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Abstract

Unknown references, also known as cold-start misses,
arise during trace-driven simulation of uniprocessor
caches because of the unknown initial conditions. Accu-
rately estimating the miss ratio of unknown references,
denoted by u, is particularly important when simulat-
ing large caches with short trace samples, since many
references may be unknown.

In this paper we make three contributions regarding
p. First, we provide empirical evidence that g is much
larger than the overall miss ratio (e.g., 0.40 vs. 0.02).
Prior work suggests that they should be the same. Sec-
ond, we develop a model that explains our empirical
results for long trace samples. In our model, each block
frame is either live, if its next reference will hit, or dead,
if its next reference will miss. We model each block
frame as an alternating renewal process, and use the
renewal-reward theorem to show that g is simply the
fraction of time block frames are dead. Finally, we ex-
tend the model to handle short trace samples and use it
to develop several estimators of u. Trace-driven simu-
lation results show these estimators lead to better esti-
mates of overall miss ratios than do previous methods.

Index Terms — Cache memory, performance evalua-
tion, cold-start behavior, trace-driven simulation, sam-
pling techniques
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1 Introduction

A cache is a high-speed buffer that holds recently-used
parts of main memory[Smit82]. When a reference is
not found in the cache (a miss), the block of data that
contains 1t is transferred from main memory and stored
in a block frame in the cache. We say a block frame is
referenced if 1t contains the requested block or obtains
it as a result of a miss. Blocks and block frames are
usually partitioned into S sets so that only the block
frames in the reference’s set must be searched. An A-
way set-assoctative cache has A block frames per set
(associativity A) and SA block frames overall.

Trace-driven simulation is the most-commonly-used
technique for evaluating the performance of cache
memories[Smit82]. Trace-sampling is a refinement that
simulates multiple trace samples to estimate the miss
ratio of a long base trace[Laha88]. Since most pro-
grams exhibit non-stationary miss ratios over very long
intervals[Borg90], a single long trace sample may not be
representative of the entire program. Instead, if we can
accurately estimate the miss ratio of short samples, then
the average over multiple short samples should more ac-
curately predict the true miss ratio.

Any estimate of the true miss ratio should be unbi-
ased (expected error of zero) and as accurate as possible
(small mean squared error)[Bick77]. A key problem in
finding an unbiased miss ratio estimator is that the sim-
ulator does not know which blocks reside in the cache
at the beginning of a trace sample. Thus, when the
simulator references a block frame for the first time, it
cannot determine whether or not the reference actually
misses. These potential misses have been called cold-
start misses|East78] because they occur at the begin-
ning of a simulation; we prefer to call them unknown
references since they may or may not be actual misses.

Two techniques have traditionally been used to deal
with this problem: (1) make trace samples long enough
so that the cold-start bias is acceptably small, or (2)
record metrics only after this bias is eliminated. The



first technique works because the number of unknown
misses cannot exceed the number of block frames in the
cache, limiting the absolute error. The second technique
exploits the fact that the current cache state does not
depend upon the initial contents once the trace has ref-
erenced every block frame. Thus the bias is eliminated
by recording metrics only after the cache is full.

Recent trends toward larger caches render the above
techniques undesirable by requiring extremely long
trace samples. For example, consider a cache with
512 block frames and a 0.05 miss ratio estimate for a
100,000-reference trace. The bias in this estimate can-
not exceed 10 percent (512/(100,000 % 0.05) ~ 10%).
Future caches, however, may have 128K block frames
and 0.001 miss ratios, which require one billion refer-
ences to achieve the same 10 percent maximum bias.
The second technique fares no better; filling the large
cache requires an absolute minimum of 128,000 refer-
ences, and many times that in practice.

More recently, Laha, et al.[Laha88], and Stone
[Ston90] have proposed similar techniques that warm-
up each set independently. Rather than waiting for the
entire cache to fill, they record metrics for each set that
has filled. By not counting unknown references, these
approaches implicitly assume that unknown references
behave the same as randomly selected references.

In the central result of this paper we show that un-
known references are special, and exhibit a much higher
miss ratio than random references. We introduce a
renewal-theoretic model to explain this surprising re-
sult. The model defines a block frame as live if its next
reference hits, and as dead if its next reference misses.
Using the renewal-reward theorem, we show that the
miss ratio of unknown references is simply the fraction
of time a block frame is dead. We use trace-driven sim-
ulation to validate this model for traces long enough to
reference every block frame.

We then extend the model to handle shorter trace-
samples. However, this second model relies upon the
distribution of dead times, not just the ratio of means,
and is much more difficult to compute. We introduce
four approximations and show that one yields good re-
sults for sufficiently long samples. More work is required
to determine when samples are long enough to provide
acceptable error. For our data, if at least 60% of the
block frames have been touched and there have been as
many misses as there are block frames, then the error
in the overall miss ratio is generally less than 10%. A
second estimate produces slightly less accurate results,
but is useful since it is trivial to compute.

