
E x p e r i m e n t a l E v a l u a t i o n o f O n - C h i p M i c r o p r o c e s s o r C a c h e M e m o r i e s

Mark D. Hill
Alan Jay Smith

C o m p u t e r Sc ience Div i s ion
D e p a r t m e n t of E l e c t r i c a l E n g i n e e r i n g a n d C o m p u t e r Sc ience

U n i v e r s i t y o f C a l i f o r n i a
Be rke l ey , C a l i f o r n i a 94720

A b s t r a c t

Advances in integrated circuit density are permitting the implemen-
tation on a single chip of functions and performance enhancements
beyond those of a basic processors. One performance enhancement
of proven value is a cache memory; placing a cache on the processor
chip can reduce both mean memory access time and bus traffic. In
this paper we use trace driven simulation to study design tradeoffs
for small {on-chip) caches. Miss ratio and traffic ratio (bus traffic)
are the metrics for cache performance. Particular attention is paid
to sub-block caches (also known as sector caches), in which address
tags are associated with blocks, each of which contains multiple
sub-blocks; sub-blocks are the transfer unit. Using traces from two
16-bit architectures (Z8000, PDP-11) and two 32-bit architectures
(VAX-11, System/370), we find that general purpose caches of 64
bytes (net size) are marginally useful in some cases, while 1024-byte
caches perform fairly well; typical miss and traffic ratios for a 1024
byte (net size) cache, 4-way set associative with 8 byte blocks are:
PDP-11: .039, .156, Z8000: .015, .060, VAX 11: .080, .160, Sys/370:
.244, .489. (These figures are based on traces of user programs and
the performance obtained in practice is likely to be less good.) The
use of sub-blocks allows tradeoffs between miss ratio and traffic ratio
for a given cache size. Load forward is quite useful. Extensive simu-
lation results are presented.

1. I n t r o d u c t i o n

Advances in integrated circuit density are permitting the sin-
gle chip implementation of features, functions and performance
enhancements beyond those of basic eight and sixteen bit processors.
Processors now being designed include not only full 32-bit architec-
ture instruction sets, but also have sufficient area for performance
enhancements such as buffering, pipelining, and cache memories.
However, the chip area will not be sufficient for a number of years
to include all of these performance enhancing features in their full
generality. In this paper we study the design and use of on-chip
cache memories, which we believe to be one of the best uses for
additional chip area.

Caches are a time-tested mechanism for improving memory
system performance by reducing access time and memory traffic
through the exploitation of temporal and spatial locality of refer-
ence. Temporal locality specifies that a location recently referenced
is likely to be referenced again in the near future, or conversely,
that information used in the near future is likely to consist primarily
of information used recently. Spatial locality is the identical con-
cept for locations near the recent reference. A complete survey of
cache memories can be found in Smith [1].

On-chip caches will generally differ from traditional caches.
Initially these caches will be small (32 to 2048 bytes) because the
limited chip area must be allocated among the instruction set imple-
mentation, the cache, and other possible performance enhancements.
As fabrication techniques provide room, some of the additional area
will be used to increase cache size. Blocks in on-chip caches will
tend to be smaller than traditional cache blocks because packaging
limitations prevent large parallel loads. In microprocessor systems,

relative to mini and mainframe computers, bus traffic can seriously
limit system performance. This problem is particularly acute ff the
bus is to be shared among two or more microprocessors. Concern
over bus traffic should favor schemes that exploit temporal locality
more than spatial locality. On-chip caches will tend to be more
intelligent than traditional caches because apecial-purpese cache
control logic is relatively inexpensive in VLSI and can easily access
processor state information.

This paper examines the performance of small caches, using
trace driven simulations. In particular, we examine a cache organi-
zation called sub-block placement (Sub-block placement has also
been called oector placement in the IBM System/360 Model 85 [2].)
In sub-block placement, the address tags in the cache are associated
with a larger amount of data than is usually brought into the cache
on a single miss. This larger amount is known as a block. Smaller
units, called sub-blacks, are used as the unit of memory transfer.
Basically a block is composed of an address tag and two or more
sub-blocks. When a reference is made to a location not in the
cache, an entire block is allocated but only the missing sub-block is
loaded. Address tags are associated with the larger sized blocks in
order to minimize the chip area devoted to address tags, and in the
ease of the 360/85, to minimize the extent of the associative search.
Sub-blocks are used as the unit of memory transfers to minimize bus
traffic. The expectation in sub-block placement is that the savings
in tag overhead will compensate for the rigidity of the mapping.

This paper is organized into six sections. This section con-
cludes with a review of the literature. Section 2 examines the design
of on-chip caches, outlines the effects of VLSI on cache design, and
proposes some examples. Section 3 explains cache design parame-
ters, performance and cost metrics, and the choice of trnce-driven
simulation. Section 4 presents the results of our simulations. We
find that sub-block placement is a flexible cache structure for trad-
ing off memory access latency and bus traffic. The use of ~nibble
mode ~ memories suggests the use of larger block sizes than would
otherwise be optimal. ~Load forward ~ is found to be helpful in
significantly cutting bus traffic at a cost of a small increase in the
miss ratio. Conclusions are presented in Section 5.

1.1. Review of L l t e ra tm.n

The first cache memory implementation was for the IBM Sys-
tem/360 Model 8,5. Results were published by Liptay [2] in 1968.
This cache is the only early cache to use a sub-block placement
structure. (Liptay called this design the sector cache.) Results in
Section 4.1 show that it performs poorly by today's standards.

Few cache studies in the literature have been done for the
small cache sizes (less than 2048 bytes of data) that we propose for
initial on-chip caches. In 1974, Bell, Casasent, and Bell [3] published
results on small caches with single-word (16-bit) blocks and direct-
mapped placement for the DEC PDP-8, using traces of two scientific
programs and the PDP-8 Assembler. The miss ratios that they
reported are generally higher than we have found, perhaps due to
their use of direct mapping. For example, a cache of 512 data bytes
was found to have a miss ratio between 0.46 and 0.62. We found a

0194-7111 /84 /0000 /0158501 .00© 1984 IEEE
158

miss ratio of 0.10 for a comparable PDP-II cache.

In 1076, Strecker [4] summarized the research that led to the
design of the cache memory in the DEC PDP-11/70. He used traces
of scientific applications and an assembler. For direct-mapped
caches with a block size of 4 bytes {2 PDP-11 words), the miss ratio
dropped from 0.15 through 0.10, 0.05, and 0.02 as the cache data
size was doubled from 250 bytes up to 2048 bytes; these results are
similar to our own. Strecker also notes that improved performance
is obtained as the associativity in a set-associative cache increases
from 1 to 2 to 4, but that little is gained for degrees of associntivity
of greater than 4. He also presented results showing that there is
little difference in the performance of LRU, FIFO, and RANDOM
replacement algorithms. The PDP-11/70 cache was designed to be
1024 data bytes, with 4-byte blocks, and two-way set associative
with random replacement.

