Paradyn Tools Project

MRNet API
Programmer’s Guide

Release 4.1.0
March 2014

MRNet Project
www.paradyn.org/mrnet
mrnet@cs.wisc.edu

Paradyn Tools Project
www.paradyn.org
paradyn@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685

Table of Contents

1. INEFOAUCTION ..ttt ee e e e e e s s s s e 1
2. ADSITACLIONS ..oiiiiiieiii e e 2
2.1 ENA-POINES ..uttiiiiiiiiiiiiiiiieee et 2
2.2 COMMUNICALOIS ...iiiiieeeieeiieeeeeeeteeeneee et e et e e e e e e aaas 2
2.3 SHEAIMS ..oieii et s e e e e e e e e e e e e e e e 2
2.4 FIEIS ottt e e e e e 2
3. A SIMple EXaMPIEccoooiiiiieeeeeee e e e ————————— 4
3.1 The MRNEt INTEIfACEeuuiiiiiiiiiiemeeeeiiiiiieeeee e 4.
Figure: MRNet Front-End Sample Codeoooieeeeeeiiiiiiiiiinn. 4
3.2 MRNet INStaNtiationcoooviiiiicmiiiiiiii e 5
Figure: MRNet Back-End Sample Codecoovvveccceeerieveeiiiiiinnnns 5
4. The MRNETL AP ...t e e e e e e e e 7
4.1 CH+ APIREIEIENCE ..coooeieiiiiii e 7
4.2 CAPIREEIENCEccoiiiiiiiie e 25
Appendix E: Building and Testing MRNEetccoeeeiiiiiiiiiiiiiieceeee, 31
5.1 Supported Platforms and COMPIIErSccccceeiiiiiiiiiiiieieiiiiieieeeiiiiies 31
5.2 Configuration, Compilation, and Installatian..............cccccevvvvviinnnnnn. 31
5.3 Testing the COUEoooeeveiviieet et e e e e e e e e e e e e eaees 31
5.4 Bugs, Questions, and COMMENLSccooveeeeiieiiiiiiiieeeeieii e 31
Appendix F: A Complete Example: Integer Additioncovvvviviiciinnnnnnn. 32
6.1 A Complete MRNet Front-ENndcooooommeeiiiiiieeeeiiis 32
6.2 A Complete MRNet Back-End ..., 34
6.3 A Complete MRNet Lightweight Back-End ...eeeevevveeeennnneeeen.. 35
6.4 A MRNet Filter: Integer ADditionccoooeeiiiiiiiiiiiii e 36
Appendix G: Process-Tree TOPOIOGIEScooccccveeeeriiiiiiiiiie e eeeeeeeeeeeeeeennenns 37
7.1 Topology File FOrmatoooiiimmmmme e 37.
7.2 An Example Topology Filecccooovmmmeeeeeee e 38
7.3 Topology File GEeNeratoruueeeuuiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeneennnnnns 8.3
Appendix H: Adding New Filters ..o 9.3
8.1 Defining an MRNEt FIlterccooeiiieeeeeiiiiiiee e 39
8.2 Fault-Tolerant Filtersoooiiii e 39
8.3 Creating and Using MRNet Filter Shared Obj8lgscc..e. 40
Appendix |1 FOrMat STHNGSueeiiiiiiee et e e e e e eeeeeeenannas 41
Table:Format String CONVEISIONSccoooeeeeee e e 41

MRNet APl Programmer’s Guide

Release 4.1.0

Appendix J: MRNet Stream Performance Dataccccccooeeeiieeeeiiiiieieeeiiiiinnns 42

Table: Metric-Context Compatibility MatriXcoeevvvvvveieiiinnnnnnnn. 43
Appendix K: Network Settingscoovvvvviiviicemiiiieee e 44
Table: Environment Variables and Network Attributes 44

MRNet APl Programmer’s Guide Release 4.1.0

Page 1

1. INTRODUCTION

MRNet is a customizable, high-throughput commumicasoftware system for parallel tools and
applications with a master/slave architecture. MRMdduces the cost of these tools’ activities by
incorporating a tree-based overlay network (TBON)rocesses between the tool’s front-end and
back-ends. MRNet uses the TBON to distribute mamgortant tool communication and compu-
tation activities, reducing analysis time and kagpool front-end loads manageable.

MRNet-based tools send data between front-end ack-énds on logical flows of data called
streams. MRNet internal processes use filters malapnize and aggregate data sent to the tool’s
front-end. Using filters to manipulate data in pletas it passes through the network, MRNet can
efficiently compute averages, sums, and other roongplex aggregations on back-end data.

Several features make MRNet especially well-sugsca general facility for building scalable
parallel tools:

* Flexible organizationMRNet does not dictate the organization of th€ON8 MRNet process
organization is specified in a configuration fileat can specify common network overlays
like k-ary and k-nomial trees, or custom layout®tad to the system(s) running the tool. For
example, MRNet internal processes can be allodatéedicated system nodes or co-located
with tool back-end and application processes.

» Scalable, flexible data aggregatioklRNet’s built-in filters provide efficient compation of
averages, sums, concatenation, and other commanredtictions. Custom filters can be
loaded dynamically into the network to perform tgpkcific aggregation operations.

* High-bandwidth communicatioMRNet transfers data within the tool system usangeffi-
cient, packed binary representation. Zero-copy ¢eidns are used whenever possible to
reduce the cost of transferring data through imtigpnocesses.

» Scalable multicastAs the number of back-ends increases, serializatizen sending control
requests limits the scalability of existing todRNet supports efficient message multicast to
reduce the cost of issuing control requests fraernadlol front-end to its back-ends.

* Multiple concurrent data channelMRNet supports multiple logical streams of dagween
tool components. Data aggregation and messagecastltiakes place within the context of a
data stream, and multiple operations (both upwadi downward) can be active simulta-
neously.

MRNet APl Programmer’s Guide Release 4.1.0

Page 2

2. ABSTRACTIONS

The MRNet distribution has two main componefnibgirnet , a library that is linked into a tool’s
front-end and back-end components, aigkt commnode , @ program that runs on intermediate
nodes interposed between the application frontagrbback-endsibmmet exports an API (see
“C++ API Reference” on page § that enables I/O interaction between the frort-end groups
of back-ends via MRNet. The primary purposena@fet_commnode is to distribute data process-
ing functionality across multiple computer hostsl da implement efficient and scalable group
communications. In addition, there is another comemb, libmrnet_lightweight , Which
exports an API (se&C API Reference” on page 26 that enables 1/O interaction between the
front-end and groups of "lightweight" back-ends M&Net. Lightweight back-ends provide a
pure C implementation of the MRNet API. They alsorobt support loading custom filters, and
by default the API cannot be used by multiple tbdeeaoncurrently. There is a separately built
component, libomrnet_lightweight_r , which is thread-safe. The following sub-sections
describe the lower-level components of the MRNet ilFfnore detail.

2.1 End-Points

An MRNet end-point represents a tool or applicamwocess. Specifically, they represent the
back-end processes (i.e., leaf processes) in tbdagvtree. The front-end can communicate in a
unicast or multicast fashion with these end-poastslescribed below.

2.2 Communicators

MRNet uses communicators to represent groups ofpemds. Like communicators in MPI,
MRNet communicators provide a handle that iderstiieset of end-points for point-to-point, mul-
ticast or broadcast communications. MPI applicaitypically have a non-hierarchical layout of
potentially identical processes. In contrast, MRHBeforces a tree-like layout of all processes,
rooted at the front-end. Accordingly, MRNet comnuaators are created and managed by the
front-end, and communication is only allowed betwadront-end and its back-ends. Thus, back-
ends cannot interact with each other directly usimgMRNet API.

2.3 Streams

A stream is a logical channel that connects thetfemd to the end-points of a communicator. All
MRNet communication uses the stream abstractioaaBts carry data packets downstream, from
the front-end toward the back-ends, and upstreanm the back-ends toward the front-end.
Streams are expected to carry data of a specpie, igllowing data aggregation operations to be
associated with a stream. The type is specifiedguaiformat string (se&ppendix E: “Format
Strings” on page 43 similar to those used in C formatted 1/0O primésv(e.g., a packet whose
data is described by the format strirgd"%d %f %s " contains two integers followed by a float
then a character string). MRNet expands the stanftamat string specification to allow for
description of arrays.

MRNet APl Programmer’s Guide Release 4.1.0

Page 3

2.4 Filters

Data aggregation is the process of merging muliiget data packets and transforming them into
one or more output packets. Though it is not nesgdser the aggregation to result in less or even
different data, aggregations that reduce or mathfy values are most common. MRNet uses data
filters to aggregate data packets. Filters speaifoperation to perform and the type of the data
expected on the bound stream. Filter instanceba@uad to a stream at stream creation. MRNet
uses two types of filters: synchronization filtarsd transformation filters. Synchronization filters
organize data packets from downstream nodes imohsgnized waves of data packets, while
transformation filters operate on the synchronidath packets yielding one or more output pack-
ets. A distinction between synchronization and farmation filters is that synchronization fil-
ters are independent of the packet data type,rbosformation filters operate on packets of a
specific type.

Synchronization filters operate on data flowingtugem in the network, receiving packets one at
a time and outputting packets only when the spagtisiynchronization criteria has been met. Syn-
chronization filters provide a mechanism to deahwhe asynchronous arrival of packets from

children nodes. The synchronizer collects packetstgpically aligns them into waves, passing

an entire wave onward at the same time. There$greshronization filters do no data transforma-

tion and can operate on packets in a type-indeperfdshion. MRNet currently supports three

synchronization modes:

* Wait For All: wait for a complete wave (i.e., a packet fromrg\ahild node) before producing
output packets (SFILTER_WAITFORALL)

* Do Not Wait:output packets immediately (SFILTER_DONTWAIT)

» Timeout output packets after ‘timeout’ milliseconds (SFHR_TIMEOUT), or when a com-
plete wave has been accumulated. The timeout pbegahs upon receipt of the first packet
since the filter last produced output. The timewalue in milliseconds can be set using
Stream::set_FilterParameters . Note that this timeout value is used at eachl lefve
the tree - a timeout value of 100ms combined witrea of depth three should produce out-
puts at the front-end approximately 300ms afteaekpt is sent from a back-end. The default
timeout value is Oms. If you use SFILTER_TIMEOUTthaut setting a non-zero timeout
value, it will behave similar to SFILTER_DONTWAIT.