In the next section, we review previously-proposed
estimators, and show that the true miss ratio is much
greater than intuition suggests. Section 3 introduces
the renewal-theoretic model and explains this surpris-

ing observation. Section 4 applies the model to esti-
mate the true miss ratio for long trace samples, and
Section 5 generalizes it to support short trace samples.
Both Section 4 and Section 5 present trace-driven simu-
lation results to support our models. Finally, Section 6
summarizes our results and proposes future extensions
to the model.

2 Estimating Miss Ratios of Un-
known References

To obtain accurate miss ratio estimates using trace sam-
pling, we need an accurate, unbiased estimator for the
miss ratios of short trace samples. To do this, we focus
on finding an accurate, unbiased estimator for the miss
ratio of unknown references. Let the true miss ratio of a
cache, denoted by m, be the fraction of references that
would miss in a real cache during the execution of a par-
ticular trace sample. The true miss ratio depends upon
the miss ratio of unknown references, which we denote
by u:

M+ pU
= — 1
m 7 (1)

where M is the number of references known to miss, U
is the number of unknown references, and R is the total
number of references in the sample.

The only two ways a simulation can exactly compute
the true miss ratio is to either eliminate the unknown
references or exactly compute u. Laha, et al.[Laha88],
have explored the first approach; in this paper, we focus
on the problem of accurately predicting p, the miss ratio
of the unknown references.

While the miss ratio is not usually characterized in
this way, researchers have commonly used several ap-
proximations to p. The simplest and most common esti-
mate assumes that all unknown references miss (fi.,;7 =

1).

N M+1xU M+U
Meold = R = R (2)

In this case, the unknown references are referred to as
cold-start misses. This estimate has been widely used,
and provides acceptable accuracy if M is much larger
than U. However, this constraint is rarely met for large
caches, resulting in overly pessimistic estimates of the
miss ratio.

The other extreme is to assume that all unknown ref-
erences hit (fij,,; = 0). Intuition suggests that this hot-
start estimate is better for large caches, since they have
low steady-state miss ratios.



True | True Estimate of m (% Relative Error)
Trace m I Meo1d My o1 Nss
multl || 0.024 | 0.353 || 0.039  (61.3%) | 0.016 (-33.4%) | 0.016 (-31.9%)
mult2 || 0.016 | 0.339 || 0.028 (76.5%) | 0.010 (-39.3%) | 0.010 (-38.1%)
tv 0.035 | 0.481 || 0.055 (55.4%) | 0.017 (-51.4%) | 0.018 (-49.5%)
sor | 0.027 | 0.932 || 0.028 (6.0%) | 0.005 (-81.6%) | 0.005 (-81.2%)
tree || 0.010 | 0.142 || 0.027 (167.6%) | 0.007 (-27.8%) | 0.007 (-26.4%)

Table 1: Comparison of Estimates of Miss Ratio m.

This table shows the measured and estimated miss ratio m, together with the percent relative error (100%#(m—m)/m)
of the estimates. The true value of y is much greater than m, indicating that the steady-state assumption is false.
Each data point is the mean of several thousand samples, each containing 50,000 references. The cache configuration

is 64K-bytes, direct-mapped, with 16-byte blocks.

However, my, ,; has the unfortunate property of always
under predicting the true miss ratio, which could lead
to optimistic cache designs. Nevertheless, the hot-start
and cold-start miss ratios are useful as bounds, since
the true miss ratio must lie between them[Ston90]. For
sufficiently large samples, i.e., large values of M, the rel-
ative difference between m ;45 and mp,,4 becomes small,
making it reasonable to ignore the difference.

A more intuitive estimate assumes that unknown ref-
erences miss at the same rate as all other references. If
we pick a single reference at random, it is no more or
less likely to miss than any other, thus it misses with
probability m (fiss = 1ss):

M+ M
R~ R-U

Mmss =

(4)

Stone originally proposed this steady-state estimate for
direct-mapped caches[Ston90], which is equivalent to ex-
cluding the unknown references from the computation of
the miss ratio. He used a different justification, arguing
that references should only be counted if they access a
primed set. As originally defined by Laha et al.[Laha88],
a set containing A block frames is primed once it has re-
ceived A unknown references. A simulation can only be
sure that a reference hits or misses if it accesses a primed
set. Since a set in a direct-mapped cache is primed after
its first (unknown) reference, Stone ignores a total of U
references.

Stone and Laha et al. generalize this estimate for set-
associative caches, but neither model is very appealing
since both exclude references that are known to hit. For
example, suppose the first reference to a particular set
touches block B. While the first reference is unknown,
subsequent references to block B will hit (at least during
the interval before the set becomes primed). Yet neither
Stone’s nor Laha et al.’s model includes these references
in the miss ratio estimate.

