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A b s t r a c t  

Advances in integrated circuit density are permitting the implemen- 
tation on a single chip of functions and performance enhancements 
beyond those of a basic processors. One performance enhancement 
of proven value is a cache memory; placing a cache on the processor 
chip can reduce both mean memory access time and bus traffic. In 
this paper we use trace driven simulation to study design tradeoffs 
for small {on-chip) caches. Miss ratio and traffic ratio (bus traffic) 
are the metrics for cache performance. Particular attention is paid 
to sub-block caches (also known as sector caches), in which address 
tags are associated with blocks, each of which contains multiple 
sub-blocks; sub-blocks are the transfer unit. Using traces from two 
16-bit architectures (Z8000, PDP-11) and two 32-bit architectures 
(VAX-11, System/370), we find that  general purpose caches of 64 
bytes (net size) are marginally useful in some cases, while 1024-byte 
caches perform fairly well; typical miss and traffic ratios for a 1024 
byte (net size) cache, 4-way set associative with 8 byte blocks are: 
PDP-11: .039, .156, Z8000: .015, .060, VAX 11: .080, .160, Sys/370: 
.244, .489. (These figures are based on traces of user programs and 
the performance obtained in practice is likely to be less good.) The 
use of sub-blocks allows tradeoffs between miss ratio and traffic ratio 
for a given cache size. Load forward is quite useful. Extensive simu- 
lation results are presented. 

1. I n t r o d u c t i o n  

Advances in integrated circuit density are permitting the sin- 
gle chip implementation of features, functions and performance 
enhancements beyond those of basic eight and sixteen bit processors. 
Processors now being designed include not only full 32-bit architec- 
ture instruction sets, but also have sufficient area for performance 
enhancements such as buffering, pipelining, and cache memories. 
However, the chip area will not be sufficient for a number of years 
to include all of these performance enhancing features in their full 
generality. In this paper we study the design and use of on-chip 
cache memories, which we believe to be one of the best uses for 
additional chip area. 

Caches are a time-tested mechanism for improving memory 
system performance by reducing access time and memory traffic 
through the exploitation of temporal and spatial locality of refer- 
ence. Temporal locality specifies that  a location recently referenced 
is likely to be referenced again in the near future, or conversely, 
that  information used in the near future is likely to consist primarily 
of information used recently. Spatial locality is the identical con- 
cept for locations near the recent reference. A complete survey of 
cache memories can be found in Smith [1]. 

On-chip caches will generally differ from traditional caches. 
Initially these caches will be small (32 to 2048 bytes) because the 
limited chip area must be allocated among the instruction set imple- 
mentation, the cache, and other possible performance enhancements. 
As fabrication techniques provide room, some of the additional area 
will be used to increase cache size. Blocks in on-chip caches will 
tend to be smaller than traditional cache blocks because packaging 
limitations prevent large parallel loads. In microprocessor systems, 

relative to mini and mainframe computers, bus traffic can seriously 
limit system performance. This problem is particularly acute ff the 
bus is to be shared among two or more microprocessors. Concern 
over bus traffic should favor schemes that  exploit temporal locality 
more than spatial locality. On-chip caches will tend to be more 
intelligent than traditional caches because apecial-purpese cache 
control logic is relatively inexpensive in VLSI and can easily access 
processor state information. 

This paper examines the performance of small caches, using 
trace driven simulations. In particular, we examine a cache organi- 
zation called sub-block placement ( Sub-block placement has also 
been called oector placement in the IBM System/360 Model 85 [2]. ) 
In sub-block placement, the address tags in the cache are associated 
with a larger amount of data than is usually brought into the cache 
on a single miss. This larger amount is known as a block. Smaller 
units, called sub-blacks, are used as the unit of memory transfer. 
Basically a block is composed of an address tag and two or more 
sub-blocks. When a reference is made to a location not in the 
cache, an entire block is allocated but only the missing sub-block is 
loaded. Address tags are associated with the larger sized blocks in 
order to minimize the chip area devoted to address tags, and in the 
ease of the 360/85, to minimize the extent of the associative search. 
Sub-blocks are used as the unit of memory transfers to minimize bus 
traffic. The expectation in sub-block placement is that  the savings 
in tag overhead will compensate for the rigidity of the mapping. 

This paper is organized into six sections. This section con- 
cludes with a review of the literature. Section 2 examines the design 
of on-chip caches, outlines the effects of VLSI on cache design, and 
proposes some examples. Section 3 explains cache design parame- 
ters, performance and cost metrics, and the choice of trnce-driven 
simulation. Section 4 presents the results of our simulations. We 
find that  sub-block placement is a flexible cache structure for trad- 
ing off memory access latency and bus traffic. The use of ~nibble 
mode ~ memories suggests the use of larger block sizes than would 
otherwise be optimal. ~Load forward ~ is found to be helpful in 
significantly cutting bus traffic at a cost of a small increase in the 
miss ratio. Conclusions are presented in Section 5. 

1.1. Review of  L l t e ra tm.n  

The first cache memory implementation was for the IBM Sys- 
tem/360 Model 8,5. Results were published by Liptay [2] in 1968. 
This cache is the only early cache to use a sub-block placement 
structure. (Liptay called this design the sector cache.) Results in 
Section 4.1 show that  it performs poorly by today's standards. 

Few cache studies in the literature have been done for the 
small cache sizes (less than 2048 bytes of data) that  we propose for 
initial on-chip caches. In 1974, Bell, Casasent, and Bell [3] published 
results on small caches with single-word (16-bit) blocks and direct- 
mapped placement for the DEC PDP-8, using traces of two scientific 
programs and the PDP-8 Assembler. The miss ratios that  they 
reported are generally higher than we have found, perhaps due to 
their use of direct mapping. For example, a cache of 512 data bytes 
was found to have a miss ratio between 0.46 and 0.62. We found a 
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miss ratio of 0.10 for a comparable PDP-II  cache. 

