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We describe FATCOP 2.0, a new parallel mixed integer program solver that

works in an opportunistic computing environment provided by the Condor resource

management system. We outline changes to the search strategy of FATCOP 1.0

that are necessary to improve resource utilization, together with new techniques to

exploit heterogeneous resources. We detail several advanced features in the code

that are necessary for successful solution of a variety of mixed integer test problems,

along with the different usage schemes that are pertinent to our particular computing

environment. Computational results demonstrating the effects of the changes are

provided and used to generate effective default strategies for the FATCOP solver.
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1. Introduction

Many practical optimization problems involve a mixture of continuous and

discrete variables. Examples of such problems abound in applications; for ex-

ample scheduling and location problems, covering and partitioning problems and

allocation models. While many of these problems also contain nonlinear rela-

tionships amongst the variables, a large number of interesting examples can be

effectively modeled using linear relationships along with integer variables. Such
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problems are typically called mixed integer programs [13].

Typically, these problems are solved using a branch-and-bound approach [10,

13]. First of all, the integer constraints are relaxed to simple bound constraints,

resulting in a linear programming relaxation. This relaxation is solved, typically

by a version of the simplex method, and the solution is tested to determine if

the integrality constraints are satisfied. If not, one of the variables that violates

integrality is chosen, two subproblems are generated each with an extra constraint

that precludes the current infeasible solution. However, any integer solution will

be feasible for one of the subproblems. Branching in this way, generates a huge

number of linear programs that need to be processed in order to solve the original

problem. Subproblems can be discarded (fathomed) if

1. the subproblem has an integer solution,

2. the subproblem is infeasible, or

3. the linear subproblem has worse objective value than a currently available

integer solution (bounding).

In many realistic problems, the size of the branch-and-bound tree is enormous,

and requires huge amounts of computing resources to solve the underlying pro-

gram. Furthermore, due to bounding and fathoming, the shape of the tree is

generally very irregular and cannot be determined a-priori. As such, efficient use

of large numbers of processors in this context is difficult.

FATCOP 1.0 [2] is an implementation of a branch-and-bound algorithm that

attempts to be both efficient and able to solve difficult MIP’s. A key feature of

FATCOP 1.0 is that it runs in an opportunistic environment where the compu-

tational resources are provided by Condor [11].

Condor is a resource manager that locates idle machines on a local or wide

area network and delivers them to an application (such as FATCOP) as a compu-

tational resource. Originally, these resources were provided for batch processing

of long-running, computationally intensive programs. Each machine in a Condor

pool has an owner that specifies the conditions under which a machine is made

available. For example, most owners require a job to vacate a machine when the

owner returns to use the machine. It is important to note that a resource user

does not need to have an account on the machines on which the job executes.

Furthermore, the footprint of the job is small since all of the data is stored on

the submitting machine and accessed via remote procedure calls. Thus, only the
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processing power of the “Condor” machine is utilized. More recently, an exten-

sion of Condor [14] has allowed a collection of Condor resources to be treated as

a single computational entity and programmatically controlled using primitives

from PVM [6].

FATCOP (FAult Tolerant COndor Pvm) 1.0 [2] was developed with the aim

of exploiting the opportunistic resources provided by Condor in a fault tolerant

fashion. To provide this fault tolerance, FATCOP is written in the master-worker

paradigm. The master-worker framework has three abstractions, namely that of

a master, a worker, and a task. In FATCOP 1.0, a worker is a machine loaded

with the root linear programming relaxation, a task consists of solving linear

programming relaxations with added bound restrictions, and the master is a

controlling process that deals with all messages coming from all workers and all

tasks. Essentially, multiple branches of the search tree are explored concurrently,

with the master determining from a work pool which node to explore next, noting

the best solution found and fathoming parts of the tree that are inconsequential.

Linear programming subproblems comprise the tasks that are solved on workers

provided by Condor.