Recent work by Goodman [5] examines small caches within a
multiprocessor environment. Among other issues, he examines the
sub.block structure (sector cache) used in the System/360-85.1 His
results, based on six UNIX 2 traces, support sub.block placement.

S. O n - C h i p C a c h u

This section is concerned with design issues for on-chip caches.
The first sub-section discusses the effects of VLSI on on-chip caches,
including the disparity between on-chip and off-chip communication
and the ability to inexpensively build specialized cache control.
Next, two examples are proposed: the m i n i m u m cache and the
s m a r t cache. The minimum cache costs very little and can reduce
off-chip accesses by one-third; the smart cache out-performs current
caches of the same size. Finally, the RISC H instruction cache is
presented as an implemented example.

2.1. Effects of VLSI

On-chip caches will differ from MSI (Medium Scale Integra-
tion) cache memories for at least four reasons. First, block sizes will
tend to be smaller, because integrated circuit packaging limitations
limit the number of bits that can be handled in parallel. If large
blocks are used, long latency times result because the blocks must
be time-multiplexed over only a few pins. Second, since moat suc-
cessful microprocessors today are bus-limited [6], on-chip caches will
be increasingly concerned with minimizing bus traffic. This trend
will reduce the main memory-to-cache transfer size. Third, intra-
chip communication is less expensive than inter-chip communica-
tion. Therefore more processor state information can be used to
control the on-chip cache. Data communication off-chip requires
that signals be scaled to reasonable leveb, such as TTL compatible
(5 volts), and be able to drive large capacitive loads. This coats chip
area, power, and delay. The cost of the intra-chip transfer of infor-
mation, e.g. the current instruction-in-execution, may be low enough
to justify their incremental improvements to cache performance.
Last, the current freedom from standard building blocks in VLSI
can allow on-chip caches to nee more complex custom control. For
example, wide associative searches can be easily implemented in
VLSI with content-addre~able memory (CAM) cells.

Z,Z. T w o P roposa l s for O n - C h i p Cache A r c h i t e c t u r e s

The two architectures for on-chip caches proposed here were
not explicitly studied but serve to illustrate the potential for VLSI
on-chip caches. The first, called a m i n i m u m cache, is a cross
between an instruction buffer and s cache. The second, a s m a r t

cache, is similar to a traditional cache but uses custom VLSI to cap-
italize on the processor state information that is available on-chip.

An instruction buffer holds one or more blocks of the instruc-
tion address space[7], feeds into the instruction fetch stage of the

z Goodmtn refers to the block as • address 61o~ and to the sub.block as • troxs]er
6fo~.
2 UNIX is • tnulemark of Bell Laborator/es.

CPU pipeline, and may or may not be capable of recognizing when a
branch target hits a location already in the buffer. Instruction
buffers which do not recognize branch targets differ from caches
because while they reduce latency for consecutive instruction
accesses, they do not reduce the number of bytes required from the
memory system. For example, the DEC VAX-II/780 and 750 have
instruction buffers that contain only eight contiguous bytes 18]. The
CRAY-I has four instruction buffers that can each hold 64 contigu-
ous 16-bit instructions for a total size of 512 bytes [9]; the CRAY-I's
instruction buffers recognize branch targets, and thus can hold entire
loops.

Minimum caches can improve performance, even with rela-
tively high miss ratios, since they may significantly cut the traffic
ratio. One possible architecture for n minimum cache is 32 data
words broken into 16 ?.-word blocks, where only the requested word
is loaded on a miss. For this architecture, it is reasonable to use 2-
way set-associative placement with R A N D O M replacement. A
minimum cache for a 32-bit machine would require about 190 bytes
of RAM (16 blocks * [29 t ~ bits + 2 valid bits + 64 data bits] / 8
bits/byte), plus some overhead for buffers and matching logic.
Minimum caches tend to have their best effect on performance when
used as instruction buffers.

S m a r t caches require more area than the minimum cache,
perhaps up to 2048 bytes of data storage. Their performance is
enhanced by exploiting the processor state information available
on-chip. Specinl-purpose logic can examine reference patterns to
prefetch instruction codes and operands from main memory or pre-
fetch information out of the cache memory into even faster buffers.
For example, the S-1 [10] attempts to dynamically predict jump tar-
gets, and the RISC II instruction cache prefetches instruction data
from its private store (see Section 2.3). Lee and Smith [7] present
empirical evidence supporting the use of a cache for recent jump
targets to reduce the detrimental effects of branches on pipelined
machines. Alternatively, the tops of certain stacks in a program-
ruing environment could be cached. These "intelligent ~ schemes
may work better than methods which are ignorant of the semantics
of data reference patterns. Effective prefetching reduces latency at a
cost of increased memory traffic and s t a risk of memory pollution
(fetching data which is not subsequently used, while replacing data

that may yet be used) [11]. Intelligent data replacement reduces
memory pollution, thereby reducing bus traffic and latency.

1.3. A n I m p l e m e n t e d Example : R ISC 11 I n s t r u c t i o n Cache

The RISC II instruction cache [12] is a single-chip instruction
cache implementation used to study architectural concepts for on-
chip cache memories. The cache includes two architecture innova-
tions: a remote program counter for decreased access time, and sup-
port for dynamic code expansion for increased effective cache size.

The RISC H instruction cache is a single 45,050 transistor
NMOS chip designed specifically to work with the RISC H imple-
mentation [13] of the RISC architecture [14]. The cache operates
with an access time of 250 ns. It holds 512 bytes arranged in 64
direct-mapped blocks of 8 bytes each. Results quoted in this sub-
section are from simulations with limited benchmarks done for [12].
Various cache sizes performed with miss ratios of 0.148 (512 bytes),
0.125 (1024 bytes), 0.098 (2048 bytes), and 0.078 (4096 bytes). Thus
for these sizes, doubling the cache size reduced miss ratio by about
20 percent.

The remo te p rogram coun ter is special-purpose logic that
reduces the effective access time on cache bits. The remote program
counter attempts to guess the next instruction address, so the cache
can begin to fetch data out of its private store before the processor
presents the actual instruction fetch address. The remote program
counter correctly predicted 89.9 percent of the next-instruction
addresses using limited instruction-decode ability and static j u m p -

likety hints. This reduced the access time seen from the processor
by 42.2 percent.

159

The effective size of an instruction cache can be increased with
code-compaction. The RISC 1I instruction cache allows selected
half-word (16-bit) instructions to be used to reduce code size by 20
percent. These half-word instructions are expanded to their stan-
dard 32-bit representation before they are given to the processor.
Miss ratios are improved by 27.0 percent over runs with standard
code without impacting the processor's simple instruction-decode
PLA.

3. M e t h o d s

This section presents the rationale for the choice of cache
design parameters in this study, discusses performance metrics, and
justifies the use of trace driven simulation as the evaluation tool.
Miss and traffic ratios are used to measure performance for caches of
different net size (data size), block size, and sub-block size. Gross
cache size (the size of address tags and data) is used to measure
cost.

