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ABSTRACT

The memoryconsistencynodel,or memorymodel,supporteddy a shared-memorynultiprocessodirectly
affectsits performance.The mostcommonlyassumednemorymodelis sequentiatonsistency(SC). While SC
providesa simplemodelfor the programmerijt imposesigid constraintson the orderingof memoryaccesseand
restrictsthe use of commonhardwareand compiler optimizations.To remedythe shortcomingsf SC, several
relaxedmemory modelshave beenproposedin the literature. Theseinclude processorconsistency(PC), weak
ordering (WO), releaseconsistency(RCsc/RCpc)total store ordering (TSO), and partial store ordering (PSO).
While the relaxedmodelsprovide the potentialfor higher performancethey presenta more complexmodelfor
programmersvhencomparedo SC.

Our previousresearchasaddressedhis tradeoffby taking a programmer-centriapproach.We havepro-
posedmemorymodels(DRFO,DRF1,PL) thatallow the programmeto reasorwith SC,but requirecertaininfor-
mationaboutthe memoryaccessesThis informationis usedby the systemto relax the orderingamongmemory
accessesvhile still maintainingSC for the programmer. Our previousmodelsformalized the information that
allowed optimizationsassociatedvith WO and RCscto be used. This paperextendsthe above approachby
defininga new model, PLpc, that allows optimizationsof the TSO, PSO,PC, and RCpc modelsaswell. Thus,
PLpc providesa unified programmingmodel that maintainsthe easeof reasoningwith SC while providing for
efficiencyandportability acrossa wide rangeof proposedsystemdesigns.

1. Introduction

A memory consistency model or a memory model for a shared-memorynultiprocessosystemis a formal
specificationof how memoryread and write accesse®f a programwill appearto executeto the programmer
[2,5]. Sequential consistency (SC)[11] is the mostcommonlyusedmemorymodelsinceit requiresthe execution
of a parallel programto appearas someinterleavingof the executionof the parallel processe®n a sequential
machine While SCallowsfor simplereasoningaboutprogramsijt restrictsmanycommonuniprocessohardware

andcompileroptimizationshatreorderor overlapthe executionof memoryaccessept, 13].
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To achievebettersystemperformanceresearcherbaveproposedlternatememorymodels:processor con-
sistency (PC) [5]1, total store ordering (TSO)[15], partial store ordering (PSO)[15], weak ordering (WO) [4],
and release consistency (RCsc/RCpc)[5]. The optimizationsallowed by thesemodelscan provide substantial
improvementin systemperformance gspeciallyas memory latenciesgrow relative to processorspeedg6, 7].
However, the formal definitions of the modelsare presentedalmostcompletelyin terms of the optimizations
allowed.Defining modelsin this mannereadsto two problems:(1) everynew hardwareoptimizationpotentially
resultsin a new model,requiringprogrammergo reasorwith a wide variety of specificationsand(2) the models
aretoo hardware-centric sincethey mainly expresshe hardwareoptimizationsthey allow; mostprogrammersio

notwantto dealdirectly with hardwareoptimizations.

Our previousresearcthasaddressethe abovedilemmaby proposinga moreprogrammer-centric approach
thatprovidesa higherlevel of abstractiorto the programmer.This approachyuaranteeSCif certaininformation
aboutthe memoryaccessess provided;the informationis usedto exploit variousoptimizationswithout violating
SC. Thedata-race-free-(DRFO0)[1] anddata-race-free-{DRF1)[2] memorymodels andthe notionof properly
labeled(PL) program§ [5] allow the programmetto reasorwith SC,andat the sametime allow the optimizations
of WO andRCsc. This is achievedby requiringthe programmeto explicitly identify theaccesse the program

thatcouldbeinvolvedin arace.

Our newmemorymodel,called PchS, extendsour previousframeworkto allow the programmetto reason
with SC, while allowing the additional optimizationsof TSO, PSO,PC and RCpcaswell. It achievesthis by
requiringthe programmetto additionallyidentify a commonclassof synchronizatioraccessesvhereoneprocess

waitson alocationuntil a particularvalueis written by anothermprocess.