Transformation filters can be used on both upstranthdownstream data flows. Transformation
filters input a group of synchronized packets, anthbine data from multiple packets by per-
forming an aggregation that yields one or more wewa packets. Data packets produced by a
transformation filter can be forwarded in eitheredtion on a Stream by placing them in the
appropriate output set. Since transformation Bltare expected to perform computational opera-
tions on data packets, there is a type requirefioenbhe data packets to be passed to this type of
filter: the data format string of the stream’s patskand the filter must be the same. Transforma-
tion operations must be synchronous, but are abledintain state from one execution to the
next. MRNet provides several transformation filtdrat should be of general use:

* Basic scalar operations on characters/integerstominimum (TFILTER_MIN), maximum
(TFILTER_MAX), summation (TFILTER_SUM), average (IFER_AVG)

MRNet APl Programmer’s Guide Release 4.1.0

Page 4

» Concatenationoperation that inputs n scalars and outputs &ovex length n of the same
base type (TFILTER_ARRAY_CONCAT)

Appendix D: “Adding New Filters” on page 40describes facilities for adding new user-defined
transformation and synchronization filters.

MRNet APl Programmer’s Guide Release 4.1.0

Page 5

3. A SMPLE EXAMPLE

3.1 The MRNet Interface

A complete description of the MRNet API is‘i6++ API Reference” on page 8and“C API
Reference” on page 26This section offers a brief overview only. Usiitgnrmet, a tool can
leverage a system of internal processes, instasfddg mrnet_commnode program, as a commu-
nication substrate. After instantiation of the MRMetwork (discussed in “MRNet Instantiation”
on page 6), the front-end and back-end processesoareected by the internal processes. The
connection topology and host assignment of thesegsses is determined by a configuration file,
thus the geometry of MRNet's process tree can Beoaized to suit the physical topology of the
underlying hardware resources. While MRNet can gere variety of standard topologies, users
can easily specify their own topologies; s&ppendix C:. “Process-Tree Topologies” on
page 38for further discussion.

The MRNet API contains Network, EndPoint, Commutocaand Stream objects that a tool’s
front-end and back-end use for communication. Tleéwdrk object is used to instantiate the
MRNet network and access EndPoint objects thaesgmt available tool back-ends. The Com-
municator object is a container for groups of endHs, and Stream objects are used to send data
to the EndPoints in a Communicator.

12 front_end _main(...) {

13 Network * net;

14 Communicator * comm;

15 Stream * stream;

16 PacketPtr packet;

17 int tag = FirstApplicationTag;

18 float result;

19

20 net = Network::CreateNetworkFE(topology _file, bac kend_exe, argv);
21 comm = net->get_BroadcastCommunicator();

22 stream = net->new_Stream(comm, TFILTER_SUM, SFILT ER_WAITFORALL);
23 stream->send(tag, "%d", SUM_INIT);

24 stream->recv(&tag, packet)

25 packet->unpack("%f", &result);

26}

Figure 1. MRNet Front-End Sample Code

A simplified version of code from an example toarft-end is shown ifrigure 1. In the front-
end code, after some variable definitions in liae& an instance of the MRNet network is created
on line 9 using the topology specified in topolofii¢. In line 10, the newly created Network
object is queried for an auto-generated broadaasiraunicator that contains all available end-
points. In line 11, this Communicator is used tialeksh a Stream that will use a built-in filteath
finds the summation of the data sent upstream fibimé-end then sends one or more initialization
messages to the backends; in our example code®d 2, we broadcast an integer initializer on
the new stream. The tag parameter is an applicapenific value denoting the nature of the mes-

MRNet APl Programmer’s Guide Release 4.1.0

Page 6

1 back _end_main(int argc, char** argv) {

2 Stream * stream);

3 PacketPtr packet;

4 int val, tag;

5 float random_float = (float) random();
6

7

8

9

Network * net = Network::CreateNetworkBE(argc,argv);
net->recv(&tag, packet, &stream);
packet->unpack("%d", &val);

10 if(val == SUM_INIT)

11 stream->send(tag, "%f", random_float);

Figure 2: MRNet Back-End Sample Code

sage being transmitted. After the send operati@nfront-end performs a blocking stream receive
at line 13. This call returns a tag and a packegally, line 14 calls unpack to deserialize theafto
ing point value contained in packet.

Figure 2 shows the code for the back-end that reciprod¢hteactions of the front-end. Each tool
back-end first connects to the MRNet network ire | using the back-end version of the Net-
work constructor that receives its arguments v pihogram argument vectoardc/argv).
While the front-end makes a stream-specific recealk the back-ends use a stream-anonymous
network receive that returns the tag sent by tbetfend, the packet containing the actual data
sent, and a stream object representing the streainthte front-end has established. Finally, each
back-end sends a scalar floating point value uastreward the front-end.

A complete example of MRNet code can be found befowppendix B: “A Complete Exam-
ple: Integer Addition” on page 33

3.2 MRNet Instantiation

While conceptually simple, creating and connecting internal processes is complicated by
interactions with the various job scheduling systein the simplest environments, MRNet can
launch processes directly using facilities likke or ssh. In more complex environments, it is
necessary to submit all requests to a job managesystem. In this case, MRNet is constrained
by the operations provided by the job manager {aese vary from system to system). Currently,
two modes of instantiating MRNet-based tools appsued.

In the first mode of process instantiation, MRNegates the internal and back-end processes,
using the specified MRNet topology configurationdetermine the hosts on which the compo-
nents should be located. First, the front-end cbsishe configuration and uses a remote shell
program to create internal processes for theléxstl of the communication tree on the appropri-
ate hosts. Upon instantiation, the newly createdtgsses establish a network connection to the
process that created it. The first activity on ttesnection is a message from parent to child con-
taining the portion of the configuration relevamthat child. The child then uses this information
to begin instantiation of the sub-tree rooted at thild. When a sub-tree has been established,
the root of that sub-tree sends a report to itengacontaining the end-points accessible via that

MRNet APl Programmer’s Guide Release 4.1.0

Page 7

sub-tree. Each internal node establishes its @rilgirocesses and their respective connections
sequentially. However, since the various processesexpected to run on different compute
nodes, sub-trees in different branches of the métwce created concurrently, maximizing the
efficiency of network instantiation.

In the second mode of process instantiation, MREk#s on a process management system to
create some of the MRNet processes. This mode anodates tools that require their back-ends
to create, monitor, and control other processesekample, IBM’s POE uses environment vari-
ables to pass information, such as the procesk’within the application’s global MPI communi-
cator, to the MPI run-time library in each applioatprocess. In cases like this, MRNet cannot
provide back-end processes with the environmenéssy to start MPI application processes.
As a result, MRNet creates its internal processesrsively as in the first instantiation mode, but
does not instantiate any back-end processes. MRBetwaits for the tool back-ends to be started
by the process management system to ensure theyttaenvironment needed to create applica-
tion processes successfully. To allow back-endsottnect to the MRNet network, information
such as process host names and connection porensiminist be provided to the back-ends. This
information can be provided via the environmeningishared filesystems or other information
services as available on the target system. Tedadihe necessary information, the front-end can
use the MRNet API methods for discovering the netvtopology details. This mode of process
instantiation is referred to as “back-end attactd&ioWe show how to construct a tool that
requires back-end attach$mRNET_ROOT/Examples/NoBackEndIinstantiation

MRNet APl Programmer’s Guide Release 4.1.0

Page 8

4. THE MRNET API

Standard MRNet relies on the back-end nodes suppga@t++ libraries. However, we have also
created a lightweight backend library with a puren@rface. The instantiation process is the
same and both methods of process instantation ignpoged, although the API interface is
slightly different.

4.1 C++ API Reference

All classes are included in thdRNnamespace. For this discussion, we do not expliciclude
reference to the namespace; for example, when f@eree the classetwork , we are implying
the classMRN::Network .

In MRNet, there are five top-level class®stwork , NetworkTopology , Communicator , Stream |,
and Packet . The Network class primarily contains methods for instantiatengd destroying
MRNet process trees. ThetworkTopology — class represents the interface for discoveringildet
about the topology of an instantiated network. Aggilon back-ends are referred to as end-
points, and theommunicator class is used to reference a group of end-pant®mmunicator is
used to establish stream for unicast, multicast, or broadcast communicatioia the MRNet
infrastructure. Theacket class encapsulates the data packets that arersandtream. The pub-
lic members of these classes are detailed below.

4.1.1 Class Network

The corresponding lightweight backend API clas®€isss Network” on page 26
Net wor k * Networ k: : Creat eNet wor KFE(

const char * topol ogy,

const char * backend_exe,

const char ** backend_argv,

const std::map< std::string, std::string>* attrs=NULL,
bool rank_backends = true,

bool using _menory buffer = false);

The front-end constructor method that is used $taintiate the MRNet process tregol-
ogy Is the path to a configuration file that descrifesdesired process tree topology.

backend_exe is the path to the executable to be used for ppécation’s back-end processes.
backend_argv is a null terminated list of arguments to pasthback-end application upon
creation (NOTEbackend_argv shoud not contain the executablehdékend_exe is NULL,

no back-end processes will be started, and thee¢eaf/the topology specified by topology
will be instances ahrnet_commnode .

attrs IS a pointer to a map of attribute-value stringattrs allows front-ends to progra-
matically set the values to use for the MRNet amiiaXenvironment variables (see Table 3 on
page 45) -- MRNet will only query the environment $ettings not given viattrs . On Cray

MRNet APl Programmer’s Guide Release 4.1.0

Page 9

XT, when communication or back-end processes oMR&let tree are to be co-located with
application processesattrs must contain a string pair that provides eithee th
“CRAY_ALPS APID” or “CRAY_ALPS APRUN_PID" attributevalue (see Table 3 on

page 45 for a description of these attributes).

rank_backends indicates whether the back-end process ranks dhmgdin at O, similar to
MPI rank numbering, and defaultsttoe .

If using_memory_buffer is set tarue (default isfalse), the topology parameter is actually
a pointer to a memory buffer containing the speatfon, rather than the name of a file.

When this function completes without error, all M&Nprocesses specified in the topology
will have been instantiated. You may u&ework::has_error to check for successful com-
pletion. The explicit use of theetwork constructor is now deprecated.

Net wor k * Network:: Creat eNetwor kBE(int argc, char ** argv);

The back-end constructor method that is used wherptocess is started due to a front-end
network instantiation. MRNet automatically pasdesrecessary information to the back-end
process using the program argument veciajcfargy) by inserting it after the user-speci-
fied arguments. The explicit use of thework constructor is now deprecated.