Table 1 presents experimental data comparing the
true value of m with the three estimates: m . ;7, Mp ot
and mgs. It contains data from five traces on a 64K-
byte direct-mapped cache with 16-byte blocks. Each
estimate 1s the arithmetic mean of between 1900 and
3500 contiguous trace contiguous samples, each 50,000
references long. Samples are drawn from a set of long
traces, described more fully in Section 4.1. The ini-
tial references of each trace are used only to completely
warm up the cache, allowing an exact computation of
the true miss ratio for the remaining references. The re-
maining references; an average of 130 million per trace,
are then broken into individual samples.

Despite the intuitive argument given above, Table 1
shows that the steady-state estimate predicts m as
poorly as the cold-start and hot-start estimates. The
assumption that p equals m is clearly false: the data in
columns two and three show that the true value of p is
much larger than the true miss ratio m. Furthermore,
the inaccuracy of the estimates for y introduce a sig-
nificant error into the estimates for the total miss ratio
m.

How 1is it possible that g is much larger than m?
Consider a cache with 1024 block frames and a syn-
thetic trace-sample that references a block 20 times,
then moves to the next block and references it 20 times,
etc. The trace’s true miss ratio, m, is 5%, because the
probability that a random reference misses is 1 in 20.
The miss ratio for unknown references, u, however, is
either 99.9% or 100%, depending upon whether the first
reference of the sample misses. The first references to
all other block frames miss every time. In the next sec-
tion we develop a model that explains why pu and m are
inherently different.



3 A Simple Renewal-Theoretic
Model

In this section, we introduce a model for estimating p,
the fraction of unknown references that actually miss.
This section is only concerned with the steady-state be-
havior of a single block frame in the cache. The next
section applies the steady-state model to the behavior
of an entire cache.

Cache performance is traditionally measured with the
miss ratio: the fraction of references that miss in the
cache. However, an equivalent alternative is to view
the performance using the reciprocal of the miss ratio:
the average number of references per miss. This view
focuses our attention on the amount of time a block
spends in the cache.

Consider a single block frame. We say that the jth
generation Gi; begins immediately after the jth miss oc-
curs, and a new block is brought into the block frame.
This generation ends, and a new one begins, when the
block is replaced. The length of a generation is the to-
tal number of references in the trace between the misses
that begin and end the generation. A generation in-
cludes the miss that ends it, but not the miss that begins
it.

A generation G consists of two phases, a live time
L; and a dead time D;, thus G; = L; + D;. A block
frame is said to be live if the block it contains will be
referenced again before being replaced. Conversely, a
block frame is said to be dead if the next reference to it
will miss. We say a block frame is referenced only if it
contains the requested block or obtains it as a result of a
miss. Thus each address in the trace references exactly
one block frame. A live time L; begins a generation
Gj, and a dead time D; begins immediately after the
last reference to the block. Both the generation and the
dead time end when the block is replaced.

Now consider an arbitrary block frame at some ran-
dom time ¢, as measured in references to all block
frames. If the block frame is live, as at time ¢; in Fig-
ure 1, then the next reference to that block frame hits.
Conversely, if the block frame is dead, as at time 5,
then the next reference to the block frame misses. Thus
at a random time ¢, the probability that the next refer-
ence to a block frame misses is simply the probability
that time ¢ falls within a dead time.

Under this model, a block frame alternates between
being live and dead. With a few simplifying assump-
tions, stated below, we can model the block frame as an
alternating renewal process, and use standard renewal
theory to compute the probability that time ¢ occurs
during a dead time. Let us assume that a miss to a
block frame constitutes a renewal point, that is, that
the process starts over independent of the past. Fur-

Figure 1: Live and Dead Times

This figure illustrates the live and dead times for an
arbitrary block frame in the cache. An “M” denotes a
miss, an “H” a hit, a “=” indicates a reference to another
block frame during a live time, and a blank marks a dead
time. Suppose we randomly pick time ¢;. Since it falls
within a live time, the next reference to the block frame
must hit. Conversely, if we randomly pick time ¢5, the
next reference to the block frame will miss, since t5 falls
within a dead time.

thermore, assume that the live times L; and dead times
Dj are random variables drawn from two arbitrary dis-
tributions. Subsequent live times and dead times are in-
dependent, and identically distributed, although a dead
time D; may depend upon the preceding live time L;.
In practice, these assumptions are rarely strictly true
for individual cache block frames. Nevertheless, they
are close enough that the model yields good results, as
shown in the next section.

The renewal-reward theorem states that random
events see time-average behavior[Wolf89, Ross83]. In
other words, the probability that a random time ¢ falls
within a block frame’s dead time is simply the fraction
of time that the block frame is dead. Mathematically,
this is expressed as:

P{Random time ¢ lands during a dead time} (5)
___ED]  _ E[D)]
ElL;]+ E[D;]  E[G)]

where E[X] denotes the expected value of a random
variable X. Since the probability of landing in a dead
time for some block frame i is simply the probabil-
ity that the next reference to that block frame misses,
we can extend our model to provide a theoretical basis
for estimating . While this result may seem obvious,
we need the formalism of renewal theory to extend the
model in Section 5.

