
MRNet Project
www.paradyn.org/mrnet
mrnet@cs.wisc.edu

Paradyn Tools Project
www.paradyn.org
paradyn@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685

Paradyn Tools Project

MRNet API
Programmer’s Guide

Release 4.1.0
March 2014

MRNet API Programmer’s Guide Release 4.1.0

Table of Contents

1. Introduction ...1

2. Abstractions ...2
2.1 End-Points ..2
2.2 Communicators ..2
2.3 Streams ...2
2.4 Filters ...2

3. A Simple Example ...4
3.1 The MRNet Interface ...4

Figure: MRNet Front-End Sample Code ..4
3.2 MRNet Instantiation ..5

Figure: MRNet Back-End Sample Code ..5

4. The MRNet API ..7
4.1 C++ API Reference ..7
4.2 C API Reference ..25

Appendix E: Building and Testing MRNet ..31
5.1 Supported Platforms and Compilers ..31
5.2 Configuration, Compilation, and Installation ..31
5.3 Testing the Code ..31
5.4 Bugs, Questions, and Comments ...31

Appendix F: A Complete Example: Integer Addition32
6.1 A Complete MRNet Front-End ..32
6.2 A Complete MRNet Back-End ..34
6.3 A Complete MRNet Lightweight Back-End ...35
6.4 A MRNet Filter: Integer Addition ...36

Appendix G: Process-Tree Topologies ..37
7.1 Topology File Format ..37
7.2 An Example Topology File ..38
7.3 Topology File Generator ..38

Appendix H: Adding New Filters ..39
8.1 Defining an MRNet Filter ..39
8.2 Fault-Tolerant Filters ...39
8.3 Creating and Using MRNet Filter Shared Object Files40

Appendix I: Format Strings ...41
Table: Format String Conversions ..41

MRNet API Programmer’s Guide Release 4.1.0

Appendix J: MRNet Stream Performance Data ..42
Table: Metric-Context Compatibility Matrix ..43

Appendix K: Network Settings ..44
Table: Environment Variables and Network Attributes44

Page 1

MRNet API Programmer’s Guide Release 4.1.0

1. INTRODUCTION

MRNet is a customizable, high-throughput communication software system for parallel tools and
applications with a master/slave architecture. MRNet reduces the cost of these tools’ activities by
incorporating a tree-based overlay network (TBON) of processes between the tool’s front-end and
back-ends. MRNet uses the TBON to distribute many important tool communication and compu-
tation activities, reducing analysis time and keeping tool front-end loads manageable.

MRNet-based tools send data between front-end and back-ends on logical flows of data called
streams. MRNet internal processes use filters to synchronize and aggregate data sent to the tool’s
front-end. Using filters to manipulate data in parallel as it passes through the network, MRNet can
efficiently compute averages, sums, and other more complex aggregations on back-end data.

Several features make MRNet especially well-suited as a general facility for building scalable
parallel tools:

• Flexible organization. MRNet does not dictate the organization of the TBON. MRNet process
organization is specified in a configuration file that can specify common network overlays
like k-ary and k-nomial trees, or custom layouts tailored to the system(s) running the tool. For
example, MRNet internal processes can be allocated to dedicated system nodes or co-located
with tool back-end and application processes.

• Scalable, flexible data aggregation. MRNet’s built-in filters provide efficient computation of
averages, sums, concatenation, and other common data reductions. Custom filters can be
loaded dynamically into the network to perform tool-specific aggregation operations.

• High-bandwidth communication. MRNet transfers data within the tool system using an effi-
cient, packed binary representation. Zero-copy data paths are used whenever possible to
reduce the cost of transferring data through internal processes.

• Scalable multicast. As the number of back-ends increases, serialization when sending control
requests limits the scalability of existing tools. MRNet supports efficient message multicast to
reduce the cost of issuing control requests from the tool front-end to its back-ends.

• Multiple concurrent data channels. MRNet supports multiple logical streams of data between
tool components. Data aggregation and message multicast takes place within the context of a
data stream, and multiple operations (both upward and downward) can be active simulta-
neously.

Page 2

MRNet API Programmer’s Guide Release 4.1.0

2. ABSTRACTIONS

The MRNet distribution has two main components: libmrnet , a library that is linked into a tool’s
front-end and back-end components, and mrnet_commnode , a program that runs on intermediate
nodes interposed between the application front-end and back-ends. libmrnet exports an API (see
“C++ API Reference” on page 8) that enables I/O interaction between the front-end and groups
of back-ends via MRNet. The primary purpose of mrnet_commnode is to distribute data process-
ing functionality across multiple computer hosts and to implement efficient and scalable group
communications. In addition, there is another component, libmrnet_lightweight , which
exports an API (see “C API Reference” on page 26) that enables I/O interaction between the
front-end and groups of "lightweight" back-ends via MRNet. Lightweight back-ends provide a
pure C implementation of the MRNet API. They also do not support loading custom filters, and
by default the API cannot be used by multiple threads concurrently. There is a separately built
component, libmrnet_lightweight_r , which is thread-safe. The following sub-sections
describe the lower-level components of the MRNet API in more detail.

2.1 End-Points

An MRNet end-point represents a tool or application process. Specifically, they represent the
back-end processes (i.e., leaf processes) in the overlay tree. The front-end can communicate in a
unicast or multicast fashion with these end-points as described below.

2.2 Communicators

MRNet uses communicators to represent groups of end-points. Like communicators in MPI,
MRNet communicators provide a handle that identifies a set of end-points for point-to-point, mul-
ticast or broadcast communications. MPI applications typically have a non-hierarchical layout of
potentially identical processes. In contrast, MRNet enforces a tree-like layout of all processes,
rooted at the front-end. Accordingly, MRNet communicators are created and managed by the
front-end, and communication is only allowed between a front-end and its back-ends. Thus, back-
ends cannot interact with each other directly using the MRNet API.

2.3 Streams

A stream is a logical channel that connects the front-end to the end-points of a communicator. All
MRNet communication uses the stream abstraction. Streams carry data packets downstream, from
the front-end toward the back-ends, and upstream, from the back-ends toward the front-end.
Streams are expected to carry data of a specific type, allowing data aggregation operations to be
associated with a stream. The type is specified using a format string (see Appendix E: “Format
Strings” on page 42) similar to those used in C formatted I/O primitives (e.g., a packet whose
data is described by the format string "%d %d %f %s " contains two integers followed by a float
then a character string). MRNet expands the standard format string specification to allow for
description of arrays.

Page 3

MRNet API Programmer’s Guide Release 4.1.0

2.4 Filters

Data aggregation is the process of merging multiple input data packets and transforming them into
one or more output packets. Though it is not necessary for the aggregation to result in less or even
different data, aggregations that reduce or modify data values are most common. MRNet uses data
filters to aggregate data packets. Filters specify an operation to perform and the type of the data
expected on the bound stream. Filter instances are bound to a stream at stream creation. MRNet
uses two types of filters: synchronization filters and transformation filters. Synchronization filters
organize data packets from downstream nodes into synchronized waves of data packets, while
transformation filters operate on the synchronized data packets yielding one or more output pack-
ets. A distinction between synchronization and transformation filters is that synchronization fil-
ters are independent of the packet data type, but transformation filters operate on packets of a
specific type.

Synchronization filters operate on data flowing upstream in the network, receiving packets one at
a time and outputting packets only when the specified synchronization criteria has been met. Syn-
chronization filters provide a mechanism to deal with the asynchronous arrival of packets from
children nodes. The synchronizer collects packets and typically aligns them into waves, passing
an entire wave onward at the same time. Therefore, synchronization filters do no data transforma-
tion and can operate on packets in a type-independent fashion. MRNet currently supports three
synchronization modes:

• Wait For All: wait for a complete wave (i.e., a packet from every child node) before producing
output packets (SFILTER_WAITFORALL)

• Do Not Wait: output packets immediately (SFILTER_DONTWAIT)

• Timeout : output packets after ‘timeout’ milliseconds (SFILTER_TIMEOUT), or when a com-
plete wave has been accumulated. The timeout period begins upon receipt of the first packet
since the filter last produced output. The timeout value in milliseconds can be set using
Stream::set_FilterParameters . Note that this timeout value is used at each level of
the tree - a timeout value of 100ms combined with a tree of depth three should produce out-
puts at the front-end approximately 300ms after a packet is sent from a back-end. The default
timeout value is 0ms. If you use SFILTER_TIMEOUT without setting a non-zero timeout
value, it will behave similar to SFILTER_DONTWAIT.

Transformation filters can be used on both upstream and downstream data flows. Transformation
filters input a group of synchronized packets, and combine data from multiple packets by per-
forming an aggregation that yields one or more new data packets. Data packets produced by a
transformation filter can be forwarded in either direction on a Stream by placing them in the
appropriate output set. Since transformation filters are expected to perform computational opera-
tions on data packets, there is a type requirement for the data packets to be passed to this type of
filter: the data format string of the stream’s packets and the filter must be the same. Transforma-
tion operations must be synchronous, but are able to maintain state from one execution to the
next. MRNet provides several transformation filters that should be of general use:

• Basic scalar operations on characters/integers/floats: minimum (TFILTER_MIN), maximum
(TFILTER_MAX), summation (TFILTER_SUM), average (TFILTER_AVG)

Page 4

MRNet API Programmer’s Guide Release 4.1.0

• Concatenation: operation that inputs n scalars and outputs a vector of length n of the same
base type (TFILTER_ARRAY_CONCAT)

Appendix D: “Adding New Filters” on page 40 describes facilities for adding new user-defined
transformation and synchronization filters.

Page 5

MRNet API Programmer’s Guide Release 4.1.0

3. A SIMPLE EXAMPLE

3.1 The MRNet Interface

A complete description of the MRNet API is in “C++ API Reference” on page 8 and “C API
Reference” on page 26. This section offers a brief overview only. Using libmrnet, a tool can
leverage a system of internal processes, instances of the mrnet_commnode program, as a commu-
nication substrate. After instantiation of the MRNet network (discussed in “MRNet Instantiation”
on page 6), the front-end and back-end processes are connected by the internal processes. The
connection topology and host assignment of these processes is determined by a configuration file,
thus the geometry of MRNet’s process tree can be customized to suit the physical topology of the
underlying hardware resources. While MRNet can generate a variety of standard topologies, users
can easily specify their own topologies; see Appendix C: “Process-Tree Topologies” on
page 38 for further discussion.