In the “back-end attach” mode of network instaiiat where the back-end is not launched
directly by MRNet, the back-end program must cardta suitable argument vector. Typi-
cally, the front-end program will obtain informatiabout the leahrnet_commnode processes
using theNetworkTopology ~ class, and pass this information to back-endgusxternal com-
munication channels (e.g., a shared file systetmg. dack-ends choose a leaf process as a par-
ent, and use that parent's host, port, and rankrnmétion to attach. Each back-end must
choose a unique value for its local rank; this gatwst be larger than any of the ranks of the
processes in the existing network. The followingeshows how to construct a valid argu-
ment vector:

char parHostname[64], myHostname[64], parPort[6], p arRank[6], myRank][6];
/I fill parent data here using info from front-end
gethostname(myHostname, 64);

sprintf(myRank, “%d”, <unique rank>);
be_argc = 6;

char* be_argv[be_argc];

be_argv[0] = argv|[0];

be_argv[1] = parHostname,;

be_argv[2] = parPort;

be_argv[3] = parRank;

be_argv[4] = myHostname;

be_argv[5] = myRank;

voi d Network: : ~Networ k() ;

Network::~Network tears down the MRNet process tree wherieork object is deleted.
Note thatNetwork::shutdown_Network is deprecated.

MRNet APl Programmer’s Guide Release 4.1.0

Page 10

voi d Network: :waitfor_Shut Down();

Network::waitfor_ShutDown can be used by back-ends to block until the ndtwias been
shut down by the front-end.

bool Network::is_Shut Down();

Back-ends use this method to query if the netwak been shut down; returimge if it has
been shut dowrialse otherwise.

bool Network::set FailureRecovery(bool enable);

Network::set_FailureRecovery is used by a front-end to control whether integahmu-
nication processes and back-ends will automatiaalfgonnect to a new parent when their
parent terminates unexpectedly. By default, faile®very is enabled and processes will re-
connect. Call this method witdnable set tofalse to turn off automatic failure recovery.
This method returngue if the setting has been applied successftdise otherwise.

bool Network::has_ Error();

Network::has_error returnstrue if an error has occured during the last call tee@vork
method.Network::print_error can be used to print a message describing the exac.

Error Code Network::get Error();

Network::get_Error returns arerrorCode for an error that occured during the last cathto
Network method Network::get_ErrorStr can be used to retrieve a message string describ-
ing the error.

const char * Network::get_ FErrorStr(ErrorCode code);
Network::get_ErrorStr returns a character string describing the ermicated bycode .
void Network::print_error(const char * error_mnsg);

Network::print_error prints a message taderr describing the last error encountered
during aNetwork method. It first prints the null-terminated striagor_msg followed by a
colon, then the actual error message followed bgvaline.

std::string Network::get_ Local Host Name();

Network::get_LocalHostName returns the name of the host on which the locaNdRpro-
cess is running.

Port Network::get_ Local Port();
Network::get_LocalPort returns the listening port of the local MRNet prege
Rank Network::get_ Local Rank();

Network::get_LocalRank returns the rank of the local MRNet process.

MRNet APl Programmer’s Guide Release 4.1.0

Page 11

int Network::load FilterFunc(const char * so file, const char* func);

This method loads a new filter operation for usthenNetwork, and is conveniently similar to
the conventionadlopen facilities for opening a shared object and dynatiydoading sym-
bols defined within.

so_file is the path to a shared object file that conténesfilter function to be loaded and
func_name is the name of the function to be loaded.

On successyetwork::load_FilterFunc returns the id of the newly loaded filter whichyma
be used in subsequent calls\tawork::new_Stream . A value of -1 is returned on failure.

int Network::load FilterFuncs(
const char * so file,
const std::vector< const char* > & functions,
std::vector< int > & filter_ids);

This method loads several new filter operationgdneg in the same shared library into the
Network.

so_file Is the path to a shared object file that conténesfilter function to be loaded and
functions IS a vector of function names to be loadid:_ids is an output vector of filter

ids, where the id for the function at index i fimctions will be stored at index i in

filter_ids

Network::load_FilterFuncs returns the number of filter functions that weveessfully
loaded, and populates the fiwer_ids vector with the ids of the newly loaded filters (o
1 if a function could not be loaded).

i nt Network::recv(
int * tag,
Packet Ptr & packet,
Stream ** stream
bool blocking = true);

Network::recv IS used to invoke a stream-anonymous receive tiperaAny packet avail-
able (i.e., addressed to any stream) will be reti(m roughly FIFO order).

otag will be filled in with the integer tag value thatas passed by the corresponding
Stream::send operationpacket is the packet that was received. A pointer todineam to
which the packet was addressed will be returnetdéam .

blocking is used to signal whether this call should blocketurn if data is not immediately
available; it defaults to a blocking call.

A return value of -1 indicates that the Network baperienced a terminal failure, and further
attempts to send or receive data on the Networkfaill A return value of O indicates no

MRNet APl Programmer’s Guide Release 4.1.0

i nt

Page 12

packets were available for a non-blocking receiveg stream has been closed for a blocking
receive. The return value 1 indicates a packebkas received successfully.

Net wor k: : send(
Rank be,
int tag,
const char * format_string, ...);

Network::send IS used to singlecast a packet from the front{eral specific back-ende is
the rank of the back-end processy is an integer that identifies the data in the pack
format_string is a format string describing the data in the pa¢keeAppendix E: “For-
mat Strings” on page 42for a full description.)

A return value of -1 indicates that the Network baperienced a terminal failure, and further
attempts to send or receive data on the Networllkfail The return value O indicates a packet
has been sent successfully.

NOTE:tag must have a value greather than or equal to thstabtFirstApplicationTag
defined by MRNet#include "mrnet/Types.h"). Tag values less thairstApplication-
Tag are reserved for internal MRNet use.

bool Network: : enabl e_PerformanceDat a(

perfdata_metric_t netric,
perfdata _context t context);

Network::enable_PerformanceData usesStream::enable_PerformanceData to start the
recording of performance data of the specifiedric type for the givercontext on all
streams. Returnsue on successalse otherwise Appendix F: “MRNet Stream Perfor-

mance Data” on page 43 describes the supported metric and context typse
Stream::enable_PerformanceData for additional details.

bool Network: : di sabl e_Perf or manceDat a(

perfdata_metric_t netric,

perfdata_context t context);

Network::disable_PerformanceData stops the recording of performance data of theispe
fied metric type for the giverontext on all streams. Returmse on successalse other-
wise. Seestream::disable_PerformanceData for additional details.

bool Network::collect_ PerformanceDat a(

std::map< int, rank_perfdata_map > & results,
perfdata_metric_t netric,

perfdata_context t context,

int aggr filter_id = TFI LTER_ARRAY_ CONCAT);

Network::collect_PerformanceData collects the performance data of the specitietlic
type for the givercontext on all streams. The performance data of eachrstiegpassed

MRNet APl Programmer’s Guide Release 4.1.0

Page 13

through the transformation filter identified lggr_filter_id . The data for all streams is
stored within the mapesults , keyed by stream identifier. Returnge on succesdalse
otherwise. Sestream::collect_PerformanceData for additional details.

voi d Network:: print_PerformanceDat a(
perfdata_metric_t netric,

perfdata_context t context);

Network::enable_PerformanceData uses Stream::print_PerformanceData to print

recorded performance data of the specifivedic type for the giverontext on all streams.
Data is printed to the MRNet log files. S&eam::print_PerformanceData for additional

details.

unsi gned int Network::num Event sPendi ng();

Network::num_EventsPending returns the number of pending events availabledtieval
usingNetwork::next_Event

Event * Network::next_ Event();

This method returns a pointer the next pendvagt , or NULL if no events are available. Each
event has an associateentClass , one ofEvent::DATA_EVENT , Event::TOPOLOGY_EVENT,

or Event::ERROR_EVENT, that can be queried usiggent::get_Class . Similarly, each event
has an associat&dentType that can be queried usiEgent::get_Type

void Network::clear Events();
This method clears all pending events.

bool Network::register_Event Call back(
Event Cl ass ecl ass,
Event Type etyp,
evt _cb_func cb_func,
void * cb_func_data,
bool onetine = false);

Network::register EventCallback allows users to register a callback function tcaked
when events are generated.

eclass should be set to one ofvent:DATA_EVENT , Event:TOPOLOGY_EVENT, or
Event:.ERROR_EVENT.

etyp should be set to eithe€rent:EVENT_TYPE_ALL , to have the function called when any
event within the specifiedventClass occurs, or one of the valid class-specHientType
values (see the classestaEvent , TopologyEvent , andErrorEvent in “mrnet/Event.h”

for the class-specific types).

The typeevt_cb_func is defined asvoid (*evt_cb_fn)(Event* e, void* cb_data)
All user-defined callback functions must use thensdunction prototype. When an event

MRNet APl Programmer’s Guide Release 4.1.0

Page 14

occurs, all callbacks registered for that type\adra will be called. Each function is passed a
pointer to theevent , and the value of the auxiliary data pointerfunc_data given at regis-
tration, which may beluLL

onetime should be set toue if the function should be removed after it is edlfor the first
(and only) time. Note that onetime callbacks mestdyistered for a specific event type.

voi d Network::renove_ Event Cal | back(
evt _cb_func cb_func,
Event Cl ass ecl ass,

Event Type etyp);

This method removes_func from the list of functions to be called for theesgied Event-
Class andEventType . If eclass IS given agvent:EVENT_CLASS_ALL , the function will be
removed for all eventgtyp can be given aBvent:EVENT_TYPE_ALL to remove the func-
tion for all types of events in the givetiass .

voi d Network::renove_Event Cal | backs(

Event O ass ecl ass,

Event Type etyp);

This method removes all functions to be calledtifier specifiedventClass andEventType .

If eclass is given asvent::EVENT_CLASS_ALL , all callback functions will be removed for
all eventsetyp can be given aBvent::EVENT_TYPE_ALL to remove all functions registered
for all types of events in the givenlass .

int Network::get EventNotificationFd(EventCd ass eclass);

Network::get_EventNotificationFd returns a file descriptor that can be used watéct
or poll to receive notification of interesting DATA, TOPOIGY, or ERROR events.

eclass should be set to one ofvent:DATA_EVENT , Event:TOPOLOGY_EVENT, or
Event:ERROR_EVENT. Event::DATA_EVENT can be used by both front-end and back-end pro-
cesses to provide notification that one or moreadpackets have been received.
Event: TOPOLOGY_EVENT and Event:ERROR_EVENT can only be used by front-end pro-
cesses, and provide notification when the front-@mskrves a change in network topology or
an error, respectively.

When the file descriptor has data available (fomedmeg), you should callNet-
work::clear_EventNotificationFd before taking action on the notification. Whenifnot
cations are no longer needed, Nsevork::close_EventNotificationFd

NOTE: this functionality is not available on Windswlatforms.

MRNet APl Programmer’s Guide Release 4.1.0

Page 15

voi d Network::clear_ EventNotificationFd(EventC ass eclass);

This method resets the event notification file dgsor returned from Net-
work::get_EventNotificationFd . eclass should be set to one @hent::DATA EVENT ,
Event: TOPOLOGY_EVENT, Or Event::ERROR_EVENT.