A basic premise of FATCOP is to greedily use as many resources as possible

to solve the underlying problem. Particular attention is paid at the master to

issues relating to disappearance of resources and recovery of work assigned to

these resources. For long running problems, facilities exist that allow FATCOP to

recover from most failures using a mechanism that periodically saves the branch-

and-bound tree to disk (checkpointing).

While FATCOP 1.0 can successfully process many mixed integer programs,

several deficiencies in the algorithm and the implementation limit its effectiveness

on harder problems, several of which became apparent after extensive testing.

These are as follows:

1. Inefficient use of resources - the chunks of work are too small, leading to

contention effects at the master processor

2. Poor mixed integer programming technology

3. Not enough resources used

4. Poor linear programming codes

5. Difficulties associated with code maintenance
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This paper describes a series of ways in which FATCOP 1.0 can be improved,

and details the implementation of FATCOP 2.0. A schematic figure showing the

basic flow of information and an overview of the implementation of FATCOP 2.0

is given in Figure 1. The figure shows that the flow of communication between

the master and a (prototypical) worker occurs only when the worker is initialized.

Tasks run on a worker, get their initial data (MIP problem, cuts and pseudocosts)

from the worker they are assigned to, and their specific task information (subtree

to work on, incumbent solution) directly from the master. New pseudocost and

cut information from the task is saved on the current worker and hence may

be used by a new task that runs on this worker. The task also sends solution

information (and newly generated cuts and pseudocosts) back to the master so

that it can update its work pool, global cut and pseudocost pool, and incumbent

solution.

We begin in Section 2 with a description of the advanced MIP features that

we have added to FATCOP 2.0. These features are applied in nonstandard ways

since our search strategy is updated to have much larger grained tasks involving

subtrees of the search tree (as opposed to nodes of the search tree). In Sec-

tion 3, we outline the two major resource management changes that are critical

for solving difficult MIP’s. The first change utilizes a computational framework

embedded in an API, MW (short for Master-Worker), thereby reducing the com-

plexity of the FATCOP code. It also allows different computational setups to

be used, such as providing heterogeneous machines as workers or replacing PVM

messages with file transfers. The second change allows a variety of linear pro-

gramming software to be used interchangeably on the workers, thereby increasing

the efficiency of subproblem solution. The benefits of all these changes are demon-

strated in Section 4 where a variety of tests are carried out on a representative

set of MIP test problems. We finish with some preliminary conclusions of the

work in Section 5.

2. Advanced MIP features

While the use of many computational resources can sometimes alleviate the

need for good algorithms, the classes of problems we are interested in solving

require sophisticated MIP features in addition to computational power. Several

of these features enable problem solution in fractions of the time needed for a

basic branch-and-bound algorithm. The aim of adding these features to FATCOP
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Figure 1. A schematic overview of the design and data flow within the FATCOP solver

2.0 is to ensure that a complex MIP code uses dynamic resources efficiently, and

to deal with the computational complexity of sharing local and global information

within a continually changing computing framework.
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2.1. Search strategies

A critical problem in FATCOP 1.0 arises from contention issues at the mas-

ter. In FATCOP 1.0, each worker solves two linear programs before reporting

back to the master. The master needs to deal with new information coming from

the problems the workers have solved, as well as issues related to the addition or

deletion of hosts from the virtual machine. When the linear program relaxations

are relatively time consuming, this contention is not limiting, but in many cases,

the relaxations solve extremely quickly due to advanced basis information.

To alleviate this problem, FATCOP 2.0 has a new notion of a worker and

a task. A task is a subtree for the worker to process, along with a limit on the

number of linear programs that can be solved, or a limit on the processing time.

The data associated with a task includes what subtree is to be processed along

with strategy information for processing this tree, such as the value of the best

feasible solution and the node and time limits for processing the task. Note that

the subtrees passed to each worker are distinct.

However, a worker now must be responsible for managing more of the gen-

erated MIP information. In FATCOP 2.0, a worker has a state that consists of

both initialization information (such as the linear program data) and information

generated by the task that runs on the worker (such as cuts, pseudocosts, and

unevaluated nodes).

