
An API for Run-Time Instrumentation of
Single- and Multi-Process Applications:

Class Reference Manual

Version 0.2

May 26, 1998

Dr. Douglas M. Pase

email:pase@us.ibm.com

IBM Corporation

RS/6000 Development

522 South Road, MS P-963

Poughkeepsie, New York 12601

Copyright 1998 by IBM Corp.

Draft Document

Special Notices

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents.

The information contained in this document is distributed AS IS. Accordingly, the use of this information or the
implementation of any techniques described herein or any attempt to adapt these techniques to your own products
is done at your own risk.

This document contains information relating to technology that is still under development. IBM may or may not
decide to incorporate some or all of the information contained herein into future IBM products.

5/26/98 Draft, Copyright 1998 by IBM Corp. refTOC.doc iii

Table of Contents

1.0 Function Group AisHandler . 1
 1.1 Supporting Data Types . 1
 1.1.1 AisHandlerType. 1
 1.2 Ais_add_fd. 2
 1.3 Ais_add_signal. 3
 1.4 Ais_next_fd . 4
 1.5 Ais_remove_fd. 5
 1.6 Ais_query_signal . 6
 1.7 Ais_remove_signal . 7
2.0 class AisStatus . 8
 2.1 Supporting Data Types . 8
 2.1.1 AisStatusCode . 8
 2.1.2 AisSeverityCode . 9
 2.2 Constructors . 10
 2.3 add_data . 11
 2.4 data_count . 12
 2.5 data_value . 13
 2.6 operator =. 14
 2.7 operator AisStatusCode . 15
 2.8 operator int . 16
 2.9 severity. 17
 2.10 status . 18
 2.11 status_name . 19
3.0 class Application . 20
 3.1 Constructors . 20
 3.2 activate_probe . 21
 3.3 add_phase. 23
 3.4 add_process . 25
 3.5 attach .26
 3.6 bactivate_probe . 27
 3.7 badd_phase. 28
 3.8 battach . 29
 3.9 bconnect . 30
 3.10 bcreate . 31
 3.11 bdeactivate_probe . 32
 3.12 bdestroy . 33
 3.13 bdetach . 34
 3.14 bdisconnect . 35
 3.15 bexecute . 36
 3.16 bfree . 37

5/26/98 Draft, Copyright 1998 by IBM Corp. refTOC.doc iv

 3.17 binstall_probe. 38
 3.18 bload_module. 40
 3.19 bmalloc. 41
 3.20 bremove_phase . 42
 3.21 bremove_probe . 43
 3.22 bresume . 45
 3.23 bset_phase_period . 46
 3.24 bsignal . 47
 3.25 bstart. .48
 3.26 bsuspend. 49
 3.27 bunload_module. 50
 3.28 connect . 51
 3.29 create . 52
 3.30 deactivate_probe . 54
 3.31 destroy . 56
 3.32 detach . 57
 3.33 disconnect . 58
 3.34 execute . 59
 3.35 free .60
 3.36 get_count . 61
 3.37 get_process. 62
 3.38 install_probe. 63
 3.39 load_module. 65
 3.40 malloc. 66
 3.41 remove_phase . 68
 3.42 remove_probe . 70
 3.43 remove_process . 72
 3.44 resume . 73
 3.45 set_phase_period . 74
 3.46 signal . 76
 3.47 start. 77
 3.48 status . 78
 3.49 suspend. 79
 3.50 unload_module. 80
4.0 class GenCallBack . 81
 4.1 Supporting Data Types . 81
 4.1.1 GCBSysType . 81
 4.1.2 GCBTagType. 81
 4.1.3 GCBObjType . 81
 4.1.4 GCBMsgType . 82
 4.1.5 GCBFuncType . 82
5.0 class InstPoint . 83

5/26/98 Draft, Copyright 1998 by IBM Corp. refTOC.doc v

 5.1 Supporting Data Types . 83
 5.1.1 InstPtLocation . 83
 5.1.2 InstPtType . 84
 5.2 Constructors . 85
 5.3 get_container . 86
 5.4 get_function . 87
 5.5 get_line. 88
 5.6 get_location . 89
 5.7 get_type . 90
 5.8 operator =. 91
6.0 Function Group LogSystem . 92
 6.1 Log_close. 92
 6.2 Log_delete . 93
 6.3 Log_messageLevel . 94
 6.4 Log_openLog. 95
 6.5 Log_toClient . 96
 6.6 Log_toDaemon . 97
7.0 class Phase . 98
 7.1 Constructors . 99
 7.2 operator =. 101
 7.3 operator ==. 102
 7.4 operator != . 103
8.0 class PoeAppl : public Application . 104
 8.1 Constructors . 104
 8.2 bread_config . 105
 8.3 print_attributes . 106
 8.4 read_config . 107
9.0 class ProbeExp . 108
 9.1 Supporting Data Types . 108
 9.1.1 Primitive Data Types . 108
 9.1.2 CodeExpNodeType . 108
 9.2 Constructors . 111
 9.3 address . 112
 9.4 assign . 113
 9.5 call .114
 9.6 get_data_type . 115
 9.7 get_node_type . 116
 9.8 has_* . 117
 9.9 ifelse. 118
 9.10 is_same_as . 119
 9.11 operator + (binary) . 120
 9.12 operator + (unary) . 121

5/26/98 Draft, Copyright 1998 by IBM Corp. refTOC.doc vi

 9.13 operator +=. 122
 9.14 operator ++ (prefix) . 123
 9.15 operator ++ (postfix) . 124
 9.16 operator - (binary) . 125
 9.17 operator - (unary) . 126
 9.18 operator -= . 127
 9.19 operator -- (prefix) . 128
 9.20 operator -- (postfix) . 129
 9.21 operator * (binary) . 130
 9.22 operator * (unary) . 131
 9.23 operator *=. 132
 9.24 operator / . 133
 9.25 operator /= . 134
 9.26 operator % . 135
 9.27 operator %= . 136
 9.28 operator =. 137
 9.29 operator ==. 138
 9.30 operator ! . 139
 9.31 operator != . 140
 9.32 operator <. 141
 9.33 operator <=. 142
 9.34 operator <<. 143
 9.35 operator <<= . 144
 9.36 operator >. 145
 9.37 operator >=. 146
 9.38 operator >>. 147
 9.39 operator >>= . 148
 9.40 operator & (binary) . 149
 9.41 operator & (unary) . 150
 9.42 operator &= . 151
 9.43 operator &&. 152
 9.44 operator | . 153
 9.45 operator |= . 154
 9.46 operator || . 155
 9.47 operator ^ . 156
 9.48 operator ^= . 157
 9.49 operator ~ . 158
 9.50 operator []. 159
 9.51 sequence. 160
 9.52 value_*. 161
10.0 class ProbeHandle . 162
 10.1 Constructors . 162

5/26/98 Draft, Copyright 1998 by IBM Corp. refTOC.doc vii

 10.2 get_expression . 163
 10.3 get_point . 164
 10.4 operator =. 165
11.0 class ProbeModule . 166
 11.1 Constructors . 166
 11.2 get_count . 167
 11.3 get_object. 168
 11.4 operator =. 169
 11.5 operator ==. 170
 11.6 operator != . 171
12.0 class ProbeType . 172
 12.1 Supporting Data Types . 172
 12.1.1 DataExpNodeType. 172
 12.2 Constructors . 174
 12.3 child . 175
 12.4 child_count. 176
 12.5 function_type . 177
 12.6 get_node_type . 178
 12.7 int32_type . 179
 12.8 operator =. 180
 12.9 operator ==. 181
 12.10 operator != . 182
 12.11 pointer_type . 183
 12.12 stack . 184
 12.13 unspecified_type . 185
13.0 class Process . 186
 13.1 Constructors . 186
 13.2 activate_probe . 187
 13.3 add_phase. 189
 13.4 attach . 191
 13.5 bactivate_probe . 192
 13.6 badd_phase. 193
 13.7 battach . 194
 13.8 bconnect . 195
 13.9 bcreate . 196
 13.10 bdeactivate_probe . 197
 13.11 bdestroy . 198
 13.12 bdetach . 199
 13.13 bdisconnect . 200
 13.14 bexecute . 201
 13.15 bfree . 202
 13.16 binstall_probe. 203

5/26/98 Draft, Copyright 1998 by IBM Corp. refTOC.doc viii

 13.17 bload_module. 205
 13.18 bmalloc. 206
 13.19 breadmem. 207
 13.20 bremove_phase . 208
 13.21 bremove_probe . 209
 13.22 bresume . 210
 13.23 bset_phase_period . 211
 13.24 bsignal . 212
 13.25 bstart. 213
 13.26 bsuspend. 214
 13.27 bunload_module. 215
 13.28 bwritemem . 216
 13.29 connect . 217
 13.30 create . 218
 13.31 deactivate_probe . 220
 13.32 destroy . 222
 13.33 detach . 223
 13.34 disconnect . 224
 13.35 execute . 225
 13.36 free . 226
 13.37 get_pid . 227
 13.38 get_phase_period . 228
 13.39 get_program_object . 229
 13.40 get_task . 230
 13.41 install_probe. 231
 13.42 load_module. 233
 13.43 malloc. 234
 13.44 operator =. 236
 13.45 readmem. 237
 13.46 remove_phase . 239
 13.47 remove_probe . 241
 13.48 resume . 243
 13.49 set_phase_period . 244
 13.50 signal . 246
 13.51 start. 247
 13.52 suspend. 248
 13.53 unload_module. 249
 13.54 writemem . 250
14.0 class SourceObj . 252
 14.1 Supporting Data Types . 252
 14.1.1 Access . 252
 14.1.2 Binding. 252

5/26/98 Draft, Copyright 1998 by IBM Corp. refTOC.doc ix

 14.1.3 LpModel. 253
 14.1.4 SourceType . 253
 14.2 Constructors . 254
 14.3 address_end . 255
 14.4 address_start. 256
 14.5 all_point . 257
 14.6 all_point_count . 258
 14.7 bexpand . 259
 14.8 child . 260
 14.9 child_count. 261
 14.10 expand . 262
 14.11 get_access . 263
 14.12 get_binding . 264
 14.13 get_data_type . 265
 14.14 get_demangled_name . 266
 14.15 get_mangled_name . 267
 14.16 get_program_type . 268
 14.17 get_variable_name . 269
 14.18 library_name . 270
 14.19 line_end . 271
 14.20 line_start. 272
 14.21 module_name. 273
 14.22 obj_parent . 274
 14.23 operator =. 275
 14.24 operator ==. 276
 14.25 operator != . 277
 14.26 point . 278
 14.27 point_count . 279
 14.28 program_name . 280
 14.29 reference. 281
 14.30 src_type . 282
15.0 Miscellaneous Functions . 283
 15.1 Ais_initialize . 283
 15.2 AisMainLoop . 284
16.0 Predefined Global Variables . 285
 16.1 Ais_main_loop_done . 285
 16.2 Ais_msg_handle. 285
 16.3 Ais_send. 286
Index . 287

5/26/98 Draft, Copyright 1998 by IBM Corp. refTOC.doc x

Function Group AisHandler Draft

5/26/98 Copyright 1998 by IBM Corp. AisHandler.chp 1

1.0 Function Group AisHandler

1.1 Supporting Data Types

1.1.1 AisHandlerType

Synopsis

#include <AisHandler.h>

typedef void (*AisHandlerType)(int fd_or_sig)

Description

This data type represents a function pointer that points to an event handler that is called when
a noteworthy event takes place. Noteworthy events are a file descriptor managed by the instru-
mentation system receives input, clears space for output, or a signal managed by the instru-
mentation system has been raised.

Function Group AisHandler Draft

5/26/98 Copyright 1998 by IBM Corp. AisHandler.chp 2

1.2 Ais_add_fd

Synopsis

#include <AisHandler.h>

AisStatus Ais_add_fd(int fd, AisHandlerType handler)

Parameters

fd file descriptor

handler function handler for this socket

Description

Add a file descriptor and input handler to the list of file descriptors managed by the instrumen-
tation system. When input is received by the file descriptor, the handler is called to handle the
input. The handler is expected to accept the file descriptor as its input parameter.

Return value

ASC_success request successful

ASC_operation_failed request failed

See Also

Ais_add_signal, Ais_next_fd, Ais_remove_fd, Ais_remove_signal

Function Group AisHandler Draft

5/26/98 Copyright 1998 by IBM Corp. AisHandler.chp 3

1.3 Ais_add_signal

Synopsis

#include <AisHandler.h>

AisStatus Ais_add_signal(int signal, AisHandlerType handler)

Parameters

signal signal to be caught

handler function handler for this signal

Description

Add a signal and signal handler to the list of signals managed by the instrumentation system.
When a signal is received, the handler is called to handle the signal. The handler is expected to
accept the signal as its input parameter. The instrumentation system ensures that signals regis-
tered with the instrumentation system will not interfere with its system calls. Signal handlers
executed by the instrumentation system are executed on the normal application stack. In the
event that multiple signals occur while a signal handler is being executed, the executing han-
dler is completed before the next handler is begun. This provides a measure of safety for oper-
ations that are normally considered unsafe for signal handlers, such as memory allocation.

Return value

ASC_success request successful

ASC_duplicate_signal attempt to add a handler for a signal that already has a han-
dler

ASC_invalid_operand attempt to add a handler for a signal which does not exist

ASC_operation_failed system call to add a signal failed

See Also

Ais_add_fd, Ais_next_fd, Ais_remove_fd, Ais_remove_signal

Function Group AisHandler Draft

5/26/98 Copyright 1998 by IBM Corp. AisHandler.chp 4

1.4 Ais_next_fd

Synopsis

#include <AisHandler.h>

void Ais_next_fd(int &fd_or_sig, AisHandlerType &handler)

Parameters

fd_or_sig file descriptor or signal number

handler file descriptor or signal handler function

Description

Return the file descriptor or signal number and associated handler of the next event to occur.

See Also

Ais_add_fd, Ais_add_signal, Ais_remove_fd, Ais_remove_signal

Function Group AisHandler Draft

5/26/98 Copyright 1998 by IBM Corp. AisHandler.chp 5

1.5 Ais_remove_fd

Synopsis

#include <AisHandler.h>

AisStatus Ais_remove_fd(int fd)

Parameters

fd file descriptor

Description

Remove a file descriptor from the list of descriptors the instrumentation system manages. The
file descriptor is unaffected by this operation, that is, it is neither closed nor flushed.

Return value

ASC_success request successful

ASC_operation_failed request failed

See Also

Ais_add_fd, Ais_add_signal, Ais_remove_fd, Ais_remove_signal

Function Group AisHandler Draft

5/26/98 Copyright 1998 by IBM Corp. AisHandler.chp 6

1.6 Ais_query_signal

Synopsis

#include <AisHandler.h>

AisHandlerType Ais_query_signal(int signal)

Parameters

signal signal for which handling is to be removed

Description

This function returns a pointer to the signal handler function for the specified signal, or 0 if
there is none.

Return value

A pointer to the signal handler function for the specified signal if there is one. Otherwise 0 if
there is no handler or the signal parameter does not represent a valid signal.

See Also

Ais_add_fd, Ais_add_signal, Ais_next_fd, Ais_remove_fd

Function Group AisHandler Draft

5/26/98 Copyright 1998 by IBM Corp. AisHandler.chp 7

1.7 Ais_remove_signal

Synopsis

#include <AisHandler.h>

AisStatus Ais_remove_signal(int signal)

Parameters

signal signal for which handling is to be removed

Description

Remove a signal and signal handler from the list of signals the instrumentation system man-
ages. A previous handler isnot restored for this signal.

Return value

ASC_success signal handler was successfully removed, or there was no
handler to be removed

ASC_invalid_operand attempt to remove a handler for a signal that does not exist

ASC_operation_failed system call to delete a signal failed

See Also

Ais_add_fd, Ais_add_signal, Ais_next_fd, Ais_remove_fd

class AisStatus Draft

5/26/98 Copyright 1998 by IBM Corp. AisStatus.chp 8

2.0 class AisStatus

2.1 Supporting Data Types

2.1.1 AisStatusCode

Synopsis

#include <AisStatus.h>

enum AisStatusCode {

ASC_success, // normal status

ASC_failure, // undefined error condition

ASC_insufficient_memory, // failed to allocate memory

ASC_invalid_constructor, //

ASC_invalid_expression, // ill formed probe expression

ASC_invalid_index, //

ASC_invalid_internal_tree,//

ASC_invalid_operand, //

ASC_invalid_operator, //

ASC_invalid_value_ref, //

ASC_operation_failed, //

ASC_duplicate_signal, //

ASC_signal_not_found, //

ASC_LAST_STATUS_VALUE

}

Description

class AisStatus Draft

5/26/98 Copyright 1998 by IBM Corp. AisStatus.chp 9

2.1.2 AisSeverityCode

Synopsis

#include <AisStatus.h>

enum AisSeverityCode {

ASC_information, //

ASC_attention, //

ASC_error, //

ASC_severe, //

ASC_LAST_SEVERITY_VALUE

}

Description

class AisStatus Draft

5/26/98 Copyright 1998 by IBM Corp. AisStatus.chp 10

2.2 Constructors

Synopsis

#include <AisStatus.h>

AisStatus(

AisStatusCode status = ASC_success,

AisSeverity severity = ASC_information)

AisStatus(const AisStatus ©)

Parameters

status Valid values are 0 code <ASC_LAST_STATUS_VALUE

severity Valid values are 0 code <ASC_LAST_SEVERITY_VALUE

Description

Class constructor. This constructor initializes the object to reflect the specific status and sever-
ity codes.

Exceptions

An exception of typeAisStatus with valueASC_invalid_constructor and severity
ASC_attention is raised if the code is not a validAisStatusCode value or the severity
is not a validAisSeverityCode .

class AisStatus Draft

5/26/98 Copyright 1998 by IBM Corp. AisStatus.chp 11

2.3 add_data

Synopsis

#include <AisStatus.h>

void add_data(const char *data) const

Parameters

data a pointer to a character string representation of the data.

Description

This function adds one data value to the list of data associated with this condition.

See Also

data_count, data_value

class AisStatus Draft

5/26/98 Copyright 1998 by IBM Corp. AisStatus.chp 12

2.4 data_count

Synopsis

#include <AisStatus.h>

int data_count(void) const

Description

This function returns the number of data values associated with this condition.

Return value

The count of data values reflected in the object.

class AisStatus Draft

5/26/98 Copyright 1998 by IBM Corp. AisStatus.chp 13

2.5 data_value

Synopsis

#include <AisStatus.h>

const char *data_value(int i) const

Parameters

i index value

Description

This function returns a character string representation of thei th data value.

Return value

A pointer to thei th data string if the index is valid, that is, 0 i < data_count ().

A null pointer if the index is not valid.

class AisStatus Draft

5/26/98 Copyright 1998 by IBM Corp. AisStatus.chp 14

2.6 operator =

Synopsis

#include <AisStatus.h>

AisStatus &operator = (const AisStatus ©) const

Parameters

copy object to be copied in the assignment

Description

This function copies the right hand side of the assignment expression over the left hand side.

Return value

A reference to the copied object, which is the left hand side of the assignment or the invoking
object, depending upon the perspective.

class AisStatus Draft

5/26/98 Copyright 1998 by IBM Corp. AisStatus.chp 15

2.7 operator AisStatusCode

Synopsis

#include <AisStatus.h>

operator AisStatusCode(void) const

Description

Cast function. This function returns the status code reflected in the object.

Return value

The status code in the object, of data typeAisStatusCode .

class AisStatus Draft

5/26/98 Copyright 1998 by IBM Corp. AisStatus.chp 16

2.8 operator int

Synopsis

#include <AisStatus.h>

operator int(void) const

Description

Cast function. This function returns the integer equivalent of the status code reflected in the
object. A status value of zero reflects a “normal” status.

Return value

Integer equivalent of the status valueAisStatusCode , and zero reflects “normal” status.

class AisStatus Draft

5/26/98 Copyright 1998 by IBM Corp. AisStatus.chp 17

2.9 severity

Synopsis

#include <AisStatus.h>

AisSeverityCode severity(void) const

Description

Explicit severity function. This function returns the severity code reflected in the object.

Return value

The severity code in the object, of data typeAisSeverityCode .

class AisStatus Draft

5/26/98 Copyright 1998 by IBM Corp. AisStatus.chp 18

2.10 status

Synopsis

#include <AisStatus.h>

AisStatusCode status(void) const

Description

Explicit status function. This function returns the status code reflected in the object.

Return value

The status code in the object, of data typeAisStatusCode .

class AisStatus Draft

5/26/98 Copyright 1998 by IBM Corp. AisStatus.chp 19

2.11 status_name

Synopsis

#include <AisStatus.h>

const char *status_name(void) const

Description

This function returns the name of the status code reflected in the object. The name is in Amer-
ican English, and the string is stored in a constant array within the function. This function is
intended only for limited diagnostic use during tool development.

Return value

The name of the status code in the object, of data typechar * .

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 20

3.0 class Application

3.1 Constructors

Synopsis

#include <Application.h>

Application(void)

Description

Default constructor.

Note: What functions in this base class should be virtual? All of them? None?

Exceptions

Exceptions that could be raised as a result of calling this function are unknown at this time.

AisStatus ???

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 21

3.2 activate_probe

Synopsis

#include <Application.h>

AisStatus activate_probe(

short count,

ProbeHandle *phandle,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

count number of probe expressions in the list to be activated

phandle array of probe handles, one for each probe expression to be activated

ack_cb_fp acknowledgement callback function to be invoked each timeall probe
expressions in the array have been activated (or activation fails) within
a process

ack_cb_tag tag to be used with the acknowledgement callback function

Description

This function activates a list of probes that have been installed within an application. The acti-
vation is atomic in the sense that all probes are activated or all probes fail to be activated for
any given process within the application. Some processes within the application may success-
fully activate the probes while other processes fail, but within a process either all probes are
successfully activated or none are activated. Probes are activated independently across pro-
cesses, that is, there is no synchronization to ensure that the probes are activated in all pro-
cesses at the same time.

Phandle is an input array generated by aninstall_probe or binstall_probe call.
It is supplied by the caller and must contain at leastcount elements. The ith element of the
array is a handle, or identifier, that identifies the ith probe expression.

To activate a set of probes the processes must have been previously connected, and the probes
must have been previously installed in those processes.

Note thatactivate_probe returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until the probes have been activated or failed to be
activated in all processes within the application. The acknowledgement callback function
receives notification of the success or failure of the activation. The callback is activated once
for each process within the application.

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 22

Return value

The return value indicates whether the requests for activation were successfully submitted, but
indicates nothing about whether the requests themselves were successfully executed.

ASC_success all activations were successfully submitted

ASC_???

Callback Data

The callback function is invoked once for each process for which a probe activation is
requested. When the callback is invoked the callback function is passed a pointer to the pro-
cess as the callback object. The callback message is the request status, of typeAisStatus ,
which contains one of the following status values:

ASC_success probes were successfully activated on this process

ASC_operation_failed attempt to activate these probes in this process failed

See Also

bactivate_probe, bconnect, bdisconnect, bprobe_deactivate,
bprobe_install, class Process, connect, disconnect,
GCBFuncType, probe_deactivate, probe_install.

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 23

3.3 add_phase

Synopsis

#include <Application.h>

AisStatus add_phase(

Phase ps,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

ps data structure local to the client containing the characteristics of the
phase to be created

ack_cb_fp acknowledgement callback function to be invoked each time the phase
has been created within a process

ack_cb_tag tag to be used with the acknowledgement callback function

Description

This function adds a new phase structure to each connected process within the application. A
processmust be connected in order to add a new phase.

Note thatadd_phase returns control to the caller immediately upon submitting all requests
to the daemons. It does not wait until the phase has been installed or failed to be installed in all
processes within the application. The acknowledgement callback function receives notifica-
tion of the success or failure of the installation. The callback is activated once for each process
within the application.

Return value

The return value indicates whether the requests for phase addition were successfully submit-
ted, but indicates nothing about whether the requests themselves were successfully executed.

ASC_success all phase additions were successfully submitted

ASC_operation_failed attempt to add a phase to some process failed, perhaps
because the process is not connected

Callback Data

The callback function is invoked once for each process for which a phase addition is
requested. When the callback is invoked the callback function is passed a pointer to the pro-
cess as the callback object. The callback message is the request status, of typeAisStatus ,
which contains one of the following status values:

ASC_success phase was successfully added to this process

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 24

ASC_operation_failed attempt to add a phase to this process failed, perhaps
because the phase is already added to the process

See Also

badd_phase, bconnect, bdisconnect, class GenCallBack, class
ProbeMod, class Process, connect, disconnect, GCBFuncType,
GCBTagType, Process::malloc, Process::free.

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 25

3.4 add_process

Synopsis

#include <Application.h>

AisStatus add_process(const Process &p)

Parameters

p process to be added to the application

Description

This function adds a process to the set of processes managed by the application. This opera-
tion acts locally within the end-user tool. It does not attempt to connect to the process. The
process state (e.g. connected or attached) is not required to match the state of all other pro-
cesses within the application.

The index of a process is not guaranteed to remain invariant when new processes are added to
or removed from an application. The index does remain invariant otherwise.

Return value

The return value indicates whether the process addition was successful.

ASC_success process was successfully added

ASC_operation_failed attempt to add this process to this application failed

See Also

connect, bconnect, bdisconnect, disconnect, remove_process.

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 26

3.5 attach

Synopsis

#include <Application.h>

AisStatus attach(GCBFuncType fp, GCBTagType tag)

Parameters

fp callback function to be invoked with each successful or failed attach-
ment to a process listed within the application.

tag callback tag to be used as a parameter to the callback each time the call-
back function is invoked.

Description

Attach to all processes within an application. When multiple tools are connected to a process
or application, only one tool can be attached at a time. Attaching to a process or application
allows the tool to control the execution directly, setting break points, starting, suspending and
resuming execution,etc. Processes must be first connected before they can be attached.

Note thatattach returns control to the caller immediately upon submitting all requests to
the daemons. It does not wait until all processes within the application have attached or failed
to attach. The acknowledgement callback function receives notification of the success or fail-
ure of the activation. The callback is activated once for each process within the application.