3.1. Cache Design P a r a m e t e r s

Table 1 presents cache design parameter choices used in our
simulation studies. Cache size, sub-block size, and block size are all
important to cache performance. Cache size directly affects perfor-
mance and cost in a way that dominates all other design decisions.
The miss ratio of a cache declines monotonically with cache size,
but the cost, physical size, and access time will increase with

increasing cache size. Optimal cache sizes thus must be selected
with regard for these factors.

Sub-block size is the number of bytes moved to the cache by a
minimum size data transfer. Block size, also called line size, is the
maximum number of bytes of data that are associated with a single
address tag. In most caches, the sub-block size and the block size
are identical and are collectively referred to as the block size. Divid-
ing large blocks into smaller sub-blocks affects performance in two
ways. First, the miss ratio will increase because more than one miss
can occur within a single block. Second, the traffic ratio will
decrease because only the parts of the block that are used will be
loaded. In VLSI we expect the smaller sub-block size to reduce the
cost of a miss, because less data is brought across limited pins.
Sub-block placement can also be viewed as a way of grouping n
small blocks under one address tag. This grouping reduces data
placement freedom by restricting the n sub-blocks to consecutive
locations. This loss in flexibility of placement will cause the miss
and traffic ratios to increase. However, the cache will be more cost-
effective since address tag overhead is reduced by a factor of n .s

Cache design parameters not varied in the studies of this paper
are associativity, replacement algorithm, fetch algorithm, and
write-back algorithm. All experiments were performed with 4-way
set-associative caches. Smith [15] and others have shown that 4-way
set-associative mapping provides hit ratios very close to those of a
fully associative design. Changes in associativity have been exten-
sively studied and have smaller effects than the parameters studied
here [1,4]. Experiments were done using LRU replacement since
LRU permits more efficient simulation [16[and reasonable alterna-
tives perform comparably. All cache fetches were done on demand,
although sub-block placement with load-forward is analogous to pre-
fetching. Prefetching studies were beyond the scope of this study.
Write-back issues were filtered out of our results by calculating per-
formance metrics for only data reads and instruction fetches. The
caches studied hold both instructions and data. Further studies
should look at partitioning instruction and data caches, prefetching,
and write through vs. copy back factors.

3.2. Cache P e r f o r m a n c e Met r i c s

The purpose of a cache is to improve memory system perfor-
mance by reducing the effective access time to memory and
processor-memory bandwidth requirements. Effective access time
s We neglect the lower-order effects of changes in the number of bits in the addre~ tM.

tell is most simply modeled as:

tell ----- tc,~he * (l - m) + tin., * m ,

where m is the miss ratio of the cache, to,oh, is the access time of
the cache, and tin., is the access time of main memory, tcac~e and
tmem are not easy to obtain through any method that does not inti-
mately consider a particular implementation of a machine, tc.cA, is
a function of the technology, organization, and complexity of a
cache, t..m is related to memory technology, organization, com-
plexity, bus interference, cache sub-block size, and whether loading
and fetching are ovedapped. Miss ratios are often quoted for caches
because they are largely implementation-independent (if the
processor-to-cache datapath width is held constant) and thus can be
computed in architectural studies. Nevertheless, a reduction in miss
ratio will not guarantee an improvement in memory system perfor-
mance. For example, prefetehing data should reduce the misses
when the data is actually requested. Still re/! may grow if the addi-
tional logic increases tcache. Other aspects of cache design which
affect performance include the methods of updating main memory
and maintaining multi-cache consistency.

The two most important architectural performance metrics are
miss ratio and tra~c ratio. The miss ratio is the number of cache
misses divided by the number of cache accesses. The miss ratio is
always less than or equal to 1 because the number of misses cannot
be more than the number of cache accesses. It is of primary impor-
tance if sufficient bus bandwidth is available so that reduced latency
is the overriding goal, as is generally the ease for high end main-
frames. The relative importance of miss ratio and traffic ratio vary
with the ratio of cache and rosin memory access times; the smaller
the ratio, the less important are reductions in the miss ratio.

The traffic ratio is the ratio of memory bus traffic in a system
with a cache to that in a system without a cache. The scaled traffic
ratio (see section 4.3) scales the traffic ratio to reflect the fact that
in some designs, as with nibble or page mode memories, transfer
times are not linear with transfer sizes. Two competing factors
affect the traffic ratio. First, repeated references to words already in
the cache reduce the traffic ratio. For example, if words are brought
into the cache and used n times before they are removed, the traffic

ratio will be --.1 Second, block sizes that are bigger than a single
n

word will tend to increase the traffic ratio because some data
brought into the cache will never be referenced. For example, if
only one reference is made to a block of w words while it is in the

w
cache, the traffic ratio will be T " Consequently, the traffic ratio for

a cache with w-word blocks will be less than 1 if and only if on the
average more than w references are made to a block each time the
block is resident in the cache. The traffic ratio is important if the
memory bus is the bottleneck, either because the single processor is
too fast for the bus, or because there are multiple processors on the
same bus. It is also important because of the contention between
the processor, which wants to use the cache, and the bus which is
loading and unloading it.

The results of Section 4.3 model the bus traffic to fetch w
sequential words in a single transaction by a cost of the form
a + b*w. This form reflects transfer times in systems with nibble-
mode memories [17] or shared busses with transactional overhead.

The most important cost metrics are gross cache size and
cache eomplezity. By gross cache size we mean the size of the data
and tag area together. Historically, cache performance numbers
have been given with respect to cache data size (net cache size)
only. However, on-chip caches can have non-trivial tag areas because
block sizes are smaller, associativity may be greater, and address
spaces for the newer architectures are large (32-bit). The gross
cache sizes calculated in this paper assume a 32-bit address space
even though some of the traces come from 16-bit machines, since we
are interested in the newer 32-bit architectures. The effects of cache
complexity are important, but are not studied here because they are

160

implementation-dependent and are poorly measured by
architecture-level, trace-driven simulation.

3 . 3 . Trace-Dr iven Simulat ion

Trace-driven simulation experiments were used in these studies
for several reasons. First, such simulations are repeatable and allow
cache design parameters to be varied so that effects can be isolated.
They are cheaper than hardware monitoring and do not require
access to or the existence of the machine being studied. Simulation
results can be obtained in many situations where analytic model
solutions are intractable without questionable simplifying assump-
tions. Further, there does not currently exist any generally accepted
model for program behavior, let alone one that is suitable for cache
evaluation; workloads in trace-driven simulation are represented by
samples of real workloads and contain complex embedded correla-
tions that synthetic workloads often lack. Lastly, a trace-driven
simulation is guaranteed to be representative of at least one program
in execution.

A trace-driven cache simulator [18] was written which can
vary, among other parameters, cache size and cache block size and
associativity. It supports sub-blocks and load forward.

