
W h a t is Scalabil i ty? 1

Mark D. Hill

Computer Sciences Department
1210 West Dayton St.

University of Wisconsin
Madison, Wisconsin 53706

markhill@cs.wise.edu

ABSTRACT

Scalability is a frequently-claimed attribute of multiprocessor systems. While the basic notion is
intuitive, scalability has no generally-accepted definition. For this reason, current use of the term
adds more to marketing potential than technical insight.

In this paper, I first examine formal definitions of scalability, but I fail to lind a useful, rigorous
definition of it. I then question whether scalability is useful and conclude by challenging the techni-
cal community to either (1) rigorously define scalability or (2) stop using it to describe systems.

KEYWORDS: mulfiprocessor, parallel random access machine (PRAM), scalability and speedup.

1. Introduction

Even though scalability has no generally-
accepted definition, it is often used without elabora-
tion to describe multiprocessor systems. This prac-
tice imparts a positive feeling toward a system
without providing any new information and therefore
has no place in technical literature.

The attribute scalability can be made techni-
cally useful by rigorously defining it so that ques-
tions like the following can be answered:

• Is my architecture scalable?

• Are all architectures that avoid buses and broad-
casts scalable?

1 The work is supported in part by the National Science
Foundation's Presidential Young Investigator and Computer
and Computation Research Programs under grants MIPS-
8957278 and CCR-8902536, A.T.&T. Bell Laboratories,
Cray Research, Digital Equipment Corporation, Texas In-
struments, and the graduate school at the University of
Wisconsin--Madison.

• Can some architectures be more scalable than
others?

• Does the intended workload affect an
architecture's scalability?

• Does cost affect scalability?

• Is an architecture scalable with respect to a
uniprocessor version of itself or a theoretical
multiprocessor?

• Does a scalable architecture imply that all, some,
or at least one implementation of it are scalable?

• When is an implementation scalable?

• How does one adjust for physical limitations
(e.g., bounded fan-in/out and the speed of light)?

• Should a system builder design for scalability or
speed?

• Who must consider scalability?

18

Below I try and fail to formalize scalability
(Section 2), question whether scalability is important
(Section 3), and conclude by asking others to define
scalability (better than me) or to stop using it.

2. A Formal Definit ion o f Scalabil i ty?

An intuitive notion of scalability is that it
implies a favorable comparison between a larger ver-
sion of some parallel system with either a sequential
version of that same system or a theoretical parallel
machine. If we choose to compare with a sequential
version, it seems natural to define scalability with
speedup [EZL89]. Let t ime(n,x) be the time
required by an n-processor system to execute a pro-
gram to solve a of problem of size 2 x. The speedup
on a problem of size x with n processors is the exe-
cution time on one processor divided by the time on
n processors, or:

speedup (n, x) = time (1, x)
time (n, x) "

Related to speedup is efficiency, which is speedup
divided by the number of processors, or:

ef~ciency (n, x) = speedup (n, x) = time (1, x)ln
n time (n, x) "

In general, the best possible efficiency is one, 3
implying the best speedup is linear,
speedup (n, x)= n. Clearly a system that achieves
linear speedup matches an intuitive notion of scala-
bility. Therefore, a restrictive definition of scalabil-
ity is:

A system is scalable if
efficiency (n, x) = 1 for all algorithms,
number of processors n and problem
sizes x.

This definition is not useful, however, because
it precludes any system from being called scalable.
First, many parallel algorithms have a sequential (or
at least not completely parallel) component, yielding
poor efficiencies for a sufficiently large number of
processors [Amd67].4 Second, if problem size is held
constant (as with benchmarks), efficiencies will be

2 Problem size is the amount of memory necessary to specify
the input to the problem. In serial complexity theory, it is
usually denoted with n rather than x. We use x since n has
already been used to denote the number of processors. Many
notations for speedup omit mention of problem size, usually
implying that it is large and held constant.
3 Super-linear speedups occasionally occur, primarily due to
interactions with a system's memory hierarchy.
4 A recent paper [KaF90] even advocates using the lack of
variability in experimental measures of a program's sequen-
tial fraction as an indicator of sealability.

lxmr for sufficiently large systems, for example,
when the number of processors nears or exceeds the
problem size [FrM88]. Third, ff problem size is
increased for larger systems, then the rate of increase
must be specified. Gustafson sparked considerable
debate with his proposal that execution time rather
than problem size be held constant for larger systems
[Gus88,HeW89,Zho88]. Others propose to follow
the lead of sequential complexity theory and examine
only asymptotic efficiencies, requiring the number of
processors to increase without bound and the prob-
lem size to grow at an even faster rate (i.e, n ~ 0o
and x/n --~ oo) [A1G89].