Return value

The return value forattach indicates whether the requests were successfully submitted, but
indicates nothing about whether the requests themselves were successfully executed.

ASC_success all requests to attach were successfully submitted

ASC_operation_failed attempt to request attachment to some process failed, per-
haps because the process is not connected

Callback Data

The callback function is invoked once for each process for which an attach is requested. When
the callback is invoked the callback function is passed a pointer to the process as the callback
object. The callback message is the request status, of typeAisStatus , which contains one
of the following status values:

ASC_success process was successfully attached

ASC_operation_failed attempt to attach to this process failed

See Also

connect, bconnect, bdisconnect, detach, disconnect.

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 27

3.6 bactivate_probe

Synopsis

#include <Application.h>

AisStatus bactivate_probe(short count, ProbeHandle *phandle)

Parameters

count number of probe expressions in the list to be activated

phandle array of probe handles, one for each probe expression to be activated

Description

This function activates a list of probes that have been installed within an application. The acti-
vation is atomic in the sense that all probes are activated or all probes fail to be activated for
any given process within the application. Some processes within the application may success-
fully activate the probes while other processes fail, but within a process either all probes are
successfully activated or none are activated. Probes are activated independently across pro-
cesses, that is, there is no synchronization to ensure that the probes are activated in all pro-
cesses at the same time.

Phandle is an input array generated by aninstall_probe or binstall_probe call.
It is supplied by the caller and must contain at leastcount elements. The ith element of the
array is a handle, or identifier, that identifies the ith probe expression.

To activate a set of probes the processes must have been previously connected, and the probes
must have been previously installed in those processes.

Note that the function submits the requests to activate the probes and waits until the requests
have completed. The functionApplication::status(int index) may be queried to
determine whether the operation succeeded or failed on any given process.

Return value

The return value indicates whetherall of the requests for activation were successfully exe-
cuted. The return value reflects the highest severity encountered across all processes.

ASC_success all activations were successfully completed

ASC_operation_failed one or more of the activations failed

See Also

activate_probe, bconnect, bdisconnect, bprobe_deactivate,
bprobe_install, connect, disconnect, probe_deactivate,
probe_install.

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 28

3.7 badd_phase

Synopsis

#include <Application.h>

AisStatus badd_phase(Phase ps)

Parameters

ps data structure local to the client containing the characteristics of the
phase to be created

Description

This function adds a new phase structure to each connected process within the application. A
processmust be connected in order to add a new phase.

Note that the function submits the requests to add the phase and waits until the requests have
completed. The return value indicates whetherall of the requests were successfully executed.
The functionApplication::status(int index) may be queried to determine
whether the operation succeeded or failed on any given process.

Return value

The return value indicates whether requests to all processes for phase addition were success-
fully executed. The return value reflects the highest severity encountered across all processes.

ASC_success phase was successfully added to all processes

ASC_operation_failed one or more of the phase additions failed

See Also

add_phase, bconnect, bdisconnect, class ProbeMod, connect,
disconnect, Process::malloc, Process::free.

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 29

3.8 battach

Synopsis

#include <Application.h>

AisStatus battach(void)

Description

Attach to all processes within an application. When multiple tools are connected to a process
or application, only one tool can be attached at a time. Attaching to a process or application
allows the tool to control the execution directly, setting break points, starting, suspending and
resuming execution,etc. A process must first be connected before it can be attached.

Note thatbattach does not return control to the caller until all attachments have either suc-
ceeded or failed. The return value indicates whether all succeeded or some succeeded and
some failed. The functionApplication::status(int index) may be queried to
determine whether the operation succeeded or failed on any given process.

Return value

The return value forbattach indicates whether the individual attachments themselves were
successfully established. The return value reflects the highest severity encountered across all
processes.

ASC_success all processes were successfully attached as expected.

ASC_operation_failed one or more of the processes failed to attach

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 30

3.9 bconnect

Synopsis

#include <Application.h>

AisStatus bconnect(void)

Description

Connect to all processes within an application. Connection to a process establishes a commu-
nication channel to the CPU where the process resides and creates the environment within that
process that allows the client to insert and remove instrumentation, alter its control flow,etc.

Note thatbconnect does not return control to the caller until all connections have either
succeeded or failed. The return value indicates whether all connections succeeded or some
succeeded and some failed. The functionApplication::status(int index) may be
queried to determine whether the operation succeeded or failed on any given process.

Return value

The return value forbconnect indicates whether the connections themselves were success-
fully established. The return value reflects the highest severity encountered across all pro-
cesses.

ASC_success all connections were successfully established as expected.

ASC_operation_failed one or more of the connections failed to be established.

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 31

3.10 bcreate

Synopsis

#include <Application.h>

AisStatus bcreate(

const char *host,

const char *path,

char *const args[],

char *const envp[])

Parameters

host host name or IP address of the host machine where the application is to
be created

path complete path to the executable program, including file name and rela-
tive or absolute directory, when appropriate

args null terminated array of arguments to be provided to the executable

envp null terminated array of environment variables to be provided to the
executable

Description

This function is currently being defined. It creates an application in a “stopped” state.

Note thatbcreate does not return control to the caller until the new application has been
created or failed to be created. The return value indicates whether the operation succeeded or
failed.

Return value

The return value forbcreate indicates whether the application was successfully created.
The return value reflects the highest severity encountered across all processes.

ASC_success application was successfully created, as expected

ASC_operation_failed application failed to be created

See Also

bdestroy, bstart, create, destroy, start

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 32

3.11 bdeactivate_probe

Synopsis

#include <Application.h>

AisStatus bdeactivate_probe(short count, ProbeHandle *phandle)

Parameters

count number of probes to be deactivated

phandle array of probe handles, representing the probes, to be deactivated

Description

This function accepts an array of probe handles as an input parameter. Each probe handle in
the array represents a probe that has been installed in the application. The client sends a
request to each of the processes within the application to deactivate the list of probes repre-
sented by the array. Probes are deactivated atomically for each process in the sense that the
process is temporarily stopped, all probes on the list are deactivated, then the process is
restarted. None of the probes in the array are left active.

Phandle is an input array generated by aninstall_probe or binstall_probe call.
It is supplied by the caller and must contain at leastcount elements. The ith element of the
array is a handle, or identifier, that identifies the ith probe expression.

Note thatbdeactivate_probe does not return control to the caller until all probes in the
array have been deactivated on all processes in the application. The return value indicates
whether all connections succeeded or some succeeded and some failed. The functionAppli-
cation::status(int index) may be queried to determine whether the operation suc-
ceeded or failed on any given process.

Return value

The return value forbdeactivate_probe indicates whether the deactivations were suc-
cessfully completed. The return value reflects the highest severity encountered across all pro-
cesses.

ASC_success all probe deactivations completed as expected

ASC_operation_failed one or more of the probe deactivations failed

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 33

3.12 bdestroy

Synopsis

#include <Application.h>

AisStatus bdestroy(void)

Description

This function destroys or terminates all processes within the application.

Note thatbdestroy does not return control to the caller until all processes within the appli-
cation have been destroyed. The return value indicates whether all terminations succeeded or
some succeeded and some failed. The functionApplication::status(int index)
may be queried to determine whether the operation succeeded or failed on any given process.

Return value

The return value forbdestroy indicates whether the terminations were successfully com-
pleted. The return value reflects the highest severity encountered across all processes.

ASC_success all terminations were successfully completed, as expected

ASC_operation_failed one or more of the terminations failed

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 34

3.13 bdetach

Synopsis

#include <Application.h>

AisStatus bdetach(void)

Description

This function detaches all processes in the application. Process control flow, such as stepping
and setting break points, can only be done while a process is in an attached state. Detaching a
process removes the level of process control available to the client or tool when the process is
attached, but retains the process connection so probe installation, activation, removal,etc. can
still take place.

Note thatbdetach does not return control to the caller until all processes within the applica-
tion have been detached. The return value indicates whether all processes successfully
detached or some succeeded and some failed. The functionApplication::status(int
index) may be queried to determine whether the operation succeeded or failed on any given
process.

Return value

The return value forbdetach indicates whether all processes were successfully detached.
The return value reflects the highest severity encountered across all processes.

ASC_success all processes were successfully detached, as expected

ASC_operation_failed one or more processes failed to detach

See Also

attach, battach, detach

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 35

3.14 bdisconnect

Synopsis

#include <Application.h>

AisStatus bdisconnect(void)

Description

Disconnect from all processes within an application. Disconnecting from an application pro-
cess removes the application environment created by a connection. All instrumentation and
data are removed from the application process.

Note thatbdisconnect does not return control to the caller until all processes within the
application have either succeeded or failed in disconnecting. The functionApplica-
tion::status(int index) may be queried to determine whether the operation suc-
ceeded or failed on any given process.

Return value

The return value forbdisconnect indicates whether the connections were successfully ter-
minated. The return value reflects the highest severity encountered across all processes.

ASC_success all connections were successfully terminated as expected

ASC_operation_failed one or more of the connections failed to terminate

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 36

3.15 bexecute

Synopsis

#include <Application.h>

AisStatus bexecute(ProbeExp pexp)

Parameters

pexp probe expression to be executed in the application process

Description

This function executes a probe expression in each process within an application. The expres-
sion is executed once in each process, then removed. The application process is interrupted,
the expression is executed, then the process resumes execution as before the interruption.

Note thatbexecute does not return control to the caller until the probe expression has either
succeeded or failed to execute within all processes in an application. The functionApplica-
tion::status(int index) may be queried to determine whether the operation suc-
ceeded or failed on any given process.

Return value

The return value forexecute indicates whether the execution succeeded or failed.

ASC_success probe expression was successfully executed

ASC_operation_failed attempt to execute the probe expression failed

See Also

execute

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 37

3.16 bfree

Synopsis

#include <Application.h>

AisStatus bfree(ProbeExp pexp)

Parameters

pexp dynamically allocated block of probe memory

Description

This function deallocates a block of dynamically allocated probe memory for every process in
the application. The probe expression must contain only a single reference to a block of data
allocated by themalloc or bmalloc functions.

Note thatbfree does not return control to the caller until all processes within the application
have either succeeded or failed in deallocating the block of memory. The functionApplica-
tion::status(int index) may be queried to determine whether the operation suc-
ceeded or failed on any given process.

Return value

The return value forbfree indicates whether all requests for deallocation were successfully
executed. The return value reflects the highest severity encountered across all processes.

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 38

3.17 binstall_probe

Synopsis

#include <Application.h>

AisStatus binstall_probe(

short count,

ProbeExp *probe_exp,

InstPoint *point,

GCBFuncType *data_cb_fp,

GCBTagType *data_cb_tag,

ProbeHandle *phandle)

Parameters

count number of probe expressions to be installed

probe_exp probe expressions to be installed

point instrumentation points where the probe expressions are to be installed

data_cb_fp callback functions to process data received from the probe expression

data_cb_tag tags to be used as an argument to the data callback when it is invoked

phandle probe handles that represent the installed probe expressions

Description

This function installs probe expressions as instrumentation at specific locations within each
process in the application. Probe expressions are installed atomically, in the sense that within
each process either all probe expressions in the request are installed into the process, or none
of the expressions are installed. There is no synchronization across processes to assure that all
processes install all probes. The return value indicates whether all probes were installed, or
whether one or more processes were unable to install the expressions as requested.

Data_cb_fp is an input array supplied by the caller that must contain at leastcount ele-
ments. The ith element of the array is a pointer to a callback function that is invoked each time
the ith probe inphandle sends data via theAisSendMsg function.Data_cb_tag is a
similar array that contains the callback tag used when callbacks indata_cb_fp are invoked.
The ith callback tag is used with the ith callback.

Phandle is an output array supplied by the caller that must contain at leastcount elements.
The ith element of the array is a handle, or identifier, to be used in subsequent references to the
ith probe expression. For example, it is needed when the client activates, deactivates or
removes a probe expression from an application or process.Phandle does not contain valid
information if the installation fails.

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 39

Note thatbinstall_probe does not return control to the caller until all probe expressions
have been installed or failed to install within all processes within the application.The function
Application::status(int index) may be queried to determine whether the opera-
tion succeeded or failed on any given process.

Return value

The return value forbinstall_probe indicates whether the probe installations were suc-
cessful. The return value reflects the highest severity encountered across all processes.

ASC_success all probes were successfully installed, as expected

ASC_operation_failed one or more of the probes could not be installed as
requested, so none of the probes were installed

Callback Data

The callback function is invoked once for each message sent from the probe. When the call-
back is invoked the callback function is passed a pointer to the process as the callback object.
The callback tag is given in thedata_cb_tag array. The callback message is the data send
by the probe using theAis_send() function call.

See Also

AisSendMsg, install_probe, ...

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 40

3.18 bload_module

Synopsis

#include <Application.h>

AisStatus bload_module(ProbeModule* module)

Parameters

Description

This function is currently being designed. The intent is to provide some means by which
instrumentation functions and probe classes might be loaded into an application for use by one
or more probe expressions.

Note thatbload_module does not return control to the caller until the probe module has
been installed or failed to install in all processes within the application.The functionAppli-
cation::status(int index) may be queried to determine whether the operation suc-
ceeded or failed on any given process.

Return value

The return value forbload_module indicates whether the probe module installations were
successful. The return value reflects the highest severity encountered across all processes.

ASC_success module was successfully installed on all processes

ASC_operation_failed module could not be installed as requested on one or more
processes

See Also

bunload_module, load_module, unload_module

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 41

3.19 bmalloc

Synopsis

#include <Application.h>

ProbeExp bmalloc(ProbeType pt, void *init_val, AisStatus &stat)

ProbeExp bmalloc(

ProbeType pt,

void *init_val,

Phase ps,

AisStatus &stat)

Parameters

pt data type of the allocated data

init_val pointer to the initial value of the allocated data, or 0 if no initial value is
desired

ps phase that will contain the allocated data

stat output value indicating the completion status of the function

Description

This function allocates a block of probe data in each process in the application. It returns a
single probe expression that may be used to reference the allocated data. The data may be ref-
erenced in a probe expression that may be installed in any or all of the application processes
where the data is allocated. The initial value of the data is as specified, or zero if not specified.

Note thatbmalloc does not return control to the caller until it has either succeeded or failed
on all of the processes within the application. If the allocation succeeds it returns a valid probe
expression data reference andstat is given the valueASC_success . If the allocation fails
on some process thenstat is given the valueASC_operation_failed and any probe
that references the returned value ofbmalloc will fail to install on that process.

The functionApplication::status(int index) may be queried to determine
whether the operation succeeded or failed on any given process.

Return value

A probe expression that may be used as a valid reference to the data on any process in which
the data has been successfully allocated.

See Also

bfree, free, malloc, status

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 42

3.20 bremove_phase

Synopsis

#include <Application.h>

AisStatus bremove_phase(Phase ps)

Parameters

ps phase description to be removed from the application

Description

This function removes a phase from the application. Data and functions associated with the
phase are unaffected by removing the phase.

Note thatbremove_phase does not return control to the caller until the phase has been
removed or failed to be removed from all processes within the application.The function
Application::status(int index) may be queried to determine whether the opera-
tion succeeded or failed on any given process.

Return value

The return value forbremove_phase indicates whether the phase was successfully
removed from all processes. The return value reflects the highest severity encountered across
all processes.

ASC_success all phases were successfully removed, as expected

ASC_operation_failed phase could not be removed from one or more processes

See Also

add_phase, badd_phase, class Phase, remove_phase

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 43

3.21 bremove_probe

Synopsis

#include <Application.h>

AisStatus bremove_probe(short count, ProbeHandle *phandle)

Parameters

count number of probe handles in the accompanying array

phandle array of probe handles representing probe expressions to be removed

Description

This function deletes or removes probe expressions that have been installed in an application.
If all probe expressions are installed and deactivated, the probe expressions are removed and a
“normal” return status results. If one or more of the probe expressions are currently active, the
expressions are deactivated and removed, and the return status indicates there were active
probes at the time of their removal. If one or more of the probes do not exist, all existing
probes are removed and the return status indicates an appropriate warning. If one or more of
the probe expressions exists but cannot be removed, an error results and as many probes as can
be are removed. If one or more processes are not connected, probe removal takes place within
those that are connected, and a warning is issued.

Phandle is an input array generated by aninstall_probe or binstall_probe call.
It is supplied by the caller and must contain at leastcount elements. The ith element of the
array is a handle, or identifier, that identifies the ith probe expression.

Probe expression removal is atomic in the sense that all probe expressions are removed from a
given process or none are. When probes are removed from a process the process is temporarily
stopped, all indicated probes are removed, and the process is resumed. Probe expressions are
removed in a process by process basis. There is no synchronization between processes to
guarantee that all expressions are removed from all processes. One process may succeed while
another one fails.

Note thatbremove_probe does not return control to the caller until the probes have been
removed or failed to be removed from all processes within the application.The function
Application::status(int index) may be queried to determine whether the opera-
tion succeeded or failed on any given process.

Return value

The return value forbremove_probe indicates whether all probes in the list were success-
fully removed from all processes. The return value reflects the highest severity encountered
across all processes.

ASC_success all probes were successfully removed, as expected

ASC_operation_failed none of the probes were removed

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 44

See Also

bactivate_probe, bdeactivate_probe, binstall_probe,
activate_probe, deactivate_probe, install_probe, remove_probe

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 45

3.22 bresume

Synopsis

#include <Application.h>

AisStatus bresume(void)

Description

This function resumes execution of an application that has been temporarily suspended by a
suspend or bsuspend function. Execution resumption occurs on a process by process
basis. A process must be connected, attached and stopped for it to be resumed. A process that
is not connected or not attached will result in a warning return code. A process that is not
stopped will result in an informational return code.

Note thatbresume does not return control to the caller until the all processes within the
application have resumed or failed to resume.The functionApplication::status(int
index) may be queried to determine whether the operation succeeded or failed on any given
process.

Return value

The return value forbresume indicates whether all processes were successfully resumed.
The return value reflects the highest severity encountered across all processes.

ASC_success all processes were resumed, as expected

ASC_operation_failed some processes failed to be resumed

See Also

attach, battach, bconnect, bdetach, bdisconnect, bsuspend,
connect, detach, disconnect, resume, suspend

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 46

3.23 bset_phase_period

Synopsis

#include <Application.h>

AisStatus bset_phase_period(Phase ps, float period)

Parameters

ps phase to be modified

period new time interval between successive phase activations, in seconds

Description

This function changes the time interval between successive activations of a phase. The interval
change occurs on a process by process basis for all processes within the application. Processes
which do not have the phase installed result in an informational return code. Processes that are
not connected result in a warning return code.

The new period is represented by a floating-point value. If the value is positive it represents
the time interval in seconds. If the value is zero or positive and smaller than the minimum acti-
vation time interval, it represents the minimum activation delay time. In both cases the phase
is activated immediately before setting the new interval. If the value is less than zero the phase
is disabled immediately, but left in place for possible future reactivation.

Note thatbset_phase_period does not return control to the caller until the phase period
has been set or failed to be set in all processes within the application.The functionApplica-
tion::status(int index) may be queried to determine whether the operation suc-
ceeded or failed on any given process.

Return value

The return value forbset_phase_period indicates whether the phase period was suc-
cessfully set on all processes. The return value reflects the highest severity encountered across
all processes.

ASC_success phase period was successfully set on all processes

ASC_operation_failed some processes failed to set the phase period

See Also

add_phase, badd_phase, bremove_phase, get_phase_period,
remove_phase, set_phase_period

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 47

3.24 bsignal

Synopsis

#include <Application.h>

AisStatus bsignal(int unix_signal)

Parameters

unix_signal Unix™ signal to be sent to every process in the application

Description

This function sends the specified signal to every process in the application. The process must
be both connected and attached to receive the signal. The function does not return until all
processes in the application have received the signal.

A signal is sent only to those processes that are connected and attached.

Note thatbsignal does not return control to the caller until each process within the applica-
tion has been signalled or failed to be signalled.The functionApplication::sta-
tus(int index) may be queried to determine whether the operation succeeded or failed
on any given process.

Return value

The return value forbsignal indicates whether the AIX signal was successfully sent to all
processes. The return value reflects the highest severity encountered across all processes.

ASC_success signal was successfully sent to all processes

ASC_operation_failed signal failed to be sent to one or more processes

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 48

3.25 bstart

Synopsis

#include <Application.h>

AisStatus bstart(void)

Description

This function starts the execution of an application that has been created but not yet begun
execution. Many details of this function have not yet been defined.

Note thatbstart does not return control to the caller until the application has started or
failed to start.

Return value

The return value forbstart indicates whether the application was successfully started.

ASC_success application was started

ASC_operation_failed application failed to be started

See Also

bcreate, bdestroy, bsuspend, create, destroy, start, suspend

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 49

3.26 bsuspend

Synopsis

#include <Application.h>

AisStatus bsuspend(void)

Description

This function suspends an application that is executing. Application suspension occurs on a
process by process basis. A tool must be both connected and attached to a process in order to
suspend process execution.

Note thatbsuspend does not return control to the caller until each process within the appli-
cation has been suspended or failed to be suspended.The functionApplication::sta-
tus(int index) may be queried to determine whether the operation succeeded or failed
on any given process.

Return value

The return value forbsuspend indicates whether all processes within the application were
successfully suspended. The return value reflects the highest severity encountered across all
processes.

ASC_success all processes were successfully suspended

ASC_operation_failed one or more processes failed to be suspended

See Also

bresume, resume, suspend

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 50

3.27 bunload_module

Synopsis

#include <Application.h>

AisStatus bunload_module(ProbeModule *module)

Parameters

module probe module to be removed from each application process

Description

This function is currently being designed. The intent is to provide some means by which pre-
viously loaded instrumentation functions and probe classes might be removed from an appli-
cation.

Note thatbunload_module does not return control to the caller until the probe module has
been removed or failed to be removed from all processes within the application.The function
Application::status(int index) may be queried to determine whether the opera-
tion succeeded or failed on any given process.

Return value

The return value forbunload_module indicates whether the probe module was success-
fully removed from all processes. The return value reflects the highest severity encountered
across all processes.

ASC_success module was successfully removed from all processes

ASC_operation_failed module could not be removed from one or more processes

See Also

bload_module, load_module, unload_module

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 51

3.28 connect

Synopsis

#include <Application.h>

AisStatus connect(GCBFuncType fp, GCBTagType tag)

Parameters

fp callback function to be invoked with each successful or failed connec-
tion to a process listed within the application

tag callback tag to be used each time the callback function is invoked

Description

Connect to all processes within an application. Connection to a process establishes a commu-
nication channel to the machine where the process resides and creates the environment within
that process that allows the client to insert and remove instrumentation, alter its control flow,
etc.

Note that the function submits the requests to connect the processes and returns immediately.
The callback function receives notification of each connection’s success or failure.

Return value

The return value forconnect indicates whether the requests for connection were success-
fully submitted, but indicates nothing about whether the requests themselves were success-
fully executed.

ASC_success request for connection was successfully sent

ASC_operation_failed attempt to send request to connect to this process failed

Callback Data

The callback function is invoked once for each process for which a connection is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success connection was successfully established on this process

ASC_operation_failed attempt to connect to this process failed

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 52

3.29 create

Synopsis

AisStatus create(

const char *host,

const char *path,

char *const args[],

char *const envp[],

GCBFuncType fp,

GCBTagType tag)

Parameters

host host name or IP address of the control process to create the application

path complete path to the executable program, including file name and rela-
tive or absolute directory, as appropriate

args null terminated array of arguments to be provided to the executable

envp null terminated array of environment variables to be provided to the
executable

fp callback function to be invoked with a successful or failed creation

tag callback tag to be used when the callback function is invoked

Description

This function is currently being defined. It creates an application in a suspended state.

Note thatcreate returns control immediately to the caller. It does not wait until the applica-
tion has been created. The return value indicates whether the request was successfully submit-
ted and gives no indication whatever about the success or failure of the execution of the
request.

Return value

The return value forcreate indicates whether the request to create an application was suc-
cessfully submitted, but indicates nothing about whether the request was successfully exe-
cuted.

Callback Data

The callback function is invoked once when the new application is created. When the callback
is invoked the callback function is passed a pointer to the process as the callback object. The
callback message is the request status, of typeAisStatus , which contains one of the fol-
lowing status values:

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 53

ASC_success connection was successfully established on this process

ASC_operation_failed attempt to connect to this process failed

See Also

bcreate, bdestroy, bstart, destroy, start

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 54

3.30 deactivate_probe

Synopsis

#include <Application.h>

AisStatus deactivate_probe(

short count,

ProbeHandle *phandle,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

count number of probes to be deactivated

phandle array of probe handles, representing the probes, to be deactivated

ack_cb_fp acknowledgement callback function to be invoked each timeall probe
expressions in the array have been deactivated (or deactivation fails)
within a process

ack_cb_tag tag to be used with the acknowledgement callback function

Description

This function accepts an array of probe handles as an input parameter. Each probe handle in
the array represents a probe that has been installed in the application. The client sends a
request to each of the processes within the application to deactivate the list of probes repre-
sented by the array. Probes are deactivated atomically for each process in the sense that the
process is temporarily suspended, all probes on the list are deactivated, then the process is
restarted. None of the probes in the array are left active.

Phandle is an input array generated by aninstall_probe or binstall_probe call.
It is supplied by the caller and must contain at leastcount elements. The ith element of the
array is a handle, or identifier, that identifies the ith probe expression.

Note thatdeactivate_probe returns control immediately to the caller. It does not wait
until all probes in the array have been deactivated on all processes in the application. The
return value indicates whether all requests were successfully submitted and gives no indica-
tion whatever about the success or failure of the execution of those requests.

Return value

The return value fordeactivate_probe indicates whether the deactivations were suc-
cessfully submitted.

ASC_success all probe deactivations were submitted, as expected

ASC_operation_failed one or more of the probe deactivations were not submitted

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 55

Callback Data

The callback function is invoked once for each process for which a probe deactivation is
requested. When the callback is invoked the callback function is passed a pointer to the pro-
cess as the callback object. The callback message is the request status, of typeAisStatus ,
which contains one of the following status values:

ASC_success probes were successfully deactivated on this process

ASC_operation_failed attempt to deactivate probes on this process failed

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 56

3.31 destroy

Synopsis

#include <Application.h>

AisStatus destroy(GCBFuncType fp, GCBTagType tag)

Parameters

fp acknowledgement callback function to be invoked for each process that
is destroyed (or not destroyed)

tag tag to be used with the acknowledgement callback function

Description

This function destroys or terminates all processes within the application.