Tables 2, 3, 4, and 5 present the traces used to produce the
results of this paper. They are normal production programs; no syn-
thetic benchmarks have been used. Traces were run for 1 million
addresses without context switches. Traces were created for the
Z8000 and PDP-11 by assuming 2 byte data paths and for the Sys-
tem/370 and VAX-11 assuming 4 byte data paths to memory.
Multiple-trace miss and traffic ratios are the unweighted average of
the miss and traffic ratios of individual runs. We note that it is
likely that our results will indicate better performance than will
actually be achieved in practice. First, the omission of task switch-
ing effects will bias our estimated performance upward, although the
small sizes of the caches studied make this effect minor. More
significant is the fact that it is known [1] that most misses occur in
the operating system, and we have not used, or had available, any
operating system traces. Finally, it has often been observed that
even when the two factors noted have been taken into account,
measurements made on production systems show higher miss ratios
than previously predicted. Anyone designing a system using these
results should keep these comments in mind, and should appropri-
ately interpret either our results or their own.

4. Resul ts

This section presents the results of trace-driven simulations of
small memory caches with various block and sub-block sizes. First,
the original use of sub-block placement in the IBM System/360
Model 85 (the first machine with a cache memory) is examined.
Second, the results from PDP-11, Z8000, and VAX-U traces show
caches as small as 64 words are somewhat useful, while 1024.byte
on-chip caches can have miss and traffic ratios lower than 0.10 and
0.20. System/370 traces do not perform as well. Third, an evalua-
tion based on the use of paged-mode memories, nibble-mode
memories, and a transactional bus are shown to double optimum
sub-block size. Last, a way of prefetching sub-blocks called load-
forward is introduced.

4.1. Ear ly Sub-Block P lacemen t

The only early cache to use a sub-block placement structure is
the IBM System/360 Model 85 Cache [2]. This 16-Kbyte cache asso-
ciates an address tag with a 1024-byte block, but does memory
transfers with 64-byte sub-blocks, s beginning with the address the
processor requested. This organization was used because it required
only 16 entries in expensive associative address-matching hardware.

6 Liptay refers to the blocL a~ a #cctor and to the su6-bloet as a block
e To our knowledge, thc~e are the only public ltudie~ comparing the the 360/85'a
mapping scheme to today's eet-aJsoci&tive mapping.

Technological advancements over the last 15 years have
reduced the cost of associative search logic, and our results show
that the sub-block or sector cache performs poorl~ relative to the set
associative design most commonly used today. Table 6 compares
the 360/85 to 4-, 8-, and 16-way set associative mappings of 64-byte
blocks with L R U replacement. This figure is three times greater
than the miss ratio for a 4.way set associative cache. The reason for
the 360/85 cache's poor performance is that data can be resident in
the cache in only one of 16 blocks that are much too large (1024
bytes). We find that 72 percent of the sub-blocks in a block (11.52
of 16 sub-blocks) are never referenced in the period a block is
resident.

4.2. Sub-Block P lacemen t for On-Chip Caches

Before presenting PDP-11, Z8000, VAX-11, and System/370
results, let us explain how to read the figures in this paper. Figure
1, for example, shows the miss ratio versus the traffic ratio from
PDP-11 runs for various block, sub-block, and cache sizes. Solid
lines connect caches with constant block size b=, and dashed lines
connect caches with constant sub-block size sz. For example, the
cache with block size 16 and sub-block size 4 is found at the inter-
section of b16 and s4. The miss ratio, the number of cache misses
divided by the number of cache accesses, is a measure of the
effectiveness of a cache in reducing memory access latency. The
tragic ratio, the ratio of bus traffic in a system with a cache divided
by the bus traffic without a cache, is a measure of the effectiveness
of a cache in reducing memory bandwidth requirements. The #ross

cache size, the combined size of the tag and data area of the cache,
is a measure of the cost of a cache. Gross cache size is used because
the different schemes presented here require widely varying amounts
of address tag area.

4.Z.1. P D P - U Resul ts

Figures 1 and 2 show the miss ratio versus the traffic ratio for
PDP-11 traces; see Table 2 for description of traces. Table 7
present the gross cache sizes for the results of Figure 2.

Figure 1 shows that some organizations of caches with net
sizes of 32, 128, and 512 bytes can actually increase bus traffic; i.e.
their traffic ratio is greater than 1.0. For example, the 128-byte
cache (net) with block and sub-block sizes of 16 bytes almost dou-
bles bus traffic. This happens when too many words in a sub-block
are brought into the cache and never referenced. Caches with a
sub-block size of 1 word will always have traffic ratios less than or
equal to 1.0.

Doubling the block size affects the gross cache size by halving
the total address tag area. This is significant ff blocks are small.
For example, the 512-byte cache with block and sub-block size of 2-
bytes (2,2) occupies 50.0 percent more area (1536 bytes vs. 1024
bytes) than the 512-byte cache with 4.byte blocks and 2-byte sub-
blocks (4,2). Yet, it only performs 16.7 percent better in miss ratio
and 16.9 percent better in traffic ratio.

Doubling the sub-block size halves the number of sub-block-
valid bits in a cache block. This does not significantly affect cache
size because the number of sub-block-valid bits in a block is small
compared to the tag and data area. For example, going from a 32,4
to a 32,8-cache decreases the total size by only 1.4 percent. A cache
with the capability of varying sub-block size can be set to run at
different operating points depending on the relative importance of
miss ratio and traffic ratio. Such a cache requires somewhat more
control and enough sub-block-valid bits for the smallest sub-block
size. Figure 2 shows a solid line labeled b32 with net cache size
1024 that intersects all sub-block sizes between 2 and 32 bytes.
These various sub-block sizes allow a system implementor to trade
the miss ratio against the traffic ratio. In a system with consider-
able unused bus bandwidth, the sub-block size could be set to 32
bytes to realize miss and traffic ratios of 0.033 and 0.5,33 (Table 7).

161

In another system that is bus-limited either by a dower bus or more
devices (processors) using the bus, the sub-block size could be set as
low as 2 bytes. This would increase the miss ratio by a factor of 6
to 0.190 but decrease the traffic ratio by a factor of 3 to 0.190.

A minimum cache for these results is a 64-byte cache with 4-
byte blocks and 2-byte sub-blocks. This 4,2 64-byte cache can cut
memory references and bus traffic by one-third as compared to a
system without a cache. On the other hand, a 16,8, 1024 byte cache
results in miss and traffic ratios of 0.052 and 0.206.

4.2.2. Z8000 Resul ts

Figures 3 and 4, and part of Table 7 show results from UNIX
utilities written in C and compiled for the ZS000 (see last five traces
in Table 3). These traces yield better performance than the PDP-11
traces; they are plotted on the same scale for comparison. The
results quoted are warm-start raties. (Warm-start raties do not
count the misses taken to initially fill the cache with relevant datum)
As previously noted, the warm-start ratios are slightly optimistic.

As with the PDP-I1 results, a 4,2 64.byte minimum cache is a
start. A 16,8 1024-byte cache can be implemented a gross cost of
1264 bytes to yield miss and traffic ratios of 0.023 and 0.092.
(These results for the Z8000 are so much better than for any other
architecture and set of traces that we consider these results overly
optimistic and unrepresentative. Since these same traces were used
in [19j we have some doubts about the performance projections for
the ZS0,000.)