The MRNet API contains Network, EndPoint, Communicator, and Stream objects that a tool’s
front-end and back-end use for communication. The Network object is used to instantiate the
MRNet network and access EndPoint objects that represent available tool back-ends. The Com-
municator object is a container for groups of end-points, and Stream objects are used to send data
to the EndPoints in a Communicator.

A simplified version of code from an example tool front-end is shown in Figure 1. In the front-
end code, after some variable definitions in lines 2-6, an instance of the MRNet network is created
on line 9 using the topology specified in topology_file. In line 10, the newly created Network
object is queried for an auto-generated broadcast communicator that contains all available end-
points. In line 11, this Communicator is used to establish a Stream that will use a built-in filter that
finds the summation of the data sent upstream. The front-end then sends one or more initialization
messages to the backends; in our example code on line 12, we broadcast an integer initializer on
the new stream. The tag parameter is an application-specific value denoting the nature of the mes-

12 front_end_main(...) {

13 Network * net;

14 Communicator * comm;

15 Stream * stream;

16 PacketPtr packet;

17 int tag = FirstApplicationTag;

18 float result;

19

20 net = Network::CreateNetworkFE(topology_file, bac kend_exe, argv);

21 comm = net->get_BroadcastCommunicator();

22 stream = net->new_Stream(comm, TFILTER_SUM, SFILT ER_WAITFORALL);

23 stream->send(tag, "%d", SUM_INIT);

24 stream->recv(&tag, packet)

25 packet->unpack("%f", &result);

26 }

Figure 1: MRNet Front-End Sample Code

Page 6

MRNet API Programmer’s Guide Release 4.1.0

sage being transmitted. After the send operation, the front-end performs a blocking stream receive
at line 13. This call returns a tag and a packet. Finally, line 14 calls unpack to deserialize the float-
ing point value contained in packet.

Figure 2 shows the code for the back-end that reciprocates the actions of the front-end. Each tool
back-end first connects to the MRNet network in line 5, using the back-end version of the Net-
work constructor that receives its arguments via the program argument vector (argc/argv).
While the front-end makes a stream-specific receive call, the back-ends use a stream-anonymous
network receive that returns the tag sent by the front-end, the packet containing the actual data
sent, and a stream object representing the stream that the front-end has established. Finally, each
back-end sends a scalar floating point value upstream toward the front-end.

A complete example of MRNet code can be found below in Appendix B: “A Complete Exam-
ple: Integer Addition” on page 33.

3.2 MRNet Instantiation

While conceptually simple, creating and connecting the internal processes is complicated by
interactions with the various job scheduling systems. In the simplest environments, MRNet can
launch processes directly using facilities like rsh or ssh . In more complex environments, it is
necessary to submit all requests to a job management system. In this case, MRNet is constrained
by the operations provided by the job manager (and these vary from system to system). Currently,
two modes of instantiating MRNet-based tools are supported.

In the first mode of process instantiation, MRNet creates the internal and back-end processes,
using the specified MRNet topology configuration to determine the hosts on which the compo-
nents should be located. First, the front-end consults the configuration and uses a remote shell
program to create internal processes for the first level of the communication tree on the appropri-
ate hosts. Upon instantiation, the newly created processes establish a network connection to the
process that created it. The first activity on this connection is a message from parent to child con-
taining the portion of the configuration relevant to that child. The child then uses this information
to begin instantiation of the sub-tree rooted at that child. When a sub-tree has been established,
the root of that sub-tree sends a report to its parent containing the end-points accessible via that

1 back_end_main(int argc, char** argv) {

2 Stream * stream;

3 PacketPtr packet;

4 int val, tag;

5 float random_float = (float) random();

6

7 Network * net = Network::CreateNetworkBE(argc,argv);

8 net->recv(&tag, packet, &stream);

9 packet->unpack("%d", &val);

10 if(val == SUM_INIT)

11 stream->send(tag, "%f", random_float);

12 }

Figure 2: MRNet Back-End Sample Code

Page 7

MRNet API Programmer’s Guide Release 4.1.0

sub-tree. Each internal node establishes its children processes and their respective connections
sequentially. However, since the various processes are expected to run on different compute
nodes, sub-trees in different branches of the network are created concurrently, maximizing the
efficiency of network instantiation.

In the second mode of process instantiation, MRNet relies on a process management system to
create some of the MRNet processes. This mode accommodates tools that require their back-ends
to create, monitor, and control other processes. For example, IBM’s POE uses environment vari-
ables to pass information, such as the process’ rank within the application’s global MPI communi-
cator, to the MPI run-time library in each application process. In cases like this, MRNet cannot
provide back-end processes with the environment necessary to start MPI application processes.
As a result, MRNet creates its internal processes recursively as in the first instantiation mode, but
does not instantiate any back-end processes. MRNet then waits for the tool back-ends to be started
by the process management system to ensure they have the environment needed to create applica-
tion processes successfully. To allow back-ends to connect to the MRNet network, information
such as process host names and connection port numbers must be provided to the back-ends. This
information can be provided via the environment, using shared filesystems or other information
services as available on the target system. To collect the necessary information, the front-end can
use the MRNet API methods for discovering the network topology details. This mode of process
instantiation is referred to as “back-end attach mode”. We show how to construct a tool that
requires back-end attach in $MRNET_ROOT/Examples/NoBackEndInstantiation .

Page 8

MRNet API Programmer’s Guide Release 4.1.0

4. THE MRNET API

Standard MRNet relies on the back-end nodes supporting C++ libraries. However, we have also
created a lightweight backend library with a pure C interface. The instantiation process is the
same and both methods of process instantation are supported, although the API interface is
slightly different.

4.1 C++ API Reference

All classes are included in the MRN namespace. For this discussion, we do not explicitly include
reference to the namespace; for example, when we reference the class Network , we are implying
the class MRN::Network .

In MRNet, there are five top-level classes: Network , NetworkTopology , Communicator , Stream ,
and Packet . The Network class primarily contains methods for instantiating and destroying
MRNet process trees. The NetworkTopology class represents the interface for discovering details
about the topology of an instantiated network. Application back-ends are referred to as end-
points, and the Communicator class is used to reference a group of end-points. A communicator is
used to establish a Stream for unicast, multicast, or broadcast communications via the MRNet
infrastructure. The Packet class encapsulates the data packets that are sent on a stream. The pub-
lic members of these classes are detailed below.

4.1.1 Class Network

The corresponding lightweight backend API class is “Class Network” on page 26.

Network * Network::CreateNetworkFE(

const char * topology,

const char * backend_exe,

const char ** backend_argv,

const std::map< std::string, std::string>* attrs=NULL,

bool rank_backends = true,

bool using_memory_buffer = false);

The front-end constructor method that is used to instantiate the MRNet process tree. topol-

ogy is the path to a configuration file that describes the desired process tree topology.

backend_exe is the path to the executable to be used for the application’s back-end processes.
backend_argv is a null terminated list of arguments to pass to the back-end application upon
creation (NOTE: backend_argv shoud not contain the executable). If backend_exe is NULL,
no back-end processes will be started, and the leaves of the topology specified by topology
will be instances of mrnet_commnode .

attrs is a pointer to a map of attribute-value string pairs. attrs allows front-ends to progra-
matically set the values to use for the MRNet and XPlat environment variables (see Table 3 on
page 45) -- MRNet will only query the environment for settings not given via attrs . On Cray

Page 9

MRNet API Programmer’s Guide Release 4.1.0

XT, when communication or back-end processes of the MRNet tree are to be co-located with
application processes, attrs must contain a string pair that provides either the
“CRAY_ALPS_APID” or “CRAY_ALPS_APRUN_PID” attribute value (see Table 3 on
page 45 for a description of these attributes).

rank_backends indicates whether the back-end process ranks should begin at 0, similar to
MPI rank numbering, and defaults to true .

If using_memory_buffer is set to true (default is false), the topology parameter is actually
a pointer to a memory buffer containing the specification, rather than the name of a file.

When this function completes without error, all MRNet processes specified in the topology
will have been instantiated. You may use Network::has_error to check for successful com-
pletion. The explicit use of the Network constructor is now deprecated.

Network * Network::CreateNetworkBE(int argc, char ** argv);

The back-end constructor method that is used when the process is started due to a front-end
network instantiation. MRNet automatically passes the necessary information to the back-end
process using the program argument vector (argc/argv) by inserting it after the user-speci-
fied arguments. The explicit use of the Network constructor is now deprecated.

In the “back-end attach” mode of network instantiation, where the back-end is not launched
directly by MRNet, the back-end program must construct a suitable argument vector. Typi-
cally, the front-end program will obtain information about the leaf mrnet_commnode processes
using the NetworkTopology class, and pass this information to back-ends using external com-
munication channels (e.g., a shared file system). The back-ends choose a leaf process as a par-
ent, and use that parent’s host, port, and rank information to attach. Each back-end must
choose a unique value for its local rank; this value must be larger than any of the ranks of the
processes in the existing network. The following code shows how to construct a valid argu-
ment vector:

char parHostname[64], myHostname[64], parPort[6], p arRank[6], myRank[6];

// fill parent data here using info from front-end

gethostname(myHostname, 64);

sprintf(myRank, “%d”, <unique rank>);

be_argc = 6;

char* be_argv[be_argc];

be_argv[0] = argv[0];

be_argv[1] = parHostname;

be_argv[2] = parPort;

be_argv[3] = parRank;

be_argv[4] = myHostname;

be_argv[5] = myRank;

void Network::~Network();

Network::~Network tears down the MRNet process tree when the Network object is deleted.
Note that Network::shutdown_Network is deprecated.

Page 10

MRNet API Programmer’s Guide Release 4.1.0

void Network::waitfor_ShutDown();

Network::waitfor_ShutDown can be used by back-ends to block until the network has been
shut down by the front-end.

bool Network::is_ShutDown();

Back-ends use this method to query if the network has been shut down; returns true if it has
been shut down, false otherwise.

bool Network::set_FailureRecovery(bool enable);

Network::set_FailureRecovery is used by a front-end to control whether internal commu-
nication processes and back-ends will automatically re-connect to a new parent when their
parent terminates unexpectedly. By default, failure recovery is enabled and processes will re-
connect. Call this method with enable set to false to turn off automatic failure recovery.
This method returns true if the setting has been applied successfully, false otherwise.

bool Network::has_Error();

Network::has_error returns true if an error has occured during the last call to a Network

method. Network::print_error can be used to print a message describing the exact error.