Note thatdestroy returns control to the caller immediately. It does not wait until all pro-
cesses within the application have been destroyed. The return value indicates whether the
requests were successfully submitted, but gives no indication of whether the requests them-
selves were successfully executed.

Return value

The return value fordestroy indicates whether the terminations were successfully
requested.

ASC_success all terminations were successfully requested, as expected

ASC_operation_failed one or more of the terminations were not requested

Callback Data

The callback function is invoked once for each process for which destruction is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success process was successfully destroyed

ASC_operation_failed attempt to destroy this process failed

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 57

3.32 detach

Synopsis

#include <Application.h>

AisStatus detach(GCBFuncType fp, GCBTagType tag)

Parameters

fp callback function to be invoked with each successful or failed detach-
ment from a process listed within the application.

tag callback tag to be used each time the callback function is invoked.

Description

This function detaches all processes in the application. Process control flow, such as stepping
and setting break points, can only be done while a process is in an attached state. Detaching a
process removes the level of process control available to the client or tool when the process is
attached, but retains the process connection so probe installation, activation, removal,etc. can
still take place.

Note thatdetach returns control to the caller immediately upon issuing all requests to
detach from the processes. The return value indicates whether all requests were successfully
submitted.

Return value

The return value fordetach indicates whether all requests were successfully submitted.

ASC_success all detach requests were successfully submitted, as expected

ASC_operation_failed one or more requests were not submitted

Callback Data

The callback function is invoked once for each process for which detachment is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success process was successfully detached

ASC_operation_failed attempt to detach this process failed

See Also

attach, battach, bdetach

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 58

3.33 disconnect

Synopsis

#include <Application.h>

AisStatus disconnect(GCBFuncType fp, GCBTagType tag)

Parameters

fp callback function to be invoked with each successful or failed discon-
nection from a process listed within the application.

tag callback tag to be used each time the callback function is invoked.

Description

Disconnect from all processes within an application. Disconnecting from an application pro-
cess removes the application environment created by a connection. All instrumentation and
data are removed from the application process.

Note that the function submits the requests to disconnect the processes and returns immedi-
ately. The callback function receives notification of each disconnection’s success or failure.

Return value

The return value fordisconnect indicates whether the requests for disconnection were
successfully submitted, but indicates nothing about whether the requests themselves were suc-
cessfully executed.

Callback Data

The callback function is invoked once for each process for which disconnection is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success process was successfully disconnected

ASC_operation_failed attempt to disconnect this process failed

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 59

3.34 execute

Synopsis

#include <Application.h>

AisStatus execute(

ProbeExp pexp,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

pexp probe expression to be executed in the application process

ack_cb_fp callback function to be invoked when execution succeeds or fails

ack_cb_tag callback tag to be used when the callback function is invoked

Description

This function executes a probe expression within all application processes within an applica-
tion. The expression is executed once, then removed. The application process is interrupted,
the expression is executed, then the process resumes execution as before the interruption.

Note thatexecute returns control to the caller immediately upon submitting its request to
the daemons. It does not wait until the probe expression has been executed or failed to exe-
cute. The acknowledgement callback function receives notification of the success or failure of
the execution. The callback is executed once for each process within the application.

Return value

The return value forexecute indicates whether the request for deallocation was success-
fully submitted, but indicates nothing about whether the request was successfully executed.

ASC_success probe expression execution was successfully submitted

ASC_???

Callback Data

The callback function is invoked when execution succeeds or fails. When the callback is
invoked the callback function is passed a pointer to the process as the callback object. The
callback message is the request status, of typeAisStatus , which contains one of the fol-
lowing status values:

ASC_success probe expression was successfully executed

ASC_operation_failed attempt to execute the probe expression failed

See Also

bexecute

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 60

3.35 free

Synopsis

#include <Application.h>

AisStatus free(

ProbeExp pexp,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

pexp dynamically allocated block of probe memory

ack_cb_fp callback function to be invoked when deallocating the block of memory
succeeds or fails

ack_cb_tag callback tag to be used when the callback function is invoked

Description

This function deallocates a block of dynamically allocated probe memory for every process in
the application. The probe expression must contain only a single reference to a block of data
allocated by themalloc or bmalloc functions.

Note thatfree returns control to the caller immediately upon submitting its request to free
the data. It does not wait until the data has been deallocated or failed to deallocate. The
acknowledgement callback function receives notification of the success or failure of the deal-
location. The callback is executed once for each process within the application.

Return value

The return value forfree indicates whether the requests for deallocation were successfully
submitted, but indicates nothing about whether the requests themselves were successfully exe-
cuted.

Callback Data

The callback function is invoked once for each process for which deallocation is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success block of probe memory was successfully deallocated

ASC_operation_failed attempt to deallocate memory on this process failed

See Also

bfree, bmalloc, malloc

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 61

3.36 get_count

Synopsis

#include <Application.h>

int get_count(void) const

Description

This function returns the number of processes currently included in the application.

Return value

The number ofProcess objects in the application.

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 62

3.37 get_process

Synopsis

#include <Application.h>

Process *get_process(int index) const

Parameters

index the position or index into the process table whose entry is to be
retrieved.

Description

Returns a pointer to the ith Process object of the application.

Return value

A pointer to the ith Process object if the index is valid, that is, 0 i < get_count () or anull
pointer if the index is not valid.

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 63

3.38 install_probe

Synopsis

#include <Application.h>

AisStatus install_probe(

short count,

ProbeExp *probe_exp,

InstPoint *point,

GCBFuncType *data_cb_fp,

GCBTagType *data_cb_tag,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag,

ProbeHandle *phandle)

Parameters

count number of probe expressions to be installed, instrumentation points,
data callback functions, data callback tags, and probe handles

probe_exp probe expressions to be installed

point instrumentation points where the probe expressions are to be installed

data_cb_fp callback function to process data received from the probe expression

data_cb_tag tag to be used as an argument to the data callback when it is invoked

ack_cb_fp callback function to process installation acknowledgments

ack_cb_tag tag to be used as an argument to the acknowledgement callback when it
is invoked

phandle probe handles that represent the installed probe expressions

Description

This function installs probe expressions as instrumentation at specific locations within each
process in the application. Probe expressions are installed atomically, in the sense that within
each process either all probe expressions in the request are installed into the process, or none
of the expressions are installed. There is no synchronization across processes to assure that all
processes install all probes. The return value indicates whether all requests to have probes
installed were successfully submitted.

Phandle is an output array supplied by the caller that must contain at leastcount elements.
The ith element of the array is a handle, or identifier, to be used in subsequent references to the
ith probe expression. For example, it is needed when the client activates, deactivates or

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 64

removes a probe expression from an application or process.Phandle does not contain valid
information if the installation fails.

Note thatinstall_probe returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until all probe expressions have been installed or
failed to install within all processes within the application.

Return value

The return value forinstall_probe indicates whether the requests for probes to be
installed were successfully submitted. It gives no indication of whether those requests were
successfully executed.

ASC_success all probe expression installation requests were successfully
submitted

ASC_operation_failed one or more of the probe expression installations failed to be
requested

Callback Data

ack_cb_fp. The callback function is invoked once for each process for which probe installa-
tion is requested. When the callback is invoked the callback function is passed a pointer to the
process as the callback object. The callback message is the request status, of typeAisSta-
tus , which contains one of the following status values:

ASC_success all probes were successfully installed in this process

ASC_operation_failed attempt to install probes in this process failed

data_cb_fp. The callback function is invoked once for each message sent from the probe.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback tag is given in thedata_cb_tag array. The callback message
is the data sent by the probe using theAis_send function call.

See Also

activate_probe, bactivate_probe, bdeactivate_probe,
bremove_probe, deactivate_probe, remove_probe

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 65

3.39 load_module

Synopsis

#include <Application.h>

AisStatus load_module(

ProbeMod *module,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

Description

This function is currently being designed. The intent is to provide some means by which
instrumentation functions and probe classes might be loaded into an application for use by one
or more probe expressions.

Note thatload_module returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until the module has been loaded or failed to load
within all processes within the application.

Return value

The return value forload_module indicates whether the requests to load the indicated
module on all processes were successfully submitted. It gives no indication of whether those
requests were successfully executed.

ASC_success all load requests were successfully submitted

ASC_operation_failed one or more of the load operations failed to be requested

Callback Data

The callback function is invoked once for each process for which disconnection is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success objects were successfully loaded into this process

ASC_operation_failed attempt to load objects on this process failed

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 66

3.40 malloc

Synopsis

#include <Application.h>

ProbeExp malloc(

ProbeType pt,

void *init_val,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag,

AisStatus &stat)

ProbeExp malloc(

ProbeType pt,

void *init_val,

Phase ps,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag,

AisStatus &stat)

Parameters

pt data type of the allocated data

init_val pointer to the initial value of the allocated data, or 0 if no initial value is
desired

ps phase that will contain the allocated data

ack_cb_fp callback function to process acknowledgement messages

ack_cb_tag tag to be used as an argument to the acknowledgement callback when it
is invoked

stat output value indicating the completion status of the function

Description

This function allocates a block of probe data in each process in the application. It returns a
single probe expression that may be used to reference the allocated data. The data may be ref-
erenced in a probe expression that may be installed in any or all of the application processes
where the data is allocated.

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 67

Note thatmalloc returns control to the caller immediately and does not wait until it has
either succeeded or failed on all of the processes within the application. The probe expression
representing the allocation is returned immediately whether or not the allocations succeed.
The returned probe expression may be used as a data reference on any process where the allo-
cation succeeds. If the data reference is used in another probe expression and the client
attempts to install that probe expression in a process where the allocation failed, that probe
expression will fail to install. Similarly, installation will fail if one attempts to install the probe
in a process where the data was not allocated.

Stat indicates whether all requests for allocation were successfully submitted. If all requests
are successfully submittedstat is given the valueASC_success . If some request cannot
be submitted thenstat is given the valueASC_operation_failed . It reflects the high-
est severity encountered.

Return value

A probe expression that may be used as a valid reference to the data on any process in which
the data has been successfully allocated.

Callback Data

The callback function is invoked once for each process for which data allocation is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success data was successfully allocated in this process

ASC_operation_failed attempt to allocate data in this process failed

See Also

bfree, bmalloc, free, status

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 68

3.41 remove_phase

Synopsis

#include <Application.h>

AisStatus remove_phase(

Phase ps,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

ps phase description to be removed from the application

ack_cb_fp callback function to process phase removal acknowledgments

ack_cb_tag tag to be used as an argument to the acknowledgement callback when it
is invoked

Description

This function removes a phase from the application. Data and functions associated with the
phase are unaffected by removing the phase. Existing probe data cannot become associated
with a phase except at the time of data allocation, so deleting a phase has the effect of perma-
nently disassociating data from any phase.

Note thatremove_phase returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until the phase has been removed or failed to be
removed from all processes within the application.

Return value

The return value forremove_phase indicates whether the requests to remove the indicated
phase on all processes in the application were successfully submitted. It gives no indication of
whether the requests were successfully executed.

ASC_success all remove requests were successfully submitted

ASC_operation_failed remove operation failed to be requested to some process

Callback Data

The callback function is invoked once for each process for which phase removal is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success phase was successfully removed from this process

ASC_operation_failed attempt to remove phase from this process failed

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 69

See Also

add_phase, badd_phase, bremove_phase

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 70

3.42 remove_probe

Synopsis

#include <Application.h>

AisStatus remove_probe(

short count,

ProbeHandle *phandle,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

count number of probe handles in the accompanying array

phandle array of probe handles representing probe expressions to be removed

ack_cb_fp callback function to process probe removal acknowledgments

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function deletes or removes probe expressions that have been installed in an application.
If all probe expressions are installed and deactivated, the probe expressions are removed and a
“normal” return status results. If one or more of the probe expressions are currently active, the
expressions are deactivated and removed and the return status indicates there were active
probes at the time of their removal. If one or more of the probes do not exist, all existing
probes are removed and the return status indicates an appropriate warning. If one or more of
the probe expressions exists but cannot be removed, an error results and none of the probe
expressions is removed. If one or more processes are not connected, probe removal takes place
within those that are connected, and a warning is issued.

Phandle is an input array generated by aninstall_probe or binstall_probe call.
It is supplied by the caller and must contain at leastcount elements. The ith element of the
array is a handle, or identifier, that identifies the ith probe expression.

Probe expression removal is atomic in the sense that all probe expressions are removed from a
given process or none are. When probes are removed from a process the process is temporarily
suspended, all indicated probes are removed, and the process is resumed. Probe expressions
are removed in a process by process basis. There is no synchronization between processes to
guarantee that all indicated expressions are removed from all processes. One process may suc-
ceed while another one fails.

Note thatremove_probe returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until the probes have been removed or failed to be
removed from all processes within the application.

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 71

Return value

The return value forremove_probe indicates whether the requests to remove the indicated
probes on all processes in the application were successfully submitted. It gives no indication
of whether the requests were successfully executed.

ASC_success all remove requests were successfully submitted

ASC_operation_failed remove operation failed to be requested to some process

Callback Data

The callback function is invoked once for each process for which probe removal is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success probes were successfully removed from this process

ASC_operation_failed attempt to remove probes from this process failed

See Also

activate_probe, bactivate_probe, bdeactivate_probe,
binstall_probe, bremove_probe, deactivate_probe, install_probe

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 72

3.43 remove_process

Synopsis

#include <Application.h>

AisStatus remove_process(int i)

Parameters

i position or index into the process table whose entry is to be removed.

Description

This function removes the ith Process object of the application. Parameteri must reflect a
valid index, that is, that is, 0 i < get_count (). The process itself is not altered or affected
in any way.

The index of a process is not guaranteed to remain invariant when new processes are added to
or removed from an application. The index does remain invariant otherwise.

Return value

The return value forremove_process indicates whether the process was successfully
removed. The return value reflects the highest severity encountered across all processes.

ASC_success process was removed

ASC_operation_failed index was out of bounds

See Also

attach, battach, bconnect, bdetach, bdisconnect, bsuspend,
connect, detach, disconnect, resume, suspend

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 73

3.44 resume

Synopsis

#include <Application.h>

AisStatus resume(GCBFuncType ack_cb_fp, GCBTagType ack_cb_tag)

Parameters

ack_cb_fp callback function to process process resumption acknowledgments

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function resumes execution of an application that has been temporarily suspended by a
suspend or bsuspend function. Execution resumption occurs on a process by process
basis. A process must be connected, attached and suspended for it to be resumed. A process
that is not connected or not attached will result in a warning return code. A process that is not
suspended will result in an informational return code.

Note thatresume returns control to the caller immediately upon submitting all requests to
the daemons. It does not wait until the processes have resumed or failed to resume.

Return value

The return value forresume indicates whether all requests to resume process execution were
successfully submitted. It gives no indication of whether the requests were successfully exe-
cuted.

ASC_success all request to resume execution were successfully submitted

ASC_operation_failed resume operation failed to be requested for some process

Callback Data

The callback function is invoked once for each process to be resumed. When the callback is
invoked the callback function is passed a pointer to the process as the callback object. The
callback message is the request status, of typeAisStatus , which contains one of the fol-
lowing status values:

ASC_success process was successfully resumed

ASC_operation_failed attempt to resume this process failed

See Also

attach, battach, bconnect, bdetach, bdisconnect, bresume,
bsuspend, connect, detach, disconnect, suspend

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 74

3.45 set_phase_period

Synopsis

#include <Application.h>

AisStatus set_phase_period(

Phase ps,

float period,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

ps phase to be modified

period new time interval between successive phase activations, in seconds

ack_cb_fp callback function to process phase acknowledgments

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function changes the time interval between successive activations of a phase. The interval
change occurs on a process by process basis for all processes within the application. Processes
which do not have the phase installed result in an informational return code. Processes that are
not connected result in a warning return code.

The new period is represented by a floating-point value. If the value is positive it represents
the time interval in seconds. If the value is zero or positive and smaller than the minimum acti-
vation time interval, it represents the minimum activation time interval. In both cases the
phase is activated immediately upon setting the new interval. If the value is less than zero the
phase is disabled immediately, but left in place for possible future reactivation.

Note thatset_phase_period returns control to the caller immediately upon submitting
all requests to the daemons. It does not wait until the phase period has been set or failed to be
set within all processes within the application.

Return value

The return value forset_phase_period indicates whether all requests to set the phase
period were successfully submitted. It gives no indication of whether the requests were suc-
cessfully executed.

ASC_success all requests to set the phase period were submitted

ASC_operation_failed set phase period failed to be requested for some process

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 75

Callback Data

The callback function is invoked once for each process for which setting the new period for a
phase is requested. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request status, of typeAis-
Status , which contains one of the following status values:

ASC_success phase period was successfully set

ASC_operation_failed attempt to set the phase period on this process failed

See Also

add_phase, badd_phase, bremove_phase, bset_phase_period,
get_phase_period, remove_phase

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 76

3.46 signal

Synopsis

#include <Application.h>

AisStatus signal(

int unix_signal,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

unix_signal Unix™ signal to be sent to every process in the application

ack_cb_fp callback function to process signal acknowledgments

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function sends the specified signal to every process in the application. The process must
be both connected and attached to receive the signal.

A signal is sent only to those processes that are connected and attached.

Note thatsignal returns control to the caller immediately upon submitting all requests to
the daemons. It does not wait until processes within the application have been signaled or
failed to be signalled.

Return value

The return value forsignal indicates whether all requests to signal processes were success-
fully submitted. It gives no indication of whether the requests were successfully executed.

ASC_success all requests to signal the processes were submitted

ASC_operation_failed signalling failed to be requested for some process

Callback Data

The callback function is invoked once for each process for which signalling is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success process was successfully signaled

ASC_operation_failed attempt to signal this process failed

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 77

3.47 start

Synopsis

#include <Application.h>

AisStatus start(GCBFuncType ack_cb_fp, GCBTagType ack_cb_tag)

Parameters

ack_cb_fp callback function to process start acknowledgments

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function is currently being designed. This function starts the execution of an application
that has been created but not yet begun execution.

Note thatstart returns control to the caller immediately upon submitting the request to the
daemon. It does not wait until the application has been started or failed to be started.

Return value

The return value forstart indicates whether the request to start the application was success-
fully submitted. It gives no indication of whether the request was successfully executed.

ASC_success request to start the application was submitted

ASC_operation_failed start failed to be requested

Callback Data

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request status, of typeAis-
Status , which contains one of the following status values:

ASC_success application was successfully started

ASC_operation_failed attempt to start this application failed

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 78

3.48 status

Synopsis

#include <Application.h>

AisStatus status(int i)

Parameters

i position or index into the process table whose status is to be queried.

Description

This function returns status for the ith Process object of the application. Parameteri must
reflect a valid index, that is, 0 i < get_count (). The returned value reflects the status value
of the most recently executed blocking call.

Return value

Interpretation of the return value forstatus is determined by the most recent blocking call
that was executed.

ASC_invalid_index index does not reflect a valid index

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 79

3.49 suspend

Synopsis

#include <Application.h>

AisStatus suspend(GCBFuncType fp, GCBTagType tag)

Parameters

fp callback function to process suspend acknowledgments

tag tag to be used as an argument to the callback when it is invoked

Description

This function suspends an application that is executing. Application suspension occurs on a
process by process basis. A tool must be both connected and attached to a process in order to
suspend process execution.

Note thatsuspend returns control to the caller immediately upon submitting all requests to
the daemons. It does not wait until processes within the application have been suspended or
failed to be suspended.

Return value

The return value forsuspend indicates whether all requests to suspend processes were suc-
cessfully submitted. It gives no indication of whether the requests were successfully executed.

ASC_success all requests to signal the processes were submitted

ASC_operation_failed signalling failed to be requested for some process

Callback Data

The callback function is invoked once for each process for which suspension is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success process was successfully suspended

ASC_operation_failed attempt to suspend this process failed

See Also

class Application Draft

5/26/98 Copyright 1998 by IBM Corp. Application.chp 80

3.50 unload_module

Synopsis

#include <Application.h>

AisStatus unload_module(

ProbeMod *module,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

ack_cb_fp callback function to process module removal acknowledgments

ack_cb_tag tag to be used as an argument to the acknowledgement callback when it
is invoked

Description

This function is currently being designed. The intent is to provide some means by which pre-
viously loaded instrumentation functions and probe classes might be removed from an appli-
cation.

Note thatunload_module returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until the module has been removed or failed to be
removed from all processes within the application.

Return value

The return value forunload_module indicates whether the requests to remove the indi-
cated module on all processes were successfully submitted. It gives no indication of whether
those requests were successfully executed.

ASC_success all remove requests were successfully submitted

ASC_operation_failed one or more of the remove operations failed to be requested

Callback Data

The callback function is invoked once for each process for which object removal is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success module was successfully removed from this process

ASC_operation_failed attempt to remove module from this process failed

See Also

bload_module, bunload_module, load_module

class GenCallBack Draft

5/26/98 Copyright 1998 by IBM Corp. GenCallBack.chp 81

4.0 class GenCallBack

4.1 Supporting Data Types

4.1.1 GCBSysType

Synopsis

struct GCBSysType {

int msg_socket; // socket over which msg was received

int msg_type; // message type

int msg_size; // size of the message sent

}

Description

This structure is provided as the data type of an input parameter to each callback function as it
is invoked. The structure is filled in by the system each time a callback is invoked as the sys-
tem prepares to invoke the callback.

4.1.2 GCBTagType

Synopsis

typedef void *GCBTagType

Description

This data type is used by the tag parameter of a callback function. The tag parameter is sup-
plied by the user at the time the callback is registered. Tags are declared as avoid * to pro-
vide adequate space for the tag to be a pointer. The tag itself only has meaning to the callback
function and is neither read nor written by the callback system.

4.1.3 GCBObjType

Synopsis

typedef void *GCBObjType

Description

This data type is used by the object parameter of a callback function. The object parameter is
supplied by the system at the time the callback is registered. The object parameter represents a
pointer to the object that invokes the asynchronous operation that causes the callback to be
invoked. The callback function must know the actual data type of the invoking object and
explicitly cast the pointer to be of that type.

class GenCallBack Draft

5/26/98 Copyright 1998 by IBM Corp. GenCallBack.chp 82

4.1.4 GCBMsgType

Synopsis

typedef void *GCBMsgType

Description

This data type is used by the message parameter of a callback function. The message parame-
ter is supplied by the system at the time the callback is invoked. It is the arrival of this message
that causes the callback function to be invoked. The callback function must know the actual
data type of the message and explicitly cast the pointer to be of that type.

4.1.5 GCBFuncType

Synopsis

typedef void (*GCBFuncType)(

GCBSysType sys, // system data structure

GCBTagType tag, // user-supplied tag value

GCBObjType obj, // object that registers the callback

GCBMsgType msg) // activating or invoking message

Description

This data type represents a pointer to the callback function. Explicit, user-supplied callback
functions are used in all asynchronous function calls.

class InstPoint

5/26/98 Copyright 1998 by IBM Corp. InstPoint.chp 83

5.0 class InstPoint

5.1 Supporting Data Types

5.1.1 InstPtLocation

Synopsis

#include <InstPoint.h>

enum InstPtLocation {

IPL_invalid,

IPL_before,

IPL_after,

IPL_replace,

IPL_LAST_LOCATION

}

Description

This enumeration type is used to describe the location of instrumentation relative to the
instruction being instrumented. Not all locations are valid with all instrumentation point types.
Instrumentation may be placed before the instruction, after the instruction, or the requested
code may in some cases replace the instruction in question. Instrumentation points that are not
attached to a location within an application or process, perhaps because they were created by a
default constructor, are invalid.

class InstPoint Draft

5/26/98 Copyright 1998 by IBM Corp. InstPoint.chp 84

5.1.2 InstPtType

Synopsis

#include <InstPoint.h>

enum InstPtType {

IPT_invalid,

IPT_function_entry,

IPT_function_exit,

IPT_function_call,

IPT_loop_entry,

IPT_loop_exit,

IPT_block_entry,

IPT_block_exit,

IPT_statement_entry,

IPT_statement_exit,

IPT_instruction,

IPT_LAST_TYPE

}

Description

This enumeration type describes the type of location that may be instrumented. Not all will be
available within a given source object. Availability depends on source object type and options
used when compiling the application process.

See Also

class SourceObj

class InstPoint

5/26/98 Copyright 1998 by IBM Corp. InstPoint.chp 85

5.2 Constructors

Synopsis

#include <InstPoint.h>

InstPoint(void)

InstPoint(const InstPoint ©)

Parameters

copy object to be duplicated in the copy constructor

Description

Two constructors are provided with this class -- a default constructor and a copy constructor.
The default constructor is able to create storage, marked as containing invalid instrumentation
points, that may later be assigned through an assignment from a valid instrumentation point.

The copy constructor performs a similar operation to assignment, but operates on an uninitial-
ized object.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

See Also

class InstPoint Draft

5/26/98 Copyright 1998 by IBM Corp. InstPoint.chp 86

5.3 get_container

Synopsis

#include <InstPoint.h>

SourceObj get_container(void) const

Description

This function returns the source object that contains the instrumentation point. This allows a
tool to start with an instrumentation point and explore the context in which it occurs, such as
the function and module in which the instrumentation point resides.

Return value

Source object that contains the instrumentation point.

See Also

class InstPoint

5/26/98 Copyright 1998 by IBM Corp. InstPoint.chp 87

5.4 get_function

Synopsis

#include <InstPoint.h>

SourceObj get_function(void) const

Description

When the instrumentation point refers to a subroutine or function call site, this function
returns a description of the function being called. When the instrumentation point does not
refer to a call site, this function returns a source object marked as invalid.

Return value

Source object describing the function or marked as invalid.

