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ABSTRACT 

Scalability is a frequently-claimed attribute of multiprocessor systems. While the basic notion is 
intuitive, scalability has no generally-accepted definition. For this reason, current use of the term 
adds more to marketing potential than technical insight. 

In this paper, I first examine formal definitions of scalability, but I fail to lind a useful, rigorous 
definition of it. I then question whether scalability is useful and conclude by challenging the techni- 
cal community to either (1) rigorously define scalability or (2) stop using it to describe systems. 
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1. Introduction 

Even though scalability has no generally- 
accepted definition, it is often used without elabora- 
tion to describe multiprocessor systems. This prac- 
tice imparts a positive feeling toward a system 
without providing any new information and therefore 
has no place in technical literature. 

The attribute scalability can be made techni- 
cally useful by rigorously defining it so that ques- 
tions like the following can be answered: 

• Is my architecture scalable? 

• Are all architectures that avoid buses and broad- 
casts scalable? 
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struments, and the graduate school at the University of 
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• Can some architectures be more scalable than 
others? 

• Does the intended workload affect an 
architecture's scalability? 

• Does cost affect scalability? 

• Is an architecture scalable with respect to a 
uniprocessor version of itself or a theoretical 
multiprocessor? 

• Does a scalable architecture imply that all, some, 
or at least one implementation of it are scalable? 

• When is an implementation scalable? 

• How does one adjust for physical limitations 
(e.g., bounded fan-in/out and the speed of light)? 

• Should a system builder design for scalability or 
speed? 

• Who must consider scalability? 
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Below I try and fail to formalize scalability 
(Section 2), question whether scalability is important 
(Section 3), and conclude by asking others to define 
scalability (better than me) or to stop using it. 

2. A Formal  Definit ion o f  Scalabil i ty? 

An intuitive notion of scalability is that it 
implies a favorable comparison between a larger ver- 
sion of some parallel system with either a sequential 
version of that same system or a theoretical parallel 
machine. If we choose to compare with a sequential 
version, it seems natural to define scalability with 
speedup [EZL89]. Let t ime(n,x)  be the time 
required by an n-processor system to execute a pro- 
gram to solve a of problem of size 2 x. The speedup 
on a problem of size x with n processors is the exe- 
cution time on one processor divided by the time on 
n processors, or: 

speedup (n, x) = time (1, x) 
time (n, x ) " 

Related to speedup is efficiency, which is speedup 
divided by the number of processors, or: 

ef~ciency (n, x) = speedup (n, x) = time (1, x)ln 
n time (n, x) " 

In general, the best possible efficiency is one, 3 
implying the best speedup is linear, 
speedup (n, x )=  n. Clearly a system that achieves 
linear speedup matches an intuitive notion of scala- 
bility. Therefore, a restrictive definition of scalabil- 
ity is: 

A system is scalable if 
efficiency (n, x) = 1 for all algorithms, 
number of  processors n and problem 
sizes x. 

This definition is not useful, however, because 
it precludes any system from being called scalable. 
First, many parallel algorithms have a sequential (or 
at least not completely parallel) component, yielding 
poor efficiencies for a sufficiently large number of 
processors [Amd67].4 Second, if problem size is held 
constant (as with benchmarks), efficiencies will be 

2 Problem size is the amount of memory necessary to specify 
the input to the problem. In serial complexity theory, it is 
usually denoted with n rather than x. We use x since n has 
already been used to denote the number of  processors. Many 
notations for speedup omit mention of problem size, usually 
implying that it is large and held constant. 
3 Super-linear speedups occasionally occur, primarily due to 
interactions with a system's memory hierarchy. 
4 A recent paper [KaF90] even advocates using the lack of 
variability in experimental measures of a program's sequen- 
tial fraction as an indicator of  sealability. 

lxmr for sufficiently large systems, for example, 
when the number of processors nears or exceeds the 
problem size [FrM88]. Third, ff problem size is 
increased for larger systems, then the rate of increase 
must be specified. Gustafson sparked considerable 
debate with his proposal that execution time rather 
than problem size be held constant for larger systems 
[Gus88,HeW89,Zho88]. Others propose to follow 
the lead of sequential complexity theory and examine 
only asymptotic efficiencies, requiring the number of 
processors to increase without bound and the prob- 
lem size to grow at an even faster rate (i.e, n ~ 0o 
and x/n --~ oo) [A1G89]. 

While one can imagine a list of caveats to 
make the above definition more useful (but less 
elegant), its fundamental deficiency is that a 
definition of system scalability should exercise sys- 
tems, not algorithms. One way to factor out the 
effect of algorithms is to define the efficiency of a 
real parallel system a second way: with respect to a 
theoretical parallel machine rather than with respect 
to a real sequential system. Let time*(n, x) be the 
time required by an n-processor theoretical machine 
to execute the same algorithm as used by the real 
machine to solve a problem of size x. An alternative 
definition of efficiency is: 

• • time (n, x) 
effictency (n, x) - 

time (n, x) " 

One candidate theoretical machine, at least for 
shared-memory MIMD multiprocessors, is a parallel 
random access machine (PRAM) [FoW78]. An n- 
processor PRAM has a single globally-addressable 
memory and n processors that operate on a lock-step 
read-memory, compute, write-memory cycle. 
PRAMs differ in whether they allow simultaneous 
reads of the same location (concurrent read (CR) 
versus exclusive read (ER)), whether they allow 
simultaneous writes of the same location (CW versus 
EW), and what value remains in a location written by 
simultaneous writers (COMMON - -  all simultane- 
ous writes store the same value; ARBITRARY - -  
any one of the values written may remain; and 
MINIMUM - -  the value written by the lowest num- 
bered processor remains) [FIR84, Sni82]. 