The time limit feature generates new issues, namely how to pass back a par-

tially explored subtree to the master. In order to limit the amount of information

passed back, we use depth-first-search to explore the subtrees, since then a small

stack can be passed back to the master encoding the remaining unexplored parts

of subtree. Furthermore, it is also easy to use the small changes to the LP relax-

ations in such a search mechanism to improve the speed of their solution. Finally,

any “local information” that is generated in the subtree is valid and typically is

most useful in the subtree at hand. As examples of this last point, we point to

the reduced cost fixing and preprocessing techniques that we outline later in this

section.

Most of the issues about search strategies of the master program were dealt

with in [2]. Two changes are of note. The first is that instead of generating the

first N nodes in the master, now only the first linear programming relaxation is

solved at the master. The optimal basis from this relaxation is sent to all workers,

so that they may solve all subsequent nodes efficiently. Furthermore, whenever
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there are less than a certain number of nodes in the work pool, we switch from a

time limit in the worker to an LP solve limit of 1. This allows the work pool to

grow rapidly in size.

A benefit of FATCOP 2.0 is that the amount of information passed back

from a worker is now much smaller. This makes it possible to have much larger

work pools, and allows FATCOP 2.0 to use best bound as its default node selec-

tion strategy. However when the size of the work pool reaches an upper limit,

we switch the node selection strategy to use “deepest-node” in tree, with the

expectation that the subtrees rooted at these nodes are likely to be completely

explored by the worker, thus leading to a decrease in the size of the work pool.

2.2. Cutting planes

If the solution to the linear programming relaxation does not satisfy the

integrality requirements, instead of generating new subproblems (branching), one

may attempt to find an inequality that “cuts off” the relaxed solution. That is,

an inequality that is not valid for the relaxed solution, but is valid for all integer

solutions. Such an inequality is called a cutting plane. Adding cutting planes to

the relaxation can result in an improved lower bound for the relaxation, which

in turn may mean that the linear subproblem can be fathomed without having

to resort to branching.

There are many different classes of cutting planes. FATCOP 2.0 includes two

classes – knapsack cover inequalities [3] and flow cover inequalities [15]. Knapsack

covers and flow covers inequalities are derived from structures that are present in

many, but not all, MIP instances. This implies that for some instances, FATCOP

2.0 will be able to generate useful cutting planes, and for other instances it will

not.

The problem of finding a valid inequality of a particular class that cuts off

the relaxed solution is known as the separation problem. For both classes of

inequalities used in FATCOP 2.0, the separation problem is NP-Complete, so a

heuristic procedure is used for finding violated inequalities.

Cutting planes represent a new challenge for FATCOP 2.0. They provide

globally valid information about the problem that is locally generated. Namely, a

cutting plane generated at one processor may be used to exclude relaxed solutions

occurring at another processor. The question arises of how to distribute the

cutting plane information.
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We have chosen to attach this information to the worker by creating a cut

pool on the worker. All newly generated cuts get sent to the master when a

task completes, but this information is only sent to new workers, not to existing

workers. Thus each worker carries cut information that was generated by the

tasks that have run on the worker, but never receives new cuts from the master.

Each cut is assigned a hash value so that the master can quickly ensure that

duplicate cuts are not stored.

2.3. Pseudocosts

If inequalities that cut off the relaxed solution cannot be found, then branch-

ing must be performed. In FATCOP, branching is performed by selecting a vari-

able j in the relaxed solution that does not satisfy the integrality requirements

and creating two subproblems. In one subproblem variable j is required to be

less than its value in the relaxed solution, and in the other subproblem, variable

j is required to be greater than its value in the relaxed solution

In a relaxed solution, there may be many variables that do not satisfy inte-

grality requirements. The goal of branching is to choose a variable that will most

improve the subproblems’ objective function. The rationale behind this goal is

that if a subproblem’s objective function increases by a large amount, then it

may be possible to fathom the subproblem. Pseudocosts are information that aid

in choosing among the many fractional variables.