See Also

get_type

class InstPoint Draft

5/26/98 Copyright 1998 by IBM Corp. InstPoint.chp 88

5.5 get_line

Synopsis

#include <InstPoint.h>

int get_line(void) const

Description

This function returns the approximate line number in source where the instrumentation point
occurs. If the instrumentation point is invalid, this function returns a value of -1.

Return value

Approximate line number in source or -1.

See Also

class InstPoint

5/26/98 Copyright 1998 by IBM Corp. InstPoint.chp 89

5.6 get_location

Synopsis

#include <InstPoint.h>

InstPtLocation get_location(void) const

Description

This function returns the location of the instrumentation relative to the instrumentation point.
Possible locations are:before, after, replace, andinvalid. If the location isbefore, then instru-
mentation installed using this instrumentation point will occur immediately before the instruc-
tion is executed. Ifafter, then instrumentation will be installed immediately after the
instruction. Ifreplace, the instrumentation will replace the instruction. When the instrumenta-
tion point is not attached to a valid location within a process, the return value isinvalid.

Return value

IPL_invalid instrumentation point is not attached to a valid location

IPL_before instrumentation is placed before the indicated instruction

IPL_after instrumentation is placed after the indicated instruction

IPL_replace instrumentation replaced the indicated instruction

See Also

class InstPoint Draft

5/26/98 Copyright 1998 by IBM Corp. InstPoint.chp 90

5.7 get_type

Synopsis

#include <InstPoint.h>

InstPtType get_type(void) const

Description

This function returns the type of this instrumentation point, such as beginning or end of a sub-
routine, at a function call site,etc.

Return value

Type of instrumentation point.

See Also

class InstPoint

5/26/98 Copyright 1998 by IBM Corp. InstPoint.chp 91

5.8 operator =

Synopsis

#include <InstPoint.h>

InstPoint &operator = (const InstPoint ©)

Parameters

copy object to be duplicated in the assignment operator

Description

This function copies the argument over the top of the invoking object.

Return value

Reference to the invoking object.

See Also

Function Group LogSystem Draft

5/26/98 Copyright 1998 by IBM Corp. LogSystem.chp 92

6.0 Function Group LogSystem

6.1 Log_close

Synopsis

#include <LogSystem.h>

AisStatus Log_close(const char *hostname)

Parameters

Description

Return value

Function Group LogSystem Draft

5/26/98 Copyright 1998 by IBM Corp. LogSystem.chp 93

6.2 Log_delete

Synopsis

#include <LogSystem.h>

AisStatus Log_delete(const char *hostname)

Parameters

Description

Return value

Function Group LogSystem Draft

5/26/98 Copyright 1998 by IBM Corp. LogSystem.chp 94

6.3 Log_messageLevel

Synopsis

#include <LogSystem.h>

AisStatus Log_messageLevel(const char *hostname, int level)

Parameters

Description

Return value

Function Group LogSystem Draft

5/26/98 Copyright 1998 by IBM Corp. LogSystem.chp 95

6.4 Log_openLog

Synopsis

#include <LogSystem.h>

AisStatus Log_openLog(const char *hostname, const char *file)

Parameters

Description

Return value

Function Group LogSystem Draft

5/26/98 Copyright 1998 by IBM Corp. LogSystem.chp 96

6.5 Log_toClient

Synopsis

#include <LogSystem.h>

AisStatus Log_toClient(const char* hostname, int flag)

Parameters

Description

Return value

Function Group LogSystem Draft

5/26/98 Copyright 1998 by IBM Corp. LogSystem.chp 97

6.6 Log_toDaemon

Synopsis

#include <LogSystem.h>

AisStatus Log_toDaemon(const char* hostname, int flag)

Parameters

Description

Return value

class Phase Draft

5/26/98 Copyright 1998 by IBM Corp. Phase.chp 98

7.0 class Phase

Phases represent the client visible control mechanism for time-initiated instrumentation. In other
words, phases are used to control time-sampled instrumentation. Phases are activated, or invoked,
when an interval timer expires. The interval timer uses the SIGPROF signal to activate the phase, so
applications that use SIGPROF cannot be instrumented with phases.

When a phase is activated it executes its begin function to initialize any data that may be used during
the rest of the phase. If the begin function sends any messages back to the client those messages
invoke the begin callback function. The begin callback function is invoked once per message sent.
After the begin function has completed the data function is then executed, once per datum of probe
data associated with the phase. Data is associated with a phase through theApplication::mal-
loc or Process::malloc functions. Any messages sent to the client by the data function are
handled on the client by the data callback function. When the data function finishes execution for the
last datum, the end function is then executed to perform any necessary clean-up operations. Messages
sent by the end function are handled by the end callback.

To fully understand phases it is important to understand that thePhase object on the client is a data
structure that represents the actual phase. The actual phase resides within the instrumented applica-
tion process. Certain operations, such asmalloc , can alter the actual phase in ways that are not
reflected within the client data structure. This affects the behavior of the client data structure in subtle
ways. In order to provide the most useful abstraction for phases, the default constructor and the copy
constructor create new client data structures but they do not create unique phases. As a result,
“Phase p1, p2; ” creates a situation where “p1 == p2 ” is regarded as true. Similarly, the
sequence “Phase p1(f1, f2, t); Phase p2 = p1; ” also results in “p1 == p2 ” evalu-
ating to true. Similar behavior results when the assignment operator,operator = , is used.

In contrast, the standard constructors create unique phases even when the parameters used in the con-
structors are identical. Thus “Phase p1(f1, f2, t), p2(f1, f2, t); ” results in a situa-
tion where “p1 == p2 ” would evaluate tofalse rather thantrue. This possibly counter-intuitive
behavior is necessary to allow end-user tools to manage separate groups of data on separate timers.

class Phase Draft

5/26/98 Copyright 1998 by IBM Corp. Phase.chp 99

7.1 Constructors

Synopsis

#include <Phase.h>

Phase(void)

Phase(const Phase ©)

Phase(float period,

ProbeExp data_func,

GCBFuncType data_cb,

GCBTagType data_tg)

Phase(float period,

ProbeType probe,

ProbeExp begin_func,

GCBFuncType begin_cb,

GCBTagType begin_tg,

ProbeExp data_func,

GCBFuncType data_cb,

GCBTagType data_tg,

ProbeExp end_func,

GCBFuncType end_cb,

GCBTagType end_tg)

Parameters

copy phase that will be duplicated in a copy constructor

period time interval, in seconds, between successive invocations of the phase

begin_func begin function, executed once upon invocation of the phase

begin_cb begin callback, to which any begin function messages are addressed

begin_tag callback tag for the begin callbackbegin_cb

data_func function that, each time the phase is invoked, is executed once for each
datum associated with the phase

class Phase Draft

5/26/98 Copyright 1998 by IBM Corp. Phase.chp 100

data_cb callback function to which any data function messages are addressed

data_tag callback tag for the data function callbackdata_cb

end_func end function, executed once per invocation of the phase after the data
function has completed its series of executions

end_cb end callback, to which any end function messages are addressed

end_tag callback tag for the end callbackend_cb

Description

The default constructor creates an empty phase whose period, functions, callbacks and tags
are all set to 0. The default constructor is invoked when uninitialized phases are created, such
as in arrays of phases. Objects within the array can be overwritten using an assignment opera-
tor (operator =).

The copy constructor is used to transfer the contents of an initialized object (thecopy param-
eter) to an uninitialized object.

The standard constructors create a new phase and new phase data structure, and initialize the
data structure according to the parameters that are provided. The function prototypes are:

• void begin_func(void *msg_handle)

• void data_func(void *msg_handle, void *data)

• void end_func(void *msg_handle)

Exceptions

ASC_insufficient_memory not enough memory to create a new node

See Also

class Phase Draft

5/26/98 Copyright 1998 by IBM Corp. Phase.chp 101

7.2 operator =

Synopsis

#include <Phase.h>

Phase &operator = (const Phase &rhs)

Parameters

rhs right operand

Description

This function assigns the value of the right operand to the invoking object. The left operand is
the invoking object. For example, “Phase rhs, lhs; ... lhs = rhs; ” assigns the
value ofrhs to lhs . Then one can be used interchangeably with the other.

Note that assignment is different from creating two phases using the same input values. For
example, “Phase p1(x,y,z), p2(x,y,z); ” gives two independent phases even
though they have exactly the same arguments. Loadingp1 into a process and later unloading
p1 from the same process is, of course, a valid operation. Loadingp1 into a process and later
unloadingp2 from the same process as if they were the same phase is invalid, sincep2 repre-
sents a different phase with coincidentally the same values.

Return value

A reference to the invoking object (i.e., the left operand).

See Also

class Phase Draft

5/26/98 Copyright 1998 by IBM Corp. Phase.chp 102

7.3 operator ==

Synopsis

#include <Phase.h>

int operator == (const Phase &compare)

Parameters

compare phase to be compared against the invoking object

Description

This function compares two phases for equivalence. If the two objects represent the same
phase, this function returns 1. Otherwise it returns 0. For example, “Phase rhs, lhs;
... lhs = rhs; ” gives a situation where “rhs == lhs ” is true, andoperator ==
returns 1. But “Phase p1(x,y,z), p2(x,y,z); ” gives a situation where the value of
“p1 == p2 ” is not true, even though they were both constructed with the same values, and
operator == returns 0.

Return value

This function returns 1 if the two objects are equivalent, 0 otherwise.

See Also

class Phase Draft

5/26/98 Copyright 1998 by IBM Corp. Phase.chp 103

7.4 operator !=

Synopsis

#include <Phase.h>

int operator != (const Phase &compare)

Parameters

compare phase to be compared against the invoking object

Description

This function compares two phases for equivalence. If the two objects represent the same
phase, this function returns 0. Otherwise it returns 1. For example, “Phase rhs, lhs;
... lhs = rhs; ” gives a situation where “rhs != lhs ” is false, andoperator !=
returns 0. But “Phase p1(x,y,z), p2(x,y,z); ” gives a situation where the value of
“p1 != p2 ” is true, even though they were both constructed with the same values, and
operator != returns 1.

Return value

This function returns 0 if the two objects are equivalent, 1 otherwise.

See Also

class PoeAppl : public Application Draft

5/26/98 Copyright 1998 by IBM Corp. PoeAppl.chp 104

8.0 class PoeAppl : public Application

8.1 Constructors

Synopsis

PoeAppl(void)

Description

Exceptions

class PoeAppl : public Application Draft

5/26/98 Copyright 1998 by IBM Corp. PoeAppl.chp 105

8.2 bread_config

Synopsis

AisStatus bread_config(const char *hostname, int poe_pid)

Parameters

Description

Return value

class PoeAppl : public Application Draft

5/26/98 Copyright 1998 by IBM Corp. PoeAppl.chp 106

8.3 print_attrib utes

Synopsis

bool print_attributes(void)

Description

Return value

class PoeAppl : public Application Draft

5/26/98 Copyright 1998 by IBM Corp. PoeAppl.chp 107

8.4 read_config

Synopsis

AisStatus read_config(

const char *hostname,

int poe_pid,

GCBFuncType fp,

GCBTagType tag)

Parameters

Description

Return value

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 108

9.0 class ProbeExp

9.1 Supporting Data Types

9.1.1 Primiti ve Data Types

Synopsis

typedef char int8_t

typedef short int16_t

typedef int int32_t

typedef long long int64_t

typedef unsigned char uint8_t

typedef unsigned short uint16_t

typedef unsigned int uint32_t

typedef unsigned long long uint64_t

typedef float float32_t

typedef double float64_t

Description

This collection of data types represents the primitive data types supported at some level by
probe expressions. These are client data types that represent entities used in a probe expres-
sion inside an application process. Not all data types are given the same level of support. 32-
bit integers are given the greatest level of support, with arithmetic, logical, bitwise, relational
and assignment operators. Although pointer values can be manipulated in probe expressions,
they are not given a separate data type on the client, but are themselves represented by probe
expressions. More complex data types may be allocated for use in probe expressions, but
operators that make use of such values are quite limited.

9.1.2 CodeExpNodeType

Synopsis

enum CodeExpNodeType {

CEN_address_op, // the address of -- &x

CEN_and_op, // bitwise “and” -- x & y

CEN_andand_op, // logical “and” -- x && y

CEN_andeq_op, // bitwise “and” -- x &= y

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 109

CEN_array_ref_op, // array reference -- x[y]

CEN_call_op, // function call -- f(...)

CEN_div_op, // division -- x / y

CEN_diveq_op, // divide assign -- x /= y

CEN_eq_op, // assignment -- x = y

CEN_eqeq_op, // value equality -- x == y

CEN_ge_op, // value greater eq -- x >= y

CEN_gt_op, // value greater -- x > y

CEN_le_op, // value less or eq -- x <= y

CEN_lseq_op, // left shift asgn -- x <<= y

CEN_lshift_op, // left shift -- x << y

CEN_lt_op, // less than -- x < y

CEN_minus_op, // binary minus -- x - y

CEN_minuseq_op, // minus assignment -- x -= y

CEN_mod_op, // modulus -- x % y

CEN_modeq_op, // modulus asgn -- x %= y

CEN_mult_op, // multiplication -- x * y

CEN_multeq_op, // multiply asgn -- x *= y

CEN_ne_op, // not equal -- x != y

CEN_not_op, // logical not -- ! x

CEN_or_op, // bitwise or -- x | y

CEN_oreq_op, // bitwise or asgn -- x |= y

CEN_oror_op, // logical or -- x || y

CEN_plus_op, // addition -- x + y

CEN_pluseq_op, // addition asgn -- x += y

CEN_pointer_deref_op, // pointer deref -- *x

CEN_postfix_minus_op, // postfix decr -- x --

CEN_postfix_plus_op, // postfix incr -- x ++

CEN_prefix_minus_op, // prefix decrement -- -- x

CEN_prefix_plus_op, // prefix increment -- ++ x

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 110

CEN_rseq_op, // right shift asgn -- x >>= y

CEN_rshift_op, // right shift -- x >> y

CEN_tilde_op, // bitwise negation -- ~ x

CEN_umin_op, // unary minus -- - x

CEN_uplus_op, // unary plus -- + x

CEN_xor_op, // exclusive or -- x ^ y

CEN_xoreq_op, // exclusive or asgn-- x ^= y

CEN_float32_value, // float32 value

CEN_float64_value, // float64 value

CEN_int16_value, // int16 value

CEN_int32_value, // int32 value

CEN_int64_value, // int64 value

CEN_int8_value, // int8 value

CEN_string_value, // string value

CEN_uint16_value, // uint16 value

CEN_uint32_value, // uint32 value

CEN_uint64_value, // uint64 value

CEN_uint8_value, // uint8 value

CEN_if_else_stmt, // if else -- if (x) y else z

CEN_if_stmt, // if stmt -- if (x) y

CEN_null_stmt, // null/empty stmt -- ;

CEN_undef_node, // undefined node

CEN_LAST_TYPE // last node type marker

}

Description

TheCodeExpNodeType enumeration data type represents the various operators and oper-
ands that may be found in probe expressions. Probe expressions are structured asabstract syn-
tax trees. Expressions are represented with binary operators as a typed node with the left as
the left sub-tree, and the right as the right sub-tree.

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 111

9.2 Constructors

Synopsis

ProbeExp(void)

ProbeExp(int8_t scalar)

ProbeExp(int16_t scalar)

ProbeExp(int32_t scalar)

ProbeExp(int64_t scalar)

ProbeExp(uint8_t scalar)

ProbeExp(uint16_t scalar)

ProbeExp(uint32_t scalar)

ProbeExp(uint64_t scalar)

ProbeExp(float32_t scalar)

ProbeExp(float64_t scalar)

ProbeExp(const char *string)

ProbeExp(const ProbeExp ©)

Parameters

scalar single value of some primitive data type

string null terminated array of signed 8-bit integers, or characters

copy probe expression object that will be duplicated in a copy constructor

Description

All of the above constructors create a new node that may be used as a sub-tree in a larger
probe expression. Each of the public constructors, with the exception of the copy constructor,
create terminal nodes. To create an expression containing operators one must use theProbe-
Exp operator that corresponds to the desired action. TheProbeExp operator constructs the
probe expression and performs a validity check. The probe expression may then be installed
and activated in an application, at which time additional checks are made to ensure data refer-
ences are valid within the process.

The copy constructor duplicates the argument, but copies argument children by reference. In
other words, it does not duplicate sub-expressions contained as children ofcopy . Instead it
duplicates a pointer to the sub-expression and updates the appropriate reference counter.

Exceptions

ASC_insufficient_memory not enough memory to create a new node

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 112

9.3 address

Synopsis

#include <ProbeExp.h>

ProbeExp address(void)

Description

This function creates a probe expression that represents taking the address of the object in
application memory represented by the invoking object. The operand must be an object in
application memory. For example, “ProbeExp exp = obj.address(); ” would create
an expressionexp that represents the address ofobj . The expressionexp could then be used
as a sub-expression in an assignment or other type of statement or expression.

Computing the address is valid for any object regardless of data type, but the expression must
represent an object in memory. The data type of the result of executing the expression is a
pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the address of the object represented by the operand.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression invoking object does not represent an object in memory

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 113

9.4 assign

Synopsis

#include <ProbeExp.h>

ProbeExp assign(const ProbeExp &rhs) const

Parameters

rhs right, or value expression, of the assignment

Description

This function creates an expression where the right operand is evaluated and stored in the
location indicated by the left operand. The left operand is represented by the invoking object.
For example, “ProbeExp exp = lhs.assign(rhs); ” would create an expression
exp that represents evaluatingrhs and storing its value in the location represented bylhs . It
is essential thatlhs represent an object in memory.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the assignment of a value to an object.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type ofrhs (the value assigned) did not match the
data type of the invoking object (location assigned to)

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 114

9.5 call

Synopsis

#include <ProbeExp.h>

ProbeExp call(short count, ProbeExp *args)

Parameters

count count of arguments or parameters passed to the function being called

args array of arguments or parameters passed to the function being called

Description

This function creates a probe expression that represents a function call. The invoking object
represents the function to be called in the application process. For example, the expression
“ProbeExp exp = foo.call(count, args); ” would create an expressionexp
that represents calling a function represented byfoo . This expression may be executed on the
application process only after it has been installed and activated.

Return value

Probe expression representing a call to a function.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression one or more arguments to the function does not repre-
sent valid a probe expression, either because the expres-
sion is ill formed, the expression data type does not
match the function argument data type, or data refer-
enced in the expression does not reside on the process

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 115

9.6 get_data_type

Synopsis

#include <ProbeExp.h>

ProbeType get_data_type(void) const

Description

This function returns the data type of the probe expression.

Return value

Data type of the probe expression.

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 116

9.7 get_node_type

Synopsis

#include <ProbeExp.h>

CodeExpNodeType get_node_type(void) const

Description

This function returns the type of node at the root of the probe expression tree. Nodes in a tree
represent operators or operands in an executable expression.

Return value

Type of operator or operand at the root of the probe expression tree.

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 117

9.8 has_*

Synopsis

int has_int8(void) const

int has_int16(void) const

int has_int32(void) const

int has_int64(void) const

int has_int(void) const

int has_uint8(void) const

int has_uint16(void) const

int has_uint32(void) const

int has_uint64(void) const

int has_uint(void) const

int has_float32(void) const

int has_float64(void) const

int has_float(void) const

int has_string(void) const

int has_name(void) const

int has_text(void) const

int has_children(void) const

int has_left(void) const

int has_right(void) const

int has_center(void) const

Description

This family of functions returns a boolean indicator of whether the node being queried repre-
sents a datum with the data type in question. Thushas_int32 will return 1 if the node rep-
resents a constant of data typeint32_t .

Return value

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 118

9.9 ifelse

Synopsis

#include <ProbeExp.h>

ProbeExp ifelse(const ProbeExp &te) const

ProbeExp ifelse(const ProbeExp &te, const ProbeExp &ee) const

Parameters

te “then” expression, or expression executed when condition is true

ee “else” expression, or expression executed when condition is false

Description

This function creates a probe expression that represents a conditional statement. The invoking
object represents the condition to be tested. If the test evaluates to a non-zero value, the
expression represented byte is executed. If the test evaluates to zero andee is not supplied,
execution continues past the conditional. If the test evaluates to zero andee is supplied, then
the expression represented byee is executed. For example, “ProbeExp exp = ce.ife-
lse(te); ” would create an expressionexp that represents a conditional statement. The
conditional expression to be tested is represented byce , and the expression to be executed
should that condition be evaluated to true (any non-zero integer value) is represented byte .

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing a conditional statement.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of the invoking object is not an integer or
pointer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 119

9.10 is_same_as

Synopsis

#include <ProbeExp.h>

int is_same_as(const ProbeExp &compare) const

Parameters

compare right hand side of comparison

Description

This function compares two probe expressions for equivalence. If the invoking object has the
same structure as the probe expression it is compared against, this function returns 1. If the
structure is different in some way, or the expressions are similar in structure but have different
values at corresponding nodes, it returns 0.

Return value

This function returns 1 when the expressions are equivalent, otherwise 0.

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 120

9.11 operator + (binary)

Synopsis

#include <ProbeExp.h>

ProbeExp operator + (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents the addition of two operands. The
invoking object represents the left operand, while the argumentrhs represents the right oper-
and. The operands may be objects in memory or expressions that evaluate to values. For
example, “ProbeExp exp = lhs + rhs; ” would create an expressionexp that repre-
sents the addition of two values,lhs andrhs . The expressionexp could then be used as a
sub-expression in an assignment or other type of statement or expression.

Addition is only valid when both operands are integers, or one operand is an integer and one is
a pointer. Any other combination of operand data types is invalid. When both operands are
integers it has the usual meaning associated with computer arithmetic of signed integers and
the data type of the result of executing the expression is an integer. When one operand is a
pointer, it has the usual meaning associated with pointer arithmetic as defined in C/C++, and
the data type associated with the result is a pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the addition of two operands.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 121

9.12 operator + (unary)

Synopsis

#include <ProbeExp.h>

ProbeExp operator + (void)

Description

This function is effectively a no-op. It simply returns the value of its operand.

Return value

Probe expression representing the left operand.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 122

9.13 operator +=

Synopsis

#include <ProbeExp.h>

ProbeExp operator += (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents the addition of two operands, and its
subsequent storage of the result into the invoking object. The invoking object represents the
left operand, while the argumentrhs represents the right operand. The operands may be
objects in memory or expressions that evaluate to values. For example, the expression
“ProbeExp exp = lhs += rhs; ” would create an expressionexp that represents the
addition of two values,lhs andrhs , and its assignment tolhs . The expressionexp could
then be used as a sub-expression in an assignment or other type of statement or expression.

Addition is only valid when both operands are integers, or the left operand is a pointer and the
right operand is an integer. Any other combination of operand data types is invalid. When both
operands are integers it has the usual meaning associated with computer arithmetic of signed
integers and the data type of the result of executing the expression is an integer. Whenlhs is
a pointer, it has the usual meaning associated with pointer arithmetic as defined in C/C++ and
the data type of the result of executing the expression is a pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the addition of two operands and assignment of the result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 123

9.14 operator ++ (prefix)

Synopsis

#include <ProbeExp.h>

ProbeExp operator ++ (void)

Description

This function creates a probe expression that represents the increment of an integer operand.
The operand is the invoking object. The operand must be an expression that represents an
object in memory. The result of the operation is the value of the operand after the increment
takes place. For example, “ProbeExp exp = ++rhs; ” would create an expressionexp
that represents incrementingrhs by one. The expressionexp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Increment is only valid when the operand is a signed integer or a pointer. Any other operand
data type is invalid. When the operand is an integer it has the usual meaning associated with
computer arithmetic of signed integers and the data type of the result of executing the expres-
sion is an integer. Whenrhs is a pointer, it has the usual meaning associated with pointer
arithmetic as defined in C/C++ and the data type of the result of executing the expression is a
pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the addition of one to an operand and assignment of the result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of the operand is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 124

9.15 operator ++ (postfix)

Synopsis

#include <ProbeExp.h>

ProbeExp operator ++ (int zero)

Parameters

zero constant integer zero

Description

This function creates a probe expression that represents the increment of an integer operand.
The operand is the invoking object. The operand must be an expression that represents an
object in memory. The result of the operation is the value of the operand before the increment
takes place. For example, “ProbeExp exp = lhs++; ” would create an expressionexp
that represents incrementinglhs by one. The expressionexp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Increment is only valid when the operand is a signed integer or a pointer. Any other operand
data type is invalid. When the operand is an integer it has the usual meaning associated with
computer arithmetic of signed integers and the data type of the result of executing the expres-
sion is an integer. Whenlhs is a pointer, it has the usual meaning associated with pointer
arithmetic as defined in C/C++ and the data type of the result of executing the expression is a
pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the addition of one to an operand and assignment of the result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of the operand is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 125

9.16 operator - (binary)

Synopsis

#include <ProbeExp.h>

ProbeExp operator - (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents the subtraction of two operands. The
invoking object represents the left operand, while the argumentrhs represents the right oper-
and. The operands may be objects in memory or expressions that evaluate to values. For
example, “ProbeExp exp = lhs - rhs; ” would create an expressionexp that repre-
sents the subtraction ofrhs from lhs . The expressionexp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Subtraction is only valid when both operands are integers, or the left operand is a pointer and
the right operand is an integer, or both operands are pointers of the same type. Any other com-
bination of operand data types is invalid. When both operands are integers it has the usual
meaning associated with computer arithmetic of signed integers and the data type of the result
of executing the expression is an integer. When one or both operand is a pointer, it has the
usual meaning associated with pointer arithmetic as defined in C/C++, and the data type asso-
ciated with the result is a pointer. When both operands are pointers, it has the usual meaning
associated with pointer subtraction as defined in C/C++, and the data type associated with the
result is a signed integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the subtraction of two operands.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 126

9.17 operator - (unary)

Synopsis

#include <ProbeExp.h>

ProbeExp operator - (void)

Description

This function creates a probe expression that represents the arithmetic negation of an operand.
The right operand represents the invoking object. The operand may be an object in memory or
an expression that evaluates to a value. For example, “ProbeExp exp = - rhs; ” would
create an expressionexp that represents the negation ofrhs . The expressionexp could then
be used as a sub-expression in an assignment or other type of statement or expression.