In 1076, Strecker [4] summarized the research that  led to the 
design of the cache memory in the DEC PDP-11/70. He used traces 
of scientific applications and an assembler. For direct-mapped 
caches with a block size of 4 bytes {2 PDP-11 words), the miss ratio 
dropped from 0.15 through 0.10, 0.05, and 0.02 as the cache data 
size was doubled from 250 bytes up to 2048 bytes; these results are 
similar to our own. Strecker also notes that  improved performance 
is obtained as the associativity in a set-associative cache increases 
from 1 to 2 to 4, but that  little is gained for degrees of associntivity 
of greater than 4. He also presented results showing that  there is 
little difference in the performance of LRU, FIFO, and RANDOM 
replacement algorithms. The PDP-11/70 cache was designed to be 
1024 data bytes, with 4-byte blocks, and two-way set associative 
with random replacement. 

Recent work by Goodman [5] examines small caches within a 
multiprocessor environment. Among other issues, he examines the 
sub.block structure (sector cache) used in the System/360-85.1 His 
results, based on six UNIX 2 traces, support sub.block placement. 

S. O n - C h i p  C a c h u  

This section is concerned with design issues for on-chip caches. 
The first sub-section discusses the effects of VLSI on on-chip caches, 
including the disparity between on-chip and off-chip communication 
and the ability to inexpensively build specialized cache control. 
Next, two examples are proposed: the m i n i m u m  cache and the 
s m a r t  cache. The minimum cache costs very little and can reduce 
off-chip accesses by one-third; the smart cache out-performs current 
caches of the same size. Finally, the RISC H instruction cache is 
presented as an implemented example. 

2.1. Effects of  VLSI 

On-chip caches will differ from MSI (Medium Scale Integra- 
tion) cache memories for at least four reasons. First, block sizes will 
tend to be smaller, because integrated circuit packaging limitations 
limit the number of bits that  can be handled in parallel. If large 
blocks are used, long latency times result because the blocks must 
be time-multiplexed over only a few pins. Second, since moat suc- 
cessful microprocessors today are bus-limited [6], on-chip caches will 
be increasingly concerned with minimizing bus traffic. This trend 
will reduce the main memory-to-cache transfer size. Third, intra- 
chip communication is less expensive than inter-chip communica- 
tion. Therefore more processor state information can be used to 
control the on-chip cache. Data communication off-chip requires 
that  signals be scaled to reasonable leveb, such as TTL compatible 
(5 volts), and be able to drive large capacitive loads. This coats chip 
area, power, and delay. The cost of the intra-chip transfer of infor- 
mation, e.g. the current instruction-in-execution, may be low enough 
to justify their incremental improvements to cache performance. 
Last, the current freedom from standard building blocks in VLSI 
can allow on-chip caches to nee more complex custom control. For 
example, wide associative searches can be easily implemented in 
VLSI with content-addre~able memory (CAM) cells. 

Z,Z. T w o  P roposa l s  for  O n - C h i p  Cache  A r c h i t e c t u r e s  

The two architectures for on-chip caches proposed here were 
not explicitly studied but serve to illustrate the potential for VLSI 
on-chip caches. The first, called a m i n i m u m  cache, is a cross 
between an instruction buffer and s cache. The second, a s m a r t  

cache, is similar to a traditional cache but uses custom VLSI to cap- 
italize on the processor state information that  is available on-chip. 

An instruction buffer holds one or more blocks of the instruc- 
tion address space[7], feeds into the instruction fetch stage of the 

z Goodmtn refers to the block as • address 61o~ and to the sub.block as • troxs]er 
6fo~. 
2 UNIX is • tnulemark of Bell Laborator/es. 

CPU pipeline, and may or may not be capable of recognizing when a 
branch target hits a location already in the buffer. Instruction 
buffers which do not recognize branch targets differ from caches 
because while they reduce latency for consecutive instruction 
accesses, they do not reduce the number of bytes required from the 
memory system. For example, the DEC VAX-II/780 and 750 have 
instruction buffers that  contain only eight contiguous bytes 18]. The 
CRAY-I has four instruction buffers that  can each hold 64 contigu- 
ous 16-bit instructions for a total size of 512 bytes [9]; the CRAY-I's 
instruction buffers recognize branch targets, and thus can hold entire 
loops. 

Minimum caches can improve performance, even with rela- 
tively high miss ratios, since they may significantly cut the traffic 
ratio. One possible architecture for n minimum cache is 32 data 
words broken into 16 ?.-word blocks, where only the requested word 
is loaded on a miss. For this architecture, it is reasonable to use 2- 
way set-associative placement with R A N D O M  replacement. A 
minimum cache for a 32-bit machine would require about 190 bytes 
of RAM (16 blocks * [29 t ~  bits + 2 valid bits + 64 data bits] / 8 
bits/byte), plus some overhead for buffers and matching logic. 
Minimum caches tend to have their best effect on performance when 
used as instruction buffers. 

S m a r t  caches require more area than the minimum cache, 
perhaps up to 2048 bytes of data storage. Their performance is 
enhanced by exploiting the processor state information available 
on-chip. Specinl-purpose logic can examine reference patterns to 
prefetch instruction codes and operands from main memory or pre- 
fetch information out of the cache memory into even faster buffers. 
For example, the S-1 [10] attempts to dynamically predict jump tar- 
gets, and the RISC II instruction cache prefetches instruction data 
from its private store (see Section 2.3). Lee and Smith [7] present 
empirical evidence supporting the use of a cache for recent jump 
targets to reduce the detrimental effects of branches on pipelined 
machines. Alternatively, the tops of certain stacks in a program- 
ruing environment could be cached. These "intelligent ~ schemes 
may work better than methods which are ignorant of the semantics 
of data reference patterns. Effective prefetching reduces latency at a 
cost of increased memory traffic and s t  a risk of memory pollution 
(fetching data which is not subsequently used, while replacing data 

that  may yet be used) [11]. Intelligent data replacement reduces 
memory pollution, thereby reducing bus traffic and latency. 

1.3. A n  I m p l e m e n t e d  Example :  R ISC  11 I n s t r u c t i o n  Cache  

The RISC II instruction cache [12] is a single-chip instruction 
cache implementation used to study architectural concepts for on- 
chip cache memories. The cache includes two architecture innova- 
tions: a remote program counter for decreased access time, and sup- 
port for dynamic code expansion for increased effective cache size. 