Pseudocosts pose a challenge to FATCOP 2.0 in exactly the same way as

cutting planes, in that they are globally useful information that is generated

locally. As such, we choose to distribute pseudocosts in a manner similar to

that for cutting planes. All new pseudocosts get sent to the master when a

task completes, but this information is only sent to new workers, not to existing

workers.

2.4. Heuristics

A heuristic is a procedure that attempts to generate a feasible integral so-

lution. Feasible solutions are important not only for their own sake, but also as

they provide an upper bound on the optimal solution of the problem. With this

upper bound, subproblems may be fathomed, and techniques such as reduced

cost fixing can be performed.
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There are very few general purposes heuristics for mixed integer programs.

One simple, yet effective heuristic is known as the diving heuristic. In the diving

heuristic, some integer variables are fixed and the linear program resolved. The

fixing and resolving is iterated until either an integral solution is found or the

linear program becomes infeasible.

We have included a diving heuristic in FATCOP 2.0. The diving heuristic

can be quite time consuming – too time consuming to be performed at every

node of the branch and bound tree. In FATCOP 2.0, since a task is to explore an

entire subtree for a specified time limit, this also gives a convenient way to decide

from which nodes to perform the diving heuristic. Namely, the diving heuristic

is performed starting from the root node of each task.

Preliminary testing revealed that for some instances this strategy for decid-

ing when to perform the heuristic was also too time consuming. Therefore, if the

total time spent in carrying out the diving heuristic grows larger than 20% of the

total computation time, the diving heuristic is deactivated. Once the time drops

to below 10%, the diving heuristic is reactivated.

2.5. Preprocessing

Preprocessing refers to a set of reformulations performed on a problem in-

stance to enhance the solution process. It has been shown to be a very effec-

tive way of improving integer programming formulations prior to and during

branch-and-bound [16]. FATCOP 1.0 preprocesses the root problem by identify-

ing infeasibility and redundancies, tightening bounds on variables, and improving

coefficients of constraints [2]. In FATCOP 2.0, we extend this procedure to apply

preprocessing at the root node of every task sent to a worker. This is due to the

change in search strategy, whereby each task consists of exploring a subtree of

the search tree rooted at the passed node.

At a node in the branch-and-bound tree where the optimal solution of its LP

relaxation is fractional, we first apply a standard reduced cost fixing procedure [5].

This procedure fixes integer variables to their upper or lower bounds by comparing

their reduced costs to the gap between a linear programming solution value and

the current problem best upper bound. After this, we perform preprocessing on

the new problem. Finally, the diving heuristic described above is applied to find a

feasible integer solution. Note that we can reverse the order of reduced cost fixing

and node preprocessing in the hope that reduced cost fixing may work better on
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a preprocessed model. However, the current implementation chooses instead to

take advantage of preprocessing a model that possibly has more variables fixed

by the reduced cost fixing procedure.

In a sequential branch-and-bound MIP program, node preprocessing is usu-

ally considered too expensive. However, in FATCOP 2.0, every worker explores a

subtree of problems. The cost of preprocessing is amortized over the subsequent

LP solves. Preprocessing may improve the lower bound of this subtree, and in-

crease the chance of pruning the subtree locally; however, the effects of node

preprocessing are problem dependent. Therefore, we leave node preprocessing as

an option in FATCOP 2.0.

The key issue is that the search strategy in FATCOP 2.0 generates a piece

of work whose granularity is sufficiently large for extensive problem reformula-

tions to be effective and not too costly in the overall solution process. All the

approaches outlined above are implemented to exploit the locality of the sub-

problems that are solved as part of a task, and in our implementation are carried

out at many more nodes of the search tree than is usual in a sequential code.

The benefits and drawbacks of this choice are further explored in Section 4.