Negation is only valid when the operand is a signed integer. Any other operand data type is
invalid. When the operand is an integer it has the usual meaning associated with computer
arithmetic of signed integers and the data type of the result of executing the expression is an
integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the arithmetic negation of an operand.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of the operand is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 127

9.18 operator -=

Synopsis

#include <ProbeExp.h>

ProbeExp operator -= (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents the subtraction of two operands, and
its subsequent storage of the result into the invoking object. The left operand represents the
invoking object, while the argumentrhs represents the right operand. The left operand must
be an object in memory, while the right operand may be an object in memory or an expression
that evaluate to a value. For example, “ProbeExp exp = lhs -= rhs; ” would create
an expressionexp that represents the subtraction of two values,lhs andrhs , and its assign-
ment tolhs . The expressionexp could then be used as a sub-expression in an assignment or
other type of statement or expression.

Subtraction is only valid when both operands are integers, or the left operand is pointer and
the right operand is an integer. Any other combination of operand data types is invalid. When
both operands are integers it has the usual meaning associated with computer arithmetic of
signed integers and the data type of the result of executing the expression is an integer. When
lhs is a pointer, it has the usual meaning associated with pointer arithmetic as defined in C/
C++ and the data type of the result of executing the expression is a pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the subtraction of two operands and assignment of the result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 128

9.19 operator -- (prefix)

Synopsis

#include <ProbeExp.h>

ProbeExp operator -- (void)

Description

This function creates a probe expression that represents the decrement of an integer operand.
The operand is the invoking object. The operand must be an expression that represents an
object in memory. The result of the operation is the value of the operand after the decrement
takes place. For example, “ProbeExp exp = --rhs; ” would create an expressionexp
that represents decrementingrhs by one. The expressionexp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Decrement is only valid when the operand is a signed integer or a pointer. Any other operand
data type is invalid. When the operand is an integer it has the usual meaning associated with
computer arithmetic of signed integers and the data type of the result of executing the expres-
sion is an integer. Whenrhs is a pointer, it has the usual meaning associated with pointer
arithmetic as defined in C/C++ and the data type of the result of executing the expression is a
pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the subtraction of one from an operand and assignment of the
result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of the operand is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 129

9.20 operator -- (postfix)

Synopsis

#include <ProbeExp.h>

ProbeExp operator -- (int zero)

Parameters

zero constant integer zero

Description

This function creates a probe expression that represents the decrement of an integer operand.
The operand is the invoking object. The operand must be an expression that represents an
object in memory. The result of the operation is the value of the operand before the decrement
takes place. For example, “ProbeExp exp = lhs--; ” would create an expressionexp
that represents decrementinglhs by one. The expressionexp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Decrement is only valid when the operand is a signed integer or a pointer. Any other operand
data type is invalid. When the operand is an integer it has the usual meaning associated with
computer arithmetic of signed integers and the data type of the result of executing the expres-
sion is an integer. Whenlhs is a pointer, it has the usual meaning associated with pointer
arithmetic as defined in C/C++ and the data type of the result of executing the expression is a
pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the subtraction of one from an operand and assignment of the
result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of the operand is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 130

9.21 operator * (binary)

Synopsis

#include <ProbeExp.h>

ProbeExp operator * (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents the multiplication of two operands.
The invoking object represents the left operand, while the argumentrhs represents the right
operand. The operands may be objects in memory or expressions that evaluate to values. For
example, “ProbeExp exp = lhs * rhs; ” would create an expressionexp that repre-
sents the multiplication ofrhs by lhs . The expressionexp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Multiplication is only valid when both operands are integers. Any other combination of oper-
and data types is invalid. When both operands are integers it has the usual meaning associated
with computer arithmetic of signed integers and the data type of the result of executing the
expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the multiplication of two operands.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 131

9.22 operator * (unary)

Synopsis

#include <ProbeExp.h>

ProbeExp operator * (void)

Description

This function creates a probe expression that represents the dereferencing of a pointer oper-
and. The right operand represents the invoking object. The operand may be an object in mem-
ory or an expression that evaluates to a value. For example, “ProbeExp exp = * rhs; ”
would create an expressionexp that represents the object pointed to by the pointer value
rhs . The expressionexp could then be used as a sub-expression in an assignment or other
type of statement or expression.

Pointer dereferenceing is only valid when the operand is a pointer. Any other operand data
type is invalid. When the operand is a pointer it has the usual meaning associated with derefer-
encing pointers and the data type of the result of executing the expression is the data type of
the pointee.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the dereferencing of a pointer operand.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of the operand is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 132

9.23 operator *=

Synopsis

#include <ProbeExp.h>

ProbeExp operator *= (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents the multiplication of two operands,
and its subsequent storage of the result into the invoking object. The left operand represents
the invoking object, while the argumentrhs represents the right operand. The left operand
must be an object in memory, while the right operand may be an object in memory or an
expression that evaluates to a value. For example, “ProbeExp exp = lhs *= rhs; ”
would create an expressionexp that represents the multiplication of two values,lhs and
rhs , and its assignment tolhs . The expressionexp could then be used as a sub-expression
in an assignment or other type of statement or expression.

Multiplication is only valid when both operands are integers. Any other combination of oper-
and data types is invalid. When both operands are integers it has the usual meaning associated
with computer arithmetic of signed integers and the data type of the result of executing the
expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the multiplication of two operands and assignment of the result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 133

9.24 operator /

Synopsis

#include <ProbeExp.h>

ProbeExp operator / (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents the division of two operands. The
invoking object represents the left operand, while the argumentrhs represents the right oper-
and. The operands may be objects in memory or expressions that evaluate to values. For
example, “ProbeExp exp = lhs / rhs; ” would create an expressionexp that repre-
sents the division ofrhs by lhs . The expressionexp could then be used as a sub-expression
in an assignment or other type of statement or expression.

Division is only valid when both operands are integers, and the divisor is non-zero. Any other
combination of operand data types is invalid. When both operands are integers it has the usual
meaning associated with computer arithmetic of signed integers and the data type of the result
of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the division of two operands.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 134

9.25 operator /=

Synopsis

#include <ProbeExp.h>

ProbeExp operator /= (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents the division of two operands, and its
subsequent storage of the result into the invoking object. The left operand represents the
invoking object, while the argumentrhs represents the right operand. The left operand must
be an object in memory, while the right operand may be an object in memory or an expression
that evaluates to a value. For example, “ProbeExp exp = lhs /= rhs; ” would create
an expressionexp that represents the division of two values,lhs andrhs , and its assign-
ment tolhs . The expressionexp could then be used as a sub-expression in an assignment or
other type of statement or expression.

Division is only valid when both operands are integers, and the divisor is non-zero. Any other
combination of operand data types is invalid. When both operands are integers it has the usual
meaning associated with computer arithmetic of signed integers and the data type of the result
of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the division of two operands and assignment of the result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 135

9.26 operator %

Synopsis

#include <ProbeExp.h>

ProbeExp operator % (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents the division of two operands, where
the remainder rather than the dividend is returned. The invoking object represents the left
operand, while the argumentrhs represents the right operand. The operands may be objects
in memory or expressions that evaluate to values. For example, “ProbeExp exp = lhs %
rhs; ” would create an expressionexp that represents the division ofrhs by lhs . The
expressionexp could then be used as a sub-expression in an assignment or other type of state-
ment or expression.

Division is only valid when both operands are integers, and the divisor is non-zero. Any other
combination of operand data types is invalid. When both operands are integers it has the usual
meaning associated with computer arithmetic of signed integers and the data type of the result
of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the remainder of the division of two operands.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 136

9.27 operator %=

Synopsis

#include <ProbeExp.h>

ProbeExp operator %= (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents the division of two operands, where
the remainder rather than the dividend is returned, and its subsequent storage of the result into
the invoking object. The left operand represents the invoking object, while the argumentrhs
represents the right operand. The left operand must be an object in memory, while the right
operand may be an object in memory or an expression that evaluates to a value. For example,
“ProbeExp exp = lhs %= rhs; ” would create an expressionexp that represents the
division of two values,lhs andrhs , and its assignment tolhs . The expressionexp could
then be used as a sub-expression in an assignment or other type of statement or expression.

Division is only valid when both operands are integers, and the divisor is non-zero. Any other
combination of operand data types is invalid. When both operands are integers it has the usual
meaning associated with computer arithmetic of signed integers and the data type of the result
of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the division of two operands and assignment of the remainder.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 137

9.28 operator =

Synopsis

#include <ProbeExp.h>

ProbeExp &operator = (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function doesnot create a node in a probe expression tree. Rather, it performs a local
assignment on the client, of the value in the right operand to the object represented by the left
operand. For example, “ProbeExp lhs; lhs = rhs; ” would assign the value con-
tained inrhs to the variablelhs . Notice that the above example isdifferent from “Probe-
Exp lhs = rhs; ” in that the first example invokes the assignment operator, “operator
=”, while the second example invokes the copy constructor. But though different functions are
called the end result is the same, that is, the probe expression represented by the right operand
is assigned to the object represented by the left operand.

Return value

A reference to the invoking object (i.e., the left operand).

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 138

9.29 operator ==

Synopsis

#include <ProbeExp.h>

ProbeExp operator == (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a comparison for equality of two
operands, where 1 is returned if they are equal, and 0 is returned if they are not. The invoking
object represents the left operand, while the argumentrhs represents the right operand. The
operands may be objects in memory or expressions that evaluate to values. For example,
“ProbeExp exp = lhs == rhs; ” would create an expressionexp that represents a
comparison for equality ofrhs andlhs . The expressionexp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Comparison for equality is only valid when both operands are integers. Any other combina-
tion of operand data types is invalid. When both operands are integers it has the usual meaning
associated with comparison of signed integers and the data type of the result of executing the
expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the comparison of two operands for equality.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 139

9.30 operator !

Synopsis

#include <ProbeExp.h>

ProbeExp operator ! (void)

Description

This function creates a probe expression that represents the logical negation of an operand,
where 0 is returned if the operand is a non-zero value, and 1 is returned if the operand is 0.
The right operand represents the invoking object. The operand may be an object in memory or
an expression that evaluates to a value. For example, “ProbeExp exp = ! rhs; ” would
create an expressionexp that represents the negation ofrhs . The expressionexp could then
be used as a sub-expression in an assignment or other type of statement or expression.

Logical negation is only valid when the operand is a signed integer. Any other operand data
type is invalid. When the operand is an integer it has the usual meaning associated with com-
puter logic and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the negation of an operand.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of the operand is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 140

9.31 operator !=

Synopsis

#include <ProbeExp.h>

ProbeExp operator != (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a comparison for inequality of two
operands, where 0 is returned if they are equal, and 1 is returned if they are not. The invoking
object represents the left operand, while the argumentrhs represents the right operand. The
operands may be objects in memory or expressions that evaluate to values. For example,
“ProbeExp exp = lhs != rhs; ” would create an expressionexp that represents a
comparison for equality ofrhs andlhs . The expressionexp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Comparison for equality is only valid when both operands are integers. Any other combina-
tion of operand data types is invalid. When both operands are integers it has the usual meaning
associated with comparison of signed integers and the data type of the result of executing the
expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the comparison of two operands for inequality.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 141

9.32 operator <

Synopsis

#include <ProbeExp.h>

ProbeExp operator < (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a comparison of two operands, where
1 is returned if the left operand is less than the right operand, and 0 is returned otherwise. The
invoking object represents the left operand, while the argumentrhs represents the right oper-
and. The operands may be objects in memory or expressions that evaluate to values. For
example, “ProbeExp exp = lhs < rhs; ” would create an expressionexp that repre-
sents a comparison ofrhs andlhs . The expressionexp could then be used as a sub-expres-
sion in an assignment or other type of statement or expression.

Comparison is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
relational operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the comparison of two operands for relative size.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 142

9.33 operator <=

Synopsis

#include <ProbeExp.h>

ProbeExp operator <= (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a comparison of two operands, where
1 is returned if the left is less than or equal to the right, and 0 is returned otherwise. The invok-
ing object represents the left operand, while the argumentrhs represents the right operand.
The operands may be objects in memory or expressions that evaluate to values. For example,
“ProbeExp exp = lhs <= rhs; ” would create an expressionexp that represents a
comparison ofrhs andlhs . The expressionexp could then be used as a sub-expression in
an assignment or other type of statement or expression.

Comparison is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
relational operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the comparison of two operands for relative size.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 143

9.34 operator <<

Synopsis

#include <ProbeExp.h>

ProbeExp operator << (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a bit-wise left shift of the left operand.
When the right operand is positive, the value returned is the left operand shifted that many
places to the left. When the right operand is zero, the value returned is the value of the left
operand. When the right operand is negative, the value returned is the left operand shifted that
many places to the right. The invoking object represents the left operand, while the argument
rhs represents the right operand. The operands may be objects in memory or expressions that
evaluate to values. For example, “ProbeExp exp = lhs << rhs; ” would create an
expressionexp that represents a left shift oflhs . The expressionexp could then be used as
a sub-expression in an assignment or other type of statement or expression.

Left shift is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
bit-wise shift operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the left shift of the left operator.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 144

9.35 operator <<=

Synopsis

#include <ProbeExp.h>

ProbeExp operator <<= (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a bit-wise left shift of the left operand.
When the right operand is positive, the value returned is left operand shifted that many places
to the left. When the right operand is zero, the value returned is the value of the left operand.
When the right operand is negative, the value returned is the left operand shifted that many
places to the right. The result is subsequently stored into the invoking object. The left operand
represents the invoking object, while the argumentrhs represents the right operand. The left
operand must be an object in memory, while the right operand may be an object in memory or
an expression that evaluates to a value. For example, “ProbeExp exp = lhs <<=
rhs; ” would create an expressionexp that represents the left shift oflhs by rhs , and its
assignment tolhs . The expressionexp could then be used as a sub-expression in an assign-
ment or other type of statement or expression.

Shift operations are only valid when both operands are integers. Any other combination of
operand data types is invalid. When both operands are integers it has the usual meaning asso-
ciated with bit-wise shift operations and the data type of the result of executing the expression
is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing a left bit-wise shift and assignment of the result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 145

9.36 operator >

Synopsis

#include <ProbeExp.h>

ProbeExp operator > (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a comparison of two operands, where
1 is returned if the left operand is greater than the right operand, and 0 is returned otherwise.
The invoking object represents the left operand, while the argumentrhs represents the right
operand. The operands may be objects in memory or expressions that evaluate to values. For
example, “ProbeExp exp = lhs > rhs; ” would create an expressionexp that repre-
sents a comparison ofrhs andlhs . The expressionexp could then be used as a sub-expres-
sion in an assignment or other type of statement or expression.

Comparison is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
relational operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the comparison of two operands for relative size.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 146

9.37 operator >=

Synopsis

#include <ProbeExp.h>

ProbeExp operator >= (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a comparison of two operands, where
1 is returned if the left is greater than or equal to the right, and 0 is returned otherwise. The
invoking object represents the left operand, while the argumentrhs represents the right oper-
and. The operands may be objects in memory or expressions that evaluate to values. For
example, “ProbeExp exp = lhs >= rhs; ” would create an expressionexp that repre-
sents a comparison ofrhs andlhs . The expressionexp could then be used as a sub-expres-
sion in an assignment or other type of statement or expression.

Comparison is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
relational operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the comparison of two operands for relative size.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 147

9.38 operator >>

Synopsis

#include <ProbeExp.h>

ProbeExp operator >> (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a bit-wise right shift of the left oper-
and. When the right operand is positive, the value returned is the left operand shifted that
many places to the right. When the right operand is zero, the value returned is the value of the
left operand. When the right operand is negative, the value returned is the left operand shifted
that many places to the left. The invoking object represents the left operand, while the argu-
mentrhs represents the right operand. The operands may be objects in memory or expres-
sions that evaluate to values. For example, “ProbeExp exp = lhs >> rhs; ” would
create an expressionexp that represents a left shift oflhs . The expressionexp could then be
used as a sub-expression in an assignment or other type of statement or expression.

Right shift is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
bit-wise shift operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the right shift of the left operator.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 148

9.39 operator >>=

Synopsis

#include <ProbeExp.h>

ProbeExp operator >>= (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a bit-wise right shift of the left oper-
and. When the right operand is positive, the value returned is left operand shifted that many
places to the right. When the right operand is zero, the value returned is the value of the left
operand. When the right operand is negative, the value returned is the left operand shifted that
many places to the left. The result is subsequently stored into the invoking object. The left
operand represents the invoking object, while the argumentrhs represents the right operand.
The left operand must be an object in memory, while the right operand may be an object in
memory or an expression that evaluates to a value. For example, “ProbeExp exp = lhs
>>= rhs; ” would create an expressionexp that represents the right shift oflhs by rhs ,
and its assignment tolhs . The expressionexp could then be used as a sub-expression in an
assignment or other type of statement or expression.

Shift operations are only valid when both operands are integers. Any other combination of
operand data types is invalid. When both operands are integers it has the usual meaning asso-
ciated with bit-wise shift operations and the data type of the result of executing the expression
is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing a right bit-wise shift and assignment of the result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 149

9.40 operator & (binary)

Synopsis

#include <ProbeExp.h>

ProbeExp operator & (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a bit-wiseAND of the left and right
operands. The invoking object represents the left operand, while the argumentrhs represents
the right operand. The operands may be objects in memory or expressions that evaluate to val-
ues. For example, “ProbeExp exp = lhs & rhs; ” would create an expressionexp
that represents a bit-wiseANDof lhs andrhs . The expressionexp could then be used as a
sub-expression in an assignment or other type of statement or expression.

Bit-wiseAND is only valid when both operands are integers. Any other combination of oper-
and data types is invalid. When both operands are integers it has the usual meaning associated
with bit-wiseAND operators and the data type of the result of executing the expression is an
integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the bit-wiseAND of the left and right operands..

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 150

9.41 operator & (unary)

Synopsis

#include <ProbeExp.h>

ProbeExp *operator & (void)

Description

This function doesnot create a node in a probe expression tree. Rather, it computes and
returns the address of the invoking object on the client. For example, the probe expression
“ProbeExp *ptr = &obj; ” would store a pointer to the objectobj in the pointerptr .
It is necessary that the function work in this manner andnot create an expression tree, to allow
C++ to pass objects by reference.

Return value

A pointer to the invoking object on the client.

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 151

9.42 operator &=

Synopsis

#include <ProbeExp.h>

ProbeExp operator &= (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a bit-wiseAND of the operands. The
result is subsequently stored into the invoking object. The left operand represents the invoking
object, while the argumentrhs represents the right operand. The left operand must be an
object in memory, while the right operand may be an object in memory or an expression that
evaluates to a value. For example, “ProbeExp exp = lhs &= rhs; ” would create an
expressionexp that represents the bit-wiseAND of lhs andrhs , and its assignment tolhs .
The expressionexp could then be used as a sub-expression in an assignment or other type of
statement or expression.

Bit-wise operations are only valid when both operands are integers. Any other combination of
operand data types is invalid. When both operands are integers it has the usual meaning asso-
ciated with bit-wiseAND operations and the data type of the result of executing the expression
is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing a bit-wiseAND and assignment of the result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 152

9.43 operator &&

Synopsis

#include <ProbeExp.h>

ProbeExp operator && (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a logicalANDof two operands, where
1 is returned both operands are non-zero, and 0 is returned if one or more are not. The invok-
ing object represents the left operand, while the argumentrhs represents the right operand.
The operands may be objects in memory or expressions that evaluate to values. For example,
“ProbeExp exp = lhs && rhs; ” would create an expressionexp that represents a
logicalAND of rhs andlhs . The expressionexp could then be used as a sub-expression in
an assignment or other type of statement or expression.

LogicalAND is only valid when both operands are integers. Any other combination of oper-
and data types is invalid. When both operands are integers it has the usual meaning associated
with logical expressions and the data type of the result of executing the expression is an inte-
ger.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the logicalAND of two operands.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 153

9.44 operator |

Synopsis

#include <ProbeExp.h>

ProbeExp operator | (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a bit-wiseOR of the left and right
operands. The invoking object represents the left operand, while the argumentrhs represents
the right operand. The operands may be objects in memory or expressions that evaluate to val-
ues. For example, “ProbeExp exp = lhs | rhs; ” would create an expressionexp
that represents a bit-wiseORof lhs andrhs . The expressionexp could then be used as a
sub-expression in an assignment or other type of statement or expression.

Bit-wiseOR is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
bit-wiseOR operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the bit-wiseOR of the left and right operands..

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 154

9.45 operator |=

Synopsis

#include <ProbeExp.h>

ProbeExp operator |= (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a bit-wiseOR of the operands. The
result is subsequently stored into the invoking object. The left operand represents the invoking
object, while the argumentrhs represents the right operand. The left operand must be an
object in memory, while the right operand may be an object in memory or an expression that
evaluates to a value. For example, “ProbeExp exp = lhs |= rhs; ” would create an
expressionexp that represents the bit-wiseOR of lhs andrhs , and its assignment tolhs .
The expressionexp could then be used as a sub-expression in an assignment or other type of
statement or expression.

Bit-wise operations are only valid when both operands are integers. Any other combination of
operand data types is invalid. When both operands are integers it has the usual meaning asso-
ciated with bit-wiseOR operations and the data type of the result of executing the expression
is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing a bit-wiseOR and assignment of the result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 155

9.46 operator ||

Synopsis

#include <ProbeExp.h>

ProbeExp operator || (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a logicalORof two operands, where 1
is returned at least one operand is non-zero, and 0 is returned if both are zero. The invoking
object represents the left operand, while the argumentrhs represents the right operand. The
operands may be objects in memory or expressions that evaluate to values. For example,
“ProbeExp exp = lhs || rhs; ” would create an expressionexp that represents a
logicalOR of rhs andlhs . The expressionexp could then be used as a sub-expression in an
assignment or other type of statement or expression.

LogicalOR is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
logical expressions and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the logicalOR of two operands.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 156

9.47 operator ^

Synopsis

#include <ProbeExp.h>

ProbeExp operator ^ (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a bit-wiseexclusive-OR of the left and
right operands. The invoking object represents the left operand, while the argumentrhs rep-
resents the right operand. The operands may be objects in memory or expressions that evalu-
ate to values. For example, “ProbeExp exp = lhs ̂ rhs; ” would create an expression
exp that represents a bit-wiseexclusive-ORof lhs andrhs . The expressionexp could then
be used as a sub-expression in an assignment or other type of statement or expression.

Bit-wiseexclusive-OR is only valid when both operands are integers. Any other combination
of operand data types is invalid. When both operands are integers it has the usual meaning
associated with bit-wiseexclusive-OR operators and the data type of the result of executing
the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the bit-wiseexclusive-OR of the left and right operands..

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is not an integer

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 157

9.48 operator ^=

Synopsis

#include <ProbeExp.h>

ProbeExp operator ^= (const ProbeExp &rhs)

Parameters

rhs right operand

Description

This function creates a probe expression that represents a bit-wiseexclusive-OR of the oper-
ands. The result is subsequently stored into the invoking object. The left operand represents
the invoking object, while the argumentrhs represents the right operand. The left operand
must be an object in memory, while the right operand may be an object in memory or an
expression that evaluates to a value. For example, “ProbeExp exp = lhs ^= rhs; ”
would create an expressionexp that represents the bit-wiseexclusive-OR of lhs andrhs ,
and its assignment tolhs . The expressionexp could then be used as a sub-expression in an
assignment or other type of statement or expression.

Bit-wise operations are only valid when both operands are integers. Any other combination of
operand data types is invalid. When both operands are integers it has the usual meaning asso-
ciated with bit-wiseexclusive-OR operations and the data type of the result of executing the
expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing a bit-wiseexclusive-OR and assignment of the result.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 158

9.49 operator ~

Synopsis

#include <ProbeExp.h>

ProbeExp operator ~ (void)

Description

This function creates a probe expression that represents the bit-wise inversion of an operand.
The right operand represents the invoking object. The operand may be an object in memory or
an expression that evaluates to a value. For example, “ProbeExp exp = ~ rhs; ” would
create an expressionexp that represents the inversion ofrhs . The expressionexp could then
be used as a sub-expression in an assignment or other type of statement or expression.

Bit-wise inversion is only valid when the operand is a signed integer. Any other operand data
type is invalid. When the operand is an integer it has the usual meaning associated with com-
puter logic and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the bit-wise inversion of an operand.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of the operand is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 159

9.50 operator []

Synopsis

#include <ProbeExp.h>

ProbeExp operator [] (int index)

Parameters

rhs right operand

Description

This function creates a probe expression that represents the indexing and dereference of a
pointer operand. The invoking object represents the left (pointer) operand, while the argument
rhs represents the right (index) operand. The operands may be objects in memory or expres-
sions that evaluate to values. For example, “ProbeExp exp = lhs [rhs]; ” would
create an expressionexp that represents addingrhs to lhs and dereferencing the result. The
expressionexp could then be used as a sub-expression in an assignment or other type of state-
ment or expression.

Index and dereference is only valid when the left operand is a pointer and the right operand is
an integer. Any other combination of operand data types is invalid. When both operands are of
appropriate data types it has the usual meaning associated with index and dereferencing and
the data type of the result of executing the expression matches the pointee.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the index and dereference of the left and right operands.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

ASC_invalid_espression data type of one or both operands is inappropriate

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 160

9.51 sequence

Synopsis

#include <ProbeExp.h>

ProbeExp sequence(const ProbeExp &second)

Parameters

second second expression in the sequence

Description

This function creates a probe expression that represents the joining of two probe expressions
into a sequence. The invoking object represents the first expression in the sequence to be exe-
cuted, while the argumentsecond represents the second expression to be executed. The
operands may be objects in memory or expressions that evaluate to values. For example,
“ProbeExp exp = first.sequence(second); ” would create an expressionexp
that represents the execution offirst followed bysecond . The expressionexp could then
be used as a sub-expression in a conditional expression, a sequence, or other type of statement
or expression.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the sequencing of two expressions.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

See Also

class ProbeExp Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeExp.chp 161

9.52 value_*

Synopsis

int8_t value_int8(void) const

int16_t value_int16(void) const

int32_t value_int32(void) const

int64_t value_int64(void) const

uint8_t value_uint8(void) const

uint16_t value_uint16(void) const

uint32_t value_uint32(void) const

uint64_t value_uint64(void) const

float32_t value_float32(void) const

float64_t value_float64(void) const

const char *value_text(void) const

ProbeExp value_left(void) const

ProbeExp value_right(void) const

ProbeExp value_center(void) const

Description

Returns the value contained in the node.