A directimpactof our work is thatprogrammersvho preferto reasornwith SC needonly provide program-
level information (as specifiedby the PLpc memorymodel)to exploit the sameoptimizationsas allowed by the
hardware-centrienodels.We claim that providing this type of informationis easierand more naturalfor the pro-
grammerthan reasoningwith the hardware-centrianodelsdirectly. More broadly, the PLpc memory model
unifiesa large setof seeminglydifferent systemdor both programmersnd systemdesignersFor programmers,
writing programsfor the PLpc memorymodelallows for simple reasoningand portability acrossmany systems.
For systemdesignersspecifyingPLpcasthe memorymodelallows building systemswith a wide rangeof optimi-

zationswithout sacrificingportability or easeof use.

1. Theprocessoconsistencynodelconsideredn this paperis differentfrom thatproposedy Goodmar{9].
2. Wewill alsousePL to imply amemorymodelthatguaranteeSCto all PL programs.

3. The PL memorymodelencompassesystemghat guarante€SC amongcompetingaccessefefinedlater) [5]. The
PLpcmemorymodelextendsPL to includesystemghatat mostguarante€’C amongsuchaccesses husthenamePLpc.



Therestof the paperis organizedasfollows. Section2 definesthe PLpc memorymodel. Section3 pro-
videsintuition for the optimizationsthat can be exploitedby a systemthat obeysthe PLpc memorymodel. Sec-
tion 4 gives mappingsfrom PLpc to the hardware-centrienodels,which allow programswritten for PLpc to be

run efficiently on the hardware-centricnodelswithoutviolating SC. Section5 concludeghe paper.

The proofsto supportthe materialin Sections3 and4 appearin anotherpaper[3]. The paperdevelopsa
formal and generalframework for defining, implementing,and proving equivalencesamongseveralmemory
modelg[3]. It illustratesthe useof this frameworkby derivinga setof sufficientconditionsfor systemghatsatisfy
the PLpcmemorymodelandproving thatthe hardware-centricnodelssatisfytheseconditionswith the mappings

of Section4.

2. The PLpc Memory Model

This section presentsthe PLpc memory model. Section?2.1 gives a categorizationof sharedmemory
accessethatforms the basisof the informationrequiredby the PLpc memorymodel. Section2.2 stateshow the
information on the categoryof an accesscan be correctly conveyedfor PLpc and formalizesthe PLpc memory

model.

2.1. Categorization of Memory Accesses

The PLpc memorymodelusestwo notionsto categorizememoryaccessesFirst, it distinguishedetween
accessethatmay beinvolvedin arace(usually synchronizatioraccessesandthosethat are neverinvolvedin a
race (usually dataaccesses) Second,of the accesseshat may be involved in a race,PLpc identifiesa classof
synchronizatioraccessegherea processorepeatedlyreadsa locationuntil anotherprocessomrites a particular
valueto thatlocation. In this sectionwe formalizethe aboveaccessategories.Section3 discusseshe optimiza-

tionsthatsucha categorizatiormakespossible.

We startby clarifying someterminologythatwill be usedin the restof this section. A memoryaccesspr

simply an accessijs a singlereador write to a specificsharedmemorylocationf1 For every executionof a pro-

gram,the programtext definesa partial order,calledthe program order ( 2> ), onthe memoryaccessesf each
processn the execution[17]. An SC execution refersto an executionof a programon an SC system(Refer to

[2, 3] for formal definitionsof a program,anexecutionanda system.)A systemis SCif theresultof everyexecu-

4. An atomicread-modify-writeis treatedasa readaccesdollowed by a write accesg2,5]. We implicitly assumen
implementatiorthat doesnot allow a write to be executechetweenthe readand the write of a read-modify-writeto the
sameocation([3].



tion on it canbe obtainedby sometotal order( > ) of the memoryaccessesf the executionsuchthat -

obeys->> [11]. Theresultof anexecutionhasbeeninterpretedasthe valuesits readsreturn{2, 8]. Finally, two

accesseareconsidereconflicting if theyareto the samelocationandat leastoneof themis awrite [17].

Figure 1(a) showsa typical producer/consumeinteractionthat we use as an exampleto illustrate the
accessesategories.The producer(P1) writestwo locationsandsetsa flag, while the consume(P2) waitsfor the

flag to be setandthenreadsthetwo locations We nextformalizethe accessategories.