3. Resource management improvements

3.1. MW framework

FATCOP 1.0 is implemented using Condor-PVM, an extension of the PVM

programming environment that allows resources provided by Condor to be treated

as a single (parallel) machine. As outlined in the introduction, FATCOP utilizes

the master-worker computing paradigm. Thus many of the details relating to

acquiring and relinquishing resources, as well as communicating with workers

are dealt with explicitly using specific PVM and Condor primitives. Many of the

features, and several extensions, of the resource management and communication

procedures in FATCOP 1.0 have been incorporated into a new software API, MW

[7], that can be used for any master-worker algorithm. Since this abstraction

shields all the platform specific details from an application code, FATCOP 2.0

was redesigned to use this API, resulting in a much simpler, easier to maintain,

code.

Other benefits also accrue that are pertinent to this work as well. First,

MW provides the application (in this case FATCOP) with details of resource
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utilization that can be analyzed to improve efficiency (see Section 4). Secondly,

new features of MW immediately become available for use in FATCOP. As an

example, a new instantiation of MW that is built upon a communication model

that uses disk files (instead of PVM messages) can now be used by FATCOP

without any change to the FATCOP source code. Since this instantiation also

uses standard Condor jobs instead of PVM tasks for the workers, facilities such as

worker checkpointing that are unavailable in the PVM environment also become

usable in the file environment. (Condor provides a checkpointing mechanism

whereby jobs are frozen, vacated from the machine, and migrated to another idle

machine and restarted.)

Also, other potential instantiations of MW utilizing MPI or NEXUS for

communication or Globus for resource management are immediately available to

FATCOP. Thirdly, FATCOP can also drive new developments to MW, such as the

requirement for a broadcast mechanism in MW to allow dispersion of new cuts to

all workers. Such extensions would undoubtedly benefit other MW applications

such as those outlined in [7].

3.2. Heterogeneity

The MW framework is built upon the model of requesting more resources

as soon as resources are delivered. In order to increase the amount of resources

available to the code, we exploited the ability of MW to run in a heterogeneous en-

vironment. In this way, the code garnered computational resources from a variety

of machines including Sun SPARC machines running Solaris, INTEL machines

running Solaris, and INTEL machines running Linux. While INTEL machines

running NT are in the Condor pool, currently the MW framework is unavailable

on this platform. To effect usage of workers on different architectures, all we

needed to do was:

1. Compile each worker program for the specific architectures that it will run

on.

2. Generate a new Condor “job description file” for FATCOP 2.0 that details

the computational resources that are feasible to use.

Since the source code for the solver SOPLEX [17] is available, compiling the

worker code on several platforms is straightforward. The benefits of this increase

in number of workers is shown in Section 4.
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It became clear that while SOPLEX is an effective linear programming code,

commercial codes such as CPLEX [9], OSL [8] and XPRESS [4] significantly

outperform SOPLEX for solving the LP problem relaxations. In many cases,

several copies of these solvers are available to a user of FATCOP 2.0 and so

we updated the design of the code to allow a variety of LP solvers to be used

interchangeably. Thus, at any given time, several of the workers may be using

CPLEX, while others are using XPRESS and others still are using SOPLEX. The

LP interface deals carefully with issues such as how many copies of CPLEX are

allowed to run concurrently (for example if a network license is available), what

machines are licensed for XPRESS, and what architectures OSL can be ran upon.

If none of the faster solvers are available, SOPLEX is used as the default solver.

4. Results

In this section, results on the performance of FATCOP 2.0 are reported.

Due to the asynchronous nature of the algorithm, the nondeterminism of run-

ning times of various components of the algorithm, and the nondeterminism of

the communication times between processors, the order in which the nodes are

searched and the number of nodes searched can vary significantly when solving

the same problem instance. Other researchers have noticed the stochastic be-

havior of asynchronous parallel branch and bound implementations [5]. Running

asynchronous algorithms in the dynamic, heterogeneous, environment provided

by Condor only increases this variance. As such, for all the computational ex-

periments, each instance was run a number of times in an effort to reduce this

variance so that meaningful conclusions can be drawn from the results.

The results of FATCOP 2.0 are given on a number of test instances taken

from the MIPLIB set [1]. A time limit of 120 seconds was set on each task. If the

number of unevaluated tasks at the master fell below two times the number of

workers, a limit of one linear program solution was enforced for the task. Unless

explicitly stated otherwise, all the advanced features of FATCOP 2.0 described

in Section 2 were employed.