NOTE: this functionality is not available on Windswlatforms.
voi d Network::close_EventNotificationFd(EventC ass eclass);

This method closes the event notification file diggor returned from Net-
work::get_EventNotificationFd . eclass should be set to one @hvent::DATA EVENT ,
Event::TOPOLOGY_EVENT, Or Event::ERROR_EVENT.

NOTE: this functionality is not available on Windswlatforms.

bool is_Local NodeChild() const;
bool is_Local NodeParent() const;
bool is_Local Nodelnternal () const;
bool is_Local NodeFront End() const;
bool is_Local NodeBackEnd() const;

These methods retutiue if the local process is of the specified tyfa&se otherwise.

4.1.2 Class NetworkTopology

Instances ofNetworkTopology are network specific, so they are created whevetaork is
instantiated. MRNet API users should not need ¢éater their owmetworkTopology — instances.

The corresponding lightweight backend API clas€iass NetworkTopology” on page 28
Net wor kTopol ogy * Network:: get _Networ kTopol ogy();

Network::get_NetworkTopology is used to retrieve a pointer to the underlyNegvorkTo-
pology instance of aletwork .

unsi gned int NetworkTopol ogy: : get _NumNodes();

This method returns the total number of nodeséntitée topology, including front-end, inter-
nal, and back-end processes.

Net wor kTopol ogy: : Node * Networ kTopol ogy: : fi nd_Node(Rank node_rank);

This method returns a pointer to the tree node veittk equal tamode_rank , or NULL if not
found.

Net wor kTopol ogy: : Node * Networ kTopol ogy: : get _Root ();

This method returns a pointer to the root noidiae tree, or NULL if not found.

MRNet APl Programmer’s Guide Release 4.1.0

Page 16

voi d Networ kTopol ogy: : get _Leaves(

st d::vect or<Net wor kTopol ogy: : Node * > & | eaves);

This method fills théeaves vector with pointers to the leaf nodes in the togw. In the case
where back-end processes are not started whertiverk is instantiated, a front-end process
can use this function to retrieve information abthé leaf internal processes to which the
back-ends should attach.

voi d Networ kTopol ogy: : get _BackEndNodes(
std::set< Networ kTopol ogy:: Node * > & nodes);

This method fills a set with pointers to all bagkdgorocess tree nodes. Note that this method
is unsafe to use while the network topology isluxfas is the case during the “back-end
attach” mode of MRNet tree instantiation.

voi d Networ kTopol ogy: : get _Par ent Nodes(
st d: : set <Net wor kTopol ogy: : Node * > & nodes);

This method fills a set with pointers to all tremdes that are parents (i.e., those nodes having
at least one child).

voi d Networ kTopol ogy: : get O phanNodes(
std::set< Networ kTopol ogy:: Node * > & nodes);

This method fills a set with pointers to all tremdes that have no parent due to a failure.

voi d NetworkTopol ogy: :get_TreeStatistics(
unsi gned int & num nodes,
unsi gned int & depth,
unsi gned int & mn_fanout,
unsi gned int & max_fanout,
doubl e & avg_fanout,
doubl e & stddev_fanout);

This method provides users statistics about tleettneology by setting the passed parameters.

num_nodes IS the total number of tree nodes (same as theevaturned byetworkTopol-
ogy::get_ NumNodes), depth is the depth of the tree (i.e., the maximum patfyth from root
to any leaf)min_fanout is the minimum number of children of any parend@&max_fanout

is the maximum number of children of any parentejady_fanout is the average number of
children across all parent nodes, antdev_fanout is the standard deviation in number of
children across all parent nodes.

voi d Networ kTopol ogy: : print_Topol ogyFil e(const char * filenane);

This method will create (or overwrite) the spedfiepology filefilename using the current
state of thisNetworkTopology = object.

MRNet APl Programmer’s Guide Release 4.1.0

Page 17

voi d Networ kTopol ogy: : print_DOTG aph(const char * filenanme);

This method will create (or overwrite) the spedf@ot graph filgilename using the current
state of thisNetworkTopology = object.

std::string NetworkTopol ogy: : Node: : get Host Nane() ;
This method returns a string identifying the hosteaf the tree node.
Port NetworkTopol ogy: : Node: : get _Port();
This method returns the listening port of the mmede.
Rank Networ kTopol ogy: : Node: : get _Rank() ;
This method returns the unique rank of the treeenod
Rank Networ kTopol ogy: : Node: : get _Parent ();
This method returns the rank of the tree node’sitar

const std::set< NetworkTopol ogy:: Node * > &
Net wor kTopol ogy: : Node: : get _Children();

This method returns a set containing pointers eécctiildren of the tree node, and is useful for
navigating through the tree.

unsi gned int NetworkTopol ogy: : Node: : get _NuntChi |l dren();
This method returns the number of children of tke node.
unsi gned int NetworkTopol ogy: : Node: : fi nd_SubTr eeHei ght () ;

This method returns the height of the subtree tbatehisNetworkTopology node.

4.1.3 Class Communicator

Instances ofCommunicator are network specific, so their creation methodsfanctions of an
instantiatedNetwork object. There is no corresponding lightweight leack class.

Conmruni cat or * Net wor k: : new_Comuni cat or () ;

This method returns a pointer to a neammunicator object. The object contains no end-
points. UseCommunicator::add_EndPoint to populate the communicator.

Conmruni cat or * Networ k: : new_Comuni cat or (Conmuni cat or & comm) ;

This method returns a pointer to a neammunicator object that contains the same set of
end-points contained itomm

MRNet APl Programmer’s Guide Release 4.1.0

Page 18

Conmuni cat or * Networ k: : new_Communi cat or (

std::set< Conmuni cati onNode * > & endpoints);

This method returns a pointer to a neswmmunicator object that contains the provided set of
end-points.

Conmuni cat or * Network: : new _Communi cator(std::set< Rank > & endpoints);

This method returns a pointer to a neammunicator object that contains the set of end-
points corresponding to processes whose ranksavélpd in the passed set.

Conmuni cat or * Network: : get Broadcast Communi cator();

This method returns a pointer to a broadeastmunicator containing all the end-points
available in the system at the time the functiocalkted.

Multiple calls to this method return the same p&irtb theCommunicator object created at
network instantiation. If the network topology clyas, as can occur when starting back-ends
separately, the object will be updated to reflbaet additions or deletions. This object should
not be deleted.

bool Comuni cator::add _EndPoi nt (Rank ep_rank);

This method is used to add an existing end-poith vankep_rank to the set contained by
this Communicator .

If the set of end-points in the communicator alseedntains the new end-point, the function
returns success. This method fails if there exmtsend-point defined byp_rank . This
method returngue on successalse on failure.

bool Comruni cat or:: add_EndPoi nt (Conmuni cati onNode * endpoint);

This method is similar tadd_EndPoint above except that it takes a pointer ttoammunica-
tionNode oObject instead of a rank. Success and failureidond are exactly as stated above.
This method returngue on success arfdise on failure.

const std::set< Conmuni cati onNode * > & Conmmuni cator::get_ EndPoints();

Returns a reference to the setcofnmunicationNode pointers comprising the end-points in
the communicator.

std::string Comruni cati onNode: : get Host Name();

Returns a character string identifying the hostnafribe end-point represented by tbisn-
municationNode

Port Comuni cati onNode: : get Port();

Returns the listening port of the end-point repnése by thisSCommunicationNode

MRNet APl Programmer’s Guide Release 4.1.0

Page 19

Rank Comuni cati onNode: : get _Rank();

Returns the rank of the end-point represented isyCtimmunicationNode

4.1.4 Class Stream

Instances obtream are network specific, so their creation method@sfanctions of an instanti-
atedNetwork object. The corresponding lightweight backend ARks is“Class Stream” on
page 28

MRNet provides two types of streams, homegenousatetogeneous. Homogenous streams use
the same filters at every process participatinthe stream, while heterogeneous streams allow
for different filters to be used at different preses.

Stream * Network:: new_Streamn(
Comuni cator * conmm
int up_transfilter_id = TFI LTER _NULL,
int up_syncfilter_id = SFILTER WAl TFORALL,
int down_transfilter_id = TFILTER _NULL);

This version ofNetwork::new_Stream is used to create a homogenasieeam object
attached to the end-points specified by a Commtoricdbjectcomm

up_transfilter_id specifies the transformation filter to apply totaddlowing upstream
from the application back-ends toward the front:ehd default value iSFILTER_NULL.

up_syncfilter_id specifies the synchronization filter to apply tpstream packets; the
default value ISFILTER_WAITFORALL

down_transfilter_id allows the user to specify a filter to apply tonhstream data flows;
the default value ISFILTER_NULL.

Stream * Network:: new St rean
Conmuni cat or * conm
std::string us_filters,
std::string sync filters,
std::string ds_filters);

This version ofNetwork::new_Stream is used to creae a heterogenesusam object. Users
specify where packet filters are placed within titee. Like the homogenous versionNet-
work::new_Stream , the end-points are specified by thexmargument.

Strings are used to specify the filter placemewtt) the following syntax: filter_id =>

rank; [filter_id => rank; ...] " If "+" is specified as theank for an assignment, the
filter will be assigned to all ranks that have alseady been assigned. If a rank witbwmmis
not assigned a filter, it will use the defaultdilt See$MRNET_ROOT/Examples/Heteroge-

MRNet APl Programmer’s Guide Release 4.1.0

Page 20

neousFilters for an example of usingetwork::new_Stream to specify different filter
types to be used within the same stream.

us_filters specifies the transformation filters to apply ttadflowing upstream from the
application back-ends toward the front-end.

sync_filters specifies the synchronization filters to apply pstieam packets.

ds_filters allows the user to specify filters to apply to dsiveam data flows.

Note that more than one filter should not be aggigo a single rank in any of these strings.
Stream * Network::get Stream(unsigned int id);

Returns a pointer to thgream identified byid , orNULL on failure. Back-ends may pass their
local rank as thal to retrieve a singlecast stream that can be wsedoh-filtered communi-
cation directly with the front-end.

unsigned int Stream:get_Id();
Returns the integer identifier for trégeam .
const std::set< Rank > & Stream:get_ EndPoints();
Returns the set of end-point ranks for tigam .
unsi gned int Stream:size();
Returns an integer indicating the number of enavgdor thisStream .
bool Stream:is_Cl osed();

When used by back-ends, this method rettites if the front-end has closed tldgeam by
deleting the corresponding objefatse otherwise. On the front-end, this method can leglus
to determine if the stream has been disabled daentin-recoverable failure (e.g., a back-end
process has died or a sub-tree containing stredrsp@ints has become unreachable).