P1 P2

A=1;

B=1;

Flag = 1;
while (Flag == 0);
...=B;
= A;

(a) Program Text

Pl P2
Write A
o
Write B Read Flag
po -
to ®
Write Flag-°_ Read Flag
po
Ret':ld B
po
Read A

(b) Program Order and
Total Order

Figure 1. Examplecodesegment.

In Figurel(a),theaccesseto A (andB) arealwaysseparatear orderedby the accesseto flag. We refer
to the accesse$o A and B as non-competing accesses and to thoseto flag as competing accesses. The formal
definitionsfollow.

Definition 1: Ordering Chain: For two conflictingaccesses andv of an SC executionwith a total

order %>, anorderingchainexistsfrom accessi to accesw if u 2> vor

u-s wy 2 2 ow, o, B owg e B By,

wheren > 1, w; is awrite accessy; is areadaccessandw; andr; areto the samelocationif i = j. If
all accessei the abovechainareto the samelocation,thenu maybethe sameasw,, andv maybe

thesameasr, aslong asthereis atleastone -*>> arcin the chain®

5. Similar orderingrelationsarealsousedin [1, 2,8].



Definition 2: Competing and Non-competing AccessesTwo conflicting accessesf an execution

of aprogramform a competing pair if thereis atleastoneSCexecutionof the programwherethereis

no orderingchainbetweenthe accessesAn accesss a competing access if it belongsto at leastone

competingpair. Otherwise |t is non-competi ng.6

Figure1(b) showsthe 2> and->> arcsthatprovidean orderingchainbetweerthe accesset A andto
B in every SC executionof the codein Figurel(a). Thereis no orderingchainbetweerthe write andthereadsto

flag. Thereforetheaccesse® A andB arenon-competingwhile thoseto flag arecompeting.

In Figurel(a), P2readsflag in aloop until P1writesit. Sucha loop is calleda synchronizatiodoop con-
struct. Below, we formalize a simple caseof a synchronizatiorioop constructin which the loop repeatedlyexe-
cutesa reador a read-modify-writeto a specificlocationuntil it returnsone of certainspecificvalues. In the ap-
pendix,we give a moregeneraldefinitionthat, for example allowsimplementation®f locks usingtest&test&set
[14] or back-off[12] techniquedo be consideredissynchronizatioioop constructs.

Definition 3: Synchronization Loop Construct: A synchronization loop construct is a sequencef
instructionsin a programthat satisfiesthe following. (i) The constructexecutesa reador a read-
modify-write to a specific location. Dependingon whetherthe value returnedis one of certain
specifiedvalues,the constructeitherterminatesor repeatshe above. (ii) If the constructexecutesa
read-modify-write,thenthe writes of all but the last read-modify-writestore valuesreturnedby the
correspondingeads. (iii) The constructerminatesn everySCexecution.

Giventhata synchronizatiodoop constructeventuallyterminatesthe numberof timesthe loop executesr
thevaluesreturnedby its unsuccessfuleadscannotbe detectecandshouldnot matterto the programmerFor ex-
ample,in Figure1(a),it cannotbe detectedand doesnot matterhow manytimesP2 readsflag unsuccessfullyor
evenwhatvaluesthe unsuccessfuleadsreturn,aslong aseventuallya readreturnsl andterminatesheloop. For
this reasonwe assumehat the unsuccessfuteadsof a synchronizationoop constructdo not contributeto the
resultof an SCexecution. Thus,if all theaccessesf a synchronizatiodoop constructarereplacedwith only the
lastreador read-modify-writethatexitedtheloop, we still getan SC executionwith the sameresultasbefore[3].
Therefore,in analyzingSC executionswe treata synchronizatiorloop constructasa single accesswvhich is the

lastreador read-modify-writethatterminategheloop construct.

Synchronizatiorloop constructsoften have anotherspecialproperty. Generally,accessedn a competing
pair canexecutein any order. However,with the competingpair comprisingof the write thatterminatesa syn-
chronizationloop constructandthe final read of the loop construct, the write alwaysexecutesbeforethe read.
For example,in Figurel(a), P1'swrite to flag mustexecutebeforeP2's final readof flag. Suchwrite-readcom-
peting pairs for which the order of executionis fixed allow for optimizationsthat are not possiblefor other

accessesWe call suchwritesandreaddoop accesseandformalizethembelow.

