
Summary
In summary, the key to our work was (1) we took a

more programmer-centric view of the problem com-
pared to the more prevalent hardware-centric view at
that time, and (2) our persistence in seeking the mini-
mal possible constraints for the hardware interface. This
resulted in our redefining the problem in programmer-
centric terms, enabling a better understanding of some
of the fundamental issues. It is perhaps worth noting
that when we began this work, the problem seemed
deceptively simple, and a highly respected senior col-
league actually warned us that we were getting into
what appeared to be a closed area!

Acknowledgments
We thank those acknowledged in the original paper

and Jim Goodman who we regrettably omitted. We
thank the sponsors of this research for the confidence
they showed in a new professor: Michael Foster and
Zeke Zalcstein of the National Science Foundation, Rae
McLellan of Bell Labs, Chuck Thacker then of DEC,
Doug Johnson of TI, Chris Hsiung then of Cray, and the
University of Wisconsin Graduate School. We want to
especially note the acceleration brought to our careers
by the NSF’s Presidential Young Investigator program.

Biographies
Sarita V. Adve continued work on memory consis-

tency models for her Ph.D. thesis, under the supervision
of Mark Hill and supported by an IBM graduate fellow-
ship. She joined Rice University as an assistant profes-
sor in 1993, where she has worked on techniques to
improve and evaluate the performance of shared-mem-
ory systems. She received an NSF CAREER award in
1995, an IBM Partnership award in 1997, and an Alfred
P. Sloan research fellowship in 1998.

Mark D. Hill continued research on memory con-
sistency models, large caches, translation lookaside
buffers, and page tables. With Professors James R.
Larus and David A. Wood, he co-founded the Wiscon-
sin Wind Tunnel project that has developed new meth-
ods and new designs for parallel computer systems.
After earning tenure, Hill went on sabbatical to Sun
Microsystems where he worked on high-end servers.
Hill is now Professor and Romnes Fellow at the Univer-
sity of Wisconsin-Madison, Information Director of
ACM SIGARCH, and a Senior Member of the IEEE.

References
[1] S.V. Adve, V. S. Pai, and P. Ranganathan. Recent

Advances in Memory Consistency Models for
Hardware Shared-Memory Systems.To appear in the

Proceedings of the IEEE, special issue on distributed
shared-memory systems, 1999.

[2] SaritaV. Adve and Kourosh Gharachorloo. Shared
Memory Consistency Models: A Tutorial. IEEE
Computer, special issue on shared-memory
multiprocessing, pages 66–76, December 1996.

[3] SaritaV. Adve and MarkD. Hill. Weak Ordering - A
New Definition. In Proc. 17th Ann. Intl. Symp. on
Computer Architecture, pages 2–14, May 1990.

[4] William W. Collier. Reasoning about Parallel
Architectures. Prentice-Hall, Englewood Cliffs, New
Jersey, 1992. Parts of this work originally appeared as
IBM technical reports in 1984 and 1985.

[5] Michel Dubois, Christoph Scheurich, and FayeA.
Briggs. Memory Access Buffering in Multiprocessors.
In Proc. 13th Ann. Intl. Symp. on Computer
Architecture, pages 434–442, June 1986.

[6] Kourosh Gharachorloo, Anoop Gupta, and John
Hennessy. Two Techniques to Enhance the Performance
of Memory Consistency Models. InProc. Intl. Conf. on
Parallel Processing, pages I355–I364, 1991.

[7] Kourosh Gharachorloo, Daniel Lenoski, James Laudon,
Phillip Gibbons, Anoop Gupta, and John Hennessy.
Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors. InProc. 17th Ann.
Intl. Symp. on Computer Architecture, pages 15–26,
May 1990.

[8] JamesR. Goodman. Cache Consistency and Sequential
Consistency. Technical Report #61, SCI Committee,
March 1989. Also available as Computer Sciences
Technical Report #1006, University of Wisconsin,
Madison, February 1991.

[9] Allan Gottlieb, Ralph Grishman, ClydeP. Kruskal,
Kevin P. McAuliffe, Lawrence Rudolph, and Marc Snir.
The NYU Ultracomputer - Designing an MIMD Shared
Memory Parallel Computer. IEEE Trans. on Computers,
pages 175–189, February 1983.

[10] Mark D. Hill. Multiprocessors Should Support Simple
Memory Consistency Models. IEEE Computer, to
appear in 1998.