While one can imagine a list of caveats to
make the above definition more useful (but less
elegant), its fundamental deficiency is that a
definition of system scalability should exercise sys-
tems, not algorithms. One way to factor out the
effect of algorithms is to define the efficiency of a
real parallel system a second way: with respect to a
theoretical parallel machine rather than with respect
to a real sequential system. Let time*(n, x) be the
time required by an n-processor theoretical machine
to execute the same algorithm as used by the real
machine to solve a problem of size x. An alternative
definition of efficiency is:

• • time (n, x)
effictency (n, x) -

time (n, x) "

One candidate theoretical machine, at least for
shared-memory MIMD multiprocessors, is a parallel
random access machine (PRAM) [FoW78]. An n-
processor PRAM has a single globally-addressable
memory and n processors that operate on a lock-step
read-memory, compute, write-memory cycle.
PRAMs differ in whether they allow simultaneous
reads of the same location (concurrent read (CR)
versus exclusive read (ER)), whether they allow
simultaneous writes of the same location (CW versus
EW), and what value remains in a location written by
simultaneous writers (COMMON - - all simultane-
ous writes store the same value; ARBITRARY - -
any one of the values written may remain; and
MINIMUM - - the value written by the lowest num-
bered processor remains) [FIR84, Sni82].

A problem with using efficiency* (n, x) is that
theoretical machines and real machines exist in dif-
ferent worlds, making comparisons between
time*(n, x) and time(n, x) difficult. Theoretical
machines operate with hypothetical cycle times,
occupy no space, and are not limited by technologi-
cal constraints. Real machines, on the other hand,
have cycle times determined by numerous practical
factors, and have global communication limited by

19

the propagation of light and the bounded fan-in and
fan-out of most real technologies [AIG89]. Imple-
menting systems in three-space means global com-
munication must eventually slow down with the
cube-root of system size, while bounded fan-in and
fan-out introduces a logarithmic factor. The multi-
plicative effect of these constraints can yield a
second definition for scalability:

A system is scalable if
efficiency *(n, x) = O ([nl/31og n] -1) for
all algorithms, number of processors n
and problem sizes x.

Another problem with using a theoretical
machine is that one must be selected. Unfortunately,
different theoretical machines have different asymp-
totic execution times for the same problem. For
example, there exist problems for which a CREW
(concurrent-read-exclusive-write) PRAM takes a
factor of log n longer than a CRCW-COMMON
PRAM, and other problems where the latter machine
can take take log n longer than a CRCW-MINIMUM
PRAM [FIR84]. Thus, the best the above definition
allows is for an architecture to be called scalable or
not scalable with respect to a particular, explicitly-
mentioned theoretical machine.

A final problem with the above definition of
scalability is that it is too much work (for systems
architects and implementors). While it is time-
consuming to compute efficiency* (n, x) for one algo-
rithm, it is worse to do so for all algorithms. Perhaps
it is more appropriate to call a machine scalable for a
particular algorithm.

3. Is Scalability Important?

An implicit assumption of the previous section
is that scalability is important and worth defining.
Here I examine this assumption.

Scalability is important ff it is useful. Whether
it is useful depends on who is using it, what their
purpose is, and how it is defined. Potential users are
theoreficians, academic paper-writers, academic
system-builders, industrial visionaries, industrial sys-
tems architects, industrial systems builders, product
marketing, and customers. 5 Purposes for using scala-
bility include gaining insight about mathematical
models of large systems, designing new computer
architectures, implementing new machines, market-
ing products, 6 and selecting new computers to pur-
chase. Definitions of scalability range from consid-

s These categories are not mutually exclusive.
One company even calls its instruction set architecture

"scalable".

ering performance relative to a PRAM to brainstorm-
ing about a somewhat larger system.

I view scalability, even without a rigorous
definition, as being useful for providing insight.
Contemplating large systems enable researchers to
discover approaches not presently necessary or prac-
tical. Designers of the NYU Ultracomputer
[GGK83], for example, invented combining for han-
dling situations where the rate of requests to a single
memory word increases with system size. While
combining hardware is still not necessary (or practi-
cal?) in today's systems, the ideas have evolved to
affect commercial systems (e.g., Sequent Symmetry
[GrT90]).