Return value

The value, of the indicated type, contained within the node.

Exceptions

ASC_invalid_value_ref node does not contain a value of the indicated type

See Also

class ProbeHandle Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeHandle.chp 162

10.0 class ProbeHandle

10.1 Constructors

Synopsis

#include <ProbeHandle.h>

ProbeHandle(void)

ProbeHandle(const ProbeHandle ©)

Parameters

copy object to be duplicated in the copy constructor

Description

Two constructors are provided with this class -- a default constructor and a copy constructor.
The default constructor is able to create storage, marked initially as containing invalid probe
handles, that may later be assigned or initialized through a probe installation.

The copy constructor performs a similar operation to assignment, but operates on an uninitial-
ized object.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

See Also

class ProbeHandle Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeHandle.chp 163

10.2 get_expression

Synopsis

#include <ProbeHandle.h>

ProbeExp get_expression(void)

Description

This function returns the original probe expression installed in the application process. Note
that the expression returned is the original and not a copy, so alterations to the original after it
has been installed will be reflected in the the expression returned by this function.

Return value

Original probe expression installed in the application process.

See Also

class ProbeHandle Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeHandle.chp 164

10.3 get_point

Synopsis

#include <ProbeHandle.h>

InstPoint get_point(void)

Description

This function returns the original instrumentation point where the probe expression was
installed in the application process.

Return value

Instrumentation point where the probe expression was installed in the application process.

See Also

class ProbeHandle Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeHandle.chp 165

10.4 operator =

Synopsis

#include <ProbeHandle.h>

ProbeHandle &operator = (const ProbeHandle ©)

Parameters

copy object to be duplicated in the assignment operator

Description

This function copies the argument over the top of the invoking object.

Return value

Reference to the invoking object.

See Also

class ProbeModule Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeModule.chp 166

11.0 class ProbeModule

11.1 Constructors

Synopsis

#include <ProbeModule.h>

ProbeModule(void)

ProbeModule(const ProbeModule ©)

ProbeModule(const char *filename)

Parameters

copy probe module that will be duplicated in a copy constructor

filename name and path of an object file (*.o) that contains functions and data to
be loaded into the application process

Description

The default constructor creates an empty probe module structure, in other words, a structure
that contains no objects. The default constructor is invoked when uninitialized probe modules
are created, such as in arrays. Objects within the array can be overwritten using an assignment
operator (operator =).

The copy constructor is used to transfer the contents of an initialized object (thecopy param-
eter) to an uninitialized object.

The standard constructor reads the object file (*.o) that contains functions and data to be
loaded into the application process. It reads the file to determine what data and functions are
available and the data type signature of each.

Exceptions

ASC_insufficient_memory not enough memory to create a new node

See Also

class ProbeModule Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeModule.chp 167

11.2 get_count

Synopsis

#include <ProbeModule.h>

int get_count(void)

Description

This function returns the number of data objects and functions in the module. If the module
was initialized by a default constructor or its value was copied from a default constructor, this
function returns 0.

Return value

Number of data objects and functions in the module, or 0 if the module was initialized by a
default constructor.

See Also

class ProbeModule Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeModule.chp 168

11.3 get_object

Synopsis

#include <ProbeModule.h>

ProbeExp get_object(int index)

Parameters

index index of the desired function or data object, equal to or greater than
zero, and less thanget_count()

Description

This function returns a probe expression that represents the desired data or function. If the
index is out of range, that is, if it is less than zero or equal to or greater thanget_count() ,
it returns an “undefined” probe expression.

Return value

A probe expression that represents the desired data or function, or “undefined” if the index is
out of range.

See Also

class ProbeModule Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeModule.chp 169

11.4 operator =

Synopsis

#include <ProbeModule.h>

ProbeModule &operator = (const ProbeModule &rhs)

Parameters

rhs right operand

Description

This function assigns the value of the right operand to the invoking object. The left operand is
the invoking object. For example, “ProbeModule rhs, lhs; ... lhs = rhs; ”
assigns the value ofrhs to lhs . Then one can be used interchangeably with the other.

Return value

A reference to the invoking object (i.e., the left operand).

See Also

class ProbeModule Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeModule.chp 170

11.5 operator ==

Synopsis

#include <ProbeModule.h>

int operator == (const ProbeModule &compare)

Parameters

compare probe module to be compared against the invoking object

Description

This function compares two probe modules for equivalence. If the two objects represent the
same probe module or two modules constructed with the same parameters, this function
returns 1. Otherwise it returns 0.

Return value

This function returns 1 if the two objects are equivalent, 0 otherwise.

See Also

class ProbeModule Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeModule.chp 171

11.6 operator !=

Synopsis

#include <ProbeModule.h>

int operator != (const ProbeModule &compare)

Parameters

compare probe module to be compared against the invoking object

Description

This function compares two probe modules for equivalence. If the two objects represent the
same probe module or two modules constructed with the same parameters, this function
returns 0. Otherwise it returns 1.

Return value

This function returns 0 if the two objects are equivalent, 1 otherwise.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 172

12.0 class ProbeType

12.1 Supporting Data Types

12.1.1 DataExpNodeType

Synopsis

enum DataExpNodeType {

 DEN_array_type, // array type decl -- x[y]

 DEN_class_type, //

 DEN_enum_type, // enum type decl -- enum x {y}

 DEN_float32_type, // float32 type decl

 DEN_float64_type, // float64 type decl

 DEN_function_type, //

 DEN_int16_type, // int16 type declaration

 DEN_int32_type, // int32 type declaration

 DEN_int64_type, // int64 type declaration

 DEN_int8_type, // int8 type declaration

 DEN_pointer_type, // pointer type exp -- * x

 DEN_reference_type, // reference type -- & x

 DEN_struct_type, //

 DEN_uint16_type, // uint16 type declaration

 DEN_uint32_type, // uint32 type declaration

 DEN_uint64_type, // uint64 type declaration

 DEN_uint8_type, // uint8 type declaration

 DEN_union_type, //

 DEN_user_type, // user defined type name

 DEN_void_type, // void data type

 DEN_undef_node, // undefined ENT node

 DEN_LAST_TYPE

}

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 173

Description

Values of typeProbeType are expression trees that represent the data type of an object
within an application process. The object may be an application object, that is, it may be a part
of the application program, or it may be a probe object, that is, an object allocated and used by
the instrumentation system. This data structure reflects all of the possible enumeration values
used by the expression tree to represent the data type of the object. It is a combination of the
enumeration value of each node, and the placement of nodes within the tree, that describes the
data type of the object.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 174

12.2 Constructors

Synopsis

#include <ProbeType.h>

ProbeType(void)

Description

The default constructor creates an object with undefined data type.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 175

12.3 child

Synopsis

#include <ProbeType.h>

ProbeType child(int index) const

Parameters

index index of the sub-type, which must be greater than or equal to zero, and
less thanchild_count()

Description

This function returns the sub-type of a data type. For example, if the invoking object repre-
sents a pointer to an object,child(0) returns the data type of the pointee. For data types
representing functions,child(0) returns the data type of the return value,child(1)
returns the data type of the first argument, if any,child(2) returns the data type of the sec-
ond argument, if any,etc.

Return value

The data type of the indicated sub-type.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 176

12.4 child_count

Synopsis

#include <ProbeType.h>

int child_count(void) const

Description

This function returns the number of sub-types associated with this data type. Undefined data
types, created by the default constructor, return zero. Children can be the data type of a poin-
tee, function return types, function argument data types,etc.

Return value

Number of child sub-types associated with this data type.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 177

12.5 function_type

Synopsis

#include <ProbeType.h>

ProbeType function_type(

ProbeType return_type,

int count,

ProbeType *args)

Parameters

return_type data type of the function return value

count number of function arguments

args array of argument data types

Description

This function creates a data type that represents the prototype or type signature of a function.

Return value

Data type that represents the prototype of a function.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 178

12.6 get_node_type

Synopsis

#include <ProbeType.h>

DataExpNodeType get_node_type(void) const

Description

This function returns the enumeration value, or node type, of this node in the data type expres-
sion tree.

Return value

Node type of this node in the data type expression tree.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 179

12.7 int32_type

Synopsis

#include <ProbeType.h>

ProbeType int32_type(void)

Description

This function creates an object that represents a 32-bit integer data type.

Return value

Data type that represents a 32-bit integer.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 180

12.8 operator =

Synopsis

#include <ProbeType.h>

ProbeType &operator = (const ProbeType ©)

Parameters

copy probe type to be duplicated

Description

This function transfers the contents of thecopy parameter to the object.

Return value

Reference to the object.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 181

12.9 operator ==

Synopsis

#include <ProbeType.h>

int operator == (const ProbeType &compare)

Parameters

compare probe type to be compared

Description

This function compares two probe types for equivalence. If the two data types are equivalent,
this function returns 1. Otherwise it returns 0.

Return value

This function returns 1 if the two data types are equivalent, 0 otherwise.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 182

12.10 operator !=

Synopsis

#include <ProbeType.h>

int operator != (const ProbeType &compare)

Parameters

compare probe type to be compared

Description

This function compares two probe types for equivalence. If the two data types are equivalent,
this function returns 0. Otherwise it returns 1.

Return value

This function returns 0 if the two types are equivalent, 1 otherwise.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 183

12.11 pointer_type

Synopsis

#include <ProbeType.h>

ProbeType pointer_type(const ProbeType &pointee)

Parameters

pointee data type the pointer will point to

Description

This function creates an object that represents the data type of a pointer to a pointee.

Return value

Data type that represents a pointer to a pointee.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 184

12.12 stack

Synopsis

#include <ProbeType.h>

ProbeExp stack(void *init_val)

Parameters

init_val initial value to be given to the stack reference when the reference is
allocated on the stack

Description

This function converts a data type into a probe expression that represents a stack reference.

Return value

A probe expression that represents a stack reference.

See Also

class ProbeType Draft

5/26/98 Copyright 1998 by IBM Corp. ProbeType.chp 185

12.13 unspecified_type

Synopsis

#include <ProbeType.h>

ProbeType unspecified_type(int size)

Parameters

size number of bytes objects of this data type require

Description

This function creates an object that represents an unspecified data type. The data type must be
given a size greater than zero.

Return value

Data type that represents an unspecified data type.

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 186

13.0 class Process

13.1 Constructors

Synopsis

#include <Process.h>

Process(void)

Process(const Process ©)

Process(const char *host_name, int task_pid, int task_num = 0)

Parameters

copy object to be copied into the new Process object

host_name host name or IP address where the process is located. If 0 then the pro-
cess is considered local

task_pid process id for the task

task_num task number for the given process

Description

The default constructor creates a Process object in an “unused” state. Specifically, the task
number and process ID are both -1, and the host name is 0.

The copy constructor uses the values contained in thecopy argument to initialize the new
(constructed) object. No attempt is made to connect to the process represented by thecopy
argument, whether or not it is already connected.

The standard constructor uses the arguments provided to initialize the object. No attempt is
made to connect to the process.Task_num is a value that is used only by queries on the cli-
ent and does not affect the connection in any way.

Exceptions

Exceptions that could be raised as a result of calling this function are unknown at this time.

AisStatus ???

See Also

connect, bconnect, bdisconnect, disconnect, remove_process.

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 187

13.2 activate_probe

Synopsis

#include <Process.h>

AisStatus activate_probe(

short count,

ProbeHandle *phandle,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

count number of probe expressions in the list to be activated

phandle array of probe handles, one for each probe expression to be activated

ack_cb_fp acknowledgement callback function to be invoked whenall probe
expressions in the array have been activated (or activation fails)

ack_cb_tag tag to be used with the acknowledgement callback function

Description

This function activates a list of probes that have been installed within a process. The activation
is atomic in the sense that all probes are activated or all probes fail to be activated for the pro-
cess.

Phandle is an input array generated by aninstall_probe or binstall_probe call.
It is supplied by the caller and must contain at leastcount elements. The ith element of the
array is a handle, or identifier, that identifies the ith probe expression.

To activate a set of probes the process must have been previously connected, and the probes
must have been previously installed in that process.

Note that the function submits the request to activate the probes and returns immediately. The
acknowledgement callback function receives notification of the success or failure of the acti-
vation.

Return value

The return value indicates whether the request for activation was successfully submitted, but
indicates nothing about whether the request itself was successfully executed.

ASC_success all activations were successfully submitted

ASC_???

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 188

Callback Data

The callback function is invoked once for each process for which a probe activation is
requested. When the callback is invoked the callback function is passed a pointer to the pro-
cess as the callback object. The callback message is the request status, of typeAisStatus ,
which contains one of the following status values:

ASC_success probes were successfully activated on this process

ASC_operation_failed attempt to activate these probes in this process failed

See Also

bactivate_probe, bconnect, bdisconnect, bprobe_deactivate,
bprobe_install, class Process, connect, disconnect,
GCBFuncType, probe_deactivate, probe_install,
ProbeHandle::activate

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 189

13.3 add_phase

Synopsis

#include <Process.h>

AisStatus add_phase(

Phase ps,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

ps data structure local to the client containing the characteristics of the
phase to be created

ack_cb_fp acknowledgement callback function to be invoked each time the phase
has been created within a process

ack_cb_tag tag to be used with the acknowledgement callback function

Description

This function adds a new phase structure to the process. A processmust be connected in order
to add a new phase.

Return value

The return value indicates whether the request for phase addition was successfully submitted,
but indicates nothing about whether the request itself was successfully executed.

ASC_success activation request was successfully submitted

ASC_???

Callback Data

The callback function is invoked exactly once for this process. When the callback is invoked
the callback function is passed a pointer to the process as the callback object. The callback
message is the request status, of typeAisStatus , which contains one of the following status
values:

ASC_success probes were successfully activated on this process

ASC_operation_failed attempt to activate these probes on this process failed

Callback Data

The callback function is invoked once for each process for which a phase addition is
requested. When the callback is invoked the callback function is passed a pointer to the pro-
cess as the callback object. The callback message is the request status, of typeAisStatus ,
which contains one of the following status values:

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 190

ASC_success phase was successfully added to this process

ASC_operation_failed attempt to add a phase to this process failed

See Also

badd_phase, bconnect, bdisconnect, class GenCallBack, class
ProbeModule, class Process, connect, disconnect, GCBFuncType,
GCBTagType, Process::malloc, Process::free.

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 191

13.4 attach

Synopsis

#include <Process.h>

AisStatus attach(GCBFuncType fp, GCBTagType tag)

Parameters

fp callback function to be invoked with a successful or failed attachment
to this process.

tag callback tag to be used as a parameter to the callback when the callback
function is invoked.

Description

Attach to this process. When multiple tools are connected to a process or application, only one
tool can be attached at a time. Attaching to a process allows the tool to control the execution
directly, setting break points, starting and stopping execution,etc. Processes must be first con-
nected before they can be attached.

Note that the function submits the request to attach to a process and returns immediately. The
callback function receives notification of the success or failure of attachment.

Return value

The return value forattach indicates whether the request was successfully submitted, but
indicates nothing about whether the request itself was successfully executed.

Callback Data

The callback function is invoked once for each process for which an attach is requested. When
the callback is invoked the callback function is passed a pointer to the process as the callback
object. The callback message is the request status, of typeAisStatus , which contains one
of the following status values:

ASC_success process was successfully attached

ASC_operation_failed attempt to attach to this process failed

See Also

connect, bconnect, bdisconnect, detach, disconnect.

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 192

13.5 bactivate_probe

Synopsis

#include <Process.h>

AisStatus bactivate_probe(short count, ProbeHandle *phandle)

Parameters

count number of probe expressions in the list to be activated

phandle array of probe handles, one for each probe expression to be activated

Description

This function activates a list of probes that have been installed within a process. The activation
is atomic in the sense that all probes are activated or all probes fail to be activated for any
given process.

Phandle is an input array generated by aninstall_probe or binstall_probe call.
It is supplied by the caller and must contain at leastcount elements. The ith element of the
array is a handle, or identifier, that identifies the ith probe expression.

To activate a set of probes the process must have been previously connected, and the probes
must have been previously installed in the process.

Note that the function submits the request to activate the probes and waits until the request has
completed.

Return value

The return value indicates whether the request for activation was successfully executed.

ASC_success all activations were successfully completed

ASC_operation_failed all activations failed

Exceptions

Exceptions that could be raised as a result of calling this function are unknown at this time.

AisStatus ???

See Also

activate_probe, bconnect, bdisconnect, bprobe_deactivate,
bprobe_install, connect, disconnect, probe_deactivate,
probe_install.

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 193

13.6 badd_phase

Synopsis

#include <Process.h>

AisStatus badd_phase(Phase ps)

Parameters

ps data structure local to the client containing the characteristics of the
phase to be created

Description

This function adds a new phase structure to a connected process. A processmust be connected
in order to add a new phase.

Note that the function submits a request to add the phase and waits until the request has com-
pleted. The return value indicates whether the request was successfully executed.

Return value

The return value indicates whether the request for phase addition was successfully executed.

ASC_success phase was successfully added to the process

ASC_operation_failed phase addition failed

See Also

add_phase, bconnect, bdisconnect, class ProbeModule, connect,
disconnect, Process::malloc, Process::free.

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 194

13.7 battach

Synopsis

#include <Process.h>

AisStatus battach(void)

Description

Attach to a process. When multiple tools are connected to a process or application, only one
tool can be attached at a time. Attaching to a process or application allows the tool to control
the execution directly, setting break points, starting and stopping execution,etc.

Note thatbattach does not return control to the caller until the attachment has either suc-
ceeded or failed. The return value indicates whether the attachment succeeded or failed.

Return value

The return value forbattach indicates whether the attachment was successfully established.

ASC_success process was successfully attached as expected.

ASC_operation_failed the process failed to attach

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 195

13.8 bconnect

Synopsis

#include <Process.h>

AisStatus bconnect(void)

Description

Connect to a process. Connection to a process establishes a communication channel to the
CPU where the process resides and creates the environment within that process that allows the
client to insert and remove instrumentation,etc.

Note thatbconnect does not return control to the caller until the connection has either suc-
ceeded or failed. The return value indicates whether the connection succeeded or failed.

Return value

The return value forbconnect indicates whether the connection was successfully estab-
lished.

ASC_success connection was successfully established as expected.

ASC_operation_failed connection failed to be established.

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 196

13.9 bcreate

Synopsis

#include <Process.h>

AisStatus bcreate(

const char *host,

const char *path,

char *const args[],

char *const envp[])

Parameters

host host name or IP address of the host machine where the process is to be
created

path complete path to the executable program, including file name and rela-
tive or absolute directory, when appropriate

args null terminated array of arguments to be provided to the executable

envp null terminated array of environment variables to be provided to the
executable

Description

This function creates a process on the specified host. The process is created in a stopped state,
and a connection is established that allows the client to insert instrumentation into the created
process. The process must be started to begin execution.

Note thatbcreate does not return control to the caller until the new process has been cre-
ated or failed to be created. The return value indicates whether the operation succeeded or
failed.

Return value

The return value forbcreate indicates whether the process was successfully created.

ASC_success process was successfully created, as expected

ASC_operation_failed process failed to be created

See Also

bdestroy, bstart, create, destroy, start

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 197

13.10 bdeactivate_probe

Synopsis

#include <Process.h>

AisStatus bdeactivate_probe(short count, ProbeHandle *phandle)

Parameters

count number of probes to be deactivated

phandle array of probe handles, representing the probes, to be deactivated

Description

This function accepts an array of probe handles as an input parameter. Each probe handle in
the array represents a probe that has been installed in the application. The client sends a
request to each of the processes within the application to deactivate the list of probes repre-
sented by the array. Probes are deactivated atomically for each process in the sense that the
process is temporarily stopped, all probes on the list are deactivated, then the process is
resumed. None of the probes in the array are left active.

Phandle is an input array generated by aninstall_probe or binstall_probe call.
It is supplied by the caller and must contain at leastcount elements. The ith element of the
array is a handle, or identifier, that identifies the ith probe expression.

Note thatbdeactivate_probe does not return control to the caller until all probes in the
array have been deactivated on the process. The return value indicates whether all probes in
the list were deactivated or one or more probes were left intact.

Return value

The return value forbdeactivate_probe indicates whether the deactivations were suc-
cessfully completed.

ASC_success all probe deactivations completed as expected

ASC_operation_failed all probe deactivations failed

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 198

13.11 bdestroy

Synopsis

#include <Process.h>

AisStatus bdestroy(void)

Description

This function destroys or terminates the processes.

Note thatbdestroy does not return control to the caller until the process has been destroyed
or has failed to be destroyed. The return value indicates whether the termination succeeded or
failed.

Return value

The return value forbdestroy indicates whether the termination successfully completed.

ASC_success process was successfully terminated, as expected

ASC_operation_failed ???

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 199

13.12 bdetach

Synopsis

#include <Process.h>

AisStatus bdetach(void)

Description

This function detaches the process. Process control flow, such as stepping and setting break
points, can only be done while a process is in an attached state. Detaching a process removes
the level of process control available to the client or tool when the process is attached, but
retains the process connection so probe installation, activation, removal,etc. can still take
place.

Note thatbdetach does not return control to the caller until the process has been detached or
failed to do so. The return value indicates whether the process successfully detached or failed
to detach.

Return value

The return value forbdetach indicates whether the process was successfully detached.

ASC_success process was successfully detached, as expected

ASC_operation_failed process failed to detach

See Also

attach, battach, detach

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 200

13.13 bdisconnect

Synopsis

#include <Process.h>

AisStatus bdisconnect(void)

Description

Disconnect from the process. Disconnecting from an application process removes the applica-
tion environment created by a connection. All instrumentation and data are removed from the
application process.

Note thatbdisconnect does not return control to the caller until the process has either suc-
ceeded or failed in disconnecting.

Return value

The return value forbdisconnect indicates whether the connection was successfully ter-
minated.

ASC_success connection was successfully terminated as expected

ASC_operation_failed connection failed to terminate

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 201

13.14 bexecute

Synopsis

#include <Process.h>

AisStatus bexecute(ProbeExp pexp)

Parameters

pexp probe expression to be executed in the application process

Description

This function executes a probe expression within the application process. The expression is
executed once, then removed. The application process is interrupted, the expression is exe-
cuted, then the process resumes execution as before the interruption.

Note thatbexecute does not return control to the caller until the probe expression has either
succeeded or failed to execute.

Return value

The return value forexecute indicates whether the request for deallocation succeeded or
failed.

ASC_success probe expression was successfully executed

ASC_operation_failed attempt to execute the probe expression failed

See Also

execute

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 202

13.15 bfree

Synopsis

#include <Process.h>

AisStatus bfree(ProbeExp pexp)

Parameters

pexp dynamically allocated block of probe memory

Description

This function deallocates a block of dynamically allocated probe memory in an application
process. The probe expression must contain only a single reference to a block of data allocated
by themalloc or bmalloc functions.

Note thatbfree does not return control to the caller until deallocating the block of memory
has either succeeded or failed.

Return value

The return value forbfree indicates whether the requests for deallocation were successfully
executed.

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 203

13.16 binstall_probe

Synopsis

#include <Process.h>

AisStatus binstall_probe(

short count,

ProbeExp *probe_exp,

InstPoint *point,

GCBFuncType *data_cb_fp,

GCBTagType *data_cb_tag,

ProbeHandle *phandle)

Parameters

count number of probe expressions to be installed

probe_exp probe expressions to be installed

point instrumentation points where the probe expressions are to be installed

data_cb_fp callback functions to process data received from the probe expression

data_cb_tag tags to be used as an argument to the data callback when it is invoked

phandle probe handles that represent the installed probe expressions

Description

This function installs probe expressions as instrumentation at specific locations within the
process. Probe expressions are installed atomically, in the sense that within a process either all
probe expressions in the request are installed into the process, or none of the expressions are
installed. The return value indicates whether all probes were installed, or whether the process
was unable to install the expressions as requested.

Data_cb_fp is an input array supplied by the caller that must contain at leastcount ele-
ments. The ith element of the array is a pointer to a callback function that is invoked each time
the ith probe inphandle sends data via theAisSendMsg function.Data_cb_tag is a
similar array that contains the callback tag used when callbacks indata_cb_fp are invoked.
The ith callback tag is used with the ith callback.

Phandle is an output array supplied by the caller that must contain at leastcount elements.
The ith element of the array is a handle, or identifier, to be used in subsequent references to the
ith probe expression. For example, it is needed when the client activates, deactivates or
removes a probe expression from an application or process.Phandle does not contain valid
information if the installation fails.

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 204

Note thatbinstall_probe does not return control to the caller until all probe expressions
have been installed or failed to install within the process.

Return value

The return value forbinstall_probe indicates whether the probe installations were suc-
cessful.

ASC_success all probes were successfully installed, as expected

ASC_operation_failed one or more of the probes could not be installed as
requested, so none of the probes were installed

Callback Data

The callback function is invoked once for each message sent from the probe. When the call-
back is invoked the callback function is passed a pointer to the process as the callback object.
The callback tag is given in thedata_cb_tag array. The callback message is the data send
by the probe using theAis_send function call.

See Also

Ais_send, install_probe, ...

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 205

13.17 bload_module

Synopsis

#include <Process.h>

AisStatus bload_module(ProbeModule *module)

Parameters

Description

This function is currently being designed. The intent is to provide some means by which
instrumentation functions and probe classes might be loaded into a process for use by one or
more probe expressions.

Note thatbload_module does not return control to the caller until the probe module has
been installed or failed to install in the process.

Return value

The return value forbload_module indicates whether the probe module installation was
successful.