In related work, Puzak[Puza85] and Mendelson,
Thiébaut, and Pradhan[Mend90] define the terms live
and dead slightly differently. Their definitions apply to
blocks, rather than block frames: they call a block live
if it is in the cache and will be referenced again, and call
it dead otherwise. Puzak analyzes the effect of replace-



ment policies on dead blocks. Mendelson, Thiébaut,
and Pradhan use their definitions as part of an analytic
model of cache performance. Neither examine the re-
lationship between dead blocks and the miss ratio of
unknown references.

4 A Model for Long Trace Sam-
ples

This section applies the renewal-theoretic model to es-
timate the miss ratio of long trace samples. We assume
here that the trace samples are sufficiently long that
they reference every block frame in a cache at least once.
The next section examines the complications caused by
short samples, which do not meet this requirement.

To calculate the miss ratio for a trace sample, we must
know the fraction of unknown references that miss, pu.
But this is just the fraction of block frames that are dead
at the start of the sample. If we assume that the sam-
ple starts at a random time ¢ and that live and dead
times are identically distributed for all block frames,
then we can apply our result from the previous section.
Let ﬂlong be our estimate of y for long samples, and let
Vi be a random variable that 1s 1 if the unknown refer-
ence to block frame ¢ misses and 0 otherwise. Assume
that the V; are identically distributed, S is the number
of sets, and A is the associativity. Then,

Hlong = Ely] (6)
_ [Unknown References that Miss]

Unknown References

1 SA 1 SA

= o Z:;v —S—A;E[VZ]

_ 1 iE[DJL_ 1 5 E[D)]
SA & E[G;]; ~ SA = E[G}]
E[D;

- ElG)]

where E[D;]; and E[G;]; are the expected dead and gen-
eration times for block frame i, respectively. In words,
if block frames have identical live and dead time dis-
tributions, then the fraction of unknown references that
miss is simply the fraction of block frames that are dead
at the start of the sample. But this is simply the frac-
tion of time a single block frame is dead. Of course the
live and dead times may not actually be identically dis-
tributed, but in the next section we show that this is
not a first-order effect.

We illustrate the implications of this result by pre-
senting an intuitive argument that the steady-state as-
sumption is false, i.e., that g > m. An average gen-

eration includes one miss to a particular block frame ¢
and E[G}] references scattered across all block frames.
Since there are always SA active generations, one for

each block frame, we expect SA misses for every E[G]]
SA

references. This yields a miss ratio m = BlGT Now
7
consider a fully-associative cache (S = 1) with least-

recently-used (LRU) replacement. After a block frame
becomes dead, there must be A other misses before it is
selected for replacement. Since there can be at most one
miss per reference, the minimum dead time is simply A
references.

) _  E[D]
Flong = 51
SA
m = :
E[G;]
but min(D;) = A=S5A4
m

Therefore /llong >

Note that ﬂlong equals m if and only if all references
miss in the cache. Since miss ratios are typically low, in
practice ﬂlong is much greater than m.

The argument for direct-mapped and set-associative
caches is somewhat weaker. Consider a synthetic ref-
erence stream that accesses each set with equal prob-
ability. With such a stream the mean time between
references to a set is simply S. Once a block frame in
a particular set becomes dead, there must be A misses
to that set before the block frame is replaced (assuming
LRU). Thus, if the cache never hits the mean dead time
is SA references. Since caches do hit, and the principles
of locality state that references tend to cluster, ﬂlong
tends to be much larger than m. However, pathologic
reference patterns, that allow p less than m, are pos-
sible for set-associative caches. But as we show in the
next section, most real programs exhibit the posited be-
havior.

This model provides a theoretical basis for the empir-
ical observation that p is greater than m. However, the
simplifying assumptions cast doubt on the accuracy of
the model. And without making much stronger assump-
tions about the reference ?is%ribution, we cannot say

anything stronger about %ﬁ—] Instead, we use trace-

driven simulation to validate the model and determine
the relationship between E[D;], E[G;], and SA.