ErrorCode Network::get_Error();

Network::get_Error returns an ErrorCode for an error that occured during the last call to a
Network method. Network::get_ErrorStr can be used to retrieve a message string describ-
ing the error.

const char * Network::get_ErrorStr(ErrorCode code);

Network::get_ErrorStr returns a character string describing the error indicated by code .

void Network::print_error(const char * error_msg);

Network::print_error prints a message to stderr describing the last error encountered
during a Network method. It first prints the null-terminated string error_msg followed by a
colon, then the actual error message followed by a newline.

std::string Network::get_LocalHostName();

Network::get_LocalHostName returns the name of the host on which the local MRNet pro-
cess is running.

Port Network::get_LocalPort();

Network::get_LocalPort returns the listening port of the local MRNet process.

Rank Network::get_LocalRank();

Network::get_LocalRank returns the rank of the local MRNet process.

Page 11

MRNet API Programmer’s Guide Release 4.1.0

int Network::load_FilterFunc(const char * so_file, const char* func);

This method loads a new filter operation for use in the Network, and is conveniently similar to
the conventional dlopen facilities for opening a shared object and dynamically loading sym-
bols defined within.

so_file is the path to a shared object file that contains the filter function to be loaded and
func_name is the name of the function to be loaded.

On success, Network::load_FilterFunc returns the id of the newly loaded filter which may
be used in subsequent calls to Network::new_Stream . A value of -1 is returned on failure.

int Network::load_FilterFuncs(

const char * so_file,

const std::vector< const char* > & functions,

std::vector< int > & filter_ids);

This method loads several new filter operations residing in the same shared library into the
Network.

so_file is the path to a shared object file that contains the filter function to be loaded and
functions is a vector of function names to be loaded. filter_ids is an output vector of filter
ids, where the id for the function at index i in functions will be stored at index i in
filter_ids .

Network::load_FilterFuncs returns the number of filter functions that were successfully
loaded, and populates the the filter_ids vector with the ids of the newly loaded filters (or -
1 if a function could not be loaded).

int Network::recv(

int * tag,

PacketPtr & packet,

Stream ** stream,

bool blocking = true);

Network::recv is used to invoke a stream-anonymous receive operation. Any packet avail-
able (i.e., addressed to any stream) will be returned (in roughly FIFO order).

otag will be filled in with the integer tag value that was passed by the corresponding
Stream::send operation. packet is the packet that was received. A pointer to the stream to
which the packet was addressed will be returned in stream .

blocking is used to signal whether this call should block or return if data is not immediately
available; it defaults to a blocking call.

A return value of -1 indicates that the Network has experienced a terminal failure, and further
attempts to send or receive data on the Network will fail. A return value of 0 indicates no

Page 12

MRNet API Programmer’s Guide Release 4.1.0

packets were available for a non-blocking receive, or a stream has been closed for a blocking
receive. The return value 1 indicates a packet has been received successfully.

int Network::send(

Rank be,

int tag,

const char * format_string, ...);

Network::send is used to singlecast a packet from the front-end to a specific back-end. be is
the rank of the back-end process. tag is an integer that identifies the data in the packet.
format_string is a format string describing the data in the packet (See Appendix E: “For-
mat Strings” on page 42 for a full description.)

A return value of -1 indicates that the Network has experienced a terminal failure, and further
attempts to send or receive data on the Network will fail. The return value 0 indicates a packet
has been sent successfully.

NOTE: tag must have a value greather than or equal to the constant FirstApplicationTag

defined by MRNet (#include "mrnet/Types.h"). Tag values less than FirstApplication-

Tag are reserved for internal MRNet use.

bool Network::enable_PerformanceData(

perfdata_metric_t metric,

perfdata_context_t context);

Network::enable_PerformanceData uses Stream::enable_PerformanceData to start the
recording of performance data of the specified metric type for the given context on all
streams. Returns true on success, false otherwise. Appendix F: “MRNet Stream Perfor-
mance Data” on page 43 describes the supported metric and context types. See
Stream::enable_PerformanceData for additional details.

bool Network::disable_PerformanceData(

perfdata_metric_t metric,

perfdata_context_t context);

Network::disable_PerformanceData stops the recording of performance data of the speci-
fied metric type for the given context on all streams. Returns true on success, false other-
wise. See Stream::disable_PerformanceData for additional details.

bool Network::collect_PerformanceData(

std::map< int, rank_perfdata_map > & results,

perfdata_metric_t metric,

perfdata_context_t context,

int aggr_filter_id = TFILTER_ARRAY_CONCAT);

Network::collect_PerformanceData collects the performance data of the specified metric

type for the given context on all streams. The performance data of each stream is passed

Page 13

MRNet API Programmer’s Guide Release 4.1.0

through the transformation filter identified by aggr_filter_id . The data for all streams is
stored within the map results , keyed by stream identifier. Returns true on success, false

otherwise. See Stream::collect_PerformanceData for additional details.

void Network::print_PerformanceData(

perfdata_metric_t metric,

perfdata_context_t context);

Network::enable_PerformanceData uses Stream::print_PerformanceData to print
recorded performance data of the specified metric type for the given context on all streams.
Data is printed to the MRNet log files. See Stream::print_PerformanceData for additional
details.

unsigned int Network::num_EventsPending();

Network::num_EventsPending returns the number of pending events available for retrieval
using Network::next_Event .

Event * Network::next_Event();

This method returns a pointer the next pending Event , or NULL if no events are available. Each
event has an associated EventClass , one of Event::DATA_EVENT , Event::TOPOLOGY_EVENT,
or Event::ERROR_EVENT , that can be queried using Event::get_Class . Similarly, each event
has an associated EventType that can be queried using Event::get_Type .

void Network::clear_Events();

This method clears all pending events.

bool Network::register_EventCallback(

EventClass eclass,

EventType etyp,

evt_cb_func cb_func,

void * cb_func_data,

bool onetime = false);

Network::register_EventCallback allows users to register a callback function to be called
when events are generated.

eclass should be set to one of Event::DATA_EVENT , Event::TOPOLOGY_EVENT, or
Event::ERROR_EVENT .

etyp should be set to either Event::EVENT_TYPE_ALL , to have the function called when any
event within the specified EventClass occurs, or one of the valid class-specific EventType

values (see the classes DataEvent , TopologyEvent , and ErrorEvent in “mrnet/Event.h”

for the class-specific types).

The type evt_cb_func is defined as ‘void (*evt_cb_fn)(Event* e, void* cb_data) ’.
All user-defined callback functions must use the same function prototype. When an event

Page 14

MRNet API Programmer’s Guide Release 4.1.0

occurs, all callbacks registered for that type of event will be called. Each function is passed a
pointer to the Event , and the value of the auxiliary data pointer cb_func_data given at regis-
tration, which may be NULL.

onetime should be set to true if the function should be removed after it is called for the first
(and only) time. Note that onetime callbacks must be registered for a specific event type.

void Network::remove_EventCallback(

evt_cb_func cb_func,

EventClass eclass,

EventType etyp);

This method removes cb_func from the list of functions to be called for the specified Event-

Class and EventType . If eclass is given as Event::EVENT_CLASS_ALL , the function will be
removed for all events. etyp can be given as Event::EVENT_TYPE_ALL to remove the func-
tion for all types of events in the given eclass .

void Network::remove_EventCallbacks(

EventClass eclass,

EventType etyp);

This method removes all functions to be called for the specified EventClass and EventType .
If eclass is given as Event::EVENT_CLASS_ALL , all callback functions will be removed for
all events. etyp can be given as Event::EVENT_TYPE_ALL to remove all functions registered
for all types of events in the given eclass .

int Network::get_EventNotificationFd(EventClass eclass);

Network::get_EventNotificationFd returns a file descriptor that can be used with select

or poll to receive notification of interesting DATA, TOPOLOGY, or ERROR events.

eclass should be set to one of Event::DATA_EVENT , Event::TOPOLOGY_EVENT, or
Event::ERROR_EVENT . Event::DATA_EVENT can be used by both front-end and back-end pro-
cesses to provide notification that one or more data packets have been received.
Event::TOPOLOGY_EVENT and Event::ERROR_EVENT can only be used by front-end pro-
cesses, and provide notification when the front-end observes a change in network topology or
an error, respectively.

When the file descriptor has data available (for reading), you should call Net-

work::clear_EventNotificationFd before taking action on the notification. When notifi-
cations are no longer needed, use Network::close_EventNotificationFd .

NOTE: this functionality is not available on Windows platforms.

Page 15

MRNet API Programmer’s Guide Release 4.1.0

void Network::clear_EventNotificationFd(EventClass eclass);

This method resets the event notification file descriptor returned from Net-

work::get_EventNotificationFd . eclass should be set to one of Event::DATA_EVENT ,
Event::TOPOLOGY_EVENT, or Event::ERROR_EVENT.

NOTE: this functionality is not available on Windows platforms.

void Network::close_EventNotificationFd(EventClass eclass);

This method closes the event notification file descriptor returned from Net-

work::get_EventNotificationFd . eclass should be set to one of Event::DATA_EVENT ,
Event::TOPOLOGY_EVENT, or Event::ERROR_EVENT.

NOTE: this functionality is not available on Windows platforms.

bool is_LocalNodeChild() const;

bool is_LocalNodeParent() const;

bool is_LocalNodeInternal() const;

bool is_LocalNodeFrontEnd() const;

bool is_LocalNodeBackEnd() const;

These methods return true if the local process is of the specified type, false otherwise.

4.1.2 Class NetworkTopology

Instances of NetworkTopology are network specific, so they are created when a Network is
instantiated. MRNet API users should not need to create their own NetworkTopology instances.

The corresponding lightweight backend API class is “Class NetworkTopology” on page 28.