The RISC H instruction cache is a single 45,050 transistor 
NMOS chip designed specifically to work with the RISC H imple- 
mentation [13] of the RISC architecture [14]. The cache operates 
with an access time of 250 ns. It holds 512 bytes arranged in 64 
direct-mapped blocks of 8 bytes each. Results quoted in this sub- 
section are from simulations with limited benchmarks done for [12]. 
Various cache sizes performed with miss ratios of 0.148 (512 bytes), 
0.125 (1024 bytes), 0.098 (2048 bytes), and 0.078 (4096 bytes). Thus 
for these sizes, doubling the cache size reduced miss ratio by about 
20 percent. 

The remo te  p rogram coun ter  is special-purpose logic that  
reduces the effective access time on cache bits. The remote program 
counter attempts to guess the next instruction address, so the cache 
can begin to fetch data out of its private store before the processor 
presents the actual instruction fetch address. The remote program 
counter correctly predicted 89.9 percent of the next-instruction 
addresses using limited instruction-decode ability and static j u m p -  

likety hints. This reduced the access time seen from the processor 
by 42.2 percent. 
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The effective size of an instruction cache can be increased with 
code-compaction. The RISC 1I instruction cache allows selected 
half-word (16-bit) instructions to be used to reduce code size by 20 
percent. These half-word instructions are expanded to their stan- 
dard 32-bit representation before they are given to the processor. 
Miss ratios are improved by 27.0 percent over runs with standard 
code without impacting the processor's simple instruction-decode 
PLA. 

3. M e t h o d s  

This section presents the rationale for the choice of cache 
design parameters in this study, discusses performance metrics, and 
justifies the use of trace driven simulation as the evaluation tool. 
Miss and traffic ratios are used to measure performance for caches of 
different net size (data size), block size, and sub-block size. Gross 
cache size (the size of address tags and data) is used to measure 
cost. 

3.1. Cache  Design P a r a m e t e r s  

Table 1 presents cache design parameter choices used in our 
simulation studies. Cache size, sub-block size, and block size are all 
important to cache performance. Cache size directly affects perfor- 
mance and cost in a way that  dominates all other design decisions. 
The miss ratio of a cache declines monotonically with cache size, 
but the cost, physical size, and access time will increase with 

increasing cache size. Optimal cache sizes thus must be selected 
with regard for these factors. 

Sub-block size is the number of bytes moved to the cache by a 
minimum size data transfer. Block size, also called line size, is the 
maximum number of bytes of data that  are associated with a single 
address tag. In most caches, the sub-block size and the block size 
are identical and are collectively referred to as the block size. Divid- 
ing large blocks into smaller sub-blocks affects performance in two 
ways. First, the miss ratio will increase because more than one miss 
can occur within a single block. Second, the traffic ratio will 
decrease because only the parts of the block that  are used will be 
loaded. In VLSI we expect the smaller sub-block size to reduce the 
cost of a miss, because less data is brought across limited pins. 
Sub-block placement can also be viewed as a way of grouping n 
small blocks under one address tag. This grouping reduces data 
placement freedom by restricting the n sub-blocks to consecutive 
locations. This loss in flexibility of placement will cause the miss 
and traffic ratios to increase. However, the cache will be more cost- 
effective since address tag overhead is reduced by a factor of n .s 

Cache design parameters not varied in the studies of this paper 
are associativity, replacement algorithm, fetch algorithm, and 
write-back algorithm. All experiments were performed with 4-way 
set-associative caches. Smith [15] and others have shown that  4-way 
set-associative mapping provides hit ratios very close to those of a 
fully associative design. Changes in associativity have been exten- 
sively studied and have smaller effects than the parameters studied 
here [1,4]. Experiments were done using LRU replacement since 
LRU permits more efficient simulation [16[ and reasonable alterna- 
tives perform comparably. All cache fetches were done on demand, 
although sub-block placement with load-forward is analogous to pre- 
fetching. Prefetching studies were beyond the scope of this study. 
Write-back issues were filtered out of our results by calculating per- 
formance metrics for only data reads and instruction fetches. The 
caches studied hold both instructions and data. Further studies 
should look at partitioning instruction and data caches, prefetching, 
and write through vs. copy back factors. 

3.2. Cache  P e r f o r m a n c e  Met r i c s  

The purpose of a cache is to improve memory system perfor- 
mance by reducing the effective access time to memory and 
processor-memory bandwidth requirements. Effective access time 
s We neglect the lower-order effects of changes in the number of bits in the addre~ tM. 

tell is most simply modeled as: 

tell ----- tc,~he * ( l - m )  + tin., * m ,  

where m is the miss ratio of the cache, to,oh, is the access time of 
the cache, and tin., is the access time of main memory, tcac~e and 
tmem are not easy to obtain through any method that  does not inti- 
mately consider a particular implementation of a machine, tc.cA, is 
a function of the technology, organization, and complexity of a 
cache, t..m is related to memory technology, organization, com- 
plexity, bus interference, cache sub-block size, and whether loading 
and fetching are ovedapped. Miss ratios are often quoted for caches 
because they are largely implementation-independent (if the 
processor-to-cache datapath width is held constant) and thus can be 
computed in architectural studies. Nevertheless, a reduction in miss 
ratio will not guarantee an improvement in memory system perfor- 
mance. For example, prefetehing data should reduce the misses 
when the data is actually requested. Still re/! may grow if the addi- 
tional logic increases tcache. Other aspects of cache design which 
affect performance include the methods of updating main memory 
and maintaining multi-cache consistency. 

The two most important architectural performance metrics are 
miss ratio and tra~c ratio. The miss ratio is the number of cache 
misses divided by the number of cache accesses. The miss ratio is 
always less than or equal to 1 because the number of misses cannot 
be more than the number of cache accesses. It is of primary impor- 
tance if sufficient bus bandwidth is available so that  reduced latency 
is the overriding goal, as is generally the ease for high end main- 
frames. The relative importance of miss ratio and traffic ratio vary 
with the ratio of cache and rosin memory access times; the smaller 
the ratio, the less important are reductions in the miss ratio. 

