {e

′};
20 if e′ is intraprocedural then
21 b′t ← the clone of bt;
22 EdgeRedirect(e′, b′t, CFG′);
23 end if
24 end for
25 end for

Fig. 8. An algorithm for cloning a function f into a function f ′. As
with block cloning, the entry of f ′ has no interprocedural in-edges. This
algorithm constructs the blocks, edges, entry block, and exit blocks of f ′;
the construction of the type and context labeling functions are omitted.
We begin by cloning each block b ∈ Vf and constructing V ′

f , v
′
f and X′

f
(lines 3-16). After each block has been cloned, we iterate over each and
redirect all intraprocedural out-edges to the corresponding cloned blocks
(lines 17-25).

define five insertion transformations: raw insertion, edge inser-
tion, predicate insertion, call insertion, and return redirection.
Examples of these transformations are shown in Figures 7.
Raw insertion simply inserts a provided snippet into the CFG,
but performs no other operations; as a result, the user must
use other transformations to connect its entry and exit with
the original CFG. Edge insertion inserts a snippet along an
existing single control flow edge; the snippet entry is linked
to the source of the edge and the exit is linked to the target.
Predicate insertion creates new execution paths by converting
an existing direct or fallthrough edge to a conditional pair.
This transformation inserts a predicate that controls which
edge is executed and a new conditional taken edge et, while
converting the original edge to a conditional fallthrough eft.
For simplicity, the predicate tests a single register or memory
location: if the value is non-zero, et is taken; if zero, eft
is taken instead. If more complex predicates are required, a
user can create them by composing predicate insertion with
edge insertion, and we rely on existing code-optimization
techniques to generate efficient code for the desired result. Call
insertion allows a user to interpose a function call along an
edge; to preserve validity, the original edge must be typed as
either direct or fallthrough. Finally, return redirection replaces
the out-edges of a block with an immediate return to the caller.



B. Function Transformation Examples

The transformations above allow the user to manipulate the
interprocedural CFG at the level of blocks and edges. These
transformations can be composed to manipulate functions as
well. We describe three examples of such operations: function
cloning, removal, and unsharing. Function cloning creates a
copy f ′ of a function f by cloning all blocks in f and
redirecting edges. Note that the entry block v′f of f ′ will have
no interprocedural in-edges (as it was just created and thus is
not reachable from outside of f ′) but may have intraprocedural
in-edges from other blocks in f ′. We define an algorithm
for function cloning in Figure 8. Function removal destroys
a function f and blocks that belong only to f ; for this
transformation to be legal, the function entry block can have
no interprocedural in-edges. For reasons of space we omit the
formal description of this algorithm.

Finally, function unsharing eliminates sharing of blocks
between functions (as described in Section III-B). We do this
by cloning all shared basic blocks; we do not copy the sink
node if it is shared to since the sink node must be unique.
This algorithm is similar to function cloning, but has two
key differences. First, function unsharing only copies shared
blocks rather than all blocks. Second, it does not create a new
function, instead copying blocks within the original.

VI. INDIRECT CONTROL VALIDITY

In the previous sections, we described an approach to
modifying a binary program by transforming its CFG. This
approach made the simplifying assumption that these trans-
formations had no effect on the remainder of the CFG.
This simplification does not hold if a program uses indirect
branches or calls that use addresses determined at runtime.
In this section, we describe how transforming the CFG may
alter indirect control flow and describe an approach for safely
determining when this may occur.

Programs rely on indirect control flow for language features
such as multi-way branches, function pointers, or virtual
functions. At the binary level, these constructs are similar: the
program first calculates an address and then uses an indirect
control transfer (ICT) to branch or call to this destination.
These address calculations may be altered by a transformation
of the CFG, such as by inserting new code that changes
intermediate values used by the calculation. Such an altered
calculation may change the possible destinations of the cor-
responding ICT. This, in turn, may result in an invalid CFG
that does not properly represent these new destinations. The
transformations presented in Section V do not take this case
into account, instead assuming that the only control flow
effects on the CFG are those explicitly represented in the
transformation.

This problem is compounded by the difficulty of statically
determining indirect control flow. Compiler-emitted address
calculations (e.g., jump tables) frequently can be successfully
analyzed and their destinations represented in the CFG [23].
However, more complex calculations, such as those used for
function pointers or in optimized code, are either expensive to

analyze [26] or defeat analysis entirely. We label such ICTs in
our code with edges to the sink node, representing statically
unknown control flow.