ASC_success module was successfully installed on all processes

ASC_operation_failed module could not be installed as requested on one or more
processes

See Also

bunload_module, load_module, unload_module

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 206

13.18 bmalloc

Synopsis

#include <Process.h>

ProbeExp bmalloc(ProbeType pt, void *init_val, AisStatus &stat)

ProbeExp bmalloc(

ProbeType pt,

void *init_val,

Phase ps,

AisStatus &stat)

Parameters

pt data type of the allocated data

init_val pointer to the initial value of the allocated data, or 0 if no initial value is
desired

ps phase that will contain the allocated data

stat output value indicating the completion status of the function

Description

This function allocates a block of probe data in a process. It returns a single probe expression
that may be used to reference the allocated data. The data may be referenced in a probe
expression that may be installed in the process.

Note thatbmalloc does not return control to the caller until it has either succeeded or failed
on the process. If the allocation succeeds it returns a valid probe expression data reference and
stat is given the valueASC_success . If the allocation fails thenstat is given the value
ASC_operation_failed and any probe that references the returned value ofbmalloc
will fail to install.

Return value

A probe expression that may be used as a valid reference to the data on this process.

See Also

bfree, free, malloc

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 207

13.19 breadmem

Synopsis

#include <Process.h>

AisStatus breadmem(char *location, char *buffer, int size)

Parameters

location address in the application process where reading is to begin

buffer address in the client process where data is to be placed

size size, in bytes, of both the buffer and the memory block to be read

Description

This function sends a request to the daemon managing this process to read the indicated block
of memory within the process. The block of memory is then returned to the client and stored
in the indicated buffer.

Note thatbreadmem does not return control to the caller until the memory has been read or
failed to be read from the process.

Return value

The return value forbreadmem indicates whether the block of memory was successfully
read from the application process.

ASC_success memory was successfully read, as expected

ASC_operation_failed memory could not be read

See Also

bwritemem, readmem, writemem

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 208

13.20 bremove_phase

Synopsis

#include <Process.h>

AisStatus bremove_phase(Phase ps)

Parameters

ps phase description to be removed from the application

Description

This function removes a phase from the application. Data and functions associated with the
phase are unaffected by removing the phase. Existing probe data cannot become associated
with a phase except at the time of data allocation, so deleting a phase has the effect of perma-
nently disassociating data from any phase.

Note thatbremove_phase does not return control to the caller until the phase has been
removed or failed to be removed from the process.

Return value

The return value forbremove_phase indicates whether the phase was successfully
removed from the process.

ASC_success phase was successfully removed, as expected

ASC_operation_failed phase could not be removed from the process

See Also

add_phase, badd_phase, class Phase, remove_phase

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 209

13.21 bremove_probe

Synopsis

#include <Process.h>

AisStatus bremove_probe(short count, ProbeHandle *phandle)

Parameters

count number of probe handles in the accompanying array

phandle array of probe handles representing probe expressions to be removed

Description

This function deletes or removes probe expressions that have been installed in a process. If all
probe expressions are installed and deactivated, the probe expressions are removed and a “nor-
mal” return status results. If one or more of the probe expressions are currently active, the
expressions are deactivated and removed, and the return status indicates there were active
probes at the time of their removal. If one or more of the probes do not exist, all existing
probes are removed and the return status indicates an appropriate warning. If one or more of
the probe expressions exists but cannot be removed, an error results and none of the probe
expressions is removed. If the process is not connected a warning is returned.

Phandle is an input array generated by aninstall_probe or binstall_probe call.
It is supplied by the caller and must contain at leastcount elements. The ith element of the
array is a handle, or identifier, that identifies the ith probe expression.

Probe expression removal is atomic in the sense that all probe expressions are removed from a
given process or none are. When probes are removed from a process the process is temporarily
stopped, all indicated probes are removed, and the process is resumed.

Note thatbremove_probe does not return control to the caller until the probes have been
removed or failed to be removed from the process. If one or more probes cannot be removed
for any reason, as many as can are removed and status indicates the condition.

Return value

The return value forbremove_probe indicates whether all probes in the list were success-
fully removed from the process.

ASC_success all probes were successfully removed, as expected

ASC_operation_failed one or more of the probes were not removed

See Also

bactivate_probe, bdeactivate_probe, binstall_probe,
activate_probe, deactivate_probe, install_probe, remove_probe

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 210

13.22 bresume

Synopsis

#include <Process.h>

AisStatus bresume(void)

Description

This function resumes execution of a process that has been temporarily suspended by astop
or bstop function call. A process must be connected, attached and stopped for it to be
resumed. A process that is not connected or not attached will result in a warning return code.
A process that is not stopped will result in an informational return code.

Note thatbresume does not return control to the caller until the process has resumed or
failed to resume.

Return value

The return value forbresume indicates whether the process was successfully resumed.

ASC_success process was resumed, as expected

ASC_operation_failed process failed to be resumed

See Also

attach, battach, bconnect, bdetach, bdisconnect, bsuspend,
connect, detach, disconnect, resume, suspend

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 211

13.23 bset_phase_period

Synopsis

#include <Process.h>

AisStatus bset_phase_period(Phase ps, float period)

Parameters

ps phase to be modified

period new time interval between successive phase activations, in seconds

Description

This function changes the time interval between successive activations of a phase within the
process. Processes which do not have the phase installed result in an informational return
code. Processes that are not connected result in a warning return code.

The new period is represented by a floating-point value. If the value is positive it represents
the time interval in seconds. If the value is zero or positive and smaller than the minimum acti-
vation time interval, it represents the minimum activation delay time. In both cases the phase
is activated immediately before setting the new interval. If the value is less than zero the phase
is disabled immediately, but left in place for possible future reactivation.

Note thatbset_phase_period does not return control to the caller until the phase period
has been set or failed to be set in the process.

Return value

The return value forbset_phase_period indicates whether the phase period was suc-
cessfully set on this process.

ASC_success phase period was successfully set

ASC_operation_failed phase period failed to be set

See Also

add_phase, badd_phase, bremove_phase, get_phase_period,
remove_phase, set_phase_period

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 212

13.24 bsignal

Synopsis

#include <Process.h>

AisStatus bsignal(int unix_signal)

Parameters

unix_signal Unix™ signal to be sent to every process in the application

Description

This function sends the specified signal to the process. The process must be both connected
and attached to receive the signal. The function does not return until the process receives and
acknowledges receiving the signal.

A signal is sent only to those processes that are connected and attached.

Note thatbsignal does not return control to the caller until the process has been signalled
or failed to be signalled.

Return value

The return value forbsignal indicates whether the AIX signal was successfully sent to the
process.

ASC_success signal was successfully sent to the process

ASC_operation_failed signal failed to be sent to the process

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 213

13.25 bstart

Synopsis

#include <Process.h>

AisStatus bstart(void)

Description

This function starts the execution of a process that has been created but not yet begun execu-
tion. When applied to a process that has begun execution it causes the process to terminate and
restart.

Note thatbstart does not return control to the caller until the process has started or failed to
start.

Return value

The return value forbstart indicates whether the process was successfully started.

ASC_success process was started

ASC_operation_failed process failed to be started

See Also

bcreate, bdestroy, create, destroy, start

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 214

13.26 bsuspend

Synopsis

#include <Process.h>

AisStatus bsuspend(void)

Description

This function suspends a process that is executing. A tool must be both connected and
attached to a process in order to suspend process execution.

Note thatbsuspend does not return control to the caller until the process has been sus-
pended or failed to be suspended.

Return value

The return value forbsuspend indicates whether all processes within the application were
successfully suspended.

ASC_success process was successfully suspended

ASC_operation_failed process failed to be suspended

See Also

bresume, resume, suspend

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 215

13.27 bunload_module

Synopsis

#include <Process.h>

AisStatus bunload_module(ProbeModule* module)

Parameters

module probe module to be removed from the application process

Description

This function is currently being designed. The intent is to provide some means by which pre-
viously loaded instrumentation functions and probe classes might be removed from a process.

Note thatbunload_module does not return control to the caller until the probe module has
been removed or failed to be removed from the application process.

Return value

The return value forbunload_module indicates whether the probe module was success-
fully removed from the process.

ASC_success module was successfully removed from the process

ASC_operation_failed module could not be removed from the process

See Also

bload_module, load_module, unload_module

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 216

13.28 bwritemem

Synopsis

AisStatus bwritemem(char *location, char *buffer, int size)

Parameters

location address in the application process where writing is to begin

buffer address in the client process from which data is to be taken

size size, in bytes, of both the buffer and the memory block to be written

Description

This function sends a request to the daemon managing this process to write the indicated
block of memory within the process. Data to write the block of memory is taken from the indi-
cated client buffer.

Note thatbwritemem does not return control to the caller until the memory has been written
or failed to be written on the process.

Return value

The return value forbwritemem indicates whether the block of memory was successfully
written to the application process.

ASC_success memory was successfully written, as expected

ASC_operation_failed memory could not be written

See Also

breadmem, readmem, writemem

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 217

13.29 connect

Synopsis

#include <Process.h>

AisStatus connect(GCBFuncType fp, GCBTagType tag)

Parameters

fp callback function to be invoked with each successful or failed connec-
tion to a process listed within the application

tag callback tag to be used each time the callback function is invoked

Description

Connection to a process establishes a communication channel to the CPU where the process
resides (the host CPU) and creates the environment within that process that allows the client to
insert and remove instrumentation, alter its control flow,etc.

Note that the function submits the requests to connect the process and returns immediately.
The callback function receives notification of a connection’s success or failure.

Return value

The return value forconnect indicates whether the request for connection was successfully
submitted, but indicates nothing about whether the request was successfully executed.

ASC_success connection request was successfully submitted

ASC_operation_failed request could not be submitted

Callback Data

The callback function is invoked once for each process for which a connection is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success connection was successfully established on this process

ASC_operation_failed attempt to connect to this process failed

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 218

13.30 create

Synopsis

#include <Process.h>

AisStatus create(

const char *host,

const char *path,

char *const args[],

char *const envp[],

GCBFuncType fp,

GCBTagType tag)

Parameters

host host name or IP address of the host machine where the process is to be
created

path complete path to the executable program, including file name and rela-
tive or absolute directory, when appropriate

args null terminated array of arguments to be provided to the executable

envp null terminated array of environment variables to be provided to the
executable

fp callback function to be invoked with a successful or failed creation

tag callback tag to be used when the callback function is invoked

Description

This function is currently being defined. It creates an application in a “stopped” state.

Note thatcreate returns control immediately to the caller. It does not wait until the process
has been created. The return value indicates whether the request was successfully submitted
and gives no indication whatever about the success or failure of the execution of the request.

Return value

The return value forcreate indicates whether the request for process creation was success-
fully submitted, but indicates nothing about whether the request was successfully executed.

ASC_success process creation request was successfully submitted

ASC_operation_failed request could not be submitted

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 219

Callback Data

The callback function is invoked once when the new process is created. When the callback is
invoked the callback function is passed a pointer to the process as the callback object. The
callback message is the request status, of typeAisStatus , which contains one of the fol-
lowing status values:

ASC_success connection was successfully established on this process

ASC_operation_failed attempt to connect to this process failed

See Also

bcreate, bdestroy, bstart, destroy, start

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 220

13.31 deactivate_probe

Synopsis

#include <Process.h>

AisStatus deactivate_probe(

short count,

ProbeHandle *phandle,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

count number of probes to be deactivated

phandle array of probe handles, representing the probes, to be deactivated

ack_cb_fp acknowledgement callback function to be invoked whenall probe
expressions in the array have been deactivated (or deactivation fails)

ack_cb_tag tag to be used with the acknowledgement callback function

Description

This function accepts an array of probe handles as an input parameter. Each probe handle in
the array represents a probe that has been installed in the application. The client sends a
request to each of the processes within the application to deactivate the list of probes repre-
sented by the array. Probes are deactivated atomically for each process in the sense that the
process is temporarily stopped, all probes on the list are deactivated, then the process is
restarted. None of the probes in the array are left active. If one or more probes cannot be deac-
tivated, for whatever reason, all that can be deactivated are deactivated.

Phandle is an input array generated by aninstall_probe or binstall_probe call.
It is supplied by the caller and must contain at leastcount elements. The ith element of the
array is a handle, or identifier, that identifies the ith probe expression.

Note thatdeactivate_probe returns control immediately to the caller. It does not wait
until all probes in the array have been deactivated on all processes in the application. The
return value indicates whether the request was successfully submitted and gives no indication
whatever about the success or failure of the execution of the request.

Return value

The return value fordeactivate_probe indicates whether the deactivations were suc-
cessfully submitted.

ASC_success all probe deactivations were submitted, as expected

ASC_operation_failed one or more of the probe deactivations were not submitted

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 221

Callback Data

The callback function is invoked once for each process for which a probe deactivation is
requested. When the callback is invoked the callback function is passed a pointer to the pro-
cess as the callback object. The callback message is the request status, of typeAisStatus ,
which contains one of the following status values:

ASC_success probes were successfully deactivated on this process

ASC_operation_failed attempt to deactivate probes on this process failed

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 222

13.32 destroy

Synopsis

#include <Process.h>

AisStatus destroy(GCBFuncType fp, GCBTagType tag)

Parameters

fp acknowledgement callback function to be invoked for each process that
is destroyed (or not destroyed)

tag tag to be used with the acknowledgement callback function

Description

This function destroys or terminates all processes within the application.

Note thatdestroy returns control to the caller immediately. It does not wait until all pro-
cesses within the application have been destroyed. The return value indicates whether the
requests were successfully submitted, but give not indication of whether the requests them-
selves were successfully executed.

Return value

The return value fordestroy indicates whether the terminations were successfully
requested.

ASC_success all terminations were successfully requested, as expected

ASC_operation_failed one or more of the terminations were not requested

Callback Data

The callback function is invoked once when the process destruction is attempted. When the
callback is invoked the callback function is passed a pointer to the process as the callback
object. The callback message is the request status, of typeAisStatus , which contains one
of the following status values:

ASC_success process was successfully destroyed

ASC_operation_failed attempt to destroy this process failed

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 223

13.33 detach

Synopsis

#include <Process.h>

AisStatus detach(GCBFuncType fp, GCBTagType tag)

Parameters

fp callback function to be invoked when detaching from a process suc-
ceeds or fails.

tag callback tag to be used when the callback function is invoked.

Description

This function detaches the client from this process. Process control flow, such as stepping and
setting break points, can only be done while a process is in an attached state. Detaching a pro-
cess removes the level of process control available to the client or tool when the process is
attached, but retains the process connection so probe installation, activation, removal,etc. can
still take place.

Note thatdetach returns control to the caller immediately upon issuing a request to detach
from a process. The return value indicates whether the request was successfully submitted.

Return value

The return value fordetach indicates whether the request was successfully submitted.

ASC_success detach request was successfully submitted, as expected

ASC_operation_failed request was not submitted

Callback Data

The callback function is invoked once for each process for which detachment is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success process was successfully detached

ASC_operation_failed attempt to detach this process failed

See Also

attach, battach, bdetach

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 224

13.34 disconnect

Synopsis

#include <Process.h>

AisStatus disconnect(GCBFuncType fp, GCBTagType tag)

Parameters

fp callback function to be invoked when disconnection from a process
succeeds or fails.

tag callback tag to be used when the callback function is invoked.

Description

Disconnecting from an application process removes the application environment created by a
connection. All instrumentation and data are removed from the application process.

Note that the function submits the request to disconnect the process and returns immediately.
The callback function receives notification of a disconnection’s success or failure.

Return value

The return value fordisconnect indicates whether the request for disconnection was suc-
cessfully submitted, but indicates nothing about whether the request was successfully exe-
cuted.

Callback Data

The callback function is invoked once when the process is (or fails to be) disconnected. When
the callback is invoked the callback function is passed a pointer to the process as the callback
object. The callback message is the request status, of typeAisStatus , which contains one
of the following status values:

ASC_success process was successfully disconnected

ASC_operation_failed attempt to disconnect this process failed

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 225

13.35 execute

Synopsis

#include <Process.h>

AisStatus execute(

ProbeExp probe_exp,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

probe_exp probe expression to be executed in the application process

ack_cb_fp callback function to be invoked when execution succeeds or fails

ack_cb_tag callback tag to be used when the callback function is invoked

Description

This function executes a probe expression within the application process. The expression is
executed once, then removed. The application process is interrupted, the expression is exe-
cuted, then the process resumes execution as before the interruption.

Note thatexecute returns control to the caller immediately upon submitting its request to
the daemon. It does not wait until the probe expression has been executed or failed to execute.
The acknowledgement callback function receives notification of the success or failure of the
execution.

Return value

The return value forexecute indicates whether the request for deallocation was success-
fully submitted, but indicates nothing about whether the request was successfully executed.

ASC_success probe expression execution was successfully submitted

ASC_???

Callback Data

The callback function is invoked once when execution succeeds or fails. When the callback is
invoked the callback function is passed a pointer to the process as the callback object. The
callback message is the request status, of typeAisStatus , which contains one of the fol-
lowing status values:

ASC_success probe expression was successfully executed

ASC_operation_failed attempt to execute the probe expression failed

See Also

bexecute

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 226

13.36 free

Synopsis

#include <Process.h>

AisStatus free(

ProbeExp pexp,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

pexp dynamically allocated block of probe memory

ack_cb_fp callback function to be invoked when deallocating the block of memory
succeeds or fails

ack_cb_tag callback tag to be used when the callback function is invoked

Description

This function deallocates a block of dynamically allocated probe memory for this process.
The probe expression must contain only a single reference to a block of data allocated by the
malloc or bmalloc functions.

Note thatfree returns control to the caller immediately upon submitting its request to free
the data. It does not wait until the data has been deallocated or failed to deallocate. The
acknowledgement callback function receives notification of the success or failure of the deal-
location.

Return value

The return value forfree indicates whether the request for deallocation was successfully
submitted, but indicates nothing about whether the request was successfully executed.

Callback Data

The callback function is invoked once when deallocation succeeds or fails. When the callback
is invoked the callback function is passed a pointer to the process as the callback object. The
callback message is the request status, of typeAisStatus , which contains one of the fol-
lowing status values:

ASC_success block of probe memory was successfully deallocated

ASC_operation_failed attempt to deallocate memory on this process failed

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 227

13.37 get_pid

Synopsis

#include <Process.h>

int get_pid(void) const

Description

This function returns the AIX process identification number for the indicated process.

Return value

AIX process ID.

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 228

13.38 get_phase_period

Synopsis

#include <Process.h>

float get_phase_period(Phase ps, AisStatus &stat) const

Parameters

ps phase being queried on this process

stat output variable that indicates the success or failure of the call

Description

This function returns the time duration, in seconds, between successive activations of this
phase. If the return value is greater than zero, the value represents the minimum time between
successive activations of the phase. Due to scheduling conflicts with other processes and
resources on the system the actual time between phase activations may be greater than the
stated value. If the return value is zero it represents the fastest rate of phase activation possi-
ble. If the return value is less than zero, it indicates an error.

Stat indicates whether the query was successful. To be successful the process must be con-
nected and the phase must exist on the process.

Return value

Minimum time duration, in seconds, between successive activations of this phase.

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 229

13.39 get_program_object

Synopsis

#include <Process.h>

SourceObj get_program_object(void) const

Description

This function retrieves the top-level source object from the process. Source objects are a
coarse source-level view of the program structure. Program objects represent the top level of a
tree structure. Below a program object are modules, then data and functions,etc. If the process
is not connected or some other error occurs, the source object returned will be invalid. The
source object may be queried to determine its validity.

Return value

Program object for this process.

See Also

class SourceObj

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 230

13.40 get_task

Synopsis

#include <Process.h>

int get_task(void) const

Description

This function returns the task identifier associated with this process.

Return value

Task ID for this process.

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 231

13.41 install_probe

Synopsis

#include <Process.h>

AisStatus install_probe(

short count,

ProbeExp *probe_exp,

InstPoint *point,

GCBFuncType *data_cb_fp,

GCBTagType *data_cb_tag,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag,

ProbeHandle *phandle)

Parameters

count number of probe expressions to be installed, instrumentation points,
data callback functions, data callback tags, and probe handles

probe_exp probe expressions to be installed

point instrumentation points where the probe expressions are to be installed

data_cb_fp callback function to process data received from the probe expression

data_cb_tag tag to be used as an argument to the data callback when it is invoked

ack_cb_fp callback function to process data received from the probe expression

ack_cb_tag tag to be used as an argument to the data callback when it is invoked

phandle probe handles that represent the installed probe expressions

Description

This function installs probe expressions as instrumentation at specific locations within a pro-
cess. Probe expressions are installed atomically, in the sense that within each process either all
probe expressions in the request are installed into the process, or none of the expressions are
installed. The return value indicates whether the request to have probes installed was success-
fully submitted.

Phandle is an output array supplied by the caller that must contain at leastcount elements.
The ith element of the array is a handle, or identifier, to be used in subsequent references to the
ith probe expression. For example, it is needed when the client activates, deactivates or
removes a probe expression from an application or process.Phandle does not contain valid
information if the installation fails.

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 232

Note thatinstall_probe returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until all probe expressions have been installed or
failed to install within all processes within the application.

Return value

The return value forinstall_probe indicates whether the request for probes to be
installed was successfully submitted. It gives no indication of whether the requests was suc-
cessfully executed.

ASC_success probe expression installation request was successfully sub-
mitted

ASC_operation_failed probe expression installations failed to be requested

Callback Data

ack_cb_fp. The callback function is invoked once and removed. It is called when the status
message for this request is received. When the callback is invoked the callback function is
passed a pointer to the process as the callback object. The callback message is the request sta-
tus, of typeAisStatus , which contains one of the following status values:

ASC_success all probes were successfully installed in this process

ASC_operation_failed attempt to install probes in this process failed

data_cb_fp. The callback function is invoked once for each message sent from the probe.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback tag is given in thedata_cb_tag array. The callback message
is the data send by the probe using theAis_send() function call.

See Also

activate_probe, bactivate_probe, bdeactivate_probe,
bremove_probe, deactivate_probe, remove_probe

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 233

13.42 load_module

Synopsis

#include <Process.h>

AisStatus load_module(

ProbeModule *module,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

Description

This function is currently being designed. The intent is to provide some means by which
instrumentation functions and probe classes might be loaded into an application for use by one
or more probe expressions.

Note thatload_module returns control to the caller immediately upon submitting the
request to the daemon. It does not wait until the module has been loaded or failed to load
within the process.

Return value

The return value forload_module indicates whether the request to load the indicated mod-
ule was successfully submitted. It gives no indication of whether the request was successfully
executed.

ASC_success load requests was successfully submitted

ASC_operation_failed load operation failed to be requested

Callback Data

The callback function is invoked once for the process for which disconnection is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, of typeAisStatus , which con-
tains one of the following status values:

ASC_success objects were successfully loaded into this process

ASC_operation_failed attempt to load objects on this process failed

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 234

13.43 malloc

Synopsis

#include <Process.h>

ProbeExp malloc(

ProbeType pt,

void *init_val,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag,

AisStatus &stat)

ProbeExp malloc(

ProbeType pt,

void *init_val,

Phase ps,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag,

AisStatus &stat)

Parameters

pt data type of the allocated data

init_val pointer to the initial value of the allocated data, or 0 if no initial value is
desired

ps phase that will contain the allocated data

ack_cb_fp callback function to process the acknowledgement message

ack_cb_tag tag to be used as an argument to the acknowledgement callback when it
is invoked

stat output value indicating the completion status of the function

Description

This function allocates a block of probe data in a process. It returns a single probe expression
that may be used to reference the allocated data. The data may be referenced in a probe
expression that may be installed in the process.

Note thatmalloc returns control to the caller immediately and does not wait until it has
either succeeded or failed on the process. The probe expression representing the allocation is

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 235

returned immediately whether or not allocation succeeds. The returned probe expression may
be used as a data reference on the process if the allocation succeeds. If the data reference is
used in another probe expression and the client attempts to install that probe expression in a
process where the allocation failed, that probe expression will fail to install. Similarly, instal-
lation will fail if one attempts to install the probe in a process where the data was not allo-
cated.

Stat indicates whether all requests for allocation were successfully submitted. If all requests
are successfully submittedstat is given the valueASC_success . If some request cannot
be submitted thenstat is given the valueASC_operation_failed . It reflects the high-
est severity encountered.

Return value

A probe expression that may be used as a valid reference to the data on this process if the data
is allocated

Callback Data

The callback function is invoked once, when the acknowledgement message is received, and
then removed. When the callback is invoked the callback function is passed a pointer to the
process as the callback object. The callback message is the request status, of typeAisSta-
tus , which contains one of the following status values:

ASC_success data was successfully allocated in this process

ASC_operation_failed attempt to allocate data in this process failed

See Also

bfree, bmalloc, free

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 236

13.44 operator =

Synopsis

#include <Process.h>

Process &operator = (const Process &rhs)

Parameters

rhs right operand

Description

This function assigns the value of the right operand to the invoking object. The left operand is
the invoking object. For example, “Process rhs, lhs; ... lhs = rhs; ” assigns
the value ofrhs to lhs . Both values would then refer to the same process, if any.

Return value

A reference to the invoking object (i.e., the left operand).

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 237

13.45 readmem

Synopsis

#include <Process.h>

AisStatus readmem(

char *location,

char *buffer,

int size,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

location address in the application process where reading is to begin

buffer address in the client process where data is to be placed

size size, in bytes, of both the buffer and the memory block to be read

ack_cb_fp callback function to process data read from the process

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function sends a request to the daemon managing this process to read the indicated block
of memory within the process. The block of memory is then returned to the client in the indi-
cated buffer.

Note thatreadmem returns control to the caller immediately. It does not wait until the mem-
ory has been read or failed to be read from the process.

Return value

The return value forreadmem indicates whether the request to read the block of memory was
successfully submitted. It gives no indication whether the request was successfully executed.

ASC_success request was successfully submitted, as expected

ASC_operation_failed request could not be submitted

Callback Data

The callback function is invoked once, when the data is received. The data is written to the
buffer indicated in thereadmem function call. When the callback is invoked the callback
function is passed a pointer to the process as the callback object. The callback message is the
request status, of typeAisStatus , which contains one of the following status values:

ASC_success memory was successfully read in this process

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 238

ASC_operation_failed attempt to read memory in this process failed

See Also

bwritemem, readmem, writemem

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 239

13.46 remove_phase

Synopsis

#include <Process.h>

AisStatus remove_phase(

Phase ps,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

ps phase description to be removed from the application

ack_cb_fp callback function to process phase removal acknowledgments

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function removes a phase from the application. Data and functions associated with the
phase are unaffected by removing the phase. Existing probe data cannot become associated
with a phase except at the time of data allocation, so deleting a phase has the effect of perma-
nently disassociating data from any phase.