6. DRF1 and PL definedthe notion of dataraces[1,2] and competingaccesse$5] that are similar to competing
accessedefinedabove. The major differenceis that Definition 1 allowsu = w, andv = r;, only if all accessesntheorder-
ing chainareto the samdocation. DRF1andPL do nothavesucharestriction.



Definition 4: Loop and Non-Loop Reads:A competingreadis aloop read if (i) it is thefinal readof
a synchronizatiodoop constructthat terminateghe construct(ii) it competesvith at mostonewrite
in any SCexecutionand(iii) if it competeswith awrite in an SC executionthenit returnsthe value
of that write; i.e., the write is necessarnto make the synchronizationoop constructterminate. A
competingreadthatis notaloop readis a non-loop read.

Definition 5: Loop and Non-Loop Writes: A competingwrite is a loop write if it competesonly
with loopreadsin everySCexecution. A competingwrite thatis notaloop write is a non-loop write.

In summary we categorizeaccesseascompetingor non-competingWe further categorizethe competing
accessesasloop or non-loop. Figure2 summarizeshis categorization.Although our definitionsmay seemcom-
plex, theintuition is fairly simpleandtheinformationwe require,i.e., whetheran accesss competingor not and

whetherit is aloop accesr not, is naturallyavailableto the programmein mostcases.
shared

competing non—competing

N

non-loop loop

Figure 2. Categorizatiorfor readandwrite accesseto shareddata.

2.2. Properly-Labeled Programs

We discusshow accessategoriescan be correctly conveyedfor the PLpc memorymodel by formalizing

thenotionof aPLpcprogram,andthendefinethe PLpcmemorymodel.

Thereareno restrictionson how the categoryof anaccessanbe conveyed. Severalmethodsarediscussed
in our earlierwork which applyto PLpcaswell [1,2,5]. Onesuchmethodis for a systemto provideeasyto use
high-levelsynchronizatiorconstructge.g., monitorsanddistributedtask queues) andto requireprogrammergso
orderall conflicting memoryaccesseshroughtheseconstructs. With suchan approachonly the writers of the
high-levelsynchronizatiorconstructseedto seethe full complexityof PLpc. Irrespectiveof how the categories
are actually conveyedwe canusean abstractionwhereeveryaccesshasa label associatedvith it thatidentifies
its category. Thevalid labelsfor PLpcarenon-competingloop andnon-loop. Notethatlabelingdoesnotrequire
adding extra instructionsin the program;it only requiresdistinguishingmemory accessesccordingto their

categories.

We now discusswhen accessesre consideredcorrectly labeled. If every accessis labeled with the
categoryit actuallybelongsto, thelabelingis clearly correct. However,suchinformationmay not be availablefor
certainaccessesForthosecaseswe allow thelabelingto be conservative.This ensuregorrectnesst the costof
not fully exploitingthe potentialfor performance.Informally, a labelis conservativéf its categoryrequiresless

information than the actual categoryof the access.Conservativdabelsare shownin bold in Figure 2. Thus,a



non-competingaccesscan be conservativelylabeledas competing(loop or non-loop)and a loop accesscan be
conservativelylabeledas non-loop. The following formalizeswhen a programis properly labeled. We usethe

subscript_ to distinguishthelabelfor anaccesdrom theintrinsic categoryof theaccess.

Definition 6: Properly-Labeled Programs (PLpc programs): A programis properly-labeled
(PLpc) if (i) all accessefabelednon—-competing, are non-competingaccessesand (ii) all accesses
labeledloop, areloop accesse$.

To illustrate properlabeling, Figure 3 showstwo commonsynchronizatiorscenariogsharedocationsare
shown starting with an upper caseletter). Figure 3(a) showsthe implementationof locks and unlocks using
test&setandunset. The while loop containingthe test&setforms a synchronizatiodoop constructtherefore we
ignore unsuccessfulest&sets. The testof a final test&setcompetesonly with the unsetthatis requiredfor the
loop to terminate. Therefore the testis aloop read.The setof afinal test&setis non-competing.The unsetcom-

petesonly with afinal test;therefore,t is aloop write 8

while ( testeset(s) ); teSt&Set(S) v campoting write
accesses to data
unset(S); write(S) loop write
(a) critical section
accesses to data
[* barrier code */
local_flag = ! local_flag; . non-loop read &
if ( fetch&incr(Count) == N ) { fetch&incr(Count) non-loop write
Count = 1, write(Count) non-competing write
Flag = local_flag; write(Fla loop write
yelse{ (Flag) P
while ( Flag != local_flag ) ; read(Flag)  loop read

accesses to data

(b) barrier

Figure 3. Exampleof accescategorieandaccesdabels.