4.1. Assessing node preprocessing

It is well known that lifted knapsack covers, flow covers and diving heuristics

are effective in solving MIP problems [3,15,12]. However, the reported overall

benefits of node preprocessing are less clear due to the amount of computing time
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Table 1

Effect of node preprocessing, data averaged over 3 replications

Name Node preprocessing No node preprocessing

Nodes Time P̄ Nodes Time P̄

cap6000 119232 6530.2 30 129720 3317.0 30

egout 11 11.3 2 26 12.3 2

gen 7 14.2 3 19 195.5 4

l152lav 4867 222.6 17 6018 475.1 25

p0548 215 16.1 2 222 20.0 2

p2756 2447 928.5 19 3044 1058.4 36

vpm2 1070217 654.5 17 1897992 940.1 40

they may take. A key issue is that node preprocessing is too expensive to carry

out at every node. Since our tasks now correspond to subtrees of the brand-and-

bound tree, it makes sense in this setting to experiment with preprocessing just at

the root nodes of these subtrees. In this section we report results for experiments

that ran a number of MIP problems with node preprocessing turned off and on,

while all other advanced features (cutting planes, diving heuristics, reduced cost

fixing and root preprocessing) were turned on. The problems reported in Table 1

were chosen because they all benefit from root node preprocessing. The purpose

of this experiment was to ascertain whether these problems benefit even more

from preprocessing at every subtree root node.

The algorithmic parameters that were used are as stated above. Each in-

stance was replicated three times. We report the number of nodes, the wall clock

time and the average number of processors used with and without node prepro-

cessing in Table 1. The average number of processors (used in a particular run)

was computed as

P̄ =

Pmax∑

k=1

kτk

T
, (1)

where τk is the total time when the FATCOP job has k workers, T is the total

execution time for the job, Pmax is the number of available machines in the

Condor’s pool.

As expected, all the test problems were solved in less nodes with node pre-

processing, since the subtrees were pruned more effectively in the branch-and-

bound process. An interesting observation is that it took longer to solve cap6000

even though the search tree is smaller with node preprocessing. In fact, node
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Table 2

Effect of varying worker grain size: results for vpm2

Grain size Ē Nodes Time P̄

2 0.16 809945 1335.8 45

100 0.64 1479350 743.9 25

200 0.61 1938241 1053.2 29

preprocessing combined with local reduced cost fixing worked very effectively on

this problem. After the first integer feasible solution was found, preprocessing

and reduced cost fixing usually can fix more than half of the binary variables at

the root node of a subtree. But the problem is that cap6000 has a very large

LP relaxation. The cost to reload the preprocessed LP model into the LP solver

is significant compared with task grain size. This observation suggests a better

implementation for modifying a formulation in a LP solver is necessary. However,

based on this limited experimentation, FATCOP 2.0 uses node preprocessing by

default.

4.2. Grain size and master contention

A potential drawback of a master-worker program is the master bottleneck

problem. When using a large number of processors, the master can become a

bottleneck in processing the returned information, thus keeping workers idle for

large amounts of time. In FATCOP 2.0, we deal with this problem by allowing

each worker solve a subtree in a fixed amount of time. The rule to choose an

appropriate grain size at worker is arbitrary. In this section we show the results

for FATCOP 2.0 on vpm2 by varying worker grain size.