NetworkTopology * Network::get_NetworkTopology();

Network::get_NetworkTopology is used to retrieve a pointer to the underlying NetworkTo-

pology instance of a Network .

unsigned int NetworkTopology::get_NumNodes();

This method returns the total number of nodes in the tree topology, including front-end, inter-
nal, and back-end processes.

NetworkTopology::Node * NetworkTopology::find_Node(Rank node_rank);

This method returns a pointer to the tree node with rank equal to node_rank , or NULL if not
found.

NetworkTopology::Node * NetworkTopology::get_Root();

 This method returns a pointer to the root node of the tree, or NULL if not found.

Page 16

MRNet API Programmer’s Guide Release 4.1.0

void NetworkTopology::get_Leaves(

std::vector<NetworkTopology::Node * > & leaves);

This method fills the leaves vector with pointers to the leaf nodes in the topology. In the case
where back-end processes are not started when the network is instantiated, a front-end process
can use this function to retrieve information about the leaf internal processes to which the
back-ends should attach.

void NetworkTopology::get_BackEndNodes(

std::set< NetworkTopology::Node * > & nodes);

This method fills a set with pointers to all back-end process tree nodes. Note that this method
is unsafe to use while the network topology is in flux, as is the case during the “back-end
attach” mode of MRNet tree instantiation.

void NetworkTopology::get_ParentNodes(

std::set<NetworkTopology::Node * > & nodes);

This method fills a set with pointers to all tree nodes that are parents (i.e., those nodes having
at least one child).

void NetworkTopology::get_OrphanNodes(

std::set< NetworkTopology::Node * > & nodes);

This method fills a set with pointers to all tree nodes that have no parent due to a failure.

void NetworkTopology::get_TreeStatistics(

unsigned int & num_nodes,

unsigned int & depth,

unsigned int & min_fanout,

unsigned int & max_fanout,

double & avg_fanout,

double & stddev_fanout);

This method provides users statistics about the tree topology by setting the passed parameters.

num_nodes is the total number of tree nodes (same as the value returned by NetworkTopol-

ogy::get_NumNodes), depth is the depth of the tree (i.e., the maximum path length from root
to any leaf), min_fanout is the minimum number of children of any parent node, max_fanout

is the maximum number of children of any parent node, avg_fanout is the average number of
children across all parent nodes, and stddev_fanout is the standard deviation in number of
children across all parent nodes.

void NetworkTopology::print_TopologyFile(const char * filename);

This method will create (or overwrite) the specified topology file filename using the current
state of this NetworkTopology object.

Page 17

MRNet API Programmer’s Guide Release 4.1.0

void NetworkTopology::print_DOTGraph(const char * filename);

This method will create (or overwrite) the specified dot graph file filename using the current
state of this NetworkTopology object.

std::string NetworkTopology::Node::get_HostName();

This method returns a string identifying the hostname of the tree node.

Port NetworkTopology::Node::get_Port();

This method returns the listening port of the tree node.

Rank NetworkTopology::Node::get_Rank();

This method returns the unique rank of the tree node.

Rank NetworkTopology::Node::get_Parent();

This method returns the rank of the tree node’s parent.

const std::set< NetworkTopology::Node * > &
NetworkTopology::Node::get_Children();

This method returns a set containing pointers to the children of the tree node, and is useful for
navigating through the tree.

unsigned int NetworkTopology::Node::get_NumChildren();

This method returns the number of children of the tree node.

unsigned int NetworkTopology::Node::find_SubTreeHeight();

This method returns the height of the subtree rooted at this NetworkTopology node.

4.1.3 Class Communicator

Instances of Communicator are network specific, so their creation methods are functions of an
instantiated Network object. There is no corresponding lightweight backend class.

Communicator * Network::new_Communicator();

This method returns a pointer to a new Communicator object. The object contains no end-
points. Use Communicator::add_EndPoint to populate the communicator.

Communicator * Network::new_Communicator(Communicator & comm);

This method returns a pointer to a new Communicator object that contains the same set of
end-points contained in comm.

Page 18

MRNet API Programmer’s Guide Release 4.1.0

Communicator * Network::new_Communicator(

std::set< CommunicationNode * > & endpoints);

This method returns a pointer to a new Communicator object that contains the provided set of
end-points.

Communicator * Network::new_Communicator(std::set< Rank > & endpoints);

This method returns a pointer to a new Communicator object that contains the set of end-
points corresponding to processes whose ranks are provided in the passed set.

Communicator * Network::get_BroadcastCommunicator();

This method returns a pointer to a broadcast Communicator containing all the end-points
available in the system at the time the function is called.

Multiple calls to this method return the same pointer to the Communicator object created at
network instantiation. If the network topology changes, as can occur when starting back-ends
separately, the object will be updated to reflect the additions or deletions. This object should
not be deleted.

bool Communicator::add_EndPoint(Rank ep_rank);

This method is used to add an existing end-point with rank ep_rank to the set contained by
this Communicator .

If the set of end-points in the communicator already contains the new end-point, the function
returns success. This method fails if there exists no end-point defined by ep_rank . This
method returns true on success, false on failure.

bool Communicator::add_EndPoint(CommunicationNode * endpoint);

This method is similar to add_EndPoint above except that it takes a pointer to a Communica-

tionNode object instead of a rank. Success and failure conditions are exactly as stated above.
This method returns true on success and false on failure.

const std::set< CommunicationNode * > & Communicator::get_EndPoints();

Returns a reference to the set of CommunicationNode pointers comprising the end-points in
the communicator.

std::string CommunicationNode::get_HostName();

Returns a character string identifying the hostname of the end-point represented by this Com-

municationNode .

Port CommunicationNode::get_Port();

Returns the listening port of the end-point represented by this CommunicationNode .

Page 19

MRNet API Programmer’s Guide Release 4.1.0

Rank CommunicationNode::get_Rank();

Returns the rank of the end-point represented by this CommunicationNode .

4.1.4 Class Stream

Instances of Stream are network specific, so their creation methods are functions of an instanti-
ated Network object. The corresponding lightweight backend API class is “Class Stream” on
page 28.

MRNet provides two types of streams, homegenous and heterogeneous. Homogenous streams use
the same filters at every process participating in the stream, while heterogeneous streams allow
for different filters to be used at different processes.

Stream * Network::new_Stream(

Communicator * comm,

int up_transfilter_id = TFILTER_NULL,

int up_syncfilter_id = SFILTER_WAITFORALL,

int down_transfilter_id = TFILTER_NULL);

This version of Network::new_Stream is used to create a homogenous Stream object
attached to the end-points specified by a Communicator object comm.

up_transfilter_id specifies the transformation filter to apply to data flowing upstream
from the application back-ends toward the front-end; the default value is TFILTER_NULL.

up_syncfilter_id specifies the synchronization filter to apply to upstream packets; the
default value is SFILTER_WAITFORALL.

down_transfilter_id allows the user to specify a filter to apply to downstream data flows;
the default value is TFILTER_NULL.

Stream * Network::new_Stream(

Communicator * comm,

std::string us_filters,

std::string sync_filters,

std::string ds_filters);

This version of Network::new_Stream is used to creae a heterogeneous Stream object. Users
specify where packet filters are placed within the tree. Like the homogenous version of Net-

work::new_Stream , the end-points are specified by the comm argument.

Strings are used to specify the filter placements, with the following syntax: "filter_id =>

rank; [filter_id => rank; ...] ". If " * " is specified as the rank for an assignment, the
filter will be assigned to all ranks that have not already been assigned. If a rank within comm is
not assigned a filter, it will use the default filter. See $MRNET_ROOT/Examples/Heteroge-

Page 20

MRNet API Programmer’s Guide Release 4.1.0

neousFilters for an example of using Network::new_Stream to specify different filter
types to be used within the same stream.

us_filters specifies the transformation filters to apply to data flowing upstream from the
application back-ends toward the front-end.

sync_filters specifies the synchronization filters to apply to upstream packets.

ds_filters allows the user to specify filters to apply to downstream data flows.

Note that more than one filter should not be assigned to a single rank in any of these strings.

Stream * Network::get_Stream(unsigned int id);

Returns a pointer to the Stream identified by id , or NULL on failure. Back-ends may pass their
local rank as the id to retrieve a singlecast stream that can be used for non-filtered communi-
cation directly with the front-end.

unsigned int Stream::get_Id();

Returns the integer identifier for this Stream .

const std::set< Rank > & Stream::get_EndPoints();

Returns the set of end-point ranks for this Stream .

unsigned int Stream::size();

Returns an integer indicating the number of end-points for this Stream .

bool Stream::is_Closed();

When used by back-ends, this method returns true if the front-end has closed this Stream by
deleting the corresponding object, false otherwise. On the front-end, this method can be used
to determine if the stream has been disabled due to a non-recoverable failure (e.g., a back-end
process has died or a sub-tree containing stream end-points has become unreachable).

Page 21

MRNet API Programmer’s Guide Release 4.1.0

int Stream::send(int tag, const char * format_string, ...);

int Stream::send(const char * format_string, va_list list, int tag);

int Stream::send(int tag, const void** data, const char * format_string);

int Stream::send(PacketPtr & pkt);

Invokes a data send operation on the calling Stream . The first three interfaces construct a
packet from the passed operands, while the fourth allows for sending an already constructed
packet.

tag is an integer that identifies the data in the packet.

format_string is a format string describing the data in the packet (See Appendix E: “For-
mat Strings” on page 42 for a full description).

data is an array of pointers to individual data items; the format string indicates the type of
data pointed to by each array index.

On success, Stream::send returns 0; on failure -1.

NOTE: tag must have a value greather than or equal to the constant FirstApplicationTag

defined by MRNet (#include "mrnet/Types.h"). Tag values less than FirstApplication-

Tag are reserved for internal MRNet use.

int Stream::flush();

Commits a flush of all packets currently buffered by this Stream . A successful return value of
0 indicates that all buffered packets have been passed to the operating system for network
transmission. A return value of -1 indicates that the stream has experienced a terminal failure,
and further attempts to send or receive data on the stream will fail.

int Stream::recv(int * tag, PacketPtr & packet, bool blocking = true);

Invokes a stream receive operation. Packets received by the calling Stream will be returned
by this method, one-at-a-time, in FIFO order.

tag will be filled in with the integer tag value that was passed by the corresponding
Stream::send operation. packet is set to point to the received packet.

blocking determines whether the receive should block or return if data is not immediately
available; it defaults to a blocking call.