Figure3(b) showsthe implementatiorof a barrier[12] usingan atomicfetch-and-incremertperation[10].
The while loop containingthe readson flag forms a synchronizatiooop construct;jtherefore we ignorethe un-
successfuteadsof flag. Thewrite to countis a non-competingaccessthe fetch andincrementon count,andthe

write andthe final readto flag are competingaccessesThe readandwrite to flag are loop accessesyhile the

7. Condition(i) is very similarto thatfor PL [5] andDRF1[2].

8. DRF1 and PL did not ignore unsuccessfuaccessesf a synchronizationoop construct.An unsuccessfuset can
competewith an unsetand was thereforeconsideredcompeting. To differentiatebetweenan unsetand set, competing
accessewerefurthercategorizedspairedandunpairedsynchronizationin DRF1,andsyncsandnsyncsin PL. PLpcdoes
not needthesedistinctions.



fetchandincrementarenon-loopaccesses.

ThePLpcmodelis definedasfollows.

Definition 7: The PLpc Memory Model: A systemobeysthe PLpc memorymodelif all executions
of anyPLpcprogramon the systemareSC executions.

3. PossibleOptimizations with the PLpc Memory Model

This sectionprovidesthe intuition for how the informationin a PLpc programcan be usedby a system
obeyingthe PLpc memorymodelto exploit certainoptimizationsboth in the hardwareand compilerwhile still
maintainingSC. A moregeneralsetof optimizationsallowed by the PLpc memorymodelalongwith a proof of
correctnessappearsn [3]. Below we first statea setof sufficientrequirementgor SC andthenshowhow these

requirementganbeweakenedor systemghatsatisfyonly the PLpc memorymodel.

To provide SC executionsit is sufficientif (i) accessesf a single processomare executedoneat atime in
programorder,and (ii) a write is madevisible to all processorsimultaneoushyreferredto asatomicity) [16]. If
(i) is satisfiedjt follows thata weakernotion of the atomicity conditionin (ii) suffices:it is sufficientif awrite be-
comesvisible simultaneouslyto all processor®therthanthe onethatissuedthe write. In the following, we use
atomic to refer to this weakernotion. The informationin a PLpc programallows a systemobeyingthe PLpc

memorymodelto reorderandoverlapcertainaccessesf a processoandto allow certainwritesto be non-atomic.

The first level of information provided in PLpc programsdistinguishesbetweencompetingand non-
competingaccessesThis allows for virtually the sameoptimizationsasthe PL and DRF1 models.PL andDRF1
allow for all optimizationsof WO andRCsc[2, 5]. Thus,non-competingaccessesanbefully reorderecandover-
lapped(aslong asintra-processodependenceare observed)n the regionbetweena competingreadanda com-
petingwrite.9 However,with just this level of information,competingaccessebaveto be executedason an SC

system(asis the casefor WO andRCsc).

The secondlevel of information provided in PLpc programsdecreasegdhe restrictionson competing
accessesThisresultsin potentiallyhigherperformancehanWO andRCsc,andallowsthe optimizationsof TSO,
PSO,PCandRCpcasdiscussedn Section4. Specifically,we haveshownthata loop readdoesnot haveto wait
for previouswrites, anda non-loopreaddoesnot haveto wait for previousloop writes[3]. Equivalently,whena
readfollows a write, the readneedwait for the write only if both are non-loopaccessesFurther,we havealso

shownthatloop writes do not haveto be atomic[3]. While we do not give the proof for theseoptimizationshere,

9. In thediscussionrelationsamongaccessesuchasbetweenprevious,following, etc.,arein the contextof program
order.



the following examplesconveythe intuition for why they work, and also indicate the performancegainsthey

yield.