4.2.3. V A X - U Resul ts

Figure 5 and part of Table 7 show results from six VAX-11
traces (see Table 4). A 8,4 64-byte minimum cache has miss and
traffic ratios of 0.6072 and 0.6072. A 16,8 1024-byte cache reduces
these numbers to 0.1058 and 0.2116.

4.2.4. Sys t em/370 Resul ts

Figure 6 and part of Table 7 show results from four Sys-
tem/370 traces (see Table 5). For clarity, Figure 6 is scaled
differently than Figures 1 through 5. Minimum caches do not work
well with our System/370 runs. A 8,8 64.byte cache will reduce
memory reference in half (miss ratio 0.5475), but will actually
slightly increase bus traffic with respect to a system with no cache
(traffic ratio 1.0950). The best cache studied here for the Sys-
tem/370 traces was 16,8 1024-byte cache that has miss and traffic
raties of 0.2632 and 0.5264.

4.2 .5 . In t e r -Arch i t ec tu re Compar i sons

It is clear from Table 7 that miss ratios are generally increas-
ing as one goes from the Z8000 to the PDP-11 to the VAX 11 to the
System/370 trace driven simulation results. We believe that these
differences are not reflective of the architectures, except for address
space size, so much as the traces used. The ZS000 traces are all
Unix utilities, ported from the PDP-11 version of Unix, and are
mestly small, compact pieces of code. The PDP-11 programs are
also relatively small, running as they do in a 16 bit address space.
(In both cases, the 16 bit address is one cause of the good results.)
The VAX programs are a mixture of small and large, and the Sys-
tem/370 programs are large, using hundreds of kilobytes of storage.
We believe that the 370 programs are the most reliable indicator of
actual performance for a 32-bit microprocessor, since "real ~ work-
loads, to be experienced in practice, are likely to contain many
large, complex, memory intensive programs.

4.3. Nibble-Mode Resul ts

All the traffic ratio results so far assume that the cest of a
memory access is directly proportional to the number of bytes read.
This assumption is accurate for many current microprocessor sys-
tems, often because of bus protocol compatibility constraints ~. How-
ever, some new memory chips provide paging or nibbling addressing

modes, and some multiprocessor memory busses incur an overhead
with each transaction. Both of these conditions will produce a cost
to reference w sequential words of the form a + 5*w. Therefore,
the average cost is reduced if several words are simultaneously
fetched from adjacent locations. On-chip caches can exploit nibble-
mode memories for loading sub-blocks. Caches with larger sub-
blocks derive more benefit than those with smaller sub-blocks. Bur-
sky [17 i reports that typical access times are 160 us for the first
word and 55 ns for subsequent words. If we approximate the ratio
of 160 to 55 as 3 to 1 and assign unit-cost to getting one word, then

1 (w - l) . Acache the cost of getting w sequential words is 1 + ~-

with a sub-block size of w words will always ask for w sequential

words at an average cost of 1 [I + 1 (w - 1)]. The standard

traffic ratio multiplied by the above factor produces a scaled lra,~c
ratio for nibble-mode memories. This equation also reflects the cost
of using a bus cycle to present an address to the memory before
waiting 105 us for the first word and 55 ns for subsequent words.

Figures 7 and 8 show PDP-11 results scaled to reflect the
economies-of-scale for transferring more than one 16-bit word in a
single access (See also, Table 7). Scaling with 16-bit words should
put an upper bound on the improvement that can be expected from
scaling with 32-bit words. Curves of constant block size and vary-
ing sub-block size (solid lines) minimize the scaled traffic ratio at a
sub-block size of 4 or 8 bytes, rather than 2-byte result with the
standard memory interface. Since the sealed traffic ratio penality
for bringing in additional data is smaller than in the case of a stan-
dard memory interface, a cache designed for these addressing modes
will tend to have a larger sub-blocks We observe that the optimum
sub-block size under the assumptions of this section approximately
doubles from the optimum results of Section 4.2.

4.4. L o a d - F o r w a r d Resul ts

Load-forward is a mechanism for combining the miss ratio
benefits of a large block size with the low bus traffic of sub-block
placement. Load forward involves fetching the target sub-block and
the subsequent sub-blocks within the same block; it is thus a limited
form of prefetching. Load forward is being used in the 256-byte
on-chip cache of the Z80,050 [19]. The Z80,000 cache has 16 blocks
of 16 bytes. The blocks are replaced using an LRU stack on-chip.
Data is fetched from memory in one-word (two-byte) sub-blocks
with an option to load-forward

Program and data references within a cache block exhibit a
forward bias. A program typically branches to a random location
within a cache block, proceeds sequentially forward, and then
branches again. Data references also tend to proceed forward
because of processing of arrays, character strings, and individual
variables whose storage is defined by the programmer in order of use
[11 i. For this reason, data just before a reference is less likely to be
referenced than data just after it. Thus, a larger block size will
result in more data being loaded from memory locations that are
before the point of reference. Load-forward, by fetching only the
part of the block forward of the target of the fetch, should be less
likely to load unneeded information than a fetch which gets the
entire block. Load forward may or may not remember which sub-
blocks have already been loaded and if it does remember, it can load
only those sub-blocks not already cache resident. Such optimized
operation is more complex. The simpler scheme has redundant bus
traffic in the few instances of a backwards reference within a cache
block, but allows the main memory system to function auto-
nomously.

Load-forward was studied with traces CPP, C1 and C2 using
the latter redundant-load scheme. Since results (Figure 9 and Table
8) show that few redundant loads were made, there was not enough
gain to justify experimenting with the optimized scheme. The point

7 labeled b16-o2-LF-0328 on the 256-byte cache curve in Figure 9

7 LF 8trade for load-forward, and 0328 for gross cache else of 828 bytes.

162

corresponds to the performance of the ZS0,000 cache for these par-
ti tular benchmarks.

The load-forward mechanism reduces bus traffic at a small cost
in miss ratio. For the Z80,000 design, changing from a sub-block
size equal to the block size to a 2-byte sub-block size with load-
forward reduces the traffic ratio by 20 percent for a cost of 7.0 per-
cent in the miss ratio. Therefore, load-forward is useful if it is easy
to implement and the traffic ratio is of some concern. We expect
that load-forward will be especially effective in the instruction space.

5 . Conclus ions a n d S u m m a r y

We believe and the simulations presented in this paper suggest
that some of the limited area on high-end microprocessor chips is
best used as the top of the memory hierarchy rather than providing
additional special-purpose logic.

Very small minimum on-chip caches are somewhat useful in
reducing latency and off-chip traffic for all but the System/370 runs.
A 64-byte cache with a block size of 2 words and a sub-block size of
1 word reduces memory accesses and bus traffic by one-third in
PDP-I1, Z8000, and VAX-11 runs. On the 32-bit VAX-11, this
cache requires only 95 bytes of RAM cells to hold address tags and
data. Unfortunately, a minimum cache of this size reduced Sys-
tem/370 misses by only 16 percent.