A return value of -1 indicates that the stream has experienced a terminal failure, and further
attempts to send or receive data on the stream will fail. A return value of 0 indicates no pack-
ets were available for a non-blocking receive, or the stream has been closed. The return value
1 indicates a packet has been received successfully.

Page 22

MRNet API Programmer’s Guide Release 4.1.0

int Stream::get_DataNotificationFd();

Stream::get_DataNotificationFd returns a file descriptor that can be used with select or
poll to receive notification that data has arrived for a stream.

When the file descriptor has data available (for reading), you should call
Stream::clear_DataNotificationFd before taking action on the notification. When notifi-
cations are no longer needed, use Stream::close_DataNotificationFd .

NOTE: this functionality is not available on Windows platforms.

void Stream::clear_DataNotificationFd();

This method resets the data notification file descriptor returned from
Stream::get_DataNotificationFd .

NOTE: this functionality is not available on Windows platforms.

void Stream::close_DataNotificationFd();

This method closes the data notification file descriptor returned from
Stream::get_DataNotificationFd .

NOTE: this functionality is not available on Windows platforms.

int Stream::set_FilterParameters(

FilterType ftype,

const char *format_str, ...) const;

Stream::set_FilterParameters allows users to dynamically configure the operation of a
stream transformation filter by passing arbitrary data in a similar fashion to Stream::send .
When the filter executes, the passed data is available as a PacketPtr parameter to the filter,
and the filter can extract the configuration settings.

ftype should be given as FILTER_UPSTREAM_SYNC to configure the synchronization filter,
FILTER_UPSTREAM_TRANS for upstream transformation filter and FILTER_DOWNSTREAM_TRANS

for downstream transformation filter.

int Stream::set_FilterParameters(

const char *format_str,

va_list params,

FilterType ftype) const;

This method is the same as the previous method except for the filter configuration parameters
are given in the va_list form.

Page 23

MRNet API Programmer’s Guide Release 4.1.0

bool Stream::enable_PerformanceData(

perfdata_metric_t metric,

perfdata_context_t context);

Stream::enable_PerformanceData starts recording performance data for the specified met-

ric type for the given context . Returns true on success, false otherwise. Appendix F:
“MRNet Stream Performance Data” on page 43 describes the metric and context types.

bool Stream::disable_PerformanceData(

perfdata_metric_t metric,

perfdata_context_t context);

Stream::disable_PerformanceData stops recording performance data for the specified
metric type for the given context . Previously recorded data is not discarded, so that it can be
retrieved with Stream::collect_PerformanceData . Users can enable/disable recording for
a particular metric and context any number of times before collecting the results. Returns
true on success, false otherwise.

bool Stream::collect_PerformanceData(

rank_perfdata_map & results,

perfdata_metric_t metric,

perfdata_context_t context,

int aggr_filter_id = TFILTER_ARRAY_CONCAT);

Stream::collect_PerformanceData collects the recorded performance data for the speci-
fied metric type for the given context . The collected data is returned in a
rank_perfdata_map , which associates individual node ranks to a std::vector<

perf_data_t > containing the recorded data instances. After collection, the recorded data at
each nodeis discarded. Returns true on success, false otherwise.

Users can aggregate the recorded data across nodes by specifying a transformation filter with
aggr_filter_id . Note that only the built-in filter types of TFILTER_SUM, TFILTER_MIN ,
TFILTER_MAX, TFILTER_AVG, and TFILTER_ARRAY_CONCAT are supported. By default, perfor-
mance data from each node is concatenated, and results contains every recorded data instance
for each node. If the summary aggregation filters are used, results will contain a single associ-
ated pair. The rank for this pair is equal to -1×(number of aggregated ranks) , and the vec-
tor contains one or more aggregated instances.

void Stream::print_PerformanceData(

perfdata_context_t metric,

perfdata_context_t context);

Stream::print_PerformanceData prints recorded performance data of the specified metric

type for the given context . At each rank, the data is printed to the MRNet log files and then
discarded.

Page 24

MRNet API Programmer’s Guide Release 4.1.0

4.1.5 Class Packet

A Packet encapsulates a set of formatted data elements sent on a stream. Packets are created
using a format string (e.g., "%s %d" describes a null-terminated string followed by a 32-bit integer,
and the packet is said to contain two data elements). MRNet front-end and back-end processes
typically do not create Packet instances, as they are automatically produced from the formatted
data passed to Stream::send or Network::send . Each Packet is allocated using malloc of the
C standard library, and therefore has the same byte alignment guarantees. Appendix E: “Format
Strings” on page 42 contains the full listing of data types that can be sent in a Packet .

When receiving a packet via Stream::recv , Network::recv , or in a filter’s input vector, the
Packet instance is stored within a PacketPtr object. PacketPtr is a class based on the Boost
shared_ptr class, and helps with memory management of packets. A PacketPtr can be assumed
to be equivalent to "Packet * ", and all operations on packets require use of PacketPtr . Packets
can be created explicitly using the constructors shown below, using the following method to
instantiate a PacketPtr .

PacketPtr new_pkt(new Packet(...));

The corresponding lightweight backend API class is “Class Packet” on page 30.

Packet::Packet(

unsigned int stream_id,

int tag,

const char* format_str, ...);

Constructs a Packet that can be sent on the stream with the given stream_id . The packet is
associated with a tag that can be used by receivers to identify the contents. format_str is a
format string describing the data elements in the packet. The variable arguments following
format_str should have the appropriate types for each data element. Note that for array data
elements, an extra argument must be passed to hold each array’s length. (See Appendix E:
“Format Strings” on page 42 for a full description.)

Packet::Packet(

const char* format_str,

va_list data_elems,

unsigned int stream_id,

int tag);

Works the same as the first Packet constructor, but allows for passing a va_list in place of
the variable arguments. This constructor is useful for libraries built on top of MRNet that
allow users to specify packet format strings.

Page 25

MRNet API Programmer’s Guide Release 4.1.0

Packet::Packet(

unsigned int stream_id,

int tag,

const void** data_elems,

const char* format_str);

Works the same as the first Packet constructor, but allows for passing an array of data ele-
ment pointers instead of the variable arguments. The data_elems array must contain the same
number of elements as indicated by format_str .

int Packet::get_Tag();

Returns the integer tag associated with this Packet .

void Packet::set_Tag(int tag);

Sets the integer tag associated with this Packet .

unsigned int Packet::get_StreamId();

Returns the stream id associated with this Packet .

void Packet::set_StreamId(unsigned int strm_id);

Sets the stream id associated with this Packet to strm_id .

const char * Packet::get_FormatString();

Returns the character string specifying the data format of this Packet .

int Packet::unpack(const char * format_str, ...);

int Packet::unpack(va_list list, const char * format_str, bool);

Extracts data contained within this Packet according to the format_str , which must match
that of the packet. format_str is a format string describing the data in the packet (See
Appendix E: “Format Strings” on page 42 for a full description).

For the first version, the function arguments following format_str should be pointers to the
appropriate types of each data item. For string and array data types, new memory buffers to
hold the data will be allocated using malloc , and it is the user’s responsibility to free these
strings and arrays. Note that for array data elements, an extra argument must be passed to hold
each array’s length.

For the second version, the va_list list should contain the arguments corresponding to the
varargs from the first version. The third parameter is a dummy parameter required by some
compilers to distinguish the second version from the first version, and its value is ignored.

The return value 0 indicates success; -1 indicates the format string supplied did not match the
packet or a failure in unpacking.

Page 26

MRNet API Programmer’s Guide Release 4.1.0

void Packet::set_Tag(int tag);

This method can be used to set the packet’s tag value after it has been created.

void Packet::set_Destinations(const Rank * bes, unsigned int num_bes);

This method can be used to tell MRNet to deliver the packet to a specific set of back-ends,
rather than all the back-ends addressed by the stream on which the packet is sent. bes should
point to an array of back-end ranks, and num_bes is the number of entries in the array.

void Packet::set_DestroyData(bool destroy);

This method can be used to tell MRNet whether or not to deallocate the string and array data
members of a Packet . If destroy is true , string and array data members will be deallocated
using free when the Packet destructor is executed - this assumes they were allocated using
malloc . The default behavior for user-generated packets is not to deallocate (false). Turning
on deallocation is useful in filter code that must allocate strings or arrays for output packets,
which cannot be freed before the filter function returns.

4.2 C API Reference

In the MRNet lightweight back-end library, the MRNet C++ classes are mimicked for ease of use.
With the exception of constructors/destructors, API calls in standard MRNet can be translated to
their lightweight versions according to the following pattern:

return_type class::function_name(param1_type param1, ...);

translates to:

return_type class_function_name(

class class_object,

param1_type param1, ...);

4.2.1 Class Network

Network_t * Network_CreateNetworkBE(int argc, char ** argv);

The back-end constructor method. MRNet automatically passes the necessary information to
the back-end process using the program argument vector (argc/argv) by inserting it after the
user specified arguments. See “Network * Network::CreateNetworkBE(int argc, char **
argv);” on page 9 for more information on the required arguments.

void delete_Network_t(Network_t * network);

delete_Network_t acts as a destructor for the Network_t object and cleans up internal struc-
tures before freeing the Network_t pointer.

void Network_waitfor_ShutDown(Network_t * network);

Network_waitfor_ShutDown blocks until the network has been shut down.

Page 27

MRNet API Programmer’s Guide Release 4.1.0

char Network_is_ShutDown(Network_t * network);

Returns true if the network has been shut down.

char* Network_get_LocalHostName(Network_t * network);

Network_get_LocalHostName returns the name of the host where the process is running.

Port Network_get_LocalPort(Network_t * network);

Network_get_LocalPort returns the listening port of the local process.

Rank Network_get_LocalRank(Network_t * network);

Network_get_LocalRank returns the rank of the local process.

int Network_recv(

Network_t * network,

int otag,

Packet_t * packet,

Stream_t * stream);

Network_recv is used to invoke a blocking stream-anonymous receive operation. Any packet
available (i.e., addressed to any stream) will be returned in roughly FIFO order.

otag will be filled in with the integer tag value that was passed by the corresponding
Stream_send operation. packet is the packet that was received. A pointer to the Stream_t to
which the packet was addressed will be returned in stream .