Note thatremove_phase returns control to the caller immediately upon submitting the
request to the daemon. It does not wait until the phase has been removed or failed to be
removed from the process.

Return value

The return value forremove_phase indicates whether the request to remove the indicated
phase on the process was successfully submitted. It gives no indication of whether the request
was successfully executed.

ASC_success remove request was successfully submitted

ASC_operation_failed remove operation failed to be requested

Callback Data

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request status, of typeAis-
Status , which contains one of the following status values:

ASC_success phase was successfully removed from this process

ASC_operation_failed attempt to remove phase from this process failed

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 240

See Also

add_phase, badd_phase, bremove_phase

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 241

13.47 remove_probe

Synopsis

#include <Process.h>

AisStatus remove_probe(

short count,

ProbeHandle *phandle,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

count number of probe handles in the accompanying array

phandle array of probe handles representing probe expressions to be removed

ack_cb_fp callback function to process probe removal acknowledgments

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function deletes or removes probe expressions that have been installed in an application.
If all probe expressions are installed and deactivated, the probe expressions are removed and a
“normal” return status results. If one or more of the probe expressions are currently active, the
expressions are deactivated and removed and the return status indicates there were active
probes at the time of their removal. If one or more of the probes do not exist, all existing
probes are removed and the return status indicates an appropriate warning. If one or more of
the probe expressions exists but cannot be removed, an error results and none of the probe
expressions is removed. If one or more processes are not connected, probe removal takes place
within those that are connected, and a warning is issued.

Phandle is an input array generated by aninstall_probe or binstall_probe call.
It is supplied by the caller and must contain at leastcount elements. The ith element of the
array is a handle, or identifier, that identifies the ith probe expression.

Probe expression removal is atomic in the sense that all probe expressions are removed from a
given process or none are. When probes are removed from a process the process is temporarily
stopped, all indicated probes are removed, and the process is resumed.

Note thatremove_probe returns control to the caller immediately upon submitting the
request to the daemon. It does not wait until the probes have been removed or failed to be
removed from the process.

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 242

Return value

The return value forremove_probe indicates whether the request to remove the indicated
probes on the process was successfully submitted. It gives no indication of whether the
request was successfully executed.

ASC_success all remove requests were successfully submitted

ASC_operation_failed remove operation failed to be requested to some process

Callback Data

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request status, of typeAis-
Status , which contains one of the following status values:

ASC_success probes were successfully removed from this process

ASC_operation_failed attempt to remove probes from this process failed

See Also

activate_probe, bactivate_probe, bdeactivate_probe,
binstall_probe, bremove_probe, deactivate_probe, install_probe

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 243

13.48 resume

Synopsis

#include <Process.h>

AisStatus resume(GCBFuncType ack_cb_fp, GCBTagType ack_cb_tag)

Parameters

ack_cb_fp callback function to process process resumption acknowledgments

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function resumes execution of an application that has been temporarily suspended by a
stop or bstop function. Execution resumption occurs on a process by process basis. A pro-
cess must be connected, attached and stopped for it to be resumed. A process that is not con-
nected or not attached will result in a warning return code. A process that is not stopped will
result in an informational return code.

Note thatresume returns control to the caller immediately upon submitting the request to the
daemon. It does not wait until the process has resumed or failed to resume.

Return value

The return value forresume indicates whether the request to resume process execution was
successfully submitted. It gives no indication of whether the request was successfully exe-
cuted.

ASC_success request to resume execution was successfully submitted

ASC_operation_failed resume operation failed to be requested

Callback Data

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request status, of typeAis-
Status , which contains one of the following status values:

ASC_success process was successfully resumed

ASC_operation_failed attempt to resume this process failed

See Also

attach, battach, bconnect, bdetach, bdisconnect, bresume,
bsuspend, connect, detach, disconnect, suspend

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 244

13.49 set_phase_period

Synopsis

#include <Process.h>

AisStatus set_phase_period(

Phase ps,

float period,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

ps phase to be modified

period new time interval between successive phase activations, in seconds

ack_cb_fp callback function to process phase acknowledgments

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function changes the time interval between successive activations of a phase. The interval
change occurs on a process by process basis for all processes within the application. Processes
which do not have the phase installed result in an informational return code. Processes that are
not connected result in a warning return code.

The new period is represented by a floating-point value. If the value is positive it represents
the time interval in seconds. If the value is zero or positive and smaller than the minimum acti-
vation time interval, it represents the minimum activation time interval. In both cases the
phase is activated immediately upon setting the new interval. If the value is less than zero the
phase is disabled immediately, but left in place for possible future reactivation.

Note thatset_phase_period returns control to the caller immediately upon submitting
the request to the daemon. It does not wait until the phase period has been set or failed to be
set within the process.

Return value

The return value forset_phase_period indicates whether the request to set the phase
period was successfully submitted. It gives no indication of whether the request was success-
fully executed.

ASC_success request to set the phase period was successfully submitted

ASC_operation_failed set phase period failed to be requested

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 245

Callback Data

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request status, of typeAis-
Status , which contains one of the following status values:

ASC_success phase period was successfully set

ASC_operation_failed attempt to set the phase period on this process failed

See Also

add_phase, badd_phase, bremove_phase, bset_phase_period,
get_phase_period, remove_phase

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 246

13.50 signal

Synopsis

#include <Process.h>

AisStatus signal(

int unix_signal,

GCBFuncType fp,

GCBTagType tag)

Parameters

unix_signal Unix™ signal to be sent to this process

ack_cb_fp callback function to process the signal acknowledgment

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function sends the specified signal to the process. The process must be both connected
and attached to receive the signal.

A signal is sent to a process if it is connected and attached.

Note thatsignal returns control to the caller immediately upon submitting the request to the
daemon. It does not wait until the process has been signaled or failed to be signalled.

Return value

The return value forsignal indicates whether the request to signal the process was success-
fully submitted. It gives no indication of whether the request was successfully executed.

ASC_success request to signal the processes was submitted

ASC_operation_failed signalling failed to be requested

Callback Data

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request status, of typeAis-
Status , which contains one of the following status values:

ASC_success process was successfully signaled

ASC_operation_failed attempt to signal this process failed

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 247

13.51 start

Synopsis

#include <Process.h>

AisStatus start(GCBFuncType ack_cb_fp, GCBTagType ack_cb_tag)

Parameters

ack_cb_fp callback function to process a start acknowledgement

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function is currently being designed. This function starts the execution of a process that
has been created but has not yet begun execution.

Note thatstart returns control to the caller immediately upon submitting the request to the
daemon. It does not wait until the application has been started or failed to be started.

Return value

The return value forstart indicates whether the request to start the process was successfully
submitted. It gives no indication of whether the request was successfully executed.

ASC_success request to start the application was submitted

ASC_operation_failed start failed to be requested

Callback Data

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request status, of typeAis-
Status , which contains one of the following status values:

ASC_success process was successfully started

ASC_operation_failed attempt to start this process failed

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 248

13.52 suspend

Synopsis

#include <Process.h>

AisStatus suspend(GCBFuncType fp, GCBTagType tag)

Parameters

fp callback function to process the suspend acknowledgement

tag tag to be used as an argument to the callback when it is invoked

Description

This function suspends a process that is executing. A tool must be both connected and
attached to a process in order to suspend process execution.

Note thatsuspend returns control to the caller immediately upon submitting the request to
the daemon. It does not wait until the application has been suspended or failed to be sus-
pended.

Return value

The return value forsuspend indicates whether the request to suspend execution of the pro-
cess was successfully submitted. It gives no indication of whether the request was successfully
executed.

ASC_success request to suspend the process was submitted

ASC_operation_failed suspend failed to be requested

Callback Data

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request status, of typeAis-
Status , which contains one of the following status values:

ASC_success process was successfully suspended

ASC_operation_failed attempt to suspend this process failed

See Also

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 249

13.53 unload_module

Synopsis

#include <Process.h>

AisStatus unload_module(

ProbeModule *module,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

Description

This function is currently being designed. The intent is to provide some means by which pre-
viously loaded instrumentation functions and probe classes might be removed from an appli-
cation.

Note thatunload_module returns control to the caller immediately upon submitting the
request to the daemon. It does not wait until the module has been removed or failed to be
removed from the process.

Return value

The return value forunload_module indicates whether the request to remove the indicated
module on the process was successfully submitted. It gives no indication of whether the
request was successfully executed.

ASC_success remove request was successfully submitted

ASC_operation_failed remove operation failed to be requested

Callback Data

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request status, of typeAis-
Status , which contains one of the following status values:

ASC_success module was successfully removed from this process

ASC_operation_failed attempt to remove module from this process failed

See Also

bload_module, bunload_module, load_module

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 250

13.54 writemem

Synopsis

#include <Process.h>

AisStatus writemem(

char *location,

char *buffer,

int size,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)

Parameters

location address in the application process where writing is to begin

buffer address in the client process from which data is to be taken

size size, in bytes, of both the buffer and the memory block to be written

ack_cb_fp callback function to process a start acknowledgement

ack_cb_tag tag to be used as an argument to the callback when it is invoked

Description

This function sends a request to the daemon managing this process to write the indicated
block of memory within the process. Data to write the block of memory is taken from the indi-
cated client buffer.

Note thatwritemem returns control to the caller immediately upon submitting the request to
the daemon. It does not wait until the application has been suspended or failed to be sus-
pended.

Return value

The return value forwritemem indicates whether the request to write data into the memory
of the process was successfully submitted. It gives no indication of whether the request was
successfully executed.

ASC_success request to write data was submitted

ASC_operation_failed write failed to be requested

Callback Data

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request status, of typeAis-
Status , which contains one of the following status values:

class Process Draft

5/26/98 Copyright 1998 by IBM Corp. Process.chp 251

ASC_success data was successfully written to process memory

ASC_operation_failed attempt to write data to this process failed

See Also

breadmem, readmem, writemem

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 252

14.0 class SourceObj

14.1 Supporting Data Types

14.1.1 Access

Synopsis

#include <SourceObj.h>

enum Access {

SOA_unknown_access,

SOA_shared,

SOA_exclusive,

SOA_LAST_ACCESS

}

Description

This enumeration type describes whether the source object to which it applies is part of a
shared library or part of a non-shared library.

14.1.2 Binding

Synopsis

#include <SourceObj.h>

enum Binding {

SOB_unknown_binding,

SOB_static,

SOB_dynamic,

SOB_LAST_BINDING

}

Description

This enumeration type describes whether the source object to which it applies was bound stat-
ically or dynamically by the linker when references to external functions and data were
resolved.

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 253

14.1.3 LpModel

Synopsis

#include <SourceObj.h>

enum LpModel {

SOL_unknown_model,

SOL_lp32,

SOL_lp64,

SOL_LAST_MODEL

}

Description

This enumeration type describes whether the source object to which it applies was compiled
and linked with the 32-bit address memory model or the 64-bit address memory model
enabled. All objects within a program are compiled and linked with the same model.

14.1.4 SourceType

Synopsis

#include <SourceObj.h>

enum SourceType {

SOT_unknown_type,

SOT_program,

SOT_module,

SOT_function,

SOT_data,

SOT_loop,

SOT_block,

SOT_statement,

SOT_LAST_TYPE

}

Description

This enumeration type describes whether the source object to which it applies represents a
whole program, module, function, data object,etc.

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 254

14.2 Constructors

Synopsis

#include <SourceObj.h>

SourceObj(void)

SourceObj(const SourceObj ©)

Parameters

copy source object that will be duplicated in a copy constructor

Description

The default constructor creates an empty source object whose access, binding, LP model and
source type are each set to “unknown”. The default constructor is invoked when uninitialized
source objects are created, such as in arrays of source objects. Objects within the array can be
overwritten using an assignment operator (operator =).

The copy constructor is used to transfer the contents of an initialized object (thecopy param-
eter) to an uninitialized object.

Exceptions

ASC_insufficient_memory not enough memory to create a new node

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 255

14.3 address_end

Synopsis

#include <SourceObj.h>

void *address_end(void) const

Description

This function returns the virtual address of the last element associated with this source object.
If the source object represents a scalar data object, thenstart_address and
end_address return the same value. If the source object represents an array, then it returns
the virtual address of the last element in the array. If the source object represents a function,
then it returns the approximate address of the last instruction in the function.

Return value

Virtual address of the last element associated with this source object

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 256

14.4 address_start

Synopsis

#include <SourceObj.h>

void *address_start(void) const

Description

This function returns the virtual address of the first element associated with this source object.
If the source object represents a scalar data object, thenstart_address and
end_address return the same value. If the source object represents an array, then it returns
the virtual address of the first element in the array. If the source object represents a function,
then it returns the approximate address of the first instruction in the function.

Return value

Virtual address of the first element associated with this source object

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 257

14.5 all_point

Synopsis

#include <SourceObj.h>

InstPoint all_point(int index) const

Parameters

index index into the instrumentation point table, which must be greater than
or equal to zero, and less thanall_point_count() .

Description

This function returns the instrumentation point indicated by the parameterindex . All instru-
mentation points contained within this source object and its children are arranged in a table
whose smallest index is 0 and whose largest index isall_point_count()-1 .

Return value

Instrumentation point indicated by the parameterindex .

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 258

14.6 all_point_count

Synopsis

#include <SourceObj.h>

int all_point_count(void) const

Description

This function returns the number of instrumentation points associated with this source object
and all of its children.

Return value

Number of instrumentation points associated with this source object and all of its children.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 259

14.7 bexpand

Synopsis

#include <SourceObj.h>

AisStatus bexpand(const Process &proc)

Parameters

proc process to which the “expand” request applies

Description

This function applies only to source objects withSourceType of SOT_module . The func-
tion requests that the details of an unexpanded module be supplied. Modules are not expanded
when the client initially connects with a process. Modules that are not expanded cannot be
examined for additional structure, such as data, functions, and instrumentation points. Recom-
mended use is to establish a connection to a process, then expand those modules where one
wishes to place instrumentation.

If the SourceType is notSOT_module , the function immediately returns with a status of
ASC_operation_failed .

Note that the function submits the request to expand the source object and waits until the
request has completed.

Return value

The return value indicates whether the request for expansion was successfully executed.

ASC_success expansion was successfully completed

ASC_operation_failed expansion failed

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 260

14.8 child

Synopsis

#include <SourceObj.h>

SourceObj child(int index) const

Parameters

index index into the source object child table, which must be greater than or
equal to zero, and less thanchild_count()

Description

This function returns the child indicated by the parameterindex . Index must be greater
than or equal to zero, and less thanchild_count() . Whenchild() is given an index
value that is outside of this range, it returns an empty source object, as created by the default
constructor. Children can be variables, functions, modules,etc.

Return value

Child source object indicated by the parameterindex .

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 261

14.9 child_count

Synopsis

#include <SourceObj.h>

int child_count(void) const

Description

This function returns the number of child source objects associated with this source object.
Empty source objects, created by the default constructor, return zero. Children can be vari-
ables, functions, modules,etc.

Return value

Number of child source objects associated with this source object.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 262

14.10 expand

Synopsis

#include <SourceObj.h>

AisStatus expand(Process proc, GCBFuncType fp, GCBTagType tag)

Parameters

proc process to which the “expand” request applies

Description

This function applies only to source objects withSourceType of SOT_module . The func-
tion requests that the details of an unexpanded module be supplied. Modules are not expanded
when the client initially connects with a process. Modules that are not expanded cannot be
examined for additional structure, such as data, functions, and instrumentation points. Recom-
mended use is to establish a connection to a process, then expand those modules where one
wishes to place instrumentation.

If the SourceType is notSOT_module , the function immediately returns with a status of
ASC_operation_failed .

Note that the function submits the request to expand the source object and returns immedi-
ately. It doesnot wait until the request has completed.

Return value

The return value forexpand indicates whether the request was successfully submitted, but
indicates nothing about whether the request itself was successfully executed.

Callback Data

The callback function is invoked once for each expansion request. When the callback is
invoked the callback function is passed a pointer to the source object as the callback object.
The callback message is the request status, of typeAisStatus , which contains one of the
following status values:

ASC_success process was successfully attached

ASC_operation_failed attempt to attach to this process failed

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 263

14.11 get_access

Synopsis

#include <SourceObj.h>

Access get_access(void) const

Description

This function returns the access type of the source object, that is, whether it is part of a shared
library or not. Functions within a shared library are marked asSOA_shared . All others are
designatedSOA_exclusive . All variables are private to a program, even those in shared
libraries, and are therefore markedSOA_exclusive .

Return value

SOA_shared object is a function from a shared library

SOA_exclusive object is not from a shared library, or it is data

SOA_unknown uninitialized object

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 264

14.12 get_binding

Synopsis

#include <SourceObj.h>

Binding get_binding(void) const

Description

This function returns the binding type of the object. The binding type refers to whether the
function or module is part of a dynamically loaded library. When it is part of a dynamic
library get_binding returnsSOB_dynamic . Otherwise it returnsSOB_static .

Return value

SOB_dynamic object is from a dynamically loaded library

SOB_static object is not from a dynamically loaded library

SOB_unknown uninitialized object

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 265

14.13 get_data_type

Synopsis

#include <SourceObj.h>

ProbeType get_data_type(void) const

Description

This function returns the data type of the object when the object represents a function or a
variable. When the object represents something that is neither a function nor a variable, it
returns a data type tagged as “unknown”.

Return value

Data type of the object, or “unknown”.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 266

14.14 get_demangled_name

Synopsis

#include <SourceObj.h>

const char *get_demangled_name(void) const

Description

This function returns the demangled name of a function. If the object is not contained within a
function it returns 0. A function demangled name is the name of a function as it appears in the
original source code of a program as seen by a compiler. Demangled names include parameter
data type information for some languages, notably C++ and Fortran 90, but not necessarily for
all languages.

Return value

Demangled function name when the object is a function, 0 otherwise.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 267

14.15 get_mangled_name

Synopsis

#include <SourceObj.h>

char *const get_mangled_name(void) const

Description

This function returns the mangled name of an object when the object is a function. If the
object is not contained within a function it returns 0. A function mangled name is the name of
a function as it appears to the linker and loader. Name mangling is supported by compilers and
linkers to resolve overloaded function names in object-oriented programming languages. In
order to distinguish between two functions that have the same programmer-visible name,
compilers encode parameter type information into the actual function name as it is seen by the
linker and loader.

Return value

Mangled function name when the object is a function, 0 otherwise.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 268

14.16 get_program_type

Synopsis

#include <SourceObj.h>

LpModel get_program_type(void) const

Description

This function returns an indicator of whether the program is using the 32-bit address memory
model, or the 64-bit address memory model. All functions within a program must use the
same memory model. AIX does not support mixed address models.

Return value

SOL_lp32 program uses the 32-bit address memory model

SOL_lp64 program uses the 64-bit address memory model

SOL_unknown uninitialized object

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 269

14.17 get_variable_name

Synopsis

#include <SourceObj.h>

const char *get_variable_name(void) const

Description

This function returns the name of the object when the object is a data variable. It returns 0
when the object is not a variable.

Return value

Name of the object when the object is a data variable, 0 otherwise.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 270

14.18 library_name

Synopsis

#include <SourceObj.h>

const char *library_name(void) const

Description

This function returns the name of the library that contains the object. When the object is not
contained within a library, or the library information has been removed from the executable,
this function returns 0.

Return value

Name of the library that contains the object, or 0.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 271

14.19 line_end

Synopsis

#include <SourceObj.h>

int line_end(void) const

Description

This function returns the approximate line number of the last line in the object. When the line
number is unknown or undefined, the function returns -1.

Return value

Approximate line number of the last line in the object, or -1.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 272

14.20 line_start

Synopsis

#include <SourceObj.h>

int line_start(void) const

Description

This function returns the approximate line number of the first line in the object. When the line
number is unknown or undefined, the function returns -1.

Return value

Approximate line number of the first line in the object, or -1.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 273

14.21 module_name

Synopsis

#include <SourceObj.h>

const char *module_name(void) const

Description

This function returns the file name and path of the module that contains the object. If the
object is the program object, which is not contained within any module, this function returns
0.

Return value

File name and path of the module that contains this object, or 0.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 274

14.22 obj_parent

Synopsis

#include <SourceObj.h>

SourceObj obj_parent(void) const

Description

This function returns the parent object of this object. For example, the parent object of a func-
tion object is a module object. The parent object of a program object is itself.

Return value

Parent object of the object.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 275

14.23 operator =

Synopsis

#include <SourceObj.h>

SourceObj &operator = (const SourceObj ©)

Parameters

copy source object to be duplicated

Description

This function transfers the contents of thecopy parameter to the object.

Return value

Reference to the object.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 276

14.24 operator ==

Synopsis

#include <SourceObj.h>

int operator == (const SourceObj &compare)

Parameters

compare source object to be compared

Description

This function compares two source objects for equivalence. If the two objects represent the
same portion of the program or application, this function returns 1. Otherwise it returns 0.

Return value

This function returns 1 if the two objects are equivalent, 0 otherwise.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 277

14.25 operator !=

Synopsis

#include <SourceObj.h>

int operator != (const SourceObj &compare)

Parameters

compare source object to be compared

Description

This function compares two source objects for equivalence. If the two objects represent the
same portion of the program or application, this function returns 0. Otherwise it returns 1.

Return value

This function returns 0 if the two objects are equivalent, 1 otherwise.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 278

14.26 point

Synopsis

#include <SourceObj.h>

InstPoint point(int index) const

Parameters

index index into the instrumentation point table, which must be greater than
or equal to zero, and less thanpoint_count() .

Description

This function returns the instrumentation point indicated by the parameterindex . Instrumen-
tation points contained only within this source object are arranged in a table whose smallest
index is 0 and whose largest index ispoint_count()-1 .

Return value

Instrumentation point indicated by the parameterindex .

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 279

14.27 point_count

Synopsis

#include <SourceObj.h>

int point_count(void) const

Description

This function returns the number of instrumentation points associated with only this source
object.

Return value

Number of instrumentation points associated with this source object.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 280

14.28 program_name

Synopsis

#include <SourceObj.h>

const char *program_name(void) const

Description

This function returns the file name and path of the executable program (a.out), or 0 if the
file name is not available.

Return value

File name and path of the executable, or 0 if it is not available.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 281

14.29 reference

Synopsis

#include <SourceObj.h>

ProbeExp reference(void) const

Description

This function creates a reference to a program function or variable that may be used in a probe
expression. References to program functions may be used in creating calls to those functions,
while references to program variables may be used to read, modify, or write those variables.
When the object does not represent a program function or variable, an “undefined” probe
expression is returned.

Return value

Reference to the program function or data, or an “undefined” probe expression.

See Also

class SourceObj Draft

5/26/98 Copyright 1998 by IBM Corp. SourceObj.chp 282

14.30 src_type

Synopsis

#include <SourceObj.h>

SourceType src_type(void) const

Description

This function returns the type of source object represented by the object. The source object
type corresponds to various objects within a program, such as modules, functions, variables,
etc. If the source object does not correspond to a program or part of a program, the source
object type is “unknown”.

Return value

Type of this source object.

See Also

Miscellaneous Functions Draft

5/26/98 Copyright 1998 by IBM Corp. Misc.chp 283

15.0 Miscellaneous Functions

15.1 Ais_initialize

Synopsis

#include <AisInit.h>

void Ais_initialize(void)

Description

This function is used to control the initialization and re-initialization of certain sub-systems,
such as the registration of internal callbacks, within the instrumentation system. It must be
called once before entering the main event loop.

See Also

Miscellaneous Functions Draft

5/26/98 Copyright 1998 by IBM Corp. Misc.chp 284

15.2 AisMainLoop

Synopsis

#include <AisMainLoop.h>

extern bool Ais_main_loop_done

void Ais_main_loop(void)

Description

This function is the main event loop for the instrumentation system. This loop processes
events in the form of special messages from daemons and instrumented processes. It must be
called after the initialization function. It must be called in order for the instrumentation system
to process events and messages from the application processes. This function does not return
control to the caller untilAis_main_loop_done is set todone, or the value 1.

See Also

Predefined Global Variables Draft

5/26/98 Copyright 1998 by IBM Corp. PreDefVars.chp 285

16.0 Predefined Global Variables

16.1 Ais_main_loop_done

Synopsis

#include <AisMainLoop.h>

extern bool Ais_main_loop_done

Description

This variable is used to indicate to the main event loop that processing is to be terminated, and
no more events are to be consumed. It does not cause any connections to be lost, nor to be
closed. It only terminates the event processing loop that gathers event messages from all con-
nected daemons.

16.2 Ais_msg_handle

Synopsis

#include <AisGlobal.h>

extern const ProbeExp Ais_msg_handle

Description

This constant represents a probe-specific value that is used to send messages from the probe to
the client. Each probe is able to send messages to the client any time the probe is invoked. The
client is able to distinguish between messages from one probe and messages from another.
Furthermore, more than one client can be connected to an application process, and the probe
must maintain some record of the client to whom it belongs. All the necessary information to
accomplish these things is stored in the probe message handle. The probe message handle is
used as the first argument to theAis_send function, that sends a message to the client, to be
processed by a client data callback function.

Predefined Global Variables Draft

5/26/98 Copyright 1998 by IBM Corp. PreDefVars.chp 286

16.3 Ais_send

Synopsis

#include <AisGlobal.h>

extern const ProbeExp Ais_send

Description

This constant represents a function that allows probes to send messages to the client. The
function may be executed directly by the probe as any other function. The type signature for
the send function is:

void Ais_send(void *msg_handle, char *buffer, int size)

wheremsg_handle is the constant Ais_msg_handle,buffer is the message to be sent, and
size is the number of bytes in the message.

5/26/98 Draft, Copyright 1998 by IBM Corp. refIX.doc 287

Index

A
AisAddFD 2, 3
AisFD 1
AisNextFD 4
AisRemoveFD 5, 6, 7