A more aggressive goal for a on-chip cache is to reduce refer-
ences by a factor of ten (miss ratio 0.10) and bus traffic by a factor
of five (traffic ratio 0.20). This is achieved with a 512-byte (net)
cache with 4-byte blocks and 4-byte sub-blocks (4,4 512-byte) in
PDP-11 runs, with a 8,4 512-byte cache in Z8000 runs, and with a
16,8 1024-byte cache in VAX-I1 runs. The best cache studied here
for the System/370 traces is a 16,8 1024-byte cache that can cut
references by a factor of four and halve bus traffic.

It is possible to trade off the miss and traffic ratios by varying
the sub-block size, for a fixed block size. As the sub-block size
decreases, the miss ratio increases and the traffic ratio decreases.

When either nibble-mode (paged-mode) memories or a memory
bus with transactional overhead are used, the bus traffic cost should
be modeled as a + b,w, where w is the number of single words
fetched on a single transaction. For nibble-mode memories that
required 160 ns for the first word and 55 ns for subsequent words,
the optimum sub-block size roughly doubled relative to to the
optimum size found in other results.

Load-forward_ increases the traffic ratio slightly but cuts the
miss ratio by a much larger factor, relative to the same block and
sub-block sizes but without load forward. It appears to be advanta-
geous if the processor and memory designs permit; compatibility
with previous designs may be an inhibiting factor.

On-chip caches are one good use for the microprocessor chip
area available for performance enhancements whenever the on-chip
cache can be at least 32 to 128, words, depending on the workload.
On-chip caches are especially effective when at least 256 words.

e. Acknowledgemen t s

This paper is based upon work supported by the National Sci-
ence Foundation under Grant MES82-02591 and by the Defense Ad-
vanced Research Projects Agency under contract N00039-82-E-0235.

We would like to thank Dave Patterson, Yale Patt , Nick
Tredennick, and many others for their suggestions. Susan Dentinger
and Susan Eggers provided useful comments on drafts of this paper.
Also thanks to John Lee for PDP-11 traces, John Lee, Bill Harding
and the Amdahl Corporation for IBM System/370 traces, Juan Per-
car and the Zilog Corporation for ZS000 traces, and Robert Henry
for the VAX 11 traces.

References

1. A.J. Smith, "Cache Memories," Computing Surveys, vol. 14,
no. 3, pp. 473- 530, September, 1982.

2. J.S. Liptay, "Structural Aspects of the System/360 Model 85,
Par t II: The Cache," IBM Systems Journal vol. 7, no. 1, pp.
15-21, 1968.

3. J. Bell, D. Casasent, and E.G. Bell, "An Investigation of Alter-
native Cache Organizations," IEEE Trans. on Computers, vol.
C-23, no. 4, pp. 346-351, April 1974.

4. W.D. Strecker, "Cache Memories for PDP-11 Family Comput-
ers," Prec. Third International Symposium on Computer Archi-
tecture, pp. 155-158, January 1976.

5. J.R. Goodman, "Using Cache Memory to Reduce Processor-
Memory Traffic," Prec. Tenth International Symposium on
Computer Architecture, pp. 124-131, Stockholm, Sweden, June
1983.

6. N. Tredennick, Personal Communication, 1983.

7. J.K.F. Lee and A.J. Smith, "Branch Prediction Strategies and
Branch Target Buffer Design," Computer, vol. 17, no. 1, pp. 6
- 22, January, 1984.

8. VAX Hardware Handbook, Digital Equipment Corporation,
Maynard, Massachusetts 01754, 1980.

9. D.P. Siewiorek, E.G. Bell, and A. Newell, Computer Struc-
tures: Principles and Ezamples, New York, 1982. McGraw Hill

10. B.T. Hailpern and B.L. Hitson, S-I Architecture Manual, Janu-
ary 1979. Stanford Univ. CSL Report STAN-ES-79-715.

11. A.J. Smith, "Sequential Program Prefetching in Memory
Hierarchies," Computer, vol. 11, no. 12, pp. 7-21, December
1978.

12. D.A. Patterson, P. Garrison, M.D. Hill, D. Lioupis, C. Nyberg,
T.N. Sippel, and K.S. Van Dyke, "Architecture of a VLSI
Instruction Cache for a RISE," Prec. Tenth International Sym-
posium on Computer Architecture, pp. 108-116, Stockholm,
Sweden, June 1983.

13. M.G.H. Katevenis, R.W. Sherburne, D.A. Patterson, and C.H.
Sdquin, "The RISE II Micro-Architecture," Prec. VLSI 88
Conference, Trondheim, Norway, August 1983.

14. D.A. Patterson and C.H. S~luin, "RISE I: A Reduced Instruc-
tion Set VLSI Computer," Prec. Eighth International Sympo-
sium on Computer Architecture, pp. 443-457, Minneapolis,
Minnesota, May 1981.

15. A.J. Smith, "A Eompararative Study of Set Associative
Memory Mapping Algorithms and Their Use for Cache and
Main Memory," IEEE Trans. on Software Engineering, vol.
SE-4, no. 2, pp. 121-130, March 1978.

16. R.L. Mattson, J. Gecsei, D.R. Sluts, and I.L. Traiger,
"Evaluation techniques for storage hierarchies," IBM Systems
Journal, vol. 9, no. 2, pp. 78 - 117, 1970.

17. D. Bursky, "Innovative Chip Designs Lead to Dense, Superfast
RAMs," Electronic Design, pp. 97-112, 18 August 1083.

18. M.D. Hill, Evaluation o/On-Chip Cache Memories, December
1983. Master's Report, U.C. Berkeley.

19. D. Alpert, D. Carberry, M. Yamamura, Y. Chow, and P. Mak,
"32-bit Processor Chip Integrates Major System Functions,"
Electronics, pp. 113-119, 14 July 1983.