I do not view scalability, especially asymptotic
scalability, as being useful for selecting between
design options or for describing an architecture or
implementation. I see no reason to believe that the
best software and hardware for an arbitrarily large
number of processors is best for smaller systems.
Engineering factors are important. The best inter-
connection network for ten or hundred processors
may be a bus or 2-D torus, respectively. Does it
matter whether either is asymptotically optimal?

Systems architects probably want to design a
system to work well over a size range of ten to
twenty times, while implementors should be con-
cerned with a smaller range, say two to four times.
Thus, a company designing a new architecture for
which initial, low-end systems that will have four
processors may wish to consider ramifications for
80-processor systems when making architectural
decisions, but should probably implement the first
system with a bus. Furthermore, systems implemen-
tors should consider using ugly, unscalable things
(e.g., buses and broadcast) if such things simplify the
design, reduce system cost, and improve perfor-
mance.

4. Conclusions

In this paper, I examined aspects of scalability,
but did not find a useful, rigorous definition of it.
Without such a definition, I assert that calling a sys-
tem "scalable" is about as useful as calling it
"modern". I encourage the technical community to
either rigorously define scalability or stop using it to
describe systems.

20

5. Acknowledgments

The ideas in this paper evolved from ideas
appearing in [GHW89] through discussions with Jim
Goodman, Mary Vernon, Phil Woest and others and
through feedback from a talk I gave at the Scalable
Shared-Memory Architectures workshop in Seattle
on May 26, 1990. I would like to thank Michel
Dubois and Shreekant Thakkar for organizing the
workshop. Finally, I wish to thank Sarita Adve,
Anant Agarwal, Sue Dentinger, Rajiv Jauhari, Ross
Johnson, Richard Kessler, James Larus, Dan
Nussbaum, Diana Stone, and Mary Vernon for read-
ing and improving drafts of this paper.

6. References

[AIG89]

[Amd67]

[EZL89]

[FIR84]

[FoW78]

[FrM88]

[GHW89]

[GGK83]

G. S. ALMASI and A. GOTTtJEB, Highly
Parallel Computing, Benjamin /
Cummings Publishing Company, Inc.,
Redwood City, CA, (1989).

G. M. AMDAHL, Validity of the Single-
Processor Approach to Achieving Large
Scale Computing Capabilities, AFIPS
Conference Proceedings(April 1967),
483-485.

D. L. EAGER, J. ZAHORJAN and E. D.
LAZOWSKA, Speedup Versus Efficiency
in Parallel Systems, IEEE Trans. on
Computers, C-38, 3 (March 1989), 408-
423.

F. E. ~CH and P. L. RAGDE, Relations
Between Concurrent-Write Models of
Parallel Computation, Proc. Principals
of Distributed Computing(August 1984),
179-190.

S. FORTUNE and J. WYLLIE, Parallelism
in Random Access Machines, Proc.
Tenth ACM Symposium on Theory of
Computing(1978), 114-118.

R. S. FRANCIS and I. D. MATHIESON, A
Benchmark Parallel Sort for Shared
Memory Multiprocessors, IEEE
Transactions on Computers, 12
(December 1988), 1619-1626.

J. R. GOODMAN, M. D. HILL and P. J.
WOEST, Scalability and Its Application
to Multicube, Computer Sciences
Technical Report #835, Univ. of
Wisconsin (March 1989).

A. GO'ITLIEB, R. GRISHMAN, C. P.
KRUSKAL, K. P. MCAULIFFE, L.
RUDOLPH and M. SNIR, The NYU

[GrT90]

[Gus88]

[HEW89]

[KaF90]

[Sni82]

[Zho88]

Ultracomputer--Designing an MIMD
Shared Memory Parallel Computer,
IEEE Trans. on Computers, C-32, 2
(February 1983), 175-189.

G. GRAUNKE and S. THAKKAR,
Synchronization Algorithms for
Shared-Memory Multiprocessors, IEEE
Computer, 23,6 (June 1990), 60-69.

J. L. GUSTAFSON, Reevaluating
Amdahl's Law, Communications of the
ACM, 31, 5 (May 1988), 532-533.

M. HEATH and P. WORLEY, Once Again,
Amdahl's Law, Communications of the
ACM, 32, 2 (February 1989), 262-264.

A. H. KARP and H. P. FLATT, Measuring
Parallel Processor Performance,
Communications of the ACM, 33, 5
(May 1990), 539-543.

M. SNIR, On Parallel Search, Proc.
Principals of Distributed Computing
(August 1982), 242-253.

X. ZHOU, Bridging the Gap Between
Amdahl's Law and Sandia Laboratory's
Result, Communications of the ACM, 31,
8 (August 1988), 1014-1016.

2 1