MRNet APl Programmer’s Guide Release 4.1.0

i nt
i nt
i nt

i nt

Page 21

Stream:send(int tag, const char * format_string, ...);

Stream :send(const char * format_string, va_ list list, int tag);
Stream:send(int tag, const void** data, const char * format_string);
Stream :send(PacketPtr & pkt);

Invokes a data send operation on the calBngam . The first three interfaces construct a
packet from the passed operands, while the fodldlva for sending an already constructed
packet.

tag IS an integer that identifies the data in the pack

format_string is a format string describing the data in the pa¢seeAppendix E: “For-
mat Strings” on page 42for a full description).

data is an array of pointers to individual data itertiee format string indicates the type of
data pointed to by each array index.

On successstream::send returns O; on failure -1.

NOTE:tag must have a value greather than or equal to thetaotrirstApplicationTag
defined by MRNet#include "mrnet/Types.h"). Tag values less thairstApplication-
Tag are reserved for internal MRNet use.

int Stream:flush();

Commits a flush of all packets currently buffergudtis Stream . A successful return value of

0 indicates that all buffered packets have beesgmhto the operating system for network
transmission. A return value of -1 indicates tlhat $tream has experienced a terminal failure,
and further attempts to send or receive data osttkam will fail.

int Stream:recv(int * tag, PacketPtr & packet, bool blocking = true);

Invokes a stream receive operation. Packets retdiyehe callingstream will be returned
by this method, one-at-a-time, in FIFO order.

tag Wwill be filled in with the integer tag value thatas passed by the corresponding
Stream::send ~ Operationpacket is set to point to the received packet.

blocking determines whether the receive should block armeif data is not immediately
available; it defaults to a blocking call.

A return value of -1 indicates that the stream dagzerienced a terminal failure, and further
attempts to send or receive data on the streanfa#illA return value of O indicates no pack-
ets were available for a non-blocking receive herstream has been closed. The return value
1 indicates a packet has been received successfully

MRNet APl Programmer’s Guide Release 4.1.0

Page 22

int Stream:get_DataNotificationFd();

Stream::get_DataNotificationFd returns a file descriptor that can be used watéct or
poll to receive notification that data has arrivedd@tream.

When the file descriptor has data available (foradmeg), you should call
Stream::clear_DataNotificationFd before taking action on the notification. Whenifiot
cations are no longer needed, 88eam::close_DataNotificationFd

NOTE: this functionality is not available on Windswlatforms.
void Stream:clear_DataNotificationFd();

This method resets the data notification file dgsor returned from
Stream::get_DataNotificationFd

NOTE: this functionality is not available on Windswlatforms.
void Stream:close DataNotificationFd();

This method closes the data notification file dgdgor returned from
Stream::get_DataNotificationFd

NOTE: this functionality is not available on Windswlatforms.

int Stream:set FilterParaneters(
FilterType ftype,

const char *format_str, ...) const;

Stream::set_FilterParameters allows users to dynamically configure the operaid a
stream transformation filter by passing arbitraggadin a similar fashion tetream::send
When the filter executes, the passed data is dbaiks aPacketPtr parameter to the filter,
and the filter can extract the configuration sein

ftype should be given asILTER_UPSTREAM_SYNdO configure the synchronization filter,
FILTER_UPSTREAM_TRANS®Or upstream transformation filter arRll TER_DOWNSTREAM_TRANS
for downstream transformation filter.

int Stream:set FilterParaneters(
const char *format_str,
va_list parans,

Filter Type ftype) const;

This method is the same as the previous methodgekmethe filter configuration parameters
are given in thea_list form.

MRNet APl Programmer’s Guide Release 4.1.0

Page 23

bool Stream :enabl e _PerfornmanceDat a(

perfdata_metric_t netric,
perfdata _context t context);

Stream::enable_PerformanceData starts recording performance data for the spehiiia-

ric type for the givertontext . Returnstrue on succesdalse otherwise Appendix F:
“MRNet Stream Performance Data” on page 43Jescribes the metric and context types.

bool Stream: di sabl e_PerformanceDat a(

perfdata_metric_t netric,
perfdata _context t context);

Stream::disable_PerformanceData stops recording performance data for the specified
metric type for the givemontext . Previously recorded data is not discarded, satthan be
retrieved withStream::collect_PerformanceData . Users can enable/disable recording for

a particularmetric andcontext any number of times before collecting the resuRisturns
true 0N successalse otherwise.

bool Stream: collect_ PerformanceDat a(

VO

rank_perfdata map & results,
perfdata_metric_t netric,

perfdata_context t context,

int aggr _filter_id = TFI LTER_ARRAY_CONCAT);

Stream::collect_PerformanceData collects the recorded performance data for theispe
fied metric type for the givencontext . The collected data is returned in a
rank_perfdata_map , Which associates individual node ranks to s@::vector<

perf_data_t > containing the recorded data instances. Afteectabn, the recorded data at
each nodeis discarded. Retumas on successalse otherwise.

Users can aggregate the recorded data across Ipdegcifying a transformation filter with
aggr_filter_id . Note that only the built-in filter types afFILTER_SUM TFILTER_MIN,
TFILTER_MAX, TFILTER_AVG andTFILTER_ARRAY_CONCA®re supported. By default, perfor-
mance data from each node is concatenated, antsregntains every recorded data instance
for each node. If the summary aggregation filteesused, results will contain a single associ-
ated pair. The rank for this pair is equalit@number of aggregated ranks) , and the vec-
tor contains one or more aggregated instances.

d Stream : print_PerformanceDat a(
perfdata_context t metric,
perfdata _context t context);

Stream::print_PerformanceData prints recorded performance data of the specitfietc

type for the giverrontext . At each rank, the data is printed to the MRNgtfites and then
discarded.

MRNet APl Programmer’s Guide Release 4.1.0

Page 24

4.1.5 Class Packet

A Packet encapsulates a set of formatted data elementsoseatstream. Packets are created
using a format string (e.g %05 %d" describes a null-terminated string followed by2abit integer,
and the packet is said to contain tdata elemen)s MRNet front-end and back-end processes
typically do not creat@acket instances, as they are automatically produced trarformatted
data passed t®tream::send Or Network::send . EachpPacket is allocated usingralloc of the

C standard library, and therefore has the samedbggement guarantee8ppendix E: “Format
Strings” on page 42contains the full listing of data types that canslent in @acket .

When receiving a packet vigstream:recv , Network:recv , or in a filter’s input vector, the
Packet instance is stored within RacketPtr object.PacketPtr is a class based on the Boost
shared_ptr class, and helps with memory management of packetscketPtr can be assumed
to be equivalent toPacket * ", and all operations on packets require useaoketPtr . Packets
can be created explicitly using the constructorswsh below, using the following method to
instantiate @acketPtr

PacketPtr new_pkt(new Packet(...));

The corresponding lightweight backend API clas€isss Packet” on page 30

Packet : : Packet (
unsi gned int stream.d,
int tag,
const char* format_str, ...);

Constructs @acket that can be sent on the stream with the gaream_id . The packet is
associated with g that can be used by receivers to identify the etstformat_str is a
format string describing the data elements in thekpt. The variable arguments following
format_str ~ should have the appropriate types for each dataesit. Note that for array data
elements, an extra argument must be passed toehold array’s length. (Segpendix E:
“Format Strings” on page 42 for a full description.)

Packet : : Packet (
const char* format_str,
va_|ist data_el ens,
unsi gned int stream.id,
int tag);

Works the same as the firdcket constructor, but allows for passingalist in place of
the variable arguments. This constructor is uskfullibraries built on top of MRNet that
allow users to specify packet format strings.

MRNet APl Programmer’s Guide Release 4.1.0

Page 25

Packet : : Packet (
unsi gned int stream.id,
int tag,
const void** data_el ens,

const char* format_str);

Works the same as the firsdcket constructor, but allows for passing an array dhdsde-
ment pointers instead of the variable argumentsdata_elems array must contain the same
number of elements as indicatedfbynat_str

i nt Packet::get_Tag();
Returns the integer tag associated with Haisket .
voi d Packet::set_Tag(int tag);
Sets the integdng associated with thiBacket .
unsi gned int Packet::get_Stream d();
Returns the stream id associated with Haisket .
voi d Packet::set_Stream d(unsigned int strmid);
Sets the stream id associated with Haisket tostrm_id
const char * Packet::get FormatString();
Returns the character string specifying the datadb of thisPacket .

i nt Packet::unpack(const char * format_str, ...);

i nt Packet::unpack(va_ list list, const char * format_str, bool);

Extracts data contained within tieacket according to thérmat_str , which must match
that of the packetiormat_str is a format string describing the data in the padiSee
Appendix E: “Format Strings” on page 42for a full description).

For the first version, the function arguments faflog format_str ~ should be pointers to the
appropriate types of each data item. For stringanaly data types, new memory buffers to
hold the data will be allocated usingiloc , and it is the user’s responsibility iee these
strings and arrays. Note that for array data eléspam extra argument must be passed to hold
each array’s length.

For the second version, the va_list list shouldt@ionthe arguments corresponding to the
varargs from the first version. The third paramésesa dummy parameter required by some
compilers to distinguish the second version fromftrst version, and its value is ignored.

The return value 0 indicates success; -1 indida$ormat string supplied did not match the
packet or a failure in unpacking.

MRNet APl Programmer’s Guide Release 4.1.0

Page 26

voi d Packet::set_Tag(int tag);
This method can be used to set the packet’s tage \&dter it has been created.
voi d Packet::set_Destinations(const Rank * bes, unsigned int numbes);

This method can be used to tell MRNet to deliver placket to a specific set of back-ends,
rather than all the back-ends addressed by thanstom which the packet is semés should
point to an array of back-end ranks, anoch_bes is the number of entries in the array.

voi d Packet::set _DestroyData(bool destroy);

This method can be used to tell MRNet whether etmaleallocate the string and array data
members of @acket . If destroy iStrue , string and array data members will be deallocated
usingfree when theracket destructor is executed - this assumes they wéryeaddd using
malloc . The default behavior for user-generated packet®i to deallocatéafse). Turning

on deallocation is useful in filter code that malibcate strings or arrays for output packets,
which cannot be freed before the filter functioturas.

4.2 C API Reference

In the MRNet lightweight back-end library, the MRiIN&++ classes are mimicked for ease of use.
With the exception of constructors/destructors, A&lls in standard MRNet can be translated to
their lightweight versions according to the follogipattern:

return_type class::function_nane(paranml_type paraml, ...);

translates to:

return_type class_function_nange(
cl ass cl ass_obj ect,
paraml_type paraml, ...);

4.2.1 Class Network

Network t * Network CreateNetworkBE(int argc, char ** argv);

The back-end constructor method. MRNet automayiqadisses the necessary information to
the back-end process using the program argumetdrnfagc/argv) by inserting it after the
user specified arguments. S@&etwork * Network::CreateNetworkBE(int argc, char **
argv);” on page 9for more information on the required arguments.

void delete_Network_t(Network_ t * network);

delete_Network_t acts as a destructor for tketwork_t object and cleans up internal struc-
tures before freeing theetwork_t pointer.

voi d Network _waitfor_Shut Down(Network_ t * network);

Network_waitfor_ShutDown blocks until the network has been shut down.

