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AbstractÐThe robust Huber M-estimator, a differentiable cost function that is quadratic for small errors and linear otherwise, is

modeled exactly, in the original primal space of the problem, by an easily solvable simple convex quadratic program for both linear and

nonlinear support vector estimators. Previous models were significantly more complex or formulated in the dual space and most

involved specialized numerical algorithms for solving the robust Huber linear estimator [3], [6], [12], [13], [14], [23], [28]. Numerical test

comparisons with these algorithms indicate the computational effectiveness of the new quadratic programming model for both linear

and nonlinear support vector problems. Results are shown on problems with as many as 20,000 data points, with considerably faster

running times on larger problems.

Index TermsÐSupport vector machines, regression, Huber M-estimator, kernel methods.

æ

1 INTRODUCTION

WE consider the generally unsolvable system of linear
equations

Ax � b; �1�

where A is a given `� d real matrix of ` observations and b

is a real `� 1 vector of corresponding values, all taken from
a given dataset. To obtain an approximate solution of (1),
one usually minimizes an error residual:

min
x

X̀

i�1

���Axÿ b�i�; �2�

where typically � is the absolute value function or its
square. In order to deemphasize outliers and avoid the
nondifferentiability of the robust absolute value error
residual, a popular residual is the Huber M-estimator cost
function [9]:

��t� �
1
2
t2; if jtj � 



jtj ÿ 1
2

2; if jtj > 
;

�

�3�

where 
 is some positive number. Because the function
switches at jtj � 
 from being quadratic to linear, special
methods have been developed for the linear error mini-
mization problem (2) with the Huber M-estimator. A
Newton method was proposed in [10], which is possibly
nonconvergent because the objective function of (2) is not
twice differentiable. Other fairly complex Newton type
methods were considered in [28], [6], [14], [12]. In [34], a
minmax formulation leading to a mixed complementarity
problem was proposed, which subsequently [35] was
reduced to our quadratic formulation (23). Relations
between the `1 and Huber estimators, as well as iterative
methods, are proposed in [13].

We outline the content of the paper now. In Section 2, we
first give a simple quadratic programming formulation of
the Huber M-estimator cost function in one dimension
(Lemma 2.1) and then set up the corresponding convex
quadratic program (9) for the linear estimator (2) with �

given by (3) (Proposition 2.2). This explicit convex quadratic
programming formulation in the original primal space of
the problem is rather simple and easily interpretable, but
does not seem to have been given previously in other works
that have considered dual formulations of this problem [13],
[29], [31]. By using parametric perturbation results of linear
programming [17], we show that, for all values of the
parameter 
 � �
 for some �
, a Huber linear estimator is just
an ordinary least squares estimate (Proposition 2.3). On the
other hand, for all sufficiently small values of 
, the Huber
estimates depend linearly on 
 and converge to a least
1-norm solution (Proposition 2.4). Li and Swetits [13] have
studied the dual (17) of the Huber M-estimator quadratic
program (9). They show that (17) is a least 2-norm
formulation of the dual of the least 1-norm estimator. In
addition, they give perturbation results for the solution of
(17). Smola [29] also presents a dual formulation of the
Huber M-estimator quadratic program [31]. In Section 3, we
set up a convex quadratic program (23) for a nonlinear
generalized support vector machine [33], [16] which
extends the Huber loss function to large classes of nonlinear
regression problems. Related but different loss functions
were studied in [27], [26], [30], [19] in conjunction with
support vector regression. Numerical test results presented
in Section 4 show that our direct convex quadratic
formulation is considerably faster than earlier proposed
methods, such as Huber's Gauss-Seidel method [12],
Smola's dual formulation [29], Madsen and Nielsen's
Newton type method [14], and Li's conjugate gradient
method [12].

A word about our notation. All vectors will be column
vectors unless transposed to a row vector by a prime
superscript 0. The scalar (inner) product of two vectors x

and y in the d-dimensional real space Rd will be denoted by
x0y. For an `� d matrix A; Ai will denote the ith row of A. A
column vector of ones of arbitrary dimension will be
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denoted by e. For A 2 R`�d and B 2 Rd�`, the kernel

K�A;B� maps R`�d �Rd�` into R`�`. In particular, if x and

y are column vectors in Rd, then K�x0; A0� is a row vector in

R`, K�x0; y� is a real number and K�A;A0� is an `� ` matrix.

Note that for our purposes here K�A;A0� will be assumed to

symmetric, that is, K�A;A0� � K�A;A0�0.

2 ROBUST LINEAR REGRESSION AS A CONVEX

QUADRATIC PROGRAM

We begin with a very simple lemma that generates the

Huber cost function in one dimension as the unconstrained

minimum value of a simple convex quadratic function.

Lemma 2.1 (Huber cost as a minimum of a convex

quadratic function). The Huber cost function ��t� of (3) is

given by:

��t� � min
z2R1

1

2
z2 � 
jtÿ zj; t 2 R1: �4�

Proof. Let ��z; t� � 1
2
z2 � 
jtÿ zj. A subgradient [25] of this

convex objective function of (4) with respect to z is given

by:

@��z; t� �
zÿ 
; when t > z

z� �
; � 2 �ÿ1; 1�; when t � z

z� 
; when t < z:

8

<

:

�5�

This subgradient is zero when:

z � 
; for t > z � 


z � ÿ�
; for t � z � ÿ�
; � 2 �ÿ1; 1�
z � ÿ
; for t < z � ÿ
:

8

<

:

�6�

The zero-subgradient necessary and sufficient optimality

condition [25] gives values of z at which the convex

objective function of (4) attains a minimum for each

t 2 R1. Evaluating this objective function at these values

of z gives:

1
2

2 � 
�tÿ 
� � 
tÿ 1

2

2; when t > 


1
2
t2; when t 2 �ÿ
; 
�

1
2

2 � 
�ÿtÿ 
� � ÿ
tÿ 1

2

2; when t < ÿ
;

8

>

>

>

>

<

>

>

>

>

:

�7�

which is equivalent to the definition (3) of ��t�. tu

This lemma allows us immediately to set up the linear

estimation problem (2) with the Huber loss function (3) as

the following problem:

min
x2