We identify which ICTs are affected by a particular CFG
transformation and how they are affected as follows. We use
static analysis to identify which ICTs are affected; clearly, if an
ICT is not affected by a transformation then its destinations
will not be changed. If the ICT is affected, we attempt to
statically determine its new destination set. If each such desti-
nation is valid, we update the CFG to match; if a destination is
invalid we inform the user and invalidate the transformation.
Finally, if we fail to resolve the possible destinations via static
analysis, there is a spectrum of responses: we could invalidate
the transformation, allow the transformation but insert runtime
monitoring code, or allow the transformation and warn the user
of the CFG possibly becoming invalid. We allow the user to
select which response they prefer, which allows a user to be
conservative if they want while allowing transformations that
the user may know is valid even if our analysis fails.

We define a destination to be valid if it targets the entry of
a known basic block (for an indirect jump) or known function
(for an indirect call). This is purposefully a restricted definition
following our policy to minimize the possible secondary
effects of a CFG transformation. More relaxed policies are
possible; for example, we could define a destination to be
valid if it targeted a known instruction, and implicitly split a
block at such a targeted instruction.

Our analysis is performed over the transformed CFG, which
may include inserted code snippets as well as original code.
This analysis can be simplified if the user provides semantic
summaries of inserted code snippets; however, such summaries
are not required. When we encounter a snippet during our anal-
ysis, we apply a summary if it is available and continue instead
of having to analyze the entire snippet. This simplification
biases towards cases where inserted code has no cumulative
effect on the address calculation (e.g., instrumentation) but
proving this with analysis of the inserted code would be
expensive. Specifically, if a snippet has no cumulative effect,
we can omit its effects entirely and quickly determine that the
ICT was not affected.

A. Identifying Affected Indirect Jumps

Intuitively, an ICT is affected if a CFG transformation
interferes with the address calculation preceding the ICT. Let
ij be such an ICT in a function f in the original CFG, t a
transformation, and f ′ be the resulting transformed function
with corresponding ICT i′j . We define the address calculation
corresponding to ij as the backwards slice acj , bounded at
function entry [27]; we discuss our selection of this bound
below. Clearly, if t has no effect on acj then the ICT ij will
also be unaffected; similarly, if t alters acj then ij is affected.

This is essentially a dataflow analysis problem, and thus it
is insufficient to see if acj is directly affected by t. Instead,
we calculate the new backwards slice ac′j from i′j in f ′. If
acj ≡ ac′j , then no modification of the address calculation
has occurred and thus ij ≡ i′j ; otherwise, we conclude ij



is affected and perform further analysis to determine its new
destinations.

We bound the backwards slice at unanalyzable memory
accesses or the entry of the function. Our current implemen-
tation can resolve stack accesses or accesses to fixed memory
locations; all others, such as a pointer-based heap reference,
terminate the slice. If we reach an unanalyzable memory
access, we make the conservative assumption that the ICT was
affected by the transformation. If we reach the entry of the
function we can safely end the slice since an intraprocedural
transformation will not alter the function’s inputs.

B. Identifying New Destinations

Once we have identified the ICT ij that is affected by
the transformation t, we must determine its new possible
destination addresses; let this be a set of addresses D =
{am, . . . , an}. We say ij is valid if ∀ak ∈ D, ak is the
entry of a block bk. We analyze D as follows. First, we use
symbolic evaluation to convert the slice acj into a symbolic
representation eval j [28]. We then attempt to evaluate eval j to
determine its possible outputs. If this evaluation succeeds, we
examine each possible destination to determine if it is valid;
if all destinations are valid, we update the out-edges of the
ICT in the CFG and inform the user of each changed edge.
If a destination is invalid, we invalidate the transformation.
Finally, if the evaluation fails, we perform one of three actions
depending on the user’s preference for handling failed analysis.
The first option invalidates the transformation; this option is
conservative, but may invalidate legal transformations. The
second option inserts runtime monitoring code that raises an
exception if the indirect branch targets an invalid destination;
this option allows possibly invalid transformations, but may
result in unexpected runtime failures. The third option removes
all out-edges from the ICT and replaces them with a single
edge to the sink node; this option is maximally permissive, but
may allow invalid transformations and thus may be dangerous.