MRNet APl Programmer’s Guide Release 4.1.0

Page 27

char Network_is_Shut Down(Network t * network);
Returnsrue if the network has been shut down.
char* Network _get Local Host Name(Network t * network);
Network_get_LocalHostName returns the name of the host where the procesmisng.
Port Network_get Local Port(Network t * network);
Network_get_LocalPort returns the listening port of the local process.
Rank Network get Local Rank(Network t * network);
Network_get_LocalRank returns the rank of the local process.

int Network recv(
Network t * network,
int otag,
Packet t * packet,

Streamt * stream);

Network_recv is used to invoke a blocking stream-anonymousiveageration. Any packet
available (i.e., addressed to any stream) willdterned in roughly FIFO order.

otag will be filled in with the integer tag value thatas passed by the corresponding
Stream_send operationpacket is the packet that was received. A pointer tostheam_t to
which the packet was addressed will be returnetgdam .

A return value of -1 indicates an error and 1 iteBca success.

i nt Network _recv_nonbl ock(
Network t * network,
int otag,

Packet t * packet,

Streamt * stream);

Network_recv_nonblock Is used to invoke a non-blocking stream-anonyneasive opera-
tion. Any packet available (i.e., addressed to stngam) will be returned in roughly FIFO
order.

otag will be filled in with the integer tag value thatas passed by the corresponding
Stream_send operationpacket is the packet that was received. A pointer toStheam_t to
which the packet was addressed will be returnetdéam .

A return value of -1 indicates an error, O indisate packets were available, and 1 indicates a

Success.

MRNet APl Programmer’s Guide Release 4.1.0

Page 28

4.2.2 Class NetworkTopology
Net wor kTopol ogy_t * Network_get Net wor kTopol ogy(Network t * network);

Network_get_NetworkTopology is used to retrieve a pointer to the underlying
NetworkTopology_t instance withimetwork . Note that in the lightweight back-end library,
the information available in theetworkTopology_t may be a subset of the full topology.

Node t * Networ kTopol ogy find_Node(
Net wor kTopol ogy_t * net _top,
Rank node_rank);

This method returns a pointer to the topology neitk rank equal tmode_rank , or NULL if
no match is found.

Node t * Networ kTopol ogy_get Root (NetworkTopology t * net _top);
This method returns a pointer to the root nodénefttee, oNULL if not found.
char * NetworkTopol ogy_Node_get Host Name(Node_t * node);
This method returns a string identifying the hostaaf thenode .
Port NetworkTopol ogy_Node get Port(Node_t * node);
This method returns the listening port of tiee .
Rank Networ kTopol ogy_Node_get Rank(Node_t * node);
This method returns the rank of tingle .
Rank Networ kTopol ogy_Node_get Parent(Node_t * node);
This method returns the rank of the node’s parent.
unsi gned int NetworkTopol ogy Node find SubTreeHei ght(Node t * node);

This method returns the height of the sub-treeewat thenode .

4.2.3 Class Stream

Streamt * Network get Strean{ Network t * network, unsigned int id);

Network_get_Stream returns a pointer to atream_t identified byid , or NULL on failure.
Back-ends may pass their local rank asidhéo retrieve a singlecast stream that can be used
for non-filtered communication directly with theofit-end.

void delete_Streamt(Streamt * stream);

delete_Stream_t acts as a destructor for tBeeam_t object and cleans up internal struc-
tures before freeing th&ream_t pointer.

MRNet APl Programmer’s Guide Release 4.1.0

Page 29

unsigned int Streamget Id(Streamt * stream);
This method returns the integer identifier for thigam_t .

i nt Stream send(
Streamt * stream
int tag,

const char * format_string, ...);

This method sends data siream . tag iS an integer that identifies the data to be bgrihe
stream.format_string is a format string describing the types of theadelements (see
Appendix E: “Format Strings” on page 42for a full description.) On successieam_send
returns O; on failure, -1.

NOTE:tag must have a value greater than or equal to thetaotFirstApplicationTag
defined by MRNet#include "mrnet_lightweight/Types.h"). Tag values less thaai-
stApplicationTag are reserved for internal MRNet use.

int Stream send_packet (
Streamt * stream

Packet t * packet);

This method sendsacket onstream . On successstream_send _packet returns 0; on fail-
ure, -1.

int Streamflush(Streamt * stream);

This operation is currently not required in lightglg MRNet, asstream_send will deliver
the data for network transmission. This method alifkays return the value 0 for success.

int Streamrecv(
Streamt * stream
int * tag,
Packet t * packet,
bool t bl ocking);

Stream_recv iNvokes a stream-specific receive operation. Racaddressed to the passed
stream Wwill be returned, one-at-a-time, in FIFO orderblibcking istrue , the operation
will block until a packet is available for thiseam; iffalse , the operation will return imme-
diately.

tag Wwill be filled in with the integer tag value thatas passed by the corresponding
Stream::send operationpacket IS the receive®acket_t

A return value of -1 indicates an error, O indisat® packet available for a non-blocking
receieve, and 1 indicates a packet was found.

MRNet APl Programmer’s Guide Release 4.1.0

Page 30

char Streamis C osed(Streamt * stream);

This method returns the value 1 if the stream le&hlzlosed by the front-end, O otherwise.

4.2.4 Class Packet

When receiving a packet, it is stored withirPacket_ t object. Note that standard MRNet
makes use of theacketPtr object, which is based on the Boost libraiigred_ptr class. How-
ever, in the lightweight back-end library, pointevy®acket_t objects are used instead.

i nt Packet get Tag(Packet t * packet);
This method returns the integer tag associatedpaitket .
voi d Packet set Tag(Packet t * packet, int tag);
This method sets the integer tag associatedpaiket .
unsi gned int Packet _get_ Stream d(Packet t * packet);
This method returns the stream id associated pattket
voi d Packet set Stream d(Packet t * packet, unsigned int strmid);
This method sets the stream id associated pattket
char* Packet get Format String(Packet t * packet);
This method returns the character string specifyfiegdata format gfacket .

voi d Packet _unpack(
Packet t * packet,
const char * format_string, ...);

This method extracts data elements contained withéisgket according to the
format_string , which must match that ofacket . The function arguments following
format_string should be pointers to the appropriate types ol eata element. For string
and array data types, new memory buffers to hadltita will be allocated usimgalloc , and

it is the user’s responsibility tibee these strings and arrays. Note that for array dkga

ments, an extra argument must be passed to hdidaeesy’s length.

The return value 0 indicates success; -1 indida$ormat string supplied did not match the
packet or a failure in unpacking.

voi d Packet unpack_vali st (
Packet t * packet,
va_list arg_list,

const char * format_string);

This method extracts data elements contained withéisgket according to the
format_string , which must match that @kcket . The function arguments contained in the

MRNet APl Programmer’s Guide Release 4.1.0

Page 31

va_listarg_list should be pointers to the appropriate types ohadata element. For
string and array data types, new memory buffersotd the data will be allocated usingi-

loc , and it is the user’s responsibilityftee these strings and arrays. Note that for array data
elements, an extra argument must be passed teholdarray’s length. The fourth parameter

The return value 0 indicates success; -1 indida$ormat string supplied did not match the
packet or a failure in unpacking.

MRNet APl Programmer’s Guide Release 4.1.0

Page 32

APPENDIX A: BUILDING AND TESTING MRNET

For this discussior§MRNET_ROOIB the location of the top-level directory of thiRNet distribu-
tion and$MRNET_ARCHs a string describing the platform (OS and assitiire) as discovered by
the configure process.

A.1l: Supported Platforms and Compilers

MRNet has been developed to be highly portablegwgect it to run properly on all common
Unix-based as well as Windows platforms. Pleaser tefthe README document included with
the MRNet distribution for the list of currentlygoorted platforms.

MRNet requires GNU make for building on Unix/Lingystems. Our build system attempts to
use native system compilers where available. Fdding on Windows systems, Visual Studio
2010 solution/project files are available, as aeeluuilt libraries and binaries.

A.2: Configuration, Compilation, and Installation

Please refer to the INSTALL document included wiite MRNet distribution for configuration,
compilation, and installation instructions.

A.3: Testing the Code

The shell scriptmrnet_tests.sh is placed in the build/installation directory foinaries along
with the other executables. This script can be usedin the MRNet test programs and check
their output for errors. The script is used asoiwB:

UNIX> mrnet_tests.sh { -l | -r hostfile | -a hostfi le }
[-f][-lightweight]

One of thel , -r , or-a flags is required. The flag is used to run all tests using only topolsgie

that create processes on the local machine (nateing the tests locally can take quite a while,
up to 15 minutes depending on machine capabiliti€ge -r flag runs tests using remote

machines specified in the file whose name immeljidddows this flag. To run tests both locally

and remotely, use the flag and provide a hostfile.

To test MRNet’s ability to dynamically load shadéataries containing filter functions, you must
specify thef flag. The-lightweight flag is used to run the tests using lightweighaisands in
addition to the standard back-ends.

A.4: Bugs, Questions, and Comments
MRNet is maintained by the Paradyn Tools Projecthat University of Wisconsin-Madison.

Comments and feedback whether positive or nega#ise encouraged; please send to
mrnet@cs.wisc.edu. Bug fixes as patches are alkmime.