A return value of -1 indicates an error and 1 indictes a success.

int Network_recv_nonblock(

Network_t * network,

int otag,

Packet_t * packet,

Stream_t * stream);

Network_recv_nonblock is used to invoke a non-blocking stream-anonymous receive opera-
tion. Any packet available (i.e., addressed to any stream) will be returned in roughly FIFO
order.

otag will be filled in with the integer tag value that was passed by the corresponding
Stream_send operation. packet is the packet that was received. A pointer to the Stream_t to
which the packet was addressed will be returned in stream .

A return value of -1 indicates an error, 0 indicates no packets were available, and 1 indicates a
success.

Page 28

MRNet API Programmer’s Guide Release 4.1.0

4.2.2 Class NetworkTopology

NetworkTopology_t * Network_get_NetworkTopology(Network_t * network);

Network_get_NetworkTopology is used to retrieve a pointer to the underlying
NetworkTopology_t instance within network . Note that in the lightweight back-end library,
the information available in the NetworkTopology_t may be a subset of the full topology.

Node_t * NetworkTopology_find_Node(

NetworkTopology_t * net_top,

Rank node_rank);

This method returns a pointer to the topology node with rank equal to node_rank , or NULL if
no match is found.

Node_t * NetworkTopology_get_Root(NetworkTopology_t * net_top);

This method returns a pointer to the root node of the tree, or NULL if not found.

char * NetworkTopology_Node_get_HostName(Node_t * node);

This method returns a string identifying the hostname of the node .

Port NetworkTopology_Node_get_Port(Node_t * node);

This method returns the listening port of the node .

Rank NetworkTopology_Node_get_Rank(Node_t * node);

This method returns the rank of the node .

Rank NetworkTopology_Node_get_Parent(Node_t * node);

This method returns the rank of the node’s parent.

unsigned int NetworkTopology_Node_find_SubTreeHeight(Node_t * node);

This method returns the height of the sub-tree rooted at the node .

4.2.3 Class Stream

Stream_t * Network_get_Stream(Network_t * network, unsigned int id);

Network_get_Stream returns a pointer to a Stream_t identified by id , or NULL on failure.
Back-ends may pass their local rank as the id to retrieve a singlecast stream that can be used
for non-filtered communication directly with the front-end.

void delete_Stream_t(Stream_t * stream);

delete_Stream_t acts as a destructor for the Stream_t object and cleans up internal struc-
tures before freeing the Stream_t pointer.

Page 29

MRNet API Programmer’s Guide Release 4.1.0

unsigned int Stream_get_Id(Stream_t * stream);

This method returns the integer identifier for this Stream_t .

int Stream_send(

Stream_t * stream,

int tag,

const char * format_string, ...);

This method sends data on stream . tag is an integer that identifies the data to be sent by the
stream. format_string is a format string describing the types of the data elements (see
Appendix E: “Format Strings” on page 42 for a full description.) On success, Stream_send

returns 0; on failure, -1.

NOTE: tag must have a value greater than or equal to the constant FirstApplicationTag

defined by MRNet (#include "mrnet_lightweight/Types.h"). Tag values less than Fir-

stApplicationTag are reserved for internal MRNet use.

int Stream_send_packet(

Stream_t * stream,

Packet_t * packet);

This method sends packet on stream . On success, Stream_send _packet returns 0; on fail-
ure, -1.

int Stream_flush(Stream_t * stream);

This operation is currently not required in lightweight MRNet, as Stream_send will deliver
the data for network transmission. This method will always return the value 0 for success.

int Stream_recv(

Stream_t * stream,

int * tag,

Packet_t * packet,

bool_t blocking);

Stream_recv invokes a stream-specific receive operation. Packets addressed to the passed
stream will be returned, one-at-a-time, in FIFO order. If blocking is true , the operation
will block until a packet is available for this stream; if false , the operation will return imme-
diately.

tag will be filled in with the integer tag value that was passed by the corresponding
Stream::send operation. packet is the received Packet_t .

A return value of -1 indicates an error, 0 indicates no packet available for a non-blocking
receieve, and 1 indicates a packet was found.

Page 30

MRNet API Programmer’s Guide Release 4.1.0

char Stream_is_Closed(Stream_t * stream);

This method returns the value 1 if the stream has been closed by the front-end, 0 otherwise.

4.2.4 Class Packet

When receiving a packet, it is stored within a Packet_t object. Note that standard MRNet
makes use of the PacketPtr object, which is based on the Boost library shared_ptr class. How-
ever, in the lightweight back-end library, pointers to Packet_t objects are used instead.

int Packet_get_Tag(Packet_t * packet);

This method returns the integer tag associated with packet .

void Packet_set_Tag(Packet_t * packet, int tag);

This method sets the integer tag associated with packet .

unsigned int Packet_get_StreamId(Packet_t * packet);

This method returns the stream id associated with packet .

void Packet_set_StreamId(Packet_t * packet, unsigned int strm_id);

This method sets the stream id associated with packet .

char* Packet_get_FormatString(Packet_t * packet);

This method returns the character string specifying the data format of packet .

void Packet_unpack(

Packet_t * packet,

const char * format_string, ...);

This method extracts data elements contained within packet according to the
format_string , which must match that of packet . The function arguments following
format_string should be pointers to the appropriate types of each data element. For string
and array data types, new memory buffers to hold the data will be allocated using malloc , and
it is the user’s responsibility to free these strings and arrays. Note that for array data ele-
ments, an extra argument must be passed to hold each array’s length.

The return value 0 indicates success; -1 indicates the format string supplied did not match the
packet or a failure in unpacking.

void Packet_unpack_valist(

Packet_t * packet,

va_list arg_list,

const char * format_string);

This method extracts data elements contained within packet according to the
format_string , which must match that of packet . The function arguments contained in the

Page 31

MRNet API Programmer’s Guide Release 4.1.0

va_list arg_list should be pointers to the appropriate types of each data element. For
string and array data types, new memory buffers to hold the data will be allocated using mal-

loc , and it is the user’s responsibility to free these strings and arrays. Note that for array data
elements, an extra argument must be passed to hold each array’s length. The fourth parameter

The return value 0 indicates success; -1 indicates the format string supplied did not match the
packet or a failure in unpacking.

Page 32

MRNet API Programmer’s Guide Release 4.1.0

APPENDIX A: BUILDING AND TESTING MRNET

For this discussion, $MRNET_ROOT is the location of the top-level directory of the MRNet distribu-
tion and $MRNET_ARCH is a string describing the platform (OS and architecture) as discovered by
the configure process.

A.1: Supported Platforms and Compilers

MRNet has been developed to be highly portable; we expect it to run properly on all common
Unix-based as well as Windows platforms. Please refer to the README document included with
the MRNet distribution for the list of currently supported platforms.

MRNet requires GNU make for building on Unix/Linux systems. Our build system attempts to
use native system compilers where available. For building on Windows systems, Visual Studio
2010 solution/project files are available, as are pre-built libraries and binaries.

A.2: Configuration, Compilation, and Installation

Please refer to the INSTALL document included with the MRNet distribution for configuration,
compilation, and installation instructions.

A.3: Testing the Code

The shell script, mrnet_tests.sh is placed in the build/installation directory for binaries along
with the other executables. This script can be used to run the MRNet test programs and check
their output for errors. The script is used as follows:

UNIX> mrnet_tests.sh { -l | -r hostfile | -a hostfi le }

[-f] [-lightweight]

One of the -l , -r , or -a flags is required. The -l flag is used to run all tests using only topologies
that create processes on the local machine (note: running the tests locally can take quite a while,
up to 15 minutes depending on machine capabilities). The -r flag runs tests using remote
machines specified in the file whose name immediately follows this flag. To run tests both locally
and remotely, use the -a flag and provide a hostfile.

To test MRNet’s ability to dynamically load shared libraries containing filter functions, you must
specify the -f flag. The -lightweight flag is used to run the tests using lightweight back-ends in
addition to the standard back-ends.

A.4: Bugs, Questions, and Comments

MRNet is maintained by the Paradyn Tools Project at the University of Wisconsin-Madison.
Comments and feedback whether positive or negative are encouraged; please send to
mrnet@cs.wisc.edu. Bug fixes as patches are also welcome.

Page 33

MRNet API Programmer’s Guide Release 4.1.0

APPENDIX B: A COMPLETE EXAMPLE : I NTEGER ADDITION

The source code for the example contained in this appendix can be found in $MRNET_ROOT/Exam-

ples/IntegerAddition .

B.1: A Complete MRNet Front-End
1 #include "mrnet/MRNet.h"

2 #include "IntegerAddition.h"

3 using namespace MRN;

4

5 int main(int argc, char **argv)

6 {

7 int send_val=32, recv_val=0;

8 int tag, retval;

9 PacketPtr p;

10 if(argc != 4){

11 printf("Usage: %s topology be_exe so_file\n", arg v[0]);

12 exit(-1);

13 }

14 const char * topology_file = argv[1];

15 const char * be_exe = argv[2];

16 const char * so_file = argv[3];

17 const char * argv=NULL;

18

19 // Instantiates the MRNet internal nodes, using t he organization

20 // in "topology_file," and the specified back-end application

21 Network * network = Network::CreateNetworkFE(top ology_file,

22 be_exe, &argv);

23

24 // Make sure path to "so_file" is in LD_LIBRARY_P ATH

25 int filter_id = network->load_FilterFunc(so_file , "IntegerAdd");

26 if(filter_id == -1){

27 printf("Network::load_FilterFunc() failure\n");

28 delete network;

29 return -1;

30 }

31

32 // A Broadcast communicator contains all the back -ends

33 Communicator * comm_BC = network->get_BroadcastCo mmunicator();

34

35 // Create a stream that uses Integer_Add filter f or aggregation

36 Stream * stream = network->new_Stream(comm_BC, f ilter_id,

37 SFILTER_WAITFORALL);

38 int num_backends = comm_BC->get_EndPoints().size();

39

Page 34

MRNet API Programmer’s Guide Release 4.1.0

40 // Broadcast a control message to back-ends to se nd us "num_iters"