4.1 Empirical Validation

In this section, we present results from a trace-driven
simulation experiment in which we computed the aver-
age live times and dead times for various cache sizes.
We extended our cache simulator to maintain the time
(reference number) of the last miss and last reference



Cache Address Trace
Size | Assoc || multl | mult2 tv sor | tree
4K 1 0.56 0.51 0.77 | 0.75 | 0.57
4K 2 0.57 0.50 0.81 | 0.72 | 0.54
4K 4 0.58 0.50 0.79 | 0.69 | 0.55
16K 1 0.54 0.66 0.80 | 0.92 | 0.50
16K 2 0.50 0.64 0.79 | 0.92 | 0.49
16K 4 0.50 0.63 0.77 | 0.92 | 0.51
64K 1 0.62 0.69 0.60|| 0.98 | 0.67
64K 2 0.62 0.74 0.55]|| 0.98 | 0.63
64K 4 0.63 0.76 0.62 | 0.98 | 0.60

Table 2: True Miss Ratio of Unknown References u

This table presents the measured values of p for 5-
million reference samples. Each data point represents
the arithmetic mean of between 19 and 35 samples.
The samples are long enough that 95% of the block
frames are referenced, on average, for all but two of
the trace/cache combinations. The two exceptions are
outlined with boxes.

to each block frame. On each cache miss, the simula-
tor computes the duration (in references) of the block
frame’s live and dead times, and updates the summary
statistics. To eliminate cold-start effects from our vali-
dation experiments, the simulator does not count gen-
erations that begin with an unknown reference. The
simulator also ignores generations terminated by the
end of the trace. Because long generations are more
likely to be excluded, as a result of the inspection
paradox[Wolf89, Ross83] (also known as the residual life
paradox[Klei75]), these simulation artifacts tend to bias
the means downwards. We tried to minimize the effects
of this bias by using long address traces.

We used five address traces gathered from a DEC
Titan[Borg90], that contain multiprogramming behav-
ior, but not operating system references. The traces
mult] and mult? are multiprogramming workloads, con-
sisting of both software development and CAD applica-
tions. Twis a VLSI circuit timing verifier, soris an im-
plementation of the successive overrelaxation algorithm,
and tree is a compiled Scheme program. The traces aver-
age 130 million references each (excluding initialization
references), for a total of 650 million references. For the
largest cache presented in this paper, the traces average
over 500 generations (misses) per block frame. Thus the
bias introduced by the simulation start-up and ending
artifacts should be quite small.

Cache Address Trace
Size | Assoc || multl | mult2 tv sor tree
4K 1 9% 10% 1% 3% 2%
4K 2 7% 8% 1% 3% 2%
4K 4 5% 10% 4% 3% 2%
16K 1 13% 5% | <1% | 1% | <1%
16K 2 18% -3% 1% | <1% | 2%
16K 4 16% -8% 4% 4% | <1%
64K 1 10% -3% 12% | <1% | <1%
64K 2 11% -5% % | <1% | 11%
64K 4 11% -5% 5% 1% 30%

Table 3: Relative Error in Long Trace Estimate ﬂlong'

This table presents the relative error in the long trace
estimate lalong = %ﬁ—% We compute /llong by calcu-
lating the mean dead and generation times of the entire
trace and taking their ratio. The relative error exceeds
20% in only one case, and is less than 5% in over half
the cases. Note that since both live and dead times

vary with cache size and associativity, does not

Hlon g
necessarily change monotonically.

We examine nine cache configurations in this pa-
per, with sizes ranging from 4K-bytes to 64K-bytes and
associativity varying from direct-mapped to four-way
set-associative. All configurations have 16-byte blocks
and use LRU replacement, writeback (main memory
only updated on block replacement), and write-allocate
(write misses bring blocks into the cache) policies. To
exactly compute the true miss ratios, m and p, we sim-
ulated enough references to completely warm-up the
cache before calculating any metrics. Then we treated
the remaining trace as a collection of contiguous 5-
million reference samples. For most combinations of
trace and cache configuration, 5 million references is
sufficient to meet the long sample requirement of refer-
encing every block frame. Each data point is the arith-
metic mean of between 19 and 35 samples.

Table 2 presents the true miss ratio of unknown ref-
erences for these samples. The values range from 0.50
to as high as 0.98. These data substantiate the observa-
tion in Section 2 that u is much higher than m (which
is never greater than 14%, and typically much smaller).
Note that u does not exhibit any clear trends as a func-
tion of either cache size or associativity.

Table 3 presents the relative error in our long sample
estimate fijg,, = %ﬁ—% We approximate E[D;] and

E[G;] using the mean dead time and mean generation



time, computed over the entire trace. In over 80% of
the cases, the relative error of ﬂlong is within 10%, and

in only one case does it exceed 20%. The corresponding
error in m is much lower, since U is much less than M
for these long samples.

This estimate is substantially better than the other
estimates discussed in Section 2. The observed error
exists in part because the model depends upon the po-
tentially false independence and identical distribution
assumptions. However, even with only a small number
of samples, the error is acceptably low. We expect that
increasing the number of samples should further reduce
the error.