We ran FATCOP 2.0 on vpm2 with worker grain size 2, 100 and 200 seconds

respectively, under the proviso that at least one LP relaxation is completed. In

each case, we ran three replications employing all advanced features described

in Section 2. The results are reported in Table 2. For each test instance, we

report average worker efficiency Ē, number of nodes, execution time, and average

number of processors P̄ . The average worker efficiency, Ē, was computed as the

ratio of the total time workers spent performing tasks to the total time the workers

were available to perform tasks. A grain size of two seconds had a very low worker

utilization. Each worker finishes its work quickly, resulting in a large amount of

result messages queued at the master. The node utilization corresponding to

grain size of 100 seconds is satisfactory. Increasing grain size does not improve
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Table 3

Effect of using heterogeneous machines: results for 10teams

Machine architecture Nodes Time P̄

SUN4 16910 763.5 24

X86 20364 1290.5 16

SUN4 and X86 23840 636.7 38

Table 4

Effect of using heterogeneous LP solvers: results for air04

LP solver Nodes Time P̄

SOPLEX only 3623 19125.0 43

SOPLEX and CPLEX 3661 6626.2 16

node utilization further. As stated in [2], all Condor-PVM programs risk losing

the results of their work if a worker is suspended or deleted from the virtual

machine. Taking this into consideration, we prefer a smaller worker grain size so

that only small amounts of computation are lost when a worker disappears from

the virtual machine. We have found that a grain size of around 100 seconds strikes

a good balance between contention and loss of computation and is appropriate

for the default.

4.3. Heterogeneity

In this section we show how FATCOP 2.0 exploits heterogeneous resources,

including both heterogeneous machines and LP solvers. We ran the problem

10teams on a pool of Sun SPARC machines running Solaris (SUN4), a pool of

INTEL machines running Solaris (X86), and a pool of both types of machine.

Note that the worker executables are different on these different architectures.

Each instance was replicated three times and we report the results in Table 3.

Clearly, FATCOP was able to get more workers when requesting machines from

two architecture classes.

We also ran some experiments to show the effects of heterogeneous LP

solvers. We solved the problem air04 with SOPLEX only, and both SOPLEX

and CPLEX. We limited the maximum number of CPLEX copies to 10 in the

latter case. Results are shown in Table 4. The problem air04 has very large LP

relaxations, so the worker running SOPLEX usually can only solve one LP in

the specified grain size (120 seconds), while a worker running CPLEX is able to
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evaluate a number of nodes in the depth first fashion outlined previously. We

notice from Table 4 that using CPLEX and SOPLEX the problem was solved

three times faster using less machines compared with using SOPLEX only.

4.4. Raw performance

Based on the experiments outlined above, we set appropriate choices of

the parameters of our algorithm. In this subsection, we attempt to show that

FATCOP 2.0 works well on a variety of test problems from MIPLIB. Our test set

includes all the MIPLIB problems examined in the FATCOP 1.0 paper [2] and

several new problems that could not be solved effectively by FATCOP 1.0. The

selected problems have relatively large search trees, so that some parallelism can

be exploited.

The average worker efficiency is computed for each run of a problem using

the formula described in Section 4.2. The average number of processors used in a

particular run is determined from (1). In Table 5, for each test problem, we report

the number of nodes, solution time, average worker efficiency Ē, and average

number of processors P̄ , averaged over the five replications that were carried out.

For each of these statistics, we also report the minimum and maximum values

over the five replications.

The computational results show that in comparison to version 1.0, FATCOP

2.0 is able to solve more problems in MIPLIB and has better average execution

time on all the test problems that could be solved by both versions, except pk1.

(Note that solution times for FATCOP 1.0 [2] on problems 10teams, air04, air05,

danoint, fiber, l1521av, modglob, pk1, pp08acuts, qiu, rout and vpm2 are 1.9

hrs, 56.8 mins, 2.0 hrs, 24.2 hrs, 1.1 hrs, 24.6 mins, 44.8 hrs, 14.5 mins, 2.8

hrs, 22.2 mins, 12.3 hrs and 46.7 mins respectively.) One significant example is

modglob. FATCOP 2.0 can solve it in seconds while FATCOP 1.0 took days [2].

The introduction of new cutting planes makes the branch and bound process on

this problem converge in less than 1000 nodes. The different search strategy used

in FATCOP 1.0 results in a smaller search tree only in the pk1 example. When

FATCOP 2.0 is set up to use a similar strategy, it generates a smaller search tree

as well, and solves more quickly than FATCOP 1.0.