C. Preserving Other Dataflow Characteristics

The above problem can be cast as detecting when a transfor-
mation of the CFG affects a dataflow property of the program;
in this case, the values generated by an address calculation.
The same approach that we use to address this problem can
be applied to detecting other common errors that can also be
cast as dataflow characteristics, such as determining whether a
transformation will cause the program to use an uninitialized
value or access unallocated memory. We intend to investigate
these other common and frequently unintended errors in future
work using this analysis framework.

VII. EVALUATION

We evaluated our structured binary editing approach by ap-
plying it to dynamically patching, or hot patching, an Apache
web server. Hot patching is complicated by the differences in
binaries generated by different compilers, compiler versions,
or optimization levels. Ideally, a hot patching tool should be
independent of a particular compilation of the code, rather

than needing to be specialized for every possible binary.
Thus, the method used for code identification, construction,
and removal should be related to structural characteristics
rather than a particular instruction sequence. For example,
the location where local variables are stored may vary, or
instructions may be reordered by different compilers.

Current binary modification toolkits are not well-suited
to performing hot patching. DynamoRIO [3] and Valgrind
[10] can perform instruction-level modification and thus can
replace code. However, they do not identify the structural
characteristics helpful for identifying where to apply a patch.
Furthermore, they require the user to manually construct the
replacement code. Therefore, tools based on these toolkits
would be limited to particular versions of the binary to be
patched. PIN [19] provides function-level modification, but
otherwise suffers the same problems as DynamoRIO and
Valgrind. Dyninst [14] represents the binary as a CFG, thus
easing identification, and provides a high-level language for
constructing the replacement code sequence. However, like
PIN, Dyninst only supports function-level replacement. Our
structured binary editing technique addresses this lack by
providing CFG modification.

We investigated hot patching security vulnerabilities in a
running Apache HTTPD web server [29]. We selected Apache
for three reasons. First, it is widely used. Second, security
flaws, as well as the patches necessary to fix these flaws,
are widely published and available. Third, as a long-running
process, Apache is an excellent test of our ability to modify
a running process without corrupting its structure. We con-
structed a single tool that dynamically patches three security
vulnerabilities (CVE-2011-3368, CVE-2011-3607, and CVE-
2012-0021 [30]) in a running Apache process.

This evaluation has three goals. First, we should be able to
patch an unmodified, executing Apache HTTPD web server.
Second, we should be able to patch versions of the same server
as compiled on different systems, which requires identify-
ing the locations to patch by structural characteristics (e.g.,
a subgraph of the CFG) rather than a literal sequence of
instructions. Third, we should be able to prepare the patch
from the corresponding source code patch instead of manually
crafting it in assembly code. We accomplished these goals
as follows. We prepared our target binaries by compiling
the appropriate versions of Apache from source using default
configuration options and several different versions of GNU
GCC (4.1 through 4.6). We used different compiler versions to
ensure that our location match did not depend on the particular
idioms used by a single version of GCC. Finally, we wrote
each patch in Dyninst’s high-level AST language [14] instead
of assembly code.

For conciseness, we describe how we created our hot patch-
ing tool for the CVE-2011-3368 vulnerability; the process for
patching CVE-2011-3607 and CVE-2012-0021 was similar.
This vulnerability allowed a user to use a carefully crafted
URL to gain full internal network access from a DMZ web
server. We began by examining the Apache source code
and the published patch to gain an understanding of the
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Fig. 9. CFG fingerprint for CVE-2011-3368.

vulnerability and to locate where to apply our modifications;
we show the patch file in Figure 10.

We then examined the CFG of the binary to identify the
corresponding point in the binary that required patching.
Interestingly, we found from an examination of the binary
that the patched function (read_request_line) was not
present in the server binary. This function is declared static
in its source file, resulting in the compiler inlining it into
its caller, ap_read_request. However, we were still able
to identify its characteristic CFG and prepared the finger-
print shown in Figure 9. This fingerprint matched a portion
of the ap_read_request function that had incorporated
read_request_line. This fingerprint was unique in the
binary; however, this may not be true for binaries built for
other compilers. We designed our hot patching tool to exit
without modifying the binary if it either fails to find the finger-
print or finds multiple matches, since this would indicate the
fingerprint may have falsely identified the location to modify.
We performed this step manually; however, we believe it could
be partially automated by generating the expected CFG from
source code and then manually refining the fingerprint.