41 // waves of integers

42 tag = PROT_SUM;

43 unsigned int num_iters=5;

44 if(stream->send(tag, "%d %d", send_val, num_ite rs) == -1){

45 printf("stream::send() failure\n");

46 return -1;

47 }

48 if(stream->flush() == -1){

49 printf("stream::flush() failure\n");

50 return -1;

51 }

52 // We expect "num_iters" aggregated responses fro m all back-ends

53 for(unsigned int i=0; i<num_iters; i++){

54 retval = stream->recv(&tag, p);

55 if(retval == -1){

56 //recv error

57 return -1;

58 }

59 if(p->unpack("%d", &recv_val) == -1){

60 printf("stream::unpack() failure\n");

61 return -1;

62 }

63 if(recv_val != num_backends * i * send_val){

64 printf("Iteration %d: Failure!\n", i);

65 }

66 else{

67 printf("Iteration %d: Success! recv_val(%d) == %d \n",

68 i, recv_val, send_val*i*num_backends);

69 }

70 }

71

72 if(stream->send(PROT_EXIT, "") == -1){

73 printf("stream::send(exit) failure\n");

74 return -1;

75 }

76 if(stream->flush() == -1){

77 printf("stream::flush() failure\n");

78 return -1;

79 }

80

81 // Network destruction will exit all processes

82 delete network;

83 return 0;

84 }

Page 35

MRNet API Programmer’s Guide Release 4.1.0

B.2: A Complete MRNet Back-End
1 #include "mrnet/MRNet.h"

2 #include "IntegerAddition.h"

3

4 using namespace MRN;

5

6 int main(int argc, char **argv)

7 {

8 Stream * stream=NULL;

9 PacketPtr p;

10 int tag=0, recv_val=0, num_iters=0;

11 Network * network = Network::CreateNetworkBE(arg c, argv);

12 do {

13 if (network->recv(&tag, p, &stream) != 1){

14 fprintf(stderr, "stream::recv() failure\n");

15 return -1;

16 }

17 switch(tag){

18 case PROT_SUM:

19 p->unpack("%d %d", &recv_val, &num_iters);

20

21 // Send num_iters waves of integers

22 for(unsigned int i=0; i<num_iters; i++){

23 if(stream->send(tag, "%d", recv_val*i) == -1){

24 printf("stream::send(%%d) failure\n");

25 return -1;

26 }

27 if(stream->flush() == -1){

28 printf("stream::flush() failure\n");

29 return -1;

30 }

31 }

32 break;

33 case PROT_EXIT:

34 printf("Processing PROT_EXIT ...\n");

35 break;

36 default:

37 printf("Unknown Protocol: %d\n", tag);

38 break;

39 }

40 } while (tag != PROT_EXIT);

41

42 network->waitfor_ShutDown();

43 delete network;

44 return 0;

45 }

Page 36

MRNet API Programmer’s Guide Release 4.1.0

B.3: A Complete MRNet Lightweight Back-End
1 #include "mrnet_lightweight/MRNet.h"

2 #include "IntegerAddition_lightweight.h"

3

4 int main(int argc, char **argv)

5 {

6 Stream_t * stream;

7 Packet_t* p = (Packet_t*)malloc(sizeof(Packet_t));

8 int tag=0, recv_val=0, num_iters=0;

9 Network_t * net = Network_CreateNetworkBE(argc, a rgv);

10 do {

11 if(Network_recv(net, &tag, p, &stream) != 1) {

12 printf("BE: stream::recv() failure\n");

13 break;

14 }

15 switch(tag) {

16 case PROT_SUM:

17 Packet_unpack(p, "%d %d", &recv_val, &num_iters) ;

18 // Send num_iters waves of integers

19 unsigned int i;

20 for(i=0; i<num_iters; i++) {

21 printf("BE: Sending wave %u ...\n", i);

22 if(Stream_send(stream,tag, "%d",

23 recv_val*i) == -1){

24 printf("BE: stream::send(%%d) failure\n");

25 tag = PROT_EXIT;

26 break;

27 }

28 if(Stream_flush(stream) == -1){

29 printf("BE: stream::flush() failure\n");

30 tag = PROT_EXIT;

31 break;

32 }

33 sleep(2); // stagger sends

34 }

35 break;

36 case PROT_EXIT:

37 if(Stream_send(stream,tag, "%d", 0) == -1) {

38 printf("BE: stream::send(%%s) failure\n");

39 break;

40 }

41 if(Stream_flush(stream) == -1) {

42 printf("BE: stream::flush() failure\n");

43 }

44 break;

45

Page 37

MRNet API Programmer’s Guide Release 4.1.0

46 default:

47 fprintf(stderr, "BE: Unknown Protocol: %d\n", tag);

48 tag = PROT_EXIT;

49 break;

50 }

51 } while (tag != PROT_EXIT);

52

53 if (p != NULL)

54 free (p);

55

56 Network_waitfor_ShutDown(net);

57 delete_Network_t(net);

58 return 0;

59 }

B.4: A MRNet Filter: Integer Addition
1 extern "C" {

2

3 //Must declare the format of data expected by the filter

4 const char * IntegerAdd_format_string = "%d";

5 void IntegerAdd(std::vector< PacketPtr > & packet s_in,

6 std::vector< PacketPtr > & packets_out,

7 std::vector< PacketPtr > & /* packets_out_reverse */,

8 void ** /* filter state */,

9 PacketPtr & /* configuration parameters */,

10 TopologyLocalInfo & /* local topology information */)

11 {

12 int sum = 0;

13

14 for(unsigned int i = 0; i < packets_in.size(); i++) {

15 PacketPtr cur_packet = packets_in[i];

16 int val;

17 cur_packet->unpack("%d", &val);

18 sum += val;

19 }

20

21 PacketPtr new_packet (new Packet(packets_in[0]-> get_StreamId(),

22 packets_in[0]->get_Tag(), "%d", sum));

23 packets_out.push_back(new_packet);

24 }

25

26 } /* extern "C" */

Page 38

MRNet API Programmer’s Guide Release 4.1.0

APPENDIX C: PROCESS-TREE TOPOLOGIES

MRNet allows a tool to specify a node allocation and process connectivity tailored to its computa-
tion and communication requirements and to the system where the tool will run. Choosing an
appropriate MRNet configuration can be difficult due to the complexity of the tool’s own activity
and its interaction with the system. This section describes how users define their own process
topologies, and the mrnet_topgen utility provided by MRNet to facilitate generation of topology
specification files.

C.1: Topology File Format

The first parameter to Network::CreateNetworkFE is the name of an MRNet topology file. This
file defines the topological layout of the front-end, internal, and back-end MRNet processes. In
the syntax of the topology file, the hostname:id tuple represents a process with instance id run-
ning on hostname . It is important to note that the instance is used to distinguish processes on the
same host, and does not reflect a port or process rank. A line in the topology file has the form:

hostname1:0 => hostname1:1 hostname1:2 ;

meaning a process on hostname1 with instance id 0 has two children, with instance ids 1 and 2,
running on the same host. MRNet will parse the topology file without error if the file properly
defines a tree in the mathematical sense (i.e. a tree must have a single root, no cycles, full connec-
tion, and no node can be its own descendant). Please note that the hostname associated with the
root of the topology must match the host where the front-end process is run, or a run-time error
will occur.

NOTE: A single topology specification line may span multiple physical lines to improve readabil-
ity. For example:

hostname1:0 =>

hostname1:1

hostname1:2

;

Page 39

MRNet API Programmer’s Guide Release 4.1.0

C.2: An Example Topology File
nutmeg:0 => c01:0 c02:0 c03:0 c04:0 ;

c03:0 => c05:0 ;

c04:0 => c06:0 c07:0 c08:0 c09:0 ;

nutmeg

|

/ | | \

c01 c02 c03 c04

| |

c05 |

/ | | \

c06 c07 c08 c09

C.3: Topology File Generator

MRNet provides a topology generator program that supports generation of balanced and k-nomial
topologies using simple specifications, and arbitrary topologies with a more complex specifica-
tion that fully enumerates the topology fan-outs at each level of the tree. After MRNet is built, this
program can be found at $MRNET_ROOT/build/$MRNET_ARCH/bin/mrnet_topgen . The usage
can be obtained by running mrnet_topgen without arguments.

The generator program uses host lists that specify the maximum number of processes to place on
each host. The format for the host list is one host specification per line, where each specification
is of the form hostname[:num_slots] . If the number of process slots is not given with the host,
the generator program assumes only one process should be placed on the host. Additionally, if the
same hostname is given on multiple lines, the number of processes that can be placed on the host
is the summation of the process slot counts for all lines. An example host list file follows:

host1:4

host2

host3:2

host2

The above host list file results in three hosts being available for topology process placement, with
host1 having four available slots, and host2 and host3 each having two available slots. The gen-
erator program also allows users to specify different host lists for the placement of internal com-
munication processes and back-end processes (see the mrnet_topgen usage for more
information).

Some MRNet front-end programs may wish to generate a topology at run-time. To support this
requirement, MRNet provides three API classes: BalancedTree , KnomialTree , and Generic-

Tree that front-end programs may use directly to generate any topology that can be produced by
mrnet_topgen . Not surprisingly, mrnet_topgen is built upon these classes, and its source code
($MRNET_ROOT/tests/config_generator.C) can serve as a reference for front-end programs
wishing to use these classes.

Page 40

MRNet API Programmer’s Guide Release 4.1.0

APPENDIX D: ADDING NEW FILTERS

D.1: Defining an MRNet Filter

A filter function has the following signature:

void filter_name(

std::vector< PacketPtr > & packets_in,

std::vector< PacketPtr > & packets_out,

std::vector< PacketPtr > & packets_out_reverse,

void ** filter_state,

PacketPtr & config_params,

const TopologyLocalInfo & topol_info);

packets_in is a reference to a vector of packets serving as input to the filter function.
packets_out is a reference to a vector into which output packets should be placed. When packets
need to be sent in the reverse direction on the stream, packets_out_reverse can be used instead
of packets_out . Both packets_out and packets_out_reverse can be used simultaneously.
filter_state may be used to define and maintain state specific to a filter instance.
config_params is a reference to a PacketPtr containing the current configuration settings for
the filter instance, as can be set using Stream::set_FilterParameters . Finally, topol_info

provides information that can be used by filters to determine the local process’s placement in the
topology, as well as access to the local Network object.