Considerthe codesegmenshownin Figure4(a). Eachprocessoproducesa value,setsa flag, waits for the
other processor’'sflag to be set, and consumeghe value producedby the other processorThe read and write
accesseto theflag locationsarecompetingoop accesseandareshownin bold. As long aswe ignorethe unsuc-
cessfulintermediataeadsin the loops,the executionf the programappearSC evenif loop readsoverlapprevi-
ousloop writes. Considerthe performancegain from this optimization.AssumeP1 hassetFlag1first. Now as-
sumeP2 setsFlag2. The optimizationallows P2 to continuewith the loop-readbefore the write of Flag2 com-

pletes,n effectoverlappingandhiding the latencyof thewrite with thefollowing computationl.0

Pl P2
A=1; B=1;
Flagl = 1; Flag2 = 1;
while (Flag2 ==0); while (Flagl == 0);
.. = B; = A

(@)

Pl P2
A=1,; B=1;
unlock L1; unlock L2;
lock L2; lock L1;
...=B; LA

(b)

Figure 4. Examplecodesegmentsvith loop readsandloop writes.

As anotherexample,considerthe codesegmenshownin Figure4(b). The codeis similar to Figure 4(a)
exceptthatit useslocks andunlocksinsteadof flags. Assumethe implementatiorof locks andunlocksshownin
Figure3(a). PLpcallowstheread(loop read)andthe write (non-competingvrite) of the test-and-seto occurbe-
fore the previousunset(loop write). Thus,the acquiringof onelock canoccurfully beforethe previousreleaseof
anotherock without violating SC and providesperformancegainssimilar to thosedescribedor the previousex-

ample.

10. EitherP2hasavalid copy of Flaglandsuccessfullicompletegheloop andcontinuesor it needso fetcha copy of
Flaglandthusoverlapsthelatencyof this readwith the previouswrite.



Finally, the loop writes to the flagsin Figure4(a), to the lock locationsin Figure4(b), or to the flag in the
barriercodein Figure 3(b) neednot be atomicto get SC executions. The writesin theseexamplesvould benefit
from usingupdategqversusinvalidates)in a cache-coherergnvironmento reducethe communicatioratencyfor
the critical synchronizationHowever, supportingatomic updatesin a large-scalesystemis both unnaturaland
inefficient [5]. Thus, thereis clear benefitfrom allowing certain competingwrites to be non-atomicwith the

guaranteef SCresults.

In summaryPLpc programsprovidetwo typesof informationaboutsharedaccessesThe informationdis-
tinguishingbetweencompetingandnon-competingaccesseallowsfor virtually the sameoptimizationsasPL and
DRF1. The secondtype of information (i.e., loop and non-loop category)allows for relaxing the ordering
betweencompetingaccesses$urther while still maintainingSC. The gain from the latter optimizationbecomes

morepronouncedn programswith a high frequencyof competingaccesse§.e., with fine grainsynchronization).

Althoughwe havemainly concernedurselveswith hardwareoptimizationsin the aboveexamplespptimi-
zations possiblein the compiler are directly relatedto the flexibility the hardwarehasin ordering memory
accessesDuetto its extraflexibility, PLpc hasthe potentialof allowing further compiler optimizationsthan al-
lowed by PL andDRF modelsaswell. However,sincemanycompileroptimizationsrequirethe full flexibility of
reorderingbothreadandwrite accessesye believethe extragainfrom thelimited reorderingbetweencompeting

accesseasallowedby PLpcwill be moreprominentin hardwarethanin the compiler.

4. Porting PLpc Programs to Hardware-Centric Models

This sectiondiscussesiow the informationcontainedn a PLpc program(in the form of accesdabels)can
be usedto efficiently executethe programon a systemsupportinga hardware-centrienodelwhile still maintain-
ing SC. This is done by providing a mapping from the accesscategoriessupportedby PLpc to the access
categoriesupporteddy the hardware-centrienodels. This mappingis mechanicaltherebyallowing for automat-

ic andefficientportability of PLpcprogramdo a variety of systemarchitectures.