The results of these simulation experiments validate
the accuracy of our model. This model provides a the-
oretical basis for the observation that unknown refer-
ences miss at a rate much higher than the steady-state
miss ratio m. However, the model assumes trace sam-
ples long enough to reference every block frame. But
meeting this restriction for multi-megabyte caches re-
quires samples with hundreds of millions of references,
which may be impossible or impractical. Even more
important, when samples do meet the restriction, the
ratio of unknown references to misses, U/M, is small.
This leads to a tight bound for m between m_,;; and
mp, ¢ In other words, when U/M is small, the error in
[ has a negligible effect on the error in m. Thus, while
the long-trace model describes the behavior of unknown
references, and is useful from a theoretical perspective,
it requires generalization to be useful in practice.

5 A Model for Short Trace Sam-
ples

In this section, we extend the model to include the be-
havior of short trace samples, which do not reference
every block frame in the cache. However, this new
short-trace model depends upon the distribution of dead
times, D;, not just the ratio of means. Since we have
not been able to characterize this distribution, we ex-
amine several approximations, including two that yield
acceptable results.

The long-trace model predicts the fraction of dead
block frames at a random time ¢, which is exactly the
number of block frames that will miss on their first ref-
erence after time ¢. However, a simulation using a short
trace sample may only reference a small fraction of the
block frames. Temporal locality suggests that the first
unknown reference is more likely to hit than the last
unknown reference. Thus, block frames referenced dur-
ing a short sample are more likely to be live than an
“average” block frame. Therefore, the fraction of dead
block frames referenced during a short sample begin-

ning at time ¢ is less than the fraction dead at time ¢.
To correct for this effect, we need to predict the proba-
bility that a block frame is dead at time ¢ given that it
is referenced in the trace.

We do this by applying Bayes’ Rule[Wolf89] to our
alternating renewal process. Consider a trace sample
containing N references beginning at some random time
t. Let X; be the event that an arbitrary block frame
1s dead at time ¢. Let Y; be the event that block frame 7
is referenced in the interval [¢,t 4+ N), i.e., is referenced
within the sample. If we assume that the X; and Y;
are mutually independent and P{X;} = P{X;} and
P{Y;} = P{Y;} for all i and j, then the probability that
an unknown reference will miss is simply the conditional
probability of X; given Y;:

= P{Xi|Yi} (7)
Using Bayes’ Rule, we can express this as:

But P{X;} is simply the fraction of time a block frame is
dead, or E[D;]/E[G;]. And since we know the number
of unknown references, U, for a particular sample, we
can estimate P{Y;} as U/SA, where SA is the number
of block frames. Finally, P{Y;|X;} is the probability
that when time ¢ lands in a dead time D; for block
frame ¢, the time remaining in D;, known as the ezxcess
Ya(t), is less than the sample size N, or P{Y4(¢t) < N}.
The renewal-reward theorem[Wolf89] states that:

1 N

P{Y4(t) < N} = ——=> P{D; >z} (9
E[D;]

=1

where the range on the sum begins at 1 because by
definition P{D; =0} = 0.

Combining these equations yields our short sample
estimate for y:

0 <0 (5

Pshort = (L) (10)
SA
N E[D;]
By 2=e=1 PAD; 2 2} ga] (1)
- U
SA
SA 1 &

= TEGiLTPiza )

=1

To see why this estimate may be reasonable, we consider

the two extremes. As N — oo, the sum converges to

E[D;] and U converges to SA. Thus fig},,,.4 converges

to our long trace estimate %J—} At the other extreme,
7

the sample contains a single reference (N = 1). In this



case, the sum is exactly 1, since P{D; > 1} =1, and U
is exactly 1, yielding an estimate of %é‘j], which is just
the miss ratio m. As we argued in Section 2, we expect
an arbitrary reference to miss with probability m. Since
the estimate is accurate at the two extremes, we would
like to evaluate it for more typical values. However, the
estimate relies upon the distribution of dead times, D;
which we have not been able to accurately character-
ize. Further work is needed to determine whether this
approach will yield useful estimators.

5.1 Estimates for pu

Rather than try to estimate the distributions of D;, or

equivalently Y;(¢), we propose four simple estimates of

p for short traces. The first estimate is simply our long
trace model

i = E[D;]

ong = (G,

which will give accurate estimates for sufficiently long
traces.

The second estimator assumes that the long trace
model accurately predicts the number of dead block
frames at time ¢, but that all live block frames are ref-
erenced before the first dead one. Intuitively, the esti-
mate assumes that all block frames not referenced by
the sample are dead. This yields an estimate of:

(13)

X maX(O,SAgEgﬁ —SA+T)
Hlast = U (14)
U . EID;]
— max |0 34 + Ee] L
= ) -
SA

Taking the maximum with 0 accounts for the possibility
that not all live block frames are referenced during a
short sample.

The third estimate is the arithmetic mean of ﬂlong
and fi7, 4. The rationale for this estimate, called ﬂspli#
comes from the observation that the first two estimates
are generally larger than p and smaller than pu, respec-
tively. ﬂlong is larger than p because live block frames

are referenced quickly, hence p tends to be less than
E[D;]
E[G;]” o
all unreferenced block frames are dead, which is not nec-
essarily true. While ﬂlong and fij,¢; are not bounds in
a strict sense, because the long-trace model is not pre-
cisely accurate, we shall see that the true value of p
tends to fall between them in practice.