[11] Pete Keleher, AlanL. Cox, and Willy Zwaenepoel.
Lazy Release Consistency for Software Distributed
Shared Memory. In Proc. 19th Ann. Intl. Symp. on
Computer Architecture, pages 13–21, 1992.

[12] Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System.Communications of the
ACM, 21(7):558–565, July 1978.

[13] Leslie Lamport. How to Make a Multiprocessor
Computer That Correctly Executes Multiprocess
Programs.IEEE Trans. on Computers, C-28(9):690–
691, September 1979.

[14] Robert H.B. Netzer and BartonP. Miller. Detecting
Data Races in Parallel Program Executions.Research
Monographs in Parallel and Distributed Computing,
MIT Press, 1991., August 1990.

[15] V. S. Pai, P. Ranganathan, S.V. Adve, and T. Harton.
An Evaluation of Memory Consistency Models for
Shared-Memory Systems with ILP Processors. In
Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS VII), pages 12–23, 1996.

[16] Dennis Shasha and Marc Snir. Efficient and Correct
Execution of Parallel Programs that Share Memory.
ACM Trans. on Programming Languages and Systems,
10(2):282–312, April 1988.

the notion of a data race. We realized the connection
between their characterization and the application
behavior that we were attempting to characterize for our
weak models. It became clear (at least intuitively) that
weak ordering and the weaker models we were trying to
develop what appeared sequentially consistent to data-
race-free programs.

We now had a formal understanding of what was
needed from the application. We were still, however,
grappling with hardware conditions for our new ideal
memory model. Nevertheless, at this point, we thought
we had a well-defined path that would lead us to the
ideal model. All we needed was to determine the mini-
mal set of hardware constraints that would provide
sequentially consistent results for data-race-free pro-
grams, and call those constraints our new memory
model (or so we thought).

Minimal conditions for the hardware and model
For almost three months, we frequently invented a

new “model of the day.” We would formalize a set of
conditions that appeared necessary and sufficient, but
soon would discover another way to weaken those con-
ditions. To prove or disprove the correctness of our con-
ditions, we made use of the formal methods developed
by Shasha and Snir [16] as well as ad hoc techniques. In
late October 1989, we realized that not only were the
absolutely minimal hardware constraints elusive, but
also that a model defined in terms of the type of con-
straints we were proposing would be quite complicated.

At this point, we realized that we needed to move
beyond viewing the model as purely a set of hardware
constraints. The defining moment of this work came
with the observation that weak models could be viewed
simply as a contract between hardware and software.
Given that we had already defined a set of conditions
for software, the only necessary condition for hardware
was to appear sequentially consistent for the proposed
software. Further, we could develop different models by
determining different software conditions; the hardware
for those models would simply need to appear sequen-
tially consistent to the specified software.

Subsequent Work
After the 1990 paper, most of our immediate work

focused on formalizing the software conditions for
which commonly used system optimizations would not
violate sequential consistency, and on formulating fur-
ther system relaxations that would not violate sequen-
tial consistency. Some of this work was joint with
Kourosh Gharachorloo, Anoop Gupta, and John Hen-
nessy of Stanford. A common theme throughout this
work was that most problems at first appeared to have
deceptively simple solutions; however, formally prov-

ing the correctness of the solutions proved to be quite
difficult. Our eventual framework to do these proofs
benefited immensely from previous formal work by
Collier [4] and by Shasha and Snir [16].

The flexibility afforded by defining a memory
model in the new programmer-centric way is arguably
most evident in the software shared-memory work that
followed later. Lazy Release Consistency [11], arguably
the most widely cited algorithm for software shared-
memory, is weaker than release consistency. However,
both release consistency and lazy release consistency
obey the data-race-free model since they both appear
sequentially consistent for data-race-free programs.
Thus, for programmers who write data-race-free pro-
grams, these systems are equivalent.

Over the last few years, a rich body of literature in
the area of memory consistency models has developed.
This includes new models for hardware and software
shared-memory, performance evaluations, theoretical
frameworks for formal specifications and proofs, and
highly successful methods to reduce the hardware per-
formance gap between consistency models. Most
advances, however, have been in the domain of hard-
ware and runtime systems. The performance impact of
relaxed consistency models on compiler optimizations
is still unclear. Programming languages and environ-
ments have also only recently begun to address the issue
more explicitly, with many supporting relaxed models
(e.g., Java, OpenMP, and POSIX). A tutorial on the sub-
ject and an overview of recent advances appear in [2,1].