The traffic ratio is the ratio of memory bus traffic in a system 
with a cache to that  in a system without a cache. The scaled traffic 
ratio (see section 4.3) scales the traffic ratio to reflect the fact that  
in some designs, as with nibble or page mode memories, transfer 
times are not linear with transfer sizes. Two competing factors 
affect the traffic ratio. First, repeated references to words already in 
the cache reduce the traffic ratio. For example, if words are brought 
into the cache and used n times before they are removed, the traffic 

ratio will be --.1 Second, block sizes that  are bigger than a single 
n 

word will tend to increase the traffic ratio because some data 
brought into the cache will never be referenced. For example, if 
only one reference is made to a block of w words while it is in the 

w 
cache, the traffic ratio will be T "  Consequently, the traffic ratio for 

a cache with w-word blocks will be less than 1 if and only if on the 
average more than w references are made to a block each time the 
block is resident in the cache. The traffic ratio is important if the 
memory bus is the bottleneck, either because the single processor is 
too fast for the bus, or because there are multiple processors on the 
same bus. It is also important because of the contention between 
the processor, which wants to use the cache, and the bus which is 
loading and unloading it. 

The results of Section 4.3 model the bus traffic to fetch w 
sequential words in a single transaction by a cost of the form 
a + b*w. This form reflects transfer times in systems with nibble- 
mode memories [17] or shared busses with transactional overhead. 

The most important cost metrics are gross cache size and 
cache eomplezity. By gross cache size we mean the size of the data 
and tag area together. Historically, cache performance numbers 
have been given with respect to cache data size (net cache size) 
only. However, on-chip caches can have non-trivial tag areas because 
block sizes are smaller, associativity may be greater, and address 
spaces for the newer architectures are large (32-bit). The gross 
cache sizes calculated in this paper assume a 32-bit address space 
even though some of the traces come from 16-bit machines, since we 
are interested in the newer 32-bit architectures. The effects of cache 
complexity are important, but are not studied here because they are 
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implementation-dependent and are poorly measured by 
architecture-level, trace-driven simulation. 

3 . 3 .  Trace-Dr iven  Simulat ion 

Trace-driven simulation experiments were used in these studies 
for several reasons. First, such simulations are repeatable and allow 
cache design parameters to be varied so that effects can be isolated. 
They are cheaper than hardware monitoring and do not require 
access to or the existence of the machine being studied. Simulation 
results can be obtained in many situations where analytic model 
solutions are intractable without questionable simplifying assump- 
tions. Further, there does not currently exist any generally accepted 
model for program behavior, let alone one that is suitable for cache 
evaluation; workloads in trace-driven simulation are represented by 
samples of real workloads and contain complex embedded correla- 
tions that synthetic workloads often lack. Lastly, a trace-driven 
simulation is guaranteed to be representative of at least one program 
in execution. 

A trace-driven cache simulator [18] was written which can 
vary, among other parameters, cache size and cache block size and 
associativity. It supports sub-blocks and load forward. 

Tables 2, 3, 4, and 5 present the traces used to produce the 
results of this paper. They are normal production programs; no syn- 
thetic benchmarks have been used. Traces were run for 1 million 
addresses without context switches. Traces were created for the 
Z8000 and PDP-11 by assuming 2 byte data paths and for the Sys- 
tem/370 and VAX-11 assuming 4 byte data paths to memory. 
Multiple-trace miss and traffic ratios are the unweighted average of 
the miss and traffic ratios of individual runs. We note that it is 
likely that our results will indicate better performance than will 
actually be achieved in practice. First, the omission of task switch- 
ing effects will bias our estimated performance upward, although the 
small sizes of the caches studied make this effect minor. More 
significant is the fact that it is known [1] that most misses occur in 
the operating system, and we have not used, or had available, any 
operating system traces. Finally, it has often been observed that 
even when the two factors noted have been taken into account, 
measurements made on production systems show higher miss ratios 
than previously predicted. Anyone designing a system using these 
results should keep these comments in mind, and should appropri- 
ately interpret either our results or their own. 

4. Resul ts  

This section presents the results of trace-driven simulations of 
small memory caches with various block and sub-block sizes. First, 
the original use of sub-block placement in the IBM System/360 
Model 85 (the first machine with a cache memory) is examined. 
Second, the results from PDP-11, Z8000, and VAX-U traces show 
caches as small as 64 words are somewhat useful, while 1024.byte 
on-chip caches can have miss and traffic ratios lower than 0.10 and 
0.20. System/370 traces do not perform as well. Third, an evalua- 
tion based on the use of paged-mode memories, nibble-mode 
memories, and a transactional bus are shown to double optimum 
sub-block size. Last, a way of prefetching sub-blocks called load- 
forward is introduced. 

4.1. Ear ly  Sub-Block P lacemen t  

The only early cache to use a sub-block placement structure is 
the IBM System/360 Model 85 Cache [2]. This 16-Kbyte cache asso- 
ciates an address tag with a 1024-byte block, but does memory 
transfers with 64-byte sub-blocks, s beginning with the address the 
processor requested. This organization was used because it required 
only 16 entries in expensive associative address-matching hardware. 

6 Liptay refers to the blocL a~ a #cctor and to the su6-bloet as a block 
e To our knowledge, thc~e are the only public ltudie~ comparing the the 360/85'a 
mapping scheme to today's eet-aJsoci&tive mapping. 

Technological advancements over the last 15 years have 
reduced the cost of associative search logic, and our results show 
that the sub-block or sector cache performs poorl~ relative to the set 
associative design most commonly used today. Table 6 compares 
the 360/85 to 4-, 8-, and 16-way set associative mappings of 64-byte 
blocks with L R U  replacement. This figure is three times greater 
than the miss ratio for a 4.way set associative cache. The reason for 
the 360/85 cache's poor performance is that data can be resident in 
the cache in only one of 16 blocks that are much too large (1024 
bytes). We find that 72 percent of the sub-blocks in a block (11.52 
of 16 sub-blocks) are never referenced in the period a block is 
resident. 

4.2. Sub-Block P lacemen t  for  On-Chip  Caches  

Before presenting PDP-11, Z8000, VAX-11, and System/370 
results, let us explain how to read the figures in this paper. Figure 
1, for example, shows the miss ratio versus the traffic ratio from 
PDP-11 runs for various block, sub-block, and cache sizes. Solid 
lines connect caches with constant block size b=, and dashed lines 
connect caches with constant sub-block size sz. For example, the 
cache with block size 16 and sub-block size 4 is found at the inter- 
section of b16 and s4. The miss ratio, the number of cache misses 
divided by the number of cache accesses, is a measure of the 
effectiveness of a cache in reducing memory access latency. The 
tragic ratio, the ratio of bus traffic in a system with a cache divided 
by the bus traffic without a cache, is a measure of the effectiveness 
of a cache in reducing memory bandwidth requirements. The #ross 

cache size, the combined size of the tag and data area of the cache, 
is a measure of the cost of a cache. Gross cache size is used because 
the different schemes presented here require widely varying amounts 
of address tag area. 