Figure 2 shows, for one particular trial and instance, the number of par-

ticipating processors. Figure 3 shows, for the same trial and instance, the in-

stantaneous worker efficiency, measured as
∑

nt

k=1
lt
k
/nt, where nt is the number
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Table 5

Performance of FATCOP 2.0: min (max) refer to the minimum (maximum) over five replications

of the average number of processors (nodes, time) used

Instance Statistic Ē P̄ Nodes Time

10teams average 63.9 44.0 9340 677

[min, max] [48.6, 79.3] [33.6, 48.6] [8779, 9655] [550, 754]

air04 average 83.5 82.4 3666 2639

[min, max] [78.9, 89.2] [68.0, 90.6] [3604, 4019] [2308, 3033]

air05 average 44.6 69.4 14755 1515

[min, max] [40.9, 54.3] [57.0, 78.6] [9979, 17419] [1353, 2549]

danoint average 88.1 60.5 686680 60586

[min, max] [70.9, 95.0] [53.1, 66.3] [630954, 708513] [59514, 60586]

fiber average 64.4 23.0 9340 125

[min, max] [55.6, 69.3] [18.6, 28.6] [8779, 9655] [108, 143]

gesa2 average 60.4 53.0 7965014 2982

[min, max] [50.1, 66.2] [44.3, 60.8] [7013876, 8243657] [2768, 3044]

gesa2 o average 90.9 78.4 2739772 1818

[min, max] [82.4, 93.5] [74.0, 88.1] [2206782, 4031245] [1642, 2219]

l152lav average 51.6 16.1 4702 206

[min, max] [42.9, 58.2] [11.1, 19.5] [3985, 6381] [118, 317]

modglob average 51.6 2.7 358 27

[min, max] [42.4, 58.1] [2.6, 2.9] [21, 953] [21, 53]

p2756 average 51.3 14.4 2145 995

[min, max] [44.3, 61.9] [7.6, 21.1] [1936, 3115] [866, 1216]

pk1 average 74.1 55.2 3047981 2800

[min, max] [66.2, 79.0] [36.8, 69.5] [3018755, 4148176] [2111, 3567]

pp08aCUTS average 66.8 54.3 4213412 2038

[min, max] [54.5, 70.1] [47.0, 60.8] [3785673, 4648207] [1500, 2353]

qiu average 61.3 23.1 9687 303

[min, max] [48.9, 71.2] [17.5, 26.9] [6249, 14115] [266, 347]

rout average 91.3 94.1 4510670 42274

[min, max] [88.9, 94.2] [77.5, 100.9] [4249369, 4600843] [37697, 45326]

vpm2 average 73.1 16.5 1088824 633

[min, max] [64.9, 79.0] [13.3, 20.9] [974832, 1344618] [453, 701]
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Figure 2. Average number of processors participating in solving gesa2 o
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Figure 3. Average worker efficiency during solution of gesa2 o

of processors participating at time t and lt
k

is the load average of the processor k

at time t. The load average, computed using the UNIX command uptime, and

number of participating processors were sampled at 30 second intervals during

the run.

The efficiency of a run may be less than “ideal” (1.0) due to

• Contention – The workers are idle during the time they send the results of

their task to the master until they receive the next task. If the master needs
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to respond to many requests, workers may idle for long periods waiting for

new work, thus reducing efficiency.

• Starvation – There are not enough active tasks in the work pool for all the

participating workers.

• Inaccuracy of measurements – The load average reported by the UNIX op-

erating system is computed as the average number of processing jobs during

the last minute, so even though a processor is working on a task, the reported

load average may be less than 1.0.

5. Conclusion

The results reported in this paper show that FATCOP is both an effective

MIP solver for a variety of test problems arising in the literature, and an efficient

user of opportunistic resources. Further experiments with FATCOP will be made

to investigate how well the ideas presented scale with an increased number of

available resources. Also, we intend to investigate the use of different cutting

planes, as well as further exploitation of the local nature of information when

performing a task. Other extensions to the code include adding the ability for

user defined heuristics and branching rules.
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