163

Table 1. Simulntion Parameters
Pnrameter
cache vise (bytes)
block size (bytss)
sub-block vise (bytes)
associativity
cache partitioning
replacement xlsorithm
fetch algorithm

v/~rJ
32, 64, 126, 256, 512, 1024
2, 4, 8, 16, 32, 04
2, 4, 8, 16, 32
4-w~y
dnta k instructions mixed
LRU
demLnd
load-forward

Ti~ble 2. PDP-II Workload
Trace
OPSYS
PLOT
SIMP
TRACE

RUFF

Language: Comments
C: toy opernting system
Fortrn: printer plotter program
Fortran: pipeline simulation program
PDP-II AJvembly. tracing program true-
ins ED
PDP-II Assembly: text output n d for-
m~ttin8 program
C: text editor ED

Table 5. IBM System/370 Workload
Trace LanKua~e: Comments
FGOI Fortran Go Step: single precision factor

a~alysis
FCOMPI Compile of n program that solves Rey-

nolds partial differential equation
PGO1 PL/I Go Step
PGO2 PL/I Go Step: program does CCW

aenlyvis

Tnble 3. ZS000 Workload
Trace
CPP
CI
C2
OD

GREP
SORT
LS
NM

PR

Lnn|ua~,e: Comments
C: §lit phase of C compiles
C: second phase of C compiler
C: third phase of C compiler
C: Unix utility for dumpin6 files in
ASCII
C: Unix utility for string searching
C: Unix utility for sorting
C: Unix utility for listing files
C: Unix utility for printing a specially
compiled object file's symbol table
C: Unix utility for formating text files for
printing

Trace
spice
otmdl
vedx
qsort
troff
c2

Table 4. VAX-11 Workload
Language: Comments
Fortran: circuit simulation
Pascal: constructs LR(0) parser
C: stream editor
C: Quick sort
C: text formtttes
C: third phase of C compiler

Table 6. IBM System/360 Model 85 Results
(Bayed on: 1 Fortran Go Step, 1 Fortran Compile, 2 Cobol

Go Stem. and 2 PL/I Go St�pa.)
Cache M~es Rdative

Or[anisation Ratio to 860/85
36o/~ o.o25s x.ooo
4-way 0.0088 0.841
8-way 0.0081 0.314
16-way 0.0070 0.294

Table 8. Load-Forward (LF) Rssults
(Based on three Z8000 traces: coo. el. and c2.~
Net, Block,
Gross Sub-
Cache Block
Sine Sise

(b~es) (b~tes)
114
04 8,8
97 8,2,LF
07 8,2

102 2,2
SSI
814 16,10
626 16,2,LF
328 16,2
870 8,8
388 8,2,LF
388 8,2
768 2,2

Mia* Traffic Traffic
Ratio Ratio Ratio

(nibble)

0.257 1.028 0.514
0.263 0.865
0.678 0.678 0.678
0.012 0.612 0.612

0.120 0.060 0.400
0.1~ 0.772
0.489 0.489 0.409
0.164 0.656 0.398
0.160 0.567
0.454 0.454 0.454
0.40'2 0.402 0,402

Tnble 7.
Net, Block,
Gross Sub-
Cache Block

Sise Sise
(bytss) (bytes)

04
70 16,8
60 16,4
82 16,2
94 8,8
95 8,4
07 8,2

120 4,4
128 4,2
192 2,2

250
284 32,32
285 32,16
287 32,8
291 32,4
260 32,2
314 16,16
316 16,8
820 16,4
328 16,2
376 8,8
380 8,4
388 8,2
504 4,4
512 4,2
768 2,2

1024
1084 64,10
1002 64,8
1108 64,4
1108 64,2
1136 32,32
1140 32,16
1148 32,8
1164 32,4
1106 32,2
1250 16,10
1264 16,8
1280 16,4
1312 16,2
1504 8,8
1520 8,4
1552 8,2
2016 4,4
2048 4,2
3072 2,2

PDP-11

Miss Traffic Tra~c
Ratio Ratio Ratio

(nibble)

0.890 1 .506 0.708
0.557 1 .114 0.743

0.339 1 .356 0.678
0.479 0 . 058 0.639
0.730 0.730 0.739
0.425 0 . 850 0.567
0.666 0 .666 0.066
0.620 0 . 620 0.620

0.146 2 .336 0.876
0.191 1 .526 0.637
0.291 1 .164 0.582
0.418 0 .836 0.557
0.509 0 . 500 0.509
0.144 1 .152 0.480
0.204 0 . 816 0.408
0.302 0 . 604 0.403
0.478 0 . 478 0.478
0.168 0.672 0.336
0.254 0 .508 0.339
0.407 0 . 407 0.407
0.218 0 . 4 3 6 0.201
0.351 0 .351 0.351
0.297 0 .297 0.297

0.081 0.640 0.260
0.118 0 . 472 0.238
0.178 0 . 356 0.237

0.033 0 . 5 3 3 0.200
0.049 0 .301 0.163
0.075 0 . 208 0.140
0.110 0 . 232 0.155
0.190 0 . 190 0.100
0.033 0 . 265 0.II0
0.052 0 . 206 0.103
0,081 0 . 1 6 2 0.108
0.133 0 . 133 0.133
0.039 0 . 156 0.078
0.061 0 . 122 0.081
0.I01 0.I01 0.I01
0.048 0 . 096 0.064
0.081 0 .081 0.081
0.072 0.072 0.072

ZS000

Miss Trtflic Traffic
Ratio Ratio Ratio

(nibble)

O.~kqO 1 .320 0.660
0.508 1 .016 0.677
0.857 0 .8 5 7 0.857
0.298 1 .102 0.506
0.401 0.0~ 0.615
0.702 0.762 0.702
0.432 0 .864 0.576
0.071 0 .671 0.071
0.583 0 .583 0.583

0.070 1 .264 0.474
0.107 0 .8 5 6 0.857
0.156 0 .624 0.312
0.245 0 .400 0.827
0.421 0 .421 0.421
0.082 0.656 0.276
0.124 0.406 0.246
0.203 0.400 0.271
0.355 0.35,5 0.3,55
0.108 0 .432 0.216
0.175 0 .350 0.233
0.312 0 .812 0.312
0.157 0 .3 1 4 0.209
0.287 0 .2 8 7 0.287
0.273 0.273 0.273

0.041 0 .3 2 8 0.187
0.063 0 .252 O.12e
0.104 0 .2 0 8 0.180
0.104 0 .1 0 4 0.104
0.018 0.208 0.076
0.024 0.192 0.640
0.039 0.166 0.076
O.O65 0.130 0.087
0.047 0 .0 4 7 0.047
0.01S 0 .104 0.043
0.0'28 0 .002 0.045
0.039 0.078 0.062
0.072 0 .072 0.072
0.015 0 .060 0.030
0.030 0 .060 0.040
0.055 0 .055 0.065
0.02~ 0 .044 0.029
0.045 0.045 0.045
0.037 0.037 0.037

VAX-11

Miss Traffic Tr4dfie
Ratio Ratio Ratio

(nibble)

0.4249 0.8408 0.5665
0.6486 0.6483 0.6483

0.8892 0.7784 0.5189
0.6072 0.6072 0.6072

0.5652 0.5652 0.5652

0.1528 1.2224 0.5003
0.2061 0.8'244 0.4122
0.3003 0.6006 0.4004
0.4750 0.4750 0.4750

0.1769 0.6856 0.8478
0.2614 0.5226 0.3485
0.4207 0.4207 0.4~07

0.2367 0.4734 0.8156
0.3.596 0.3596 0.8506

0.3558 0.3558 0.3553

0.1088 0.4352 0.2170
0.1704 0.3408 0.2272
0.2825 0.2625 0.2825

0.0588 0.4704 0.1060
0.0863 0.3452 0.1726
0.1360 0.27:20 0.1818
0.2267 0.2207 0.2267