4.1. Porting PLpc Programsto WO and RCsc

DRFlandPL alreadyindicatehow PLpc programscanbe mappedo WO andRCsc[2,5]. For WO, com-
petingaccesseshouldbe mappedto synchronizatioraccessesFor RCsc,competingreadsandwrites shouldbe
mappedtio acquiresandreleasesespectively. SinceWO and RCscrequireacquiresandreleaseso be SC, they

do not benefitfrom theloop versusnon-loopcategorizatiorof PLpc.
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4.2. Porting PLpc Programsto TSO, PSO,PC, and RCpc

TSO, PSO,PC, and RCpcallow readsto bypasspreviouswrites, while PC and RCpc allow writes to be
non-atomic. As discussedn Section3, allowing theseoptimizationsfor loop accessedoesnot violate SC. How-
ever, allowing non-loopreadsto bypasspreviousnon-loopwrites, and making non-loopwrites non-atomiccan
violate SC asillustratedby the examplesin Figure5. In the figure, all accesseare non-loopaccessesFor the
codesegmenin Figure5(a), TSO,PSO,PC,andRCpcallow the readsto executebeforepreviouswrites. Thus,
the non-SCoutcome(x,y) = (0,0) is possible. Similarly, for the codesegmentin Figure 5(b), non-atomicityof

writes makesthe non-SCoutcomeof (u,v,w) = (1,1,0)possibleunderPCandRCpc.

i P2 i P2 P3

A=1, B=1, A=1, u=A; v=B;

X=B; y=A; B=1; w=A;
@) (b)

Figure 5. Examplecodesegmentso illustrateviolation of SC.

TSO,PSO,PC,andRCpcdo not providea directway in which non-loopreadscanbe madeto stall before
previousnon-loopwrites complete. Furthermore PC and RCpc do not provide a direct way in which non-loop
writes canbe madeatomic. However,we haveshownthat usingatomicread-modify-writesfor certainnon-loop
accessesan achievea similar effect by satisfyinga setof more generalsufficientconditionsfor a PLpc system

[3]. Theexactmappingis describedelow.

For TSOandPSO,for everynon-loopwrite followed by a non-loopread,at leastoneof theaccesseshould
be partof anatomicread-modify-writeoperation. Additionally, PSOalsoallowswritesto bereorderedf theyare
not separatedby a STBAR (storebarrier). Therefore competingwrites (whetherlooping or non-looping)needto
be precededby a STBAR for PSO.For PC and RCpc, all non-loop readsshould be part of an atomic read-
modify-write operation. Additionally, for RCpc,competingreadsandwrites shouldbe identifiedasacquiresand

releasesespectively.

The abovemappingsuse atomic read-modify-writesfor non-loopaccessesincethe basesystems(TSO,
PSO,PC,andRCpc)do not provide a moredirect way of achievingthe ordersdescribedn Section3. It may at
first seemunnaturaland inefficient to useread-modify-writesinsteadof regularaccessestHowever, many syn-
chronizationconstructsuchaslocks andbarriersare alreadyimplementedvith atomicread-modify-writeopera-
tions. In programsthat usethis type of synchronizationthe non-loopaccessesre often confinedto theseopera-
tions. Therefore,many programsnaturally (and henceefficiently) obey our mappingfor non-loopaccessesFor
example,in Figure 3(b), the competingnon-loop accessedo location Count are already part of a fetch-and-

incrementoperation. This explainswhy many programswritten for SC systemswork correctlyon TSO and PC
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systemswithoutanychanges.

In theuncommorcasesvherea competingnon-loopaccesss not naturally part of a read-modify-write the
accessnay needto be convertednto a dummyread-modify-writeoperationto providethe correctmapping.Con-
verting the normal accessinto a more expensiveread-modify-writeaccessmay be inefficient. In somecases,
conversionto a read-modify-writemay be impossibleif the hardwaredoesnot provide sufficiently generalread-
modify-write operationgequiredfor the conversion(e.g.,a test&setcan not be usedto provide the functionality
of anarbitrarywrite operation). To solvethis problem,a basesystem(TSO,PSO,PC,or RCpc)canbe extended
to provide direct mechanismdor achievingthe requiredorder amongcompetingaccessesFor TSO and PSO,
supportinga fencemechanisni5] to delayfuture readsfor previouswrites allows for directly delayingnon-loop
readsfor previousnon-loopwrites. For PC and RCpc, the extra ability to force certainwrites to appearatomic
providesan alternativecorrectmapping:a fenceis requiredbetweeneverynon-loopwrite andnon-loopreadand

all non-loopwritesneedto be mappedo atomicwrites.