Our final estimate, called ﬂtepid’ is the arithmetic

H st 1s smaller than p because it assumes that

mean of fip s and fi. g (ie., 0.5). This estimate has
the advantage of requiring no computation, and, as we
shall see in the next section, is also quite accurate.

5.2 Empirical Validation

Figure 2 plots the four short-sample estimates ﬂlong’
Bigst ﬂsplit’ and ﬂtepid’ as a function of U/SA. Each
graph plots the true value of y with the estimates for
a particular trace simulating a 64K-byte direct-mapped
cache, with 16-byte blocks. Each measured data point
represents the average values of y and U/SA for a set
of samples. Each set contains 19-35 samples ranging
in size from 10 thousand to 5 million references. The
samples are evenly spaced throughout the base trace,
and are non-contiguous (except for the largest sample
size). Each sample size, except the largest, has multi-
ple data points. As in the previous section, we estimate
g%g}% with the mean dead and generation times com-

E[D;]
. : E[G;]
function of both cache configuration and address trace,

the estimates are not the same in each graph.

i1s a

puted over the entire trace. Note that since

Figure 2 shows the results for the five traces; mult!
and mult? are combined to save space and because they
behave similarly. The measured data generally follow
the hyperbolic curve predicted by fij,s; and ﬂsplz't' As

U/SA approaches 1, p approaches the long trace model,
as predicted. For smaller values of U/SA, p decreases
rapidly. The traces mult! and mult?2 closely fit the pre-
diction of ﬂsplit' The traces sor and tree more closely
follow the prediction of fij, ;. And the trace tv most
closely follows ratepid' Note that, as predicted, most
of the data points fall between lalong and fi;,¢4, which
are much tighter than the bounds provided by i, ,; and
Heold:

The estimator ﬂsplz’t appears to be the best of the
alternatives, although it clearly overpredicts most traces
for small values of U/SA. While better estimators may
exist, we believe that ﬂsplit is sufficiently accurate as

long as U/SA is at least 0.6. We also consider ratepid

because it requires no computation. We focus on these
estimates for the rest of this paper.

The results in Figure 2 demonstrate the accuracy of
E[D;]

i . ) ElG;]
which we estimated by calculating the mean dead and
generation times over the entire trace. But this is im-

practical when using trace sampling, so we must esti-
E[D;
)
duces an additional source of error. Accurately esti-
mating this ratio can be difficult since the mean gener-
ation time may be very large. For example, the aver-
age generation time is 165,000 references for mult! on
a 64 K-byte direct-mapped cache. Fortunately, we have
observed that for most traces, especially the multipro-
gramming traces, the ratio of mean dead time to mean
generation time remains roughly constant regardless of

the model. However, the model depends upon

mate using only the short samples. This intro-
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Figure 2: Estimates of y as a Function of U/SA

This figure plots the estimates of p as a function of U/SA, the fraction of block frames referenced during a sample.

Each graph plots the four estimates, ﬂlong’ Blgsts ﬂsplit’ and ﬂtepid’ as well as the measured data points. Each
measured data point represents the average pu and U/SA of between 19 and 35 samples of a particular size. The
samples sizes range from 10 thousand to 5 million. The cache size for all graphs is 64K-bytes, direct-mapped, with

16-byte blocks.




Configuration Address Trace
Cache
Size | Assoc multl mult2 tv sor tree
50,000 Reference Samples
4K 1 -17% 9% -4% 19% | -36% 8% -35% -8% | -11% 14%
4K 2 17%  11% -2% 38% | -38% 13% | -33% 8% -6% 14%
4K 4 -18% 13% -4% 36% | -37% 17% | -30%  23% -8% 20%
16K 1 0% 6% 2% 2% | -37%  12% | -45% -17%7 | 32% 28%
16K 2 -2% 22% 8%  24%t | -36%  18% | -45% 3% 20% 6%
16K 4 -4%  37%¢ 6%  50%t | -35%  22% | -46% 4%t 9% 26%
64K 1 42%  -15%7 | 47%  -19%7 | 4% 63%t | -46% -33%t | 251%  11%¢t
64K 2 5% 3%t | 45% 0%t 9%  106%7 | -47%  -4%7 | 343%  132%
64K 4 46% 133%t | 47%  T9%% | -11%  T1%F | -4T% 2%t | 537%  1138%f
500,000 Reference Samples
64K 1 -18% -T% | -20% -31% 9% 9%5% | -49% -2% 83% 45%
64K 2 21% 4%t | -25% 6%t | 16%  118% | -49% 1% 92% 62%
64K 4 -24%  17%71 | -2T%  14%7 | -T% 9% | -49% 2% 102%  149%%