4.Z.1. P D P - U  Resul ts  

Figures 1 and 2 show the miss ratio versus the traffic ratio for 
PDP-11 traces; see Table 2 for description of traces. Table 7 
present the gross cache sizes for the results of Figure 2. 

Figure 1 shows that some organizations of caches with net 
sizes of 32, 128, and 512 bytes can actually increase bus traffic; i.e. 
their traffic ratio is greater than 1.0. For example, the 128-byte 
cache (net) with block and sub-block sizes of 16 bytes almost dou- 
bles bus traffic. This happens when too many words in a sub-block 
are brought into the cache and never referenced. Caches with a 
sub-block size of 1 word will always have traffic ratios less than or 
equal to 1.0. 

Doubling the block size affects the gross cache size by halving 
the total address tag area. This is significant ff blocks are small. 
For example, the 512-byte cache with block and sub-block size of 2- 
bytes (2,2) occupies 50.0 percent more area (1536 bytes vs. 1024 
bytes) than the 512-byte cache with 4.byte blocks and 2-byte sub- 
blocks (4,2). Yet, it only performs 16.7 percent better in miss ratio 
and 16.9 percent better in traffic ratio. 

Doubling the sub-block size halves the number of sub-block- 
valid bits in a cache block. This does not significantly affect cache 
size because the number of sub-block-valid bits in a block is small 
compared to the tag and data area. For example, going from a 32,4 
to a 32,8-cache decreases the total size by only 1.4 percent. A cache 
with the capability of varying sub-block size can be set to run at 
different operating points depending on the relative importance of 
miss ratio and traffic ratio. Such a cache requires somewhat more 
control and enough sub-block-valid bits for the smallest sub-block 
size. Figure 2 shows a solid line labeled b32 with net cache size 
1024 that intersects all sub-block sizes between 2 and 32 bytes. 
These various sub-block sizes allow a system implementor to trade 
the miss ratio against the traffic ratio. In a system with consider- 
able unused bus bandwidth, the sub-block size could be set to 32 
bytes to realize miss and traffic ratios of 0.033 and 0.5,33 (Table 7). 
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In another system that is bus-limited either by a dower bus or more 
devices (processors) using the bus, the sub-block size could be set as 
low as 2 bytes. This would increase the miss ratio by a factor of 6 
to 0.190 but decrease the traffic ratio by a factor of 3 to 0.190. 

A minimum cache for these results is a 64-byte cache with 4- 
byte blocks and 2-byte sub-blocks. This 4,2 64-byte cache can cut 
memory references and bus traffic by one-third as compared to a 
system without a cache. On the other hand, a 16,8, 1024 byte cache 
results in miss and traffic ratios of 0.052 and 0.206. 

4.2.2. Z8000 Resul ts  

Figures 3 and 4, and part of Table 7 show results from UNIX 
utilities written in C and compiled for the ZS000 (see last five traces 
in Table 3). These traces yield better performance than the PDP-11 
traces; they are plotted on the same scale for comparison. The 
results quoted are warm-start raties. (Warm-start raties do not 
count the misses taken to initially fill the cache with relevant datum) 
As previously noted, the warm-start ratios are slightly optimistic. 

As with the PDP-I1 results, a 4,2 64.byte minimum cache is a 
start. A 16,8 1024-byte cache can be implemented a gross cost of 
1264 bytes to yield miss and traffic ratios of 0.023 and 0.092. 
(These results for the Z8000 are so much better than for any other 
architecture and set of traces that we consider these results overly 
optimistic and unrepresentative. Since these same traces were used 
in [19j we have some doubts about the performance projections for 
the ZS0,000.) 

4.2.3. V A X - U  Resul ts  

Figure 5 and part of Table 7 show results from six VAX-11 
traces (see Table 4). A 8,4 64-byte minimum cache has miss and 
traffic ratios of 0.6072 and 0.6072. A 16,8 1024-byte cache reduces 
these numbers to 0.1058 and 0.2116. 

4.2.4. Sys t em/370  Resul ts  

Figure 6 and part of Table 7 show results from four Sys- 
tem/370 traces (see Table 5). For clarity, Figure 6 is scaled 
differently than Figures 1 through 5. Minimum caches do not work 
well with our System/370 runs. A 8,8 64.byte cache will reduce 
memory reference in half (miss ratio 0.5475), but will actually 
slightly increase bus traffic with respect to a system with no cache 
(traffic ratio 1.0950). The best cache studied here for the Sys- 
tem/370 traces was 16,8 1024-byte cache that has miss and traffic 
raties of 0.2632 and 0.5264. 

4.2 .5 .  In t e r -Arch i t ec tu re  Compar i sons  

It is clear from Table 7 that miss ratios are generally increas- 
ing as one goes from the Z8000 to the PDP-11 to the VAX 11 to the 
System/370 trace driven simulation results. We believe that these 
differences are not reflective of the architectures, except for address 
space size, so much as the traces used. The ZS000 traces are all 
Unix utilities, ported from the PDP-11 version of Unix, and are 
mestly small, compact pieces of code. The PDP-11 programs are 
also relatively small, running as they do in a 16 bit address space. 
(In both cases, the 16 bit address is one cause of the good results.) 
The VAX programs are a mixture of small and large, and the Sys- 
tem/370 programs are large, using hundreds of kilobytes of storage. 
We believe that the 370 programs are the most reliable indicator of 
actual performance for a 32-bit microprocessor, since "real ~ work- 
loads, to be experienced in practice, are likely to contain many 
large, complex, memory intensive programs. 