0.0675 0.2700 0.1350
0.1058 0.2116 O. 14U
0.1748 0.1748 0.1748

0.0804 0.1608 0.1072
0.1332 0.1332 0.1332

0.I044 0.I044 0.I044

IRM SYstem/370

Miss TraMc Traffic
Ratio Ratio Ratio

(nibble)

0.5704 1.1588 0,7725
0,8726 0.8726 0.8726

0.5475 1.o95o 0.7800
0.8375 0.8375 0,8375

o.o18o o.818o o.o18o

0.2377 1.oo16 0.7028
0.3234 1.2036 0.6460
o.4ool 0.0382 0.6255
0.7331 0.7331 0.7331

0.2722 1.0888 0.5444
0.4006 0.8o12 0.5341
0.6300 0.6300 0.6300

0.3645 0.7260 0.4860
0.5704 0.5704 0.5704

0.5438 0.5438 0.5456

0.2042 o.6168 0.4084
0.3002 o.6184 0.4128
0.4070 0.4070 0.4070

0.1266 1.0128 o.4220
o.1850 0.7436 0.3718
0.2655 o.571o 0,3807
0.4645 0.4645 0.4645

0.17oo 0.6800 0.3400
0.2632 0.5264 o.,%o0
0.4508 0.4308 0.4308

0.2443 0.4886 0.6257
0.4o17 o.4017 o.4017

0.3742 0.3742 0.3742

1(~4

M i s s R a t i o v s . T r a f f i c R a t i o
1.oo .., ~ , -_~

S / / / " , / . ~
S b

RO.,O
a

i o.o~ ~ _ _ _ __~_~J
0 ~

0.02

0,01 I - I I l
o.lo 0 . ~ o o . ~ o 1.oo s.oo

T r a f f i c R a t i o

Figure I. PDP-II Results-Part I. Results for caches with
net sizes of 32, 128, and 512 bytes. Solid fines connect
caches with constant block size ba Dashed lines connect
caches with constant sub-block size s&

1.00

0.50

M
i o.zo
S
S

R o.1o

t
i o.os
O

0.02

0.01

M i s s R a t i o v s . T r a f f i c R a t i o
, I I r~o~ 4 - - - ' - . - . .

6 4 ~ ~ " \ , b 4 ~ - \ ,

\ ~ , ' " ~ . . ~ . ~ - 1 0 2 4 1 -

I I I
o.lo o.zo o.so noo 2.oo

T r a f f i c R a t i o

Figure 2. PDP-II Results-Pact IL Results for caches
with net sizes of 64, 256, and 1024 bytea Solid fines con-
nect caches with constant block size b#. Dashed lines
connect caches with constant sub-block size sx

1,00

0.50

M
i 0.20
S
s

R o.lo
a

t
i o.o5
O

0.02

M i s s
I I ' I

/ b ~ . ""~ ~." ~

\ C_b,,

R a t i o v s . T r a f f i c R a t i o

\ ~....... s a ~ / '-J,~%./

O.Ol I I I I
o.1o o . ~ o o . ~ o 1.oo aoo

T r a f f i c R a t i o

Figure 8. g8000 Results-Part I. Results for caches with
net sizes of 32, 128, and 512 bytes. Solid lines connect
caches with constant block size b~ Dashed lines connect
caches with constant sub-block size . a

M i s s R a t i o v s . T r a f f i c R a t i o 1.oo , , ~ ______..~__.._

0.50 _ - - - ~ . b4 • kk%• b

o - ~ J
I \ . . / " \ ¢-~ " I

oao 0.2o 0.5o 1.oo 2.oo

T r a f f i c R a t i o

Figure 4. Z8000 Results-Part lI. Results for caches with
net sizes of 64, 256, and 1024 bytes. Solid fines connect
caches with constant block size ba Dashed lines connect
caches with constant sub-block size s~

165

1.00

0.50

M
i 0.20
s
s

R o.18
a
t
i 0.08
0

0.02

0.01

M i s s R a t i o v s . T r a f f i c R a t i o
I I I I

t 2 5 6 . ~ \ . N \ , b16 t

~._b~e ~ I

i I I ,
O.lO 0.20 0.50 1.oo

T r a f f i c R a t i o

2.00

Figure 5. VAX-II Results. Results for caches with net
sizes of 6:4, 258, and 1024 byte& Solid lines connect
caches with constant block size b& Dashed lines connect
caches with constant sub-block size sa

M i s s R a t i o v s . S c a l e d T r a f f i c R a t i o
1.00 I I , /,..~-~ t-- - ----'-.~,.

b 8 ~ . ¢ J "~ s ~
/#/~bS\,-]i] ~ b4 i

0.80 r b2. " , ~ / , ~ , , ~ I

& "

M
i 0.20
s
s

R O.lO
a
t
i 0.08
0

0.02

M
i o.2o
S
S
R O.lO
a
t
i o.o8
0

o.o1 I I I I
O.lO 0.20 0.80 1.oo 2.00

S c a l e d T r a f f i c R a t i o
Figure 7. PDP-II Results for Nibble Mode*Part L
Results for caches with net sizes of 32, 128, and 512
byte& Nibble*mode assumes that an access for w sequen-

1 (w - 1). tim words costs I + ~-

1 . 0 0 I b o 2 . s 2 _ g 1 9 2 ~ I I

b 1 6 s 2 g 3 2 8 . ~:>"-~ bB-s2-g97

,oo\ X2

b16-slS-g314

0 . 0 2

O.Ol I I I I
O.lO 0.20 0.80 1.oo 2.00

T r a f f i c R a t i o

1.00

M 0.80
i

S

R
a

t
i

0 0.20

M i s s R a t i o v s . T r a f f i c R a t i o

0.10

I

" -'b-61~

M
i 0.20
S
S
R o.lo
a
t
i o.o5
0

0.10 0.80 1.00 2.00

T r a f f i c R a t i o
Figure 8. System/370 Result& Results for caches with
net sizes of 64, 2,58, and 1024 bytes. Solid lines connect
caches with constant block size k t Dashed lines connect
caches with constant sub-block size s&

M i s s R a t i o v s . S c a l e d T r a f f i c R a t i o
1.00 I I . . , c t - - - -~ . I

-~"~" b2 ~" " i 2 5 6 L o - ~ _ ~ - ~ / \
f b4 uo.. ~$//. - t \

o.5, b 2 ~ " ~ \~V ' J . -~ ' i .-~ 6 4 \

0.02 ~ - - - - " /

O.Ol I I I I
0.10 0.20 0.50 1.00 2.00

S c a l e d T r a f f i c R a t i o

Figure 8. PDP-II Results for Nibble Mode*Part IL
Results for caches with net sizes of 64, 258, and 1024
bytes. Nibble*mode a~umes that an access for w sequen-

I (w - I). tim words costs 1 +

M i s s R a t i o v s . T r a f f i c R a t i o

Figure 9. Load-Forward Result& Results for caches with
net sizes of 64 and 258 bytes, b# is block size, u is sub-
block size, LF stands for load.forward, and g# is the gro~
cache sise.

166