MRNet APl Programmer’s Guide Release 4.1.0

APPENDIX B: A COMPLETE EXAMPLE : INTEGER

Page 33

ADDITION

The source code for the example contained in fipeadix can be found BMRNET_ROOT/Exam-

ples/IntegerAddition

B.1: A Complete MRNet Front-End

1 #include "mrnet/MRNet.h"

2 #include "IntegerAddition.h"

3 using namespace MRN;

4

5 int main(int argc, char **argv)

6

7 int send_val=32, recv_val=0;

8 int tag, retval,

9 PacketPtr p;

10 if(argc 1=4){

11 printf("Usage: %s topology be_exe so_file\n", arg
12 exit(-1);

13 }

14 const char * topology_file = argv[1];

15 const char * be_exe = argv[2];

16 const char * so_file = argv[3];

17 const char * argv=NULL;

18

19 Il Instantiates the MRNet internal nodes, using t

20 // in "topology_file," and the specified back-end

21 Network * network = Network::CreateNetworkFE(top
22

23

24 /l Make sure path to "so_file" isin LD_LIBRARY_P

25 int filter_id = network->load_FilterFunc(so_file

26 if(filter_id == -1){

27 printf("Network::load_FilterFunc() failure\n");
28 delete network;

29 return -1;

30 }

31

32 /I A Broadcast communicator contains all the back

33 Communicator * comm_BC = network->get_BroadcastCo
34

35 /I Create a stream that uses Integer_Add filter f

36 Stream * stream = network->new_Stream(comm_BC, f
37

38 int num_backends = comm_BC->get_EndPoints().size(
39

MRNet APl Programmer’s Guide

v[0]);

he organization

application

ology _file,
be_exe, &argv);

ATH
, "IntegerAdd");

-ends
mmunicator();

or aggregation
ilter_id,

SFILTER_WAITFORALL);

);

Release 4.1.0

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

// Broadcast a control message to back-ends to se
/l waves of integers
tag = PROT_SUM,;
unsigned int num_iters=5;
if(stream->send(tag, "%d %d", send_val, num_ite
printf("stream::send() failure\n");
return -1,
}
if(stream->flush() == -1 {
printf("stream::flush() failure\n");
return -1;
}
Il We expect "num_iters" aggregated responses fro
for(unsigned int i=0; i<num_iters; i++){
retval = stream->recv(&tag, p);
if(retval == -1){
/lrecv error
return -1,
}
if(p->unpack("%d", &recv_val) == -1){
printf("stream::unpack() failure\n");
return -1;
}
if(recv_val != num_backends * i * send_val){
printf("Iteration %d: Failure\n", i);

}
else{
printf("Iteration %d: Success! recv_val(%d) == %d
i, recv_val, send_val*i*num_backends);
}

if(stream->send(PROT_EXIT, ™) == -1{
printf("stream::send(exit) failure\n");
return -1,

}

if(stream->flush() == -1){
printf("stream::flush() failure\n");
return -1;

I/l Network destruction will exit all processes
delete network;
return O;

MRNet APl Programmer’s Guide

Page 34

nd us "num_iters"

rs)==-1){

m all back-ends

\n",

Release 4.1.0

B.2: A Complete MRNet Back-End

© 0o ~NOoO o~ WN PP

A D DA DD D WWWWWWWWWWNDNDNDNDNDNMNMDNNMNNMNYRPREPRPPEPEPRPEPRERPREPRE
OB WONPFPOOONOOOPA, WNPOOO~NOOOPMWNPOOONOOGP®AWDNDLEREDO

#include "mrnet/MRNet.h"
#include "IntegerAddition.h"

using namespace MRN;

int main(int argc, char **argv)

{
Stream * stream=NULL;
PacketPtr p;
int tag=0, recv_val=0, num_iters=0;
Network * network = Network::CreateNetworkBE(arg c, argv);
do {
if (network->recv(&tag, p, &stream) != 1){
fprintf(stderr, "stream::recv() failure\n");
return -1;
}
switch(tag){
case PROT_SUM:
p->unpack("%d %d", &recv_val, &num_iters);
/I Send num_iters waves of integers
for(unsigned int i=0; i<num_iters; i++){
if(stream->send(tag, "%d", recv_val*i) == -1
printf("stream::send(%%d) failure\n");
return -1,
}
if(stream->flush() == -1){
printf("stream::flush() failure\n");
return -1,
}
}
break;
case PROT_EXIT:
printf("Processing PROT_EXIT ...\n");
break;
default:
printf("Unknown Protocol: %d\n", tag);
break;
}
} while (tag '= PROT_EXIT);
network->waitfor_ShutDown();
delete network;
return O;
}

MRNet APl Programmer’s Guide

Page 35

Release 4.1.0

Page 36

B.3: A Complete MRNet Lightweight Back-End

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#include "mrnet_lightweight/MRNet.h"
#include "IntegerAddition_lightweight.h"

int main(int argc, char **argv)

{

Stream_t * stream;

Packet_t* p = (Packet_t*)malloc(sizeof(Packet_t));

int tag=0, recv_val=0, num_iters=0;

Network_t * net = Network_CreateNetworkBE(argc, a rgv);

do {

if(Network_recv(net, &tag, p, &stream) '=1) {
printf("BE: stream::recv() failure\n");
break;
}
switch(tag) {
case PROT_SUM:
Packet_unpack(p, "%d %d", &recv_val, &num_iters)
/I Send num_iters waves of integers
unsigned int i;
for(i=0; i<num_iters; i++) {
printf("BE: Sending wave %u ...\n", i);
if(Stream_send(stream,tag, "%d",
recv_val*i) == -1){
printf("BE: stream::send(%%d) failure\n");
tag = PROT_EXIT;
break;
}
if(Stream_flush(stream) == -1 }{
printf("BE: stream::flush() failure\n");
tag = PROT_EXIT;
break;

}
sleep(2); // stagger sends

}
break;
case PROT_EXIT:

if(Stream_send(stream,tag, "%d", 0) ==-1){
printf("BE: stream::send(%%os) failure\n");
break;

}

if(Stream_flush(stream) ==-1){
printf("BE: stream::flush() failure\n");

}

break;

MRNet APl Programmer’s Guide Release 4.1.0

Page 37

46 default:

a7 fprintf(stderr, "BE: Unknown Protocol: %d\n", tag);
48 tag = PROT_EXIT,;
49 break;

50 }

51 } while (tag != PROT_EXIT);

52

53 if (p!=NULL)

54 free (p);

55

56 Network_waitfor_ShutDown(net);
57 delete_Network_t(net);

58 return O;

59 }

B.4: A MRNet Filter: Integer Addition

1 extern "C" {

2

3 /IMust declare the format of data expected by the filter

4 const char * IntegerAdd_format_string = "%d";

5 void IntegerAdd(std::vector< PacketPtr > & packet s in,

6 std::vector< PacketPtr > & packets_out,

7 std::vector< PacketPtr > & /* packets_out_reverse *,
8 void ** /* filter state */,

9 PacketPtr & /* configuration parameters */,

10 TopologyLocallnfo & /* local topology information */)
11

12 int sum = 0;

13

14 for(unsigned int i = 0; i < packets_in.size(); i++){

15 PacketPtr cur_packet = packets_inl[i];

16 int val;

17 cur_packet->unpack("%d", &val);

18 sum += val;

19 }

20

21 PacketPtr new_packet (new Packet(packets_in[0]-> get_Streamld(),
22 packets_in[0]->get_Tag(), "%d", sum));

23 packets_out.push_back(new_packet);

24}

25

26 }/*extern"C"*/

MRNet APl Programmer’s Guide Release 4.1.0

Page 38

APPENDIX C: PROCESS TREE TOPOLOGIES

MRNet allows a tool to specify a node allocation @nocess connectivity tailored to its computa-
tion and communication requirements and to theesyswhere the tool will run. Choosing an
appropriate MRNet configuration can be difficultedo the complexity of the tool’s own activity
and its interaction with the system. This secti@salibes how users define their own process
topologies, and thernet_topgen utility provided by MRNet to facilitate generatioh topology
specification files.

C.1: Topology File Format

The first parameter teetwork::CreateNetworkFE is the name of an MRNet topology file. This
file defines the topological layout of the fronteknnternal, and back-end MRNet processes. In
the syntax of the topology file, thestname:id tuple represents a process with instaaceun-
ning onhostname . It is important to note that the instance is ugedistinguish processes on the
same host, and does not reflect a port or proegss A line in the topology file has the form:

hostname1:0 => hostnamel:1 hostnamel:2 ;

meaning a process tiastnamel with instance id has two children, with instance idsand2,
running on the same host. MRNet will parse the lmgy file without error if the file properly
defines a tree in the mathematical sense (i.@eanust have a single root, no cycles, full connec-
tion, and no node can be its own descendant). ®leate that the hosthame associated with the
root of the topology must match the host whereftbet-end process is run, or a run-time error
will occur.

NOTE: A single topology specification line may spaaltiple physical lines to improve readabil-
ity. For example:

hostnamel:0 =>
hostnamel:1
hostnamel:2

MRNet APl Programmer’s Guide Release 4.1.0

Page 39

C.2: An Example Topology File

nutmeg:0 => c01:0 c02:0 c03:0 c04:0 ;
c03:0 =>c05:0;

c04:0 => c06:0 c07:0 c08:0 c09:0;
nutmeg

[|\
c01 c02 c03 c04

Il]\
c06 c07 c08 c09

H O OH H O OH OH B B R

C.3: Topology File Generator

MRNet provides a topology generator program thppsus generation of balanced and k-nomial
topologies using simple specifications, and arbyttapologies with a more complex specifica-
tion that fully enumerates the topology fan-outeaath level of the tree. After MRNet is built, this
program can be found &MRNET_ROOT/build/SMRNET_ARCH/bin/mrnet_topgen . The usage
can be obtained by runnimgnet_topgen without arguments.

The generator program uses host lists that spdefynaximum number of processes to place on
each host. The format for the host list is one Bpstification per line, where each specification
is of the formhostname[:num_slots] . If the number of process slots is not given wiité host,

the generator program assumes only one proceskidhmplaced on the host. Additionally, if the
same hostname is given on multiple lines, the nurmabprocesses that can be placed on the host
is the summation of the process slot counts fdireds. An example host list file follows:

host1:4
host2
host3:2
host2

The above host list file results in three hostaipeivailable for topology process placement, with
hostl having four available slots, andst2 andhost3 each having two available slots. The gen-
erator program also allows users to specify difiefest lists for the placement of internal com-
munication processes and back-end processes (seenrtlt topgen usage for more
information).

Some MRNet front-end programs may wish to geneaaigpology at run-time. To support this
requirement, MRNet provides three API class®sancedTree , KnomialTree , andGeneric-

Tree that front-end programs may use directly to geteesay topology that can be produced by
mrnet_topgen . Not surprisinglymrmet_topgen is built upon these classes, and its source code
($MRNET_ROOT/tests/config_generator.C) can serve as a reference for front-end programs
wishing to use these classes.

MRNet APl Programmer’s Guide Release 4.1.0

Page 40

APPENDIX D: ADDING NEW FILTERS

D.1: Defining an MRNet Filter

A filter function has the following signature:

void filter_nane(
std::vector< PacketPtr > & packets_in,
std::vector< PacketPtr > & packets_out,
std::vector< PacketPtr > & packets_out _reverse,
void ** filter_state,
Packet Ptr & confi g_parans,
const Topol ogyLocal Info & topol _info);

packets_in IS a reference to a vector of packets serving npsiti to the filter function.
packets_out IS a reference to a vector into which output pgkbould be placed. When packets
need to be sent in the reverse direction on tleaustjpackets_out_reverse can be used instead
of packets_out . Both packets_out and packets_out_reverse can be used simultaneously.

filter_state may be used to define and maintain state spetdica filter instance.
config_params IS a reference to RacketPtr containing the current configuration settings for
the filter instance, as can be set usfagam::set_FilterParameters . Finally, topol_info

provides information that can be used by filtersiébermine the local process’s placement in the
topology, as well as access to the logalvork object.