Table 4: Relative Error of /ltepid (left) and ﬂsplit (right) Using Short Samples

This table plots the relative error in ﬂtepz'd and ﬂsplit where we approximate E[D;]/E[G;] using only generations

entirely contained within the short samples. Since the mean generation time may substantially exceed the sample
length, this approximation introduces an additional source of error into ﬂsplit' Data values in the table that do not

meet the rule-of-thumb (U/SA > 0.6 and M/SA > 1.0) are marked by daggers (7).

sample size.
Table 4 compares ﬂtepid to [Lspm when we estimate

E[D,]
E[G] ) ) )
the short samples. The error in both estimates is much
greater than observed for the long trace model, but is
still acceptably low for the smaller caches. The error

in ﬂsplit exceeds 20% in only 10 of the 30 cases. This

using the mean dead and generation times from

translates to a much smaller error in the overall miss ra-
split (not shown): 28 of the 30 trace/cache com-
binations have relative error less than 10% and none
are worse than 20%. The 64K-byte caches do not fare
as well, with the error in ﬂsplit reaching 1000% for one

tio, m

data point. The problem, of course, is the small sample
size. In the extreme example, the cache averages only

12 (known) misses per sample. Clearly a longer sample
E[D;]
E[G;]

Increasing the sample size to 500,000 references re-
duces the error substantially. Exactly how long the sam-
ples must be to achieve acceptable error is still an open
question. The following experimental rule-of-thumb,
however, holds for our data: the error in msplit is gen-

is necessary to predict with any accuracy.

erally less than 10% if the samples are large enough to
touch at least 60% of the cache (U/SA > 0.6) and aver-
age at least one miss per block frame (M > SA). Until
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we better understand the estimator’s error, we suggest
the conservative strategy of ensuring that M > 2S5A.

Surprisingly, ﬂtepid also does quite well for small sam-
ples. This simple estimate has lower relative error than
ﬂsplit in one-third of the cases examined. Since ﬂtepid
requires no computation, some designers may choose to
use it, rather than the more accurate ﬂsplz't'

Both estimates are much more accurate than the
steady-state estimate mgs. As shown in Table 5, a con-

tinuation of Table 1, the error in g, is much less

spli
than the error in mgg. The error in mtepid 1s much less
in four of the five cases, but is worse in the fifth. These
results clearly show that using Thspm, or simply mtepid’

is much better than using mgs.

6 Summary and Conclusions

In this paper, we showed that accurately estimating the
miss ratio of unknown references is the key to obtain-
ing accurate results from trace-sampling. Previous es-
timates generally assumed that unknown references be-
have like randomly chosen references, and miss at the
steady-state miss ratio. We presented empirical results
showing that unknown references miss at a much higher



True Relative Error
Trace m Mss mtepid mspm
multl || 0.024 || -31.9% | 13.9% -4.9%
mult2 || 0.016 || -38.1% | 18.6% -7.4%
tv 0.035 || -49.5% | [2.0%] | 32.3%
sor 0.027 || -81.2% | -37.8% | |-27.0%
tree 0.010 || -26.4% | 69.9% 3.1%

Table 5: Comparison of mgs, mtepid’ and mspm.

This table shows the relative errors in the miss ratio
estimates. Each data point is the mean of several thou-
sand samples, each containing 50,000 references. The
cache configuration is 64K-bytes, direct-mapped, with
16-byte blocks.

miss ratio that is independent of the steady-state miss
ratio.

In the key result of this paper, we showed that for
samples that reference every block frame, the miss ratio
of unknown references is simply that fraction of time a
block frame is dead.

- _ E[Dj]
Hlong = F[G)]

(15)

Trace-driven simulation data demonstrate the accuracy
of this model.

We extended the model to handle short samples,
which only reference a fraction of the block frames:

N
SA 1
0BG ; P{D; >z}

=1

Pshort = (16)

However this estimate relies upon the distribution of
Dj, which we have not yet characterized.
We examined several estimates for p, and show that

E[D,]
fio s = max E[D;]  E[Dj] % + BlG,] —1
sl 2B[Gy] 2E[G)] 5
(17)

produces good results for sufficiently long samples. We
also showed that ﬂtepid = 0.5 produces acceptable ac-
curacy for many practical applications, yet requires no
computation.

Several open problems remain. Most importantly, we
must determine a robust criterion for estimating the
error in lasplz't' Preferably, this should be a function
of the sample size or the fraction of referenced block
frames. We plan to examine this issue fully in the near
future, using larger caches and longer traces. We also

11

plan to examine hierarchical caches and compare our
results more fully with other techniques.

Better estimators of u are also possible, perhaps by
successfully characterizing the distributions of D; or
Ya(t). We would also like to explore extending this
model to multiprocessor caches and stripped (filtered)
traces.
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