Of all thehardware-centricnodelsconsideredn this section,RCpcprovidesthe mostaggressivesystemfor
translatingthe information providedin a PLpc programinto performancegainswhile still maintainingSC. How-
ever, it is possibleto build a more aggressivémplementatiorthat obeysthe PLpc modelbasedon the sufficient

systemconstraintspecifiedn [3].

5. Conclusions

Sequentiatonsistency{SC)is a simplemodelfor programmersbut restrictsthe useof commonuniproces-
sorhardwareand compileroptimizations. To achievehigherperformanceseveralalternatememorymodelshave
beenproposed.Unfortunately, this divergencefrom SC, along with the hardware-orientealescriptionof the

models resultsin morecomplicatednodelsfor the programmer.

We proposedhe memorymodel PLpc usinga more programmer-centri@approachto addresghe tradeoff
betweernsimplicity andefficiency. PLpcallows programmergo reasorwith SC,but requiresprogrammergo ex-
plicitly identify accesseshat race,and accesseshat are part of a commonwaiting-synchronizatiorconstruct.
Thesetwo piecesof information are usedto exploit the optimizationsproposedby previousmodelswhile still
maintaining SC. Using PLpc is simple becausehe requiredinformation aboutthe programis often naturally

knownandconveyeddy the programmer.

PLpc servesasa unifying memorymodelfor the variousmemoryaccesptimizationsthat havebeenpro-
posedby hardwareandcompilerdesignersFor programmersPLpc programscanbe easilyandefficiently ported

from onesystenmto another. With the earliermodels,this would requireprogrammergo re-establistthe correct-
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nessof their programsusingthe hardwarespecificationof eachsystem. Correspondinglyfor systemdesigners,
the PLpcmodelallowsfor systemswith variousdegreeof optimizationswithout sacrificingprogrammingsimpli-
city or portability.

AlthoughPLpcallows optimizationgproposeddy all currenthardware-centrienodelsiit is possibleto allow
moreoptimizationsif moreinformationis known aboutthe program.In [3], we developa generalframeworkthat
givesintuition for the type of informationthat canbe usedfor different optimizations,and also provide specific

examplef suchinformation.
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Appendix

Below, we give a moregeneraldefinitionfor synchronizationoop constructshanDefinition 3.

Definition A: Loop construct: A loop construct is a sequencef instructionsin a programthatwould
be repeatedlyexecuteduntil a specificreadin the sequencdthe exit read) readsa specificlocation
(the exit location) andreturnsone of certainvalues(the exit read values). If the exit readis partof a
read-modify-write,then the write of the read-modify-writeis called the exit write and the value it
writesis calledtheexit write value.

Definition B: Synchronization Loop Construct: A loop constructin a programis a synchronization
loop constructif it alwaysterminatesfor every SC executionof the program,andif the following

holds. Considera modificationof the programso that it executesbeginningat the loop construct.
Add anotherprocessto the programthat randomly changeshe datamemory. Considerevery SC
executionwith every possibleinitial state of the data memory and processorregisters.At the
beginningof everysuchSCexecutionthe exit read,exit location,andexit readvaluesshouldonly be
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a function of theinitial stateof memoryandregistersandof the programtext. The exit write value
can additionally be a function of the value that the exit read returns. Then for every such SC
execution,

(i) exceptfor thefinal exit write, loop instructionsshouldnot changethe value of any sharedmemory
location,

(i) thevaluesof registersor private memorychangedoy any loop instructioncannotbe accessedby
anyinstructionnotin theloop construct,

(i) aloop instructioncannotmodify the exit read, exit location, exit read values,or the exit write
valuescorrespondingo a particularexit readvalue,

(iv) the loop terminatesonly when the exit read returnsone of the exit read valuesfrom the exit
locationandthe exit write storesthe exit write valuecorrespondingo the exit readvaluereturned,

(v) if exitreadvaluespersistin the exit location,thentheloop eventuallyexits.

Whenanalyzingan SC executionfor accessategoriesall accessesf a synchronizatioioop constructcan
be replacedonly by the final successfukexit readand exit write [3]. The unsuccessfuhccessesay be labeled

non-competingincenon-competingiccesseallow the mostaggressiveptimizations.

The above definition is fairly general (which is a reasonfor its complexity). For example,it allows
implementation®f locksusingtest&test&se{14] or back-off[12] techniquedo be consideredassynchronization

loop constructs.
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