4.3. Nibble-Mode Resul ts  

All the traffic ratio results so far assume that the cest of a 
memory access is directly proportional to the number of bytes read. 
This assumption is accurate for many current microprocessor sys- 
tems, often because of bus protocol compatibility constraints ~. How- 
ever, some new memory chips provide paging or nibbling addressing 

modes, and some multiprocessor memory busses incur an overhead 
with each transaction. Both of these conditions will produce a cost 
to reference w sequential words of the form a + 5*w. Therefore, 
the average cost is reduced if several words are simultaneously 
fetched from adjacent locations. On-chip caches can exploit nibble- 
mode memories for loading sub-blocks. Caches with larger sub- 
blocks derive more benefit than those with smaller sub-blocks. Bur- 
sky [17 i reports that typical access times are 160 us for the first 
word and 55 ns for subsequent words. If we approximate the ratio 
of 160 to 55 as 3 to 1 and assign unit-cost to getting one word, then 

1 ( w - l ) .  Acache  the cost of getting w sequential words is 1 + ~- 

with a sub-block size of w words will always ask for w sequential 

words at an average cost of 1 [ I  + 1 ( w -  1)]. The standard 

traffic ratio multiplied by the above factor produces a scaled lra,~c 
ratio for nibble-mode memories. This equation also reflects the cost 
of using a bus cycle to present an address to the memory before 
waiting 105 us for the first word and 55 ns for subsequent words. 

Figures 7 and 8 show PDP-11 results scaled to reflect the 
economies-of-scale for transferring more than one 16-bit word in a 
single access (See also, Table 7). Scaling with 16-bit words should 
put an upper bound on the improvement that can be expected from 
scaling with 32-bit words. Curves of constant block size and vary- 
ing sub-block size (solid lines) minimize the scaled traffic ratio at a 
sub-block size of 4 or 8 bytes, rather than 2-byte result with the 
standard memory interface. Since the sealed traffic ratio penality 
for bringing in additional data is smaller than in the case of a stan- 
dard memory interface, a cache designed for these addressing modes 
will tend to have a larger sub-blocks We observe that the optimum 
sub-block size under the assumptions of this section approximately 
doubles from the optimum results of Section 4.2. 

4.4. L o a d - F o r w a r d  Resul ts  

Load-forward is a mechanism for combining the miss ratio 
benefits of a large block size with the low bus traffic of sub-block 
placement. Load forward involves fetching the target sub-block and 
the subsequent sub-blocks within the same block; it is thus a limited 
form of prefetching. Load forward is being used in the 256-byte 
on-chip cache of the Z80,050 [19]. The Z80,000 cache has 16 blocks 
of 16 bytes. The blocks are replaced using an LRU stack on-chip. 
Data is fetched from memory in one-word (two-byte) sub-blocks 
with an option to load-forward 

Program and data references within a cache block exhibit a 
forward bias. A program typically branches to a random location 
within a cache block, proceeds sequentially forward, and then 
branches again. Data references also tend to proceed forward 
because of processing of arrays, character strings, and individual 
variables whose storage is defined by the programmer in order of use 
[11 i. For this reason, data just before a reference is less likely to be 
referenced than data just after it. Thus, a larger block size will 
result in more data being loaded from memory locations that are 
before the point of reference. Load-forward, by fetching only the 
part of the block forward of the target of the fetch, should be less 
likely to load unneeded information than a fetch which gets the 
entire block. Load forward may or may not remember which sub- 
blocks have already been loaded and if it does remember, it can load 
only those sub-blocks not already cache resident. Such optimized 
operation is more complex. The simpler scheme has redundant bus 
traffic in the few instances of a backwards reference within a cache 
block, but allows the main memory system to function auto- 
nomously. 

Load-forward was studied with traces CPP, C1 and C2 using 
the latter redundant-load scheme. Since results (Figure 9 and Table 
8) show that few redundant loads were made, there was not enough 
gain to justify experimenting with the optimized scheme. The point 

7 labeled b16-o2-LF-0328 on the 256-byte cache curve in Figure 9 

7 LF 8trade for load-forward, and 0328 for gross cache else of 828 bytes. 

162 



corresponds to the performance of the ZS0,000 cache for these par- 
ti tular benchmarks. 

The load-forward mechanism reduces bus traffic at a small cost 
in miss ratio. For the Z80,000 design, changing from a sub-block 
size equal to the block size to a 2-byte sub-block size with load- 
forward reduces the traffic ratio by 20 percent for a cost of 7.0 per- 
cent in the miss ratio. Therefore, load-forward is useful if it is easy 
to implement and the traffic ratio is of some concern. We expect 
that  load-forward will be especially effective in the instruction space. 

5 .  Conclus ions  a n d  S u m m a r y  

We believe and the simulations presented in this paper suggest 
that  some of the limited area on high-end microprocessor chips is 
best used as the top of the memory hierarchy rather than providing 
additional special-purpose logic. 

Very small minimum on-chip caches are somewhat useful in 
reducing latency and off-chip traffic for all but the System/370 runs. 
A 64-byte cache with a block size of 2 words and a sub-block size of 
1 word reduces memory accesses and bus traffic by one-third in 
PDP-I1, Z8000, and VAX-11 runs. On the 32-bit VAX-11, this 
cache requires only 95 bytes of RAM cells to hold address tags and 
data. Unfortunately, a minimum cache of this size reduced Sys- 
tem/370 misses by only 16 percent. 

A more aggressive goal for a on-chip cache is to reduce refer- 
ences by a factor of ten (miss ratio 0.10) and bus traffic by a factor 
of five (traffic ratio 0.20). This is achieved with a 512-byte (net) 
cache with 4-byte blocks and 4-byte sub-blocks (4,4 512-byte) in 
PDP-11 runs, with a 8,4 512-byte cache in Z8000 runs, and with a 
16,8 1024-byte cache in VAX-I1 runs. The best cache studied here 
for the System/370 traces is a 16,8 1024-byte cache that  can cut 
references by a factor of four and halve bus traffic. 

It is possible to trade off the miss and traffic ratios by varying 
the sub-block size, for a fixed block size. As the sub-block size 
decreases, the miss ratio increases and the traffic ratio decreases. 

When either nibble-mode (paged-mode) memories or a memory 
bus with transactional overhead are used, the bus traffic cost should 
be modeled as a + b,w, where w is the number of single words 
fetched on a single transaction. For nibble-mode memories that  
required 160 ns for the first word and 55 ns for subsequent words, 
the optimum sub-block size roughly doubled relative to to the 
optimum size found in other results. 

Load-forward_ increases the traffic ratio slightly but cuts the 
miss ratio by a much larger factor, relative to the same block and 
sub-block sizes but without load forward. It appears to be advanta- 
geous if the processor and memory designs permit; compatibility 
with previous designs may be an inhibiting factor. 