Although memory consistency models are now
well-understood, there is no consensus yet about the
best consistency model. At the time of this writing,
commercial multiprocessors supporting sequential con-
sistency and relaxed consistency models are available.
The Digital Alpha and IBM PowerPC processor archi-
tectures support relaxed models similar to DRF or
release consistency, Intel IA-32 and current SPARC
processors support derivatives of a relaxed model called
processor consistency, while processors from HP and
MIPS support sequential consistency. Recent hardware
optimizations that reduce the hardware performance
gap between various consistency models [6,15], the
lack of quantitative data on the benefits of relaxed mod-
els for compiler optimizations, an absence of widely
used programming standards for shared-memory, and
the requirement on vendors to keep their systems back-
ward compatible are some of the factors that have made
a consensus difficult. One of us (Mark Hill) has recently
used some of these factors to make an argument for
returning the hardware/software interface to sequential
consistency [10].

A Retrospective on “Weak Ordering—A New Definition”

Sarita V. Adve Mark D. Hill

Dept. of Electrical & Computer Engineering Computer Sciences Dept.
Rice University University of Wisconsin-Madison

Houston, TX 77005 USA Madison, WI 53705 USA
�����������
	���
���������
���������� ����������������	�
�����������
��������

Intr oduction
We began work on “Weak Ordering—A New Defi-

nition” [3] in early 1989 while Sarita Adve was a first-
year graduate student and Mark Hill a second-year
assistant professor at Wisconsin. It now seems obvious
that an interface for shared-memory must be defined. It
also seems obvious that such an interface must consider
interactions among reads and writes to all shared-mem-
ory locations, and must not refer to hardware structures
such as caches and write buffers. In early 1989, how-
ever, most work related to shared-memory semantics
was on cache coherence. Such work reasoned about
interactions between reads and writes to a given cache
line in isolation, focusing on hardware protocols to
ensure that the effect of a newly written value eventu-
ally propagated to all processor caches. Only a few
papers had been written about a more comprehensive
model of memory [8, 9, and references in the main
paper].

Our work was primarily motivated by the pioneer-
ing work on weak ordering by Dubois, Scheurich, and
Briggs [5]. The motivation and intuition behind weak
ordering were compelling. However, as originally
defined, weak ordering had two problems: (1) the defi-
nition was hardware-centric and did not seem to be
appropriate as a programming model, and (2) the defini-
tion appeared to unnecessarily constrain hardware.
These observations steered us towards the following
two questions:

• What are theminimal conditions that a shared-mem-
ory model must impose on hardware?

• How could the shared-memory model be best pre-
sented to programmers?

For a while, we viewed the above two questions
somewhat independently. The defining moment of this
work was when we realized the connection between the
two questions and redefined the memory model to be a
contract between hardware and software. Specifically,
we saw a weakly ordered system as one that provided

Lamport’s sequential consistency [13] to data-race-free
programs. Our model was subsequently dubbeddata-
race-free (DRF) or data-race-free-0 (DRF0).

We next describe the process that led to the paper
and briefly summarize later work in the area. Release
consistency and the notion of properly labeled pro-
grams were developed concurrently with our work and
are based on similar ideas [7].

The Process

Search for a weaker model for hardware
Our initial work was hardware and performance-

centric, and focused on defining a set of conditions that
were less constraining for hardware than Dubois et al.’s
weak ordering. We would consider common application
characteristics, and develop hardware constraints that
would give “reasonable behavior” for those (informally
characterized) applications. In this process, we defined
multiple models that relaxed consistency requirements
in different ways at different points in the program (e.g.,
at the acquire or release of a semaphore). These models,
although less constrained than Dubois et al.’s weak
ordering, were nevertheless similar in style to the defi-
nition of weak ordering, and suffered from the draw-
backs we seeked to alleviate.

A characterization of software
Our first key departure from Dubois et al.’s work

was to use partial orders instead of real time in our
specifications. Using any notion of real time made the
specifications harder to understand from the program-
mer’s viewpoint and unnecessarily constrained hard-
ware. The use of partial orders was motivated largely by
the work of Lamport (e.g., [12]) and of Rob Netzer and
Bart Miller [14], our colleagues at Wisconsin.

The second important step, in Summer 1989, came
from making a deeper connection with the work by
Netzer and Miller [14]. They were working on detecting
data races in a program, and used a variant of Lamport’s
happened-before partial order relation for formalizing

To appear inSelected Papers from the First 25 International Symposia on Computer Architecture,
Gurindar S. Sohi, editor, ACM Press, 1998.