A problem with using efficiency* (n, x) is that 
theoretical machines and real machines exist in dif- 
ferent worlds, making comparisons between 
time*(n, x) and time(n, x) difficult. Theoretical 
machines operate with hypothetical cycle times, 
occupy no space, and are not limited by technologi- 
cal constraints. Real machines, on the other hand, 
have cycle times determined by numerous practical 
factors, and have global communication limited by 
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the propagation of light and the bounded fan-in and 
fan-out of most real technologies [AIG89]. Imple- 
menting systems in three-space means global com- 
munication must eventually slow down with the 
cube-root of system size, while bounded fan-in and 
fan-out introduces a logarithmic factor. The multi- 
plicative effect of these constraints can yield a 
second definition for scalability: 

A system is scalable if 
efficiency *(n, x) = O ([nl/31og n] -1) for 
all algorithms, number of processors n 
and problem sizes x. 

Another problem with using a theoretical 
machine is that one must be selected. Unfortunately, 
different theoretical machines have different asymp- 
totic execution times for the same problem. For 
example, there exist problems for which a CREW 
(concurrent-read-exclusive-write) PRAM takes a 
factor of log n longer than a CRCW-COMMON 
PRAM, and other problems where the latter machine 
can take take log n longer than a CRCW-MINIMUM 
PRAM [FIR84]. Thus, the best the above definition 
allows is for an architecture to be called scalable or 
not scalable with respect to a particular, explicitly- 
mentioned theoretical machine. 

A final problem with the above definition of 
scalability is that it is too much work (for systems 
architects and implementors). While it is time- 
consuming to compute efficiency* (n, x) for one algo- 
rithm, it is worse to do so for all algorithms. Perhaps 
it is more appropriate to call a machine scalable for a 
particular algorithm. 

3. Is Scalability Important? 

An implicit assumption of the previous section 
is that scalability is important and worth defining. 
Here I examine this assumption. 

Scalability is important ff it is useful. Whether 
it is useful depends on who is using it, what their 
purpose is, and how it is defined. Potential users are 
theoreficians, academic paper-writers, academic 
system-builders, industrial visionaries, industrial sys- 
tems architects, industrial systems builders, product 
marketing, and customers. 5 Purposes for using scala- 
bility include gaining insight about mathematical 
models of large systems, designing new computer 
architectures, implementing new machines, market- 
ing products, 6 and selecting new computers to pur- 
chase. Definitions of scalability range from consid- 

s These categories are not mutually exclusive. 
One company even calls its instruction set architecture 

"scalable".  

ering performance relative to a PRAM to brainstorm- 
ing about a somewhat larger system. 

I view scalability, even without a rigorous 
definition, as being useful for providing insight. 
Contemplating large systems enable researchers to 
discover approaches not presently necessary or prac- 
tical. Designers of the NYU Ultracomputer 
[GGK83], for example, invented combining for han- 
dling situations where the rate of requests to a single 
memory word increases with system size. While 
combining hardware is still not necessary (or practi- 
cal?) in today's systems, the ideas have evolved to 
affect commercial systems (e.g., Sequent Symmetry 
[GrT90]). 

I do not view scalability, especially asymptotic 
scalability, as being useful for selecting between 
design options or for describing an architecture or 
implementation. I see no reason to believe that the 
best software and hardware for an arbitrarily large 
number of processors is best for smaller systems. 
Engineering factors are important. The best inter- 
connection network for ten or hundred processors 
may be a bus or 2-D torus, respectively. Does it 
matter whether either is asymptotically optimal? 

Systems architects probably want to design a 
system to work well over a size range of ten to 
twenty times, while implementors should be con- 
cerned with a smaller range, say two to four times. 
Thus, a company designing a new architecture for 
which initial, low-end systems that will have four 
processors may wish to consider ramifications for 
80-processor systems when making architectural 
decisions, but should probably implement the first 
system with a bus. Furthermore, systems implemen- 
tors should consider using ugly, unscalable things 
(e.g., buses and broadcast) if such things simplify the 
design, reduce system cost, and improve perfor- 
mance. 

4. Conclusions 

In this paper, I examined aspects of scalability, 
but did not find a useful, rigorous definition of it. 
Without such a definition, I assert that calling a sys- 
tem "scalable" is about as useful as calling it 
"modern".  I encourage the technical community to 
either rigorously define scalability or stop using it to 
describe systems. 
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