On-chip caches are one good use for the microprocessor chip 
area available for performance enhancements whenever the on-chip 
cache can be at  least 32 to 128, words, depending on the workload. 
On-chip caches are especially effective when at least 256 words. 
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Table 1. Simulntion Parameters 
Pnrameter 
cache vise (bytes) 
block size (bytss) 
sub-block vise (bytes) 
associativity 
cache partitioning 
replacement xlsorithm 
fetch algorithm 

v/~rJ 
32, 64, 126, 256, 512, 1024 
2, 4, 8, 16, 32, 04 
2, 4, 8, 16, 32 
4-w~y 
dnta k instructions mixed 
LRU 
demLnd 
load-forward 

Ti~ble 2. PDP-II Workload 
Trace 
OPSYS 
PLOT 
SIMP 
TRACE 

RUFF 

Language: Comments 
C: toy opernting system 
Fortrn:  printer plotter program 
Fortran: pipeline simulation program 
PDP-II AJvembly. tracing program true- 
ins ED 
PDP-II Assembly: text output n d  for- 
m~ttin8 program 
C: text editor ED 

Table 5. IBM System/370 Workload 
Trace LanKua~e: Comments 
FGOI Fortran Go Step: single precision factor 

a~alysis 
FCOMPI Compile of n program that solves Rey- 

nolds partial differential equation 
PGO1 PL/I Go Step 
PGO2 PL/I Go Step: program does CCW 

aenlyvis 

Tnble 3. ZS000 Workload 
Trace 
CPP 
CI 
C2 
OD 

GREP 
SORT 
LS 
NM 

PR 

Lnn|ua~,e: Comments 
C: §lit phase of C compiles 
C: second phase of C compiler 
C: third phase of C compiler 
C: Unix utility for dumpin6 files in 
ASCII 
C: Unix utility for string searching 
C: Unix utility for sorting 
C: Unix utility for listing files 
C: Unix utility for printing a specially 
compiled object file's symbol table 
C: Unix utility for formating text files for 
printing 

Trace 
spice 
otmdl 
vedx 
qsort 
troff 
c2 

Table 4. VAX-11 Workload 
Language: Comments 
Fortran: circuit simulation 
Pascal: constructs LR(0) parser 
C: stream editor 
C: Quick sort 
C: text formtttes 
C: third phase of C compiler 

Table 6. IBM System/360 Model 85 Results 
(Bayed on: 1 Fortran Go Step, 1 Fortran Compile, 2 Cobol 

Go Stem. and 2 PL/I Go St�pa.) 
Cache M~es Rdative 

Or[anisation Ratio to 860/85 
36o/~ o.o25s x.ooo 
4-way 0.0088 0.841 
8-way 0.0081 0.314 
16-way 0.0070 0.294 

Table 8. Load-Forward (LF) Rssults 
(Based on three Z8000 traces: coo. el. and c2.~ 
Net, Block, 
Gross Sub- 
Cache Block 
Sine Sise 

(b~es) (b~tes) 
114 
04 8,8 
97 8,2,LF 
07 8,2 

102 2,2 
SSI 
814 16,10 
626 16,2,LF 
328 16,2 
870 8,8 
388 8,2,LF 
388 8,2 
768 2,2 

Mia* Traffic Traffic 
Ratio Ratio Ratio 

(nibble) 

0.257 1.028 0.514 
0.263 0.865 
0.678 0.678 0.678 
0.012 0.612 0.612 

0.120 0.060 0.400 
0.1~ 0.772 
0.489 0.489 0.409 
0.164 0.656 0.398 
0.160 0.567 
0.454 0.454 0.454 
0.40'2 0.402 0,402 

Tnble 7. 
Net, Block, 
Gross Sub- 
Cache Block 

Sise Sise 
(bytss) (bytes) 

04 
70 16,8 
60 16,4 
82 16,2 
94 8,8 
95 8,4 
07 8,2 

120 4,4 
128 4,2 
192 2,2 

250 
284 32,32 
285 32,16 
287 32,8 
291 32,4 
260 32,2 
314 16,16 
316 16,8 
820 16,4 
328 16,2 
376 8,8 
380 8,4 
388 8,2 
504 4,4 
512 4,2 
768 2,2 

1024 
1084 64,10 
1002 64,8 
1108 64,4 
1108 64,2 
1136 32,32 
1140 32,16 
1148 32,8 
1164 32,4 
1106 32,2 
1250 16,10 
1264 16,8 
1280 16,4 
1312 16,2 
1504 8,8 
1520 8,4 
1552 8,2 
2016 4,4 
2048 4,2 
3072 2,2 

PDP-11 

Miss Traffic Tra~c 
Ratio Ratio Ratio 

(nibble) 

0.890 1 .506  0.708 
0.557 1 .114  0.743 

0.339 1 .356  0.678 
0.479 0 . 058  0.639 
0.730 0.730 0.739 
0.425 0 . 850  0.567 
0.666 0 .666  0.066 
0.620 0 . 620  0.620 

0.146 2 .336  0.876 
0.191 1 .526  0.637 
0.291 1 .164  0.582 
0.418 0 .836  0.557 
0.509 0 . 500  0.509 
0.144 1 .152  0.480 
0.204 0 . 816  0.408 
0.302 0 . 604  0.403 
0.478 0 . 478  0.478 
0.168 0.672 0.336 
0.254 0 .508  0.339 
0.407 0 . 407  0.407 
0.218 0 . 4 3 6  0.201 
0.351 0 .351  0.351 
0.297 0 .297  0.297 

0.081 0.640 0.260 
0.118 0 . 472  0.238 
0.178 0 . 356  0.237 

0.033 0 . 5 3 3  0.200 
0.049 0 .301  0.163 
0.075 0 . 208  0.140 
0.110 0 . 232  0.155 
0.190 0 . 190  0.100 
0.033 0 . 265  0.II0 
0.052 0 . 206  0.103 
0,081 0 . 1 6 2  0.108 
0.133 0 . 133  0.133 
0.039 0 . 156  0.078 
0.061 0 . 122  0.081 
0.I01 0.I01 0.I01 
0.048 0 . 096  0.064 
0.081 0 .081  0.081 
0.072 0.072 0.072 