For each filter function defined in a shared object file, there must be a const char * symbol named
by the string formed by the concatenation of the filter function name and the suffix
"_format_string ". For instance, if the filter function is named my_filter_func , the shared
object must define a symbol "const char* my_filter_func_format_string ". The value of
this string will be the MRNet format string describing the format of data that the filter can operate
on. A value of "" denotes that the filter can operate on packets containing arbitrary data.

D.2: Fault-Tolerant Filters

MRNet automatically recovers from failures of internal tree processes (i.e., those processes that
are not the front-end (root) or back-ends (leaves)). As part of the recovery, MRNet will extract fil-
ter state from the children of a failed process and pass that state as input to each child’s newly
chosen parent. If you have a filter that maintains persistent state using filter_state , you can
provide an additional function within the shared object for your filter that MRNet may use to
extract the state. The name of this extraction function should be the same as the filter name with
the suffix "_get_state " appended. For instance, if the filter function is named my_filter_func,
the extraction function should be named my_filter_func_get_state .

A filter state extraction function has the following signature:

Page 41

MRNet API Programmer’s Guide Release 4.1.0

PacketPtr filter_name_get_state(void ** filter_state, int stream_id);

filter_state is a pointer to the state defined by the filter for the stream identified by
stream_id . This function should extract the necessary state and return a packet that can be passed
as input to the filter function. Since the packet will be processed as a normal input packet for the
filter, it’s format must match that expected by the filter. A fault-tolerant filter example is provided
in $MRNET_ROOT/Examples/FaultRecovery .

D.3: Creating and Using MRNet Filter Shared Object Files

Since we use the C facility dlopen to dynamically load new filter functions, all C++ symbols
must be exported. That is, the filter function, format string, and state extraction function defini-
tions must fall within the statements:

extern "C" {

and

}

The file that contains the filter functions and format strings must be compiled into a valid shared
object. For example, with the GNU C++ compiler on ELF systems, the options "-fPIC -shared

-rdynamic " can be used. Please refer to your compiler documentation for the appropriate options
for other compilers. You can also refer to the setting of the SOFLAGS variable in
$MRNET_ROOT/build/$MRNET_ARCH/Makefile.examples to see the options chosen during the
configure process for compiling the Example filter libraries.

Additionally, front-end and back-end programs that will dynamically load filters must be built
with compiler options that notify the linker to export global symbols (for GNU compilers, you can
use "-Wl,-E ").

Page 42

MRNet API Programmer’s Guide Release 4.1.0

APPENDIX E: FORMAT STRINGS

The table below shows the format string conversions for individual data elements of specific
types. Each conversion is preceded by the ‘%’ character (e.g., “%d”).

Arrays of specific types are also supported. An array can be specified by prepending ‘a’ to the
appropriate type conversion (e.g., “%ac” for an array of 8-bit signed characters). Array conver-
sions require an implicit length parameter of type uint32_t to be passed to send() methods:
e.g., send("%af", float_array_pointer, float_array_length) . When the number of ele-
ments in the array exceeds the maximum value of uint32_t (roughly over 4 billion elements),
MRNet provides a large array conversion that can be specified by prepending ‘A’ to the appropri-
ate type conversion (e.g., “%Auc” for an array of 8-bit unsigned characters). Large array conver-
sions require an implicit length parameter of type uint64_t .

Table 1: Format String Conversions

c signed 8-bit character

uc unsigned 8-bit character

hd signed 16-bit decimal integer

uhd unsigned 16-bit decimal integer

d signed 32-bit decimal integer

ud unsigned 32-bit decimal integer

ld signed 64-bit decimal integer

uld unsigned 64-bit decimal integer

f single-precision floating-point number

lf double-precision floating-point number

s null-terminated character string

Page 43

MRNet API Programmer’s Guide Release 4.1.0

APPENDIX F: MRNET STREAM PERFORMANCE DATA

The primary abstraction for communication and data processing within MRNet is the stream, so
performance metrics and contexts are associated with actions on a particular stream.

All data is recorded as instances of a perf_data_t , which is simply a union type that can hold a
64-bit signed integer, a 64-bit unsigned integer, or a double precision float. As shown below, the
data values can be accessed using the i , u, or d union fields.

typedef union { int64_t i; uint64_t u; double d; } perfdata_t;

Metrics define the type of performance data to record. The supported metric types are:

* PERFDATA_MET_NUM_BYTES : count of data bytes (uint64_t)

* PERFDATA_MET_NUM_PKTS : count of data packets (uint64_t)

* PERFDATA_MET_ELAPSED_SEC : elapsed seconds (double)

* PERFDATA_MET_CPU_USR_PCT : percent CPU utilization by user (double)

* PERFDATA_MET_CPU_USR_PCT : percent CPU utilization by system (double)

* PERFDATA_MET_MEM_VIRT_KB : virtual memory footprint in KB (double)

* PERFDATA_MET_MEM_PHYS_KB : physical memory footprint in KB (double)

Contexts specify when to record data. The supported contexts are:

* PERFDATA_CTX_SEND : when data is sent

* PERFDATA_CTX_RECV : when data is received

* PERFDATA_CTX_FILT_IN : before executing transformation filter

* PERFDATA_CTX_FILT_OUT : after executing transformation filter

* PERFDATA_CTX_SYNCFILT_IN : before executing synchronization filter

* PERFDATA_CTX_SYNCFILT_OUT : after executing synchronization filter

* PERFDATA_CTX_NONE : when data is collected

Table 2 shows which metrics are valid for a given context. When a metric is valid for only
CTX_FILT_OUT, the metric is actually recorded through a combination of measurements at
CTX_FILT_IN and CTX_FILT_OUT. When a metric is valid for only CTX_NONE, the data is only
recorded at the time it is collected. An example MRNet application that makes use of the Stream
performance data collection facilities is provided in $MRNET_ROOT/Examples/PerformanceData .

Page 44

MRNet API Programmer’s Guide Release 4.1.0

NOTE: MET_CPU_USR_PCT, MET_CPU_SYS_PCT, MET_MEM_VIRT_KB, and MET_MEM_PHYS_KB

are currently only supported for Linux.

Table 2: Metric-Context Compatibility Matrix

CTX_SEND
CTX_RECV

CTX_FILT_IN
CTX_SYNCFILT_IN

CTX_FILT_OUT
CTX_SYNCFILT_OUT CTX_NONE

MET_NUM_BYTES yes yes yes no

MET_NUM_PKTS yes yes yes no

MET_ELAPSED_SEC no no yes no

MET_CPU_USR_PCT no no yes no

MET_CPU_SYS_PCT no no yes no

MET_MEM_VIRT_KB no no no yes

MET_MEM_PHYS_KB no no no yes

Page 45

MRNet API Programmer’s Guide Release 4.1.0

APPENDIX G: NETWORK SETTINGS

Table 3: Environment Variables and Network Attributes

XPLAT_RSH
XPLAT_RSH_ARGS

XPLAT_REMCMD

Set XPLAT_RSH to the name of the remote shell
program to use for remote process execution.
Default is ’ssh ’. XPLAT_RSH_ARGS can be used to
pass shell-specific options to the remote shell.

If it is necessary to run the remote shell program
with a utility such as runauth to non-interactively
authenticate the unattended remote process, that
command may be specified using XPLAT_REMCMD.

XPLAT_RESOLVE_HOSTS

XPLAT_RESOLVE_CANONICAL

Tell XPlat to perform DNS resolution of host-
names and IP addresses by setting the variable to
’1’. Default is ’1’.

When XPLAT_RESOLVE_HOSTS is ’1’, setting
XPLAT_RESOLVE_CANONICAL to ’1’ will tell XPlat
to try to resolve all hostnames to their canonical
DNS format. Default is ’0’.

MRNET_DEBUG_LEVEL

MRNET_DEBUG_LOG_DIRECTORY

Set the debug output level (valid values are 1-5,
default is 1). Level 1 will only log warning/error
messages, level 3 provides fairly detailed function
execution logging, and level 5 enables all log
messages.

Specify the absolute path to the directory to store
MRNet log files. By default, the directory
$HOME/mrnet-log will be used if it exists;
otherwise, log messages will be output to stderr.

MRN_COMM_PATH (deprecated)
MRNET_COMM_PATH

If mrnet_commnode is not in your path by default,
you can specify the full path using this variable.

MRNET_STARTUP_TIMEOUT Set the maximum time in seconds that a MRNet
process will try to connect to its parent during
Network instantiation before exiting.

MRNET_FAILURE_RECOVERY Set attribute value to ‘1’ to turn on failure recov-
ery (default), or ‘0’ to turn off failure recovery.
Alternatively, you may specify the recovery mode
using Network::set_FailureRecovery() .

Note: there is no corresponding environment vari-
able for this attribute.

Page 46

MRNet API Programmer’s Guide Release 4.1.0

MRNET_PORT_BASE Specify the base port used for listening for socket
connections by MRNet communication processes
on the same host. For N processes on a host, the
ports in the range [base, base+N) must be avail-
able.

On Cray systems, the default base port is 26500.

On rsh/ssh systems, all listening ports are chosen
dynamically and this value is ignored.

CRAY_ALPS_APID

CRAY_ALPS_APRUN_PID

Specify the ALPS application id (aka apid - the
unique identifier assigned to the application by
ALPS, as can be queried using apstat).

As an alternative to CRAY_ALPS_APID, you
may use this attribute to specify the process id
(pid) of the aprun process used to start the target
application, and MRNet will obtain the corre-
sponding apid.

Note: MRNet must be configured to use the
ALPS tool helper library to use these settings.

Note: there are no corresponding environment
variables for either of these attributes.

CRAY_ALPS_STAGE_FILES Specify a colon-separated list of file pathnames
(e.g., “/path/to/file/a:/path/to/file/b ”).
MRNet will use the ALPS tool helper library to
stage the specified files to Cray compute nodes
hosting the application identified using either
CRAY_ALPS_APID or
CRAY_ALPS_APRUN_PID.

Note: MRNet must be configured to use the
ALPS tool helper library to use this setting.

Table 3: Environment Variables and Network Attributes