Next, we converted the code added by the patch file into
a Dyninst code snippet. We divided the new code into two
sections: a condition that identified when server was being
attacked and a patch that took corrective action. Both the
condition and the patch required access to two local variables
in read_request_line, r (a status structure) and uri (the
input URI). Since Apache is compiled with debugging infor-
mation, we were able to identify r and its fields. Debugging
information for uri was not present. However, it is an argument
to a function call to ap_parse_uri immediately before
the patch location. We could not use the argument register
directly because it was modified by the call; instead, we used
Dyninst’s dataflow analysis capabilities to identify the register
that contained the authoritative value for uri. Once we had
created AST nodes for these two variables, building the snippet
was a straightforward operation of manually translating C
code. As with the previous step, we generated the code snippet
manually using the Dyninst DynC C-like language [31]

Finally, we constructed a CFG transformation that injected
the snippet into the binary; we show the transformed CFG

1 ap_parse_uri(r, uri);
2

+ 3 if (r->method_number != M_CONNECT
+ 4 && !r->parsed_uri.scheme
+ 5 && uri[0] != ’/’
+ 6 && !(uri[0] == ’*’ && uri[1] == ’\0’)) {
+ 7 r->args = NULL;
+ 8 r->hostname = NULL;
+ 9 r->status = HTTP_BAD_REQUEST;
+ 10 r->uri = apr_pstrdup(r->pool, uri);
+ 11 }
12
13 if (ll[0]) {

Fig. 10. Code listing for the CVE-2011-3368 security patch; the lines prefixed
with a “+” are inserted. For clarity, this listing omits call to a logging function
ap_log_rerror.
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Fig. 11. The resulting CFG after our transformations were applied to insert
the patch shown in Figure 10. User-inserted snippets are shown in blue (pred
and patch), and automatically generated code in green (cond and call). The
pred snippet corresponds to lines 3-6 and the patch snippet to lines 7-10;
for clarity, we have omitted a logging call to ap_log_rerror. The cond
block represents the conditional branch used to implement the if statement
in line 3, and the call block represents the call to apr pstrdup in line 10.
We composed three types of transformations to create this CFG: interception
insertion, predicate insertion, and call insertion.

subgraph in Figure 11. This injection was straightforward,
as the patch did not contain complex control flow. We then
verified that our tool closed the security flaw while not
impacting the normal execution of the web server.

This case study demonstrates that our structured binary
editing approach is capable of patching security vulnerabilities
in an unmodified, executing Apache web server. We are able
to use the same tool on Apache binaries compiled with several
different compiler versions. This is due to our use of the CFG
to identify the patch site and apply the patch; although the
underlying instructions in each compiled version of Apache
are different, their CFGs are the same.

In all, our tool consisted of 498 lines of code, of which 93
were responsible for identifying the patch location, 187 were
responsible for creating the snippet, and 120 were responsible
for transforming the CFG; the remainder was utility code. The
small size of our tool is due to two factors: the expressive
power of our CFG transformations and the analysis capabilities
of the Dyninst toolkit. We believe these sizes would be
representative of other uses of structured binary editing.



VIII. CONCLUSION

We have presented structured binary editing, a technique
that uses the CFG as a mechanism for binary program
modification. Structured binary editing overcomes the weak-
nesses of instruction-level binary modification by ensuring
the resulting binary is structurally valid. We have defined an
algebra of valid CFG transformations and provided several
example transformations. We have also described a slicing-
based dataflow analysis that determines if a transformation will
alter indirect control flow. We have implemented our approach
in the Dyninst binary analysis and instrumentation framework,
and created a prototype hot patching tool. We applied this tool
to a running Apache web server to show that we can change
local program behavior without causing undesired side effects.

Our prototype will be included in the next public release
of the Dyninst project. In the meantime, code is available
upon request. We intend to address the limitations of our
current approach in future work. First, we wish to improve
our indirect control transfer (ICT) analysis; this includes both
our heuristics for bounding the analysis as well as our determi-
nation of the new destinations of the ICT. Second, we wish to
supplement the code snippet summarization requirement with
automated analysis of each snippet. Third, we will continue
to build more complex transformations.
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