ZS000 

Miss Trtflic Traffic 
Ratio Ratio Ratio 

(nibble) 

O.~kqO 1 .320  0.660 
0.508 1 .016  0.677 
0.857 0 .8 5 7  0.857 
0.298 1 .102  0.506 
0.401 0.0~ 0.615 
0.702 0.762 0.702 
0.432 0 .864  0.576 
0.071 0 .671  0.071 
0.583 0 .583  0.583 

0.070 1 .264  0.474 
0.107 0 .8 5 6  0.857 
0.156 0 .624  0.312 
0.245 0 .400  0.827 
0.421 0 .421  0.421 
0.082 0.656 0.276 
0.124 0.406 0.246 
0.203 0.400 0.271 
0.355 0.35,5 0.3,55 
0.108 0 .432  0.216 
0.175 0 .350  0.233 
0.312 0 .812  0.312 
0.157 0 .3 1 4  0.209 
0.287 0 .2 8 7  0.287 
0.273 0.273 0.273 

0.041 0 .3 2 8  0.187 
0.063 0 .252  O.12e 
0.104 0 .2 0 8  0.180 
0.104 0 .1 0 4  0.104 
0.018 0.208 0.076 
0.024 0.192 0.640 
0.039 0.166 0.076 
O.O65 0.130 0.087 
0.047 0 .0 4 7  0.047 
0.01S 0 .104  0.043 
0.0'28 0 .002  0.045 
0.039 0.078 0.062 
0.072 0 .072  0.072 
0.015 0 .060  0.030 
0.030 0 .060  0.040 
0.055 0 .055  0.065 
0.02~ 0 .044  0.029 
0.045 0.045 0.045 
0.037 0.037 0.037 

VAX-11 

Miss Traffic Tr4dfie 
Ratio Ratio Ratio 

(nibble) 

0.4249 0.8408 0.5665 
0.6486 0.6483 0.6483 

0.8892 0.7784 0.5189 
0.6072 0.6072 0.6072 

0.5652 0.5652 0.5652 

0.1528 1.2224 0.5003 
0.2061 0.8'244 0.4122 
0.3003 0.6006 0.4004 
0.4750 0.4750 0.4750 

0.1769 0.6856 0.8478 
0.2614 0.5226 0.3485 
0.4207 0.4207 0.4~07 

0.2367 0.4734 0.8156 
0.3.596 0.3596 0.8506 

0.3558 0.3558 0.3553 

0.1088 0.4352 0.2170 
0.1704 0.3408 0.2272 
0.2825 0.2625 0.2825 

0.0588 0.4704 0.1060 
0.0863 0.3452 0.1726 
0.1360 0.27:20 0.1818 
0.2267 0.2207 0.2267 

0.0675 0.2700 0.1350 
0.1058 0.2116 O. 14U 
0.1748 0.1748 0.1748 

0.0804 0.1608 0.1072 
0.1332 0.1332 0.1332 

0.I044 0.I044 0.I044 

IRM SYstem/370 

Miss TraMc Traffic 
Ratio Ratio Ratio 

(nibble) 

0.5704 1.1588 0,7725 
0,8726 0.8726 0.8726 

0.5475 1.o95o 0.7800 
0.8375 0.8375 0,8375 

o.o18o o.818o o.o18o 

0.2377 1.oo16 0.7028 
0.3234 1.2036 0.6460 
o.4ool 0.0382 0.6255 
0.7331 0.7331 0.7331 

0.2722 1.0888 0.5444 
0.4006 0.8o12 0.5341 
0.6300 0.6300 0.6300 

0.3645 0.7260 0.4860 
0.5704 0.5704 0.5704 

0.5438 0.5438 0.5456 

0.2042 o.6168 0.4084 
0.3002 o.6184 0.4128 
0.4070 0.4070 0.4070 

0.1266 1.0128 o.4220 
o.1850 0.7436 0.3718 
0.2655 o.571o 0,3807 
0.4645 0.4645 0.4645 

0.17oo 0.6800 0.3400 
0.2632 0.5264 o.,%o0 
0.4508 0.4308 0.4308 

0.2443 0.4886 0.6257 
0.4o17 o.4017 o.4017 

0.3742 0.3742 0.3742 
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Figure I. PDP-II Results-Part I. Results for caches with 
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Figure 2. PDP-II Results-Pact IL Results for caches 
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Figure 8. g8000 Results-Part I.  Results for caches with 
net sizes of 32, 128, and 512 bytes. Solid lines connect 
caches with constant block size b~ Dashed lines connect 
caches with constant sub-block size . a  
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Figure 4. Z8000 Results-Part lI. Results for caches with 
net sizes of 64, 256, and 1024 bytes. Solid fines connect 
caches with constant block size ba Dashed lines connect 
caches with constant sub-block size s~ 

165 



1.00 

0.50 

M 
i 0.20 
s 
s 

R o.18 
a 
t 
i 0.08 
0 

0.02 

0.01 

M i s s  R a t i o  v s .  T r a f f i c  R a t i o  
I I I I 

t 2 5 6  . ~ \ .  N \ ,  ........... b16 t 

~._b~e ~ I 

i I I , 
O.lO 0.20 0.50 1.oo 

T r a f f i c  R a t i o  

2.00 

Figure 5. VAX-II Results. Results for caches with net 
sizes of 6:4, 258, and 1024 byte& Solid lines connect 
caches with constant block size b& Dashed lines connect 
caches with constant sub-block size sa  
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Figure 7. PDP-II Results for Nibble Mode*Part L 
Results for caches with net sizes of 32, 128, and 512 
byte& Nibble*mode assumes that an access for w sequen- 
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Figure 8. System/370 Result& Results for caches with 
net sizes of 64, 2,58, and 1024 bytes. Solid lines connect 
caches with constant block size k t  Dashed lines connect 
caches with constant sub-block size s& 
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Figure 8. PDP-II Results for Nibble Mode*Part IL 
Results for caches with net sizes of 64, 258, and 1024 
bytes. Nibble*mode a~umes that an access for w sequen- 
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Figure 9. Load-Forward Result& Results for caches with 
net sizes of 64 and 258 bytes, b# is block size, u is sub- 
block size, LF stands for load.forward, and g# is the gro~ 
cache sise. 
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