For each filter function defined in a shared objéet there must be a const char * symbol named
by the string formed by the concatenation of thierfi function name and the suffix

" format_string . For instance, if the filter function is named _filter_func , the shared
object must define a symbadohst char* my_filter_func_format_string ". The value of
this string will be the MRNet format string desanidp the format of data that the filter can operate
on. A value of" denotes that the filter can operate on packetsaguong arbitrary data.

D.2: Fault-Tolerant Filters

MRNet automatically recovers from failures of imtak tree processes (i.e., those processes that
are not the front-end (root) or back-ends (leavésy)part of the recovery, MRNet will extract fil-

ter state from the children of a failed process pass that state as input to each child’s newly
chosen parent. If you have a filter that maintgessistent state usirfgfer_state , you can
provide an additional function within the sharedeab for your filter that MRNet may use to
extract the state. The name of this extractiontioncshould be the same as the filter name with
the suffix " get_state " appended. For instance, if the filter functiomemed my _filter_func,

the extraction function should be nammegd filter_func_get_state

A filter state extraction function has the followisignature:

MRNet APl Programmer’s Guide Release 4.1.0

Page 41

Packet Ptr filter_name_get state(void ** filter_state, int streamid);

filter_state is a pointer to the state defined by the filter the stream identified by
stream_id . This function should extract the necessary statereturn a packet that can be passed
as input to the filter function. Since the packdt lne processed as a normal input packet for the
filter, it's format must match that expected by fiter. A fault-tolerant filter example is provide

in $MRNET_ROOT/Examples/FaultRecovery

D.3: Creating and Using MRNet Filter Shared ObjectFiles

Since we use the C faciliylopen to dynamically load new filter functions, all Cisymbols
must be exported. That is, the filter function,nfat string, and state extraction function defini-
tions must fall within the statements:

extern "C" {
and

}

The file that contains the filter functions andnf@at strings must be compiled into a valid shared
object. For example, with the GNU C++ compiler ditFEsystems, the optionsfPIC -shared
-rdynamic " can be used. Please refer to your compiler doatextien for the appropriate options
for other compilers. You can also refer to the isgttof the SOFLAGS variable in
$MRNET_ROOT/build/SMRNET_ARCH/Makefile.examples to see the options chosen during the
configure process for compiling the Example filibraries.

Additionally, front-end and back-end programs thdt dynamically load filters must be built
with compiler options that notify the linker to expglobal symbols (for GNU compilers, you can
use "Wil,-E ").

MRNet APl Programmer’s Guide Release 4.1.0

APPENDIX E: FORMAT STRINGS

Page 42

The table below shows the format string conversimmsindividual data elements of specific

types. Each conversion is preceded by #eharacter (e.g.,%d).

Arrays of specific types are also supported. Amyaan be specified by prependirgj to the
appropriate type conversion (e.g%dac’ for an array of 8-bit signed characters). Arraneer-

sions require an implicit length parameter of type32_t

€.g.,send("%af", float_array_pointer, float_array_length

ments in the array exceeds the maximum valugnef2_t

to be passed tsend()
) . When the number of ele-
(roughly over 4 billion elements),

methods:

MRNet provides a large array conversion that casgeeified by prependingX‘'to the appropri-
ate type conversion (e.g%Auc for an array of 8-bit unsigned characters). Laagey conver-
sions require an implicit length parameter of types4_t

Table 1: Format String Conversions

c signed 8-bit character

uc unsigned 8-bit character

hd signed 16-bit decimal integer

uhd unsigned 16-bit decimal integer

d signed 32-bit decimal integer

ud unsigned 32-bit decimal integer

Id signed 64-bit decimal integer

uld unsigned 64-bit decimal integer

f single-precision floating-point number
If double-precision floating-point number
S null-terminated character string

MRNet APl Programmer’s Guide

Release 4.1.0

Page 43

APPENDIX F: MRNET STREAM PERFORMANCE DATA

The primary abstraction for communication and gatecessing within MRNet is the stream, so
performance metrics and contexts are associatédaeitons on a particular stream.

All data is recorded as instances qfe& data_t , which is simply a union type that can hold a
64-bit signed integer, a 64-bit unsigned integel double precision float. As shown below, the
data values can be accessed using theord union fields.

typedef union { int64 t i; uint64_t u; double d; } perfdata_t;

Metrics define the type of performance data to r@écdhe supported metric types are:

* PERFDATA_MET_NUM_BYTEScount of data bytes (uint64 _t)

* PERFDATA_MET_NUM_PKT$ount of data packets (uint64_t)

* PERFDATA_MET_ELAPSED_SE@lapsed seconds (double)

* PERFDATA_MET_CPU_USR_PcPpercent CPU utilization by user (double)

* PERFDATA_MET_CPU_USR_PcCPpercent CPU utilization by system (double)

* PERFDATA_MET_MEM_VIRT_KBvirtual memory footprint in KB (double)

* PERFDATA_MET_MEM_PHYS_Kphysical memory footprint in KB (double)
Contexts specify when to record data. The suppatetexts are:

* PERFDATA_CTX_SENDwhen data is sent

* PERFDATA_CTX_RECVwhen data is received

* PERFDATA_CTX_FILT_IN: before executing transformation filter

* PERFDATA_CTX_FILT_OUT: after executing transformation filter

* PERFDATA_CTX_SYNCFILT_IN : before executing synchronization filter

* PERFDATA_CTX_SYNCFILT_OUT after executing synchronization filter

* PERFDATA_CTX_NONEwhen data is collected

Table 2 shows which metrics are valid for a given contédhen a metric is valid for only
CTX_FILT_OUT, the metric is actually recorded through a comiobmaof measurements at
CTX_FILT_IN andCTX_FILT_OuUT. When a metric is valid for onlgTX_NONEthe data is only

recorded at the time it is collected. An exampleN&Rapplication that makes use of the Stream
performance data collection facilities is providedMRNET_ROOT/Examples/PerformanceData

MRNet APl Programmer’s Guide Release 4.1.0

Table 2: Metric-Context Compatibility Matrix

Page 44

CTX_SEND CTX_FILT_IN CTX_FILT_OUT

CTX_RECV | CTX_SYNCFILT_IN | CTX_SYNCFILT_OUT | CTX_NONE
MET_NUM BYTES yes yes yes no
MET_NUM _PKTS yes yes yes no
MET_ELAPSED SEC no no yes no
MET_CPU_USR _PCT no no yes no
MET_CPU_SYS_PCT no no yes no
MET_MEM VI RT_KB no no no yes
MET_MEM PHYS KB no no no yes

NOTE: MET_CPU_USR_PGTMET_CPU_SYS_PGTMET_MEM_VIRT_KB and MET_MEM_PHYS_KB

are currently only supported for Linux.

MRNet APl Programmer’s Guide

Release 4.1.0

Page 45

APPENDIX G: NETWORK SETTINGS

Table 3: Environment Variables and Network Attributes

XPLAT RSH
XPLAT RSH_ARGS

XPLAT_REMCMD

SetXPLAT_RSHto the name of the remote shell
program to use for remote process execution.
Default is ssh’. XPLAT_RSH_ARGSan be used tg
pass shell-specific options to the remote shell.

If it is necessary to run the remote shell progra
with a utility such asunauth to non-interactively
authenticate the unattended remote process, t
command may be specified USIRBLAT_REMCMD

m

hat

XPLAT_RESOLVE_HOSTS

XPLAT_RESOLVE_CANONICAL

Tell XPlat to perform DNS resolution of host-
names and IP addresses by setting the variabl
'1’. Default is '1'.

WhenxPLAT_RESOLVE_HOSTIS '1’, setting
XPLAT_RESOLVE_CANONICAI0 "1’ will tell XPlat
to try to resolve all hostnames to their canonic
DNS format. Default is '0’.

e to

MRNET_DEBUG_LEVEL

MRNET_DEBUG_LOG_DIRECTORY

Set the debug output level (valid values are 1-
default is 1). Level 1 will only log warning/error
messages, level 3 provides fairly detailed funct
execution logging, and level 5 enables all log
messages.

Specify the absolute path to the directory to st¢
MRNet log files. By default, the directory
$HOME/mrnet-log will be used if it exists;
otherwise, log messages will be output to stde

Ul

on

bre

[r.

MRN_COMM_PATH (deprecated)
MRNET_COMM_PATH

If mrnet_commnode is not in your path by default

you can specify the full path using this variable.

MRNET_STARTUP_TIMEOUT

Set the maximum time in secotidat a MRNet
process will try to connect to its parent during
Network instantiation before exiting.

MRNET_FAILURE_RECOVERY

Set attribute value to ‘1’ torn on failure recov-
ery (default), or ‘0’ to turn off failure recovery.
Alternatively, you may specify the recovery mo
usingNetwork::set_FailureRecovery()

Note: there is no corresponding environment v,
able for this attribute.

e

ari-

MRNet APl Programmer’s Guide

Release 4.1

.0

Page 46

Table 3: Environment Variables and Network Attributes

MRNET_PORT_BASE

Specify the base port used forristg for socket
connections by MRNet communication processes
on the same host. For N processes on a host, the
ports in the range [base, base+N) must be avalil-
able.

On Cray systems, the default base port is 26500.

On rsh/ssh systems, all listening ports are chosen
dynamically and this value is ignored.

CRAY_ALPS_APID

CRAY_ALPS_APRUN_PID

Specify the ALPS application id (aka apid - the
unique identifier assigned to the application by
ALPS, as can be queried usiagstat).

As an alternative t€RAY_ALPS_APID you
may use this attribute to specify the process id
(pid) of theaprun process used to start the target
application, and MRNet will obtain the corre-
sponding apid.

Note: MRNet must be configured to use the
ALPS tool helper library to use these settings.

Note: there are no corresponding environment|
variables for either of these attributes.

CRAY_ALPS_STAGE_FILES

Specify a colon-separateddidfile pathnames
(e.qg., ‘Tpathitoffile/a:/pathitoffile/b ").
MRNet will use the ALPS tool helper library to
stage the specified files to Cray compute node
hosting the application identified using either
CRAY_ALPS_APIDor
CRAY_ALPS_APRUN_PID

[72)

Note: MRNet must be configured to use the
ALPS tool helper library to use this setting.

MRNet APl Programmer’s Guide

Release 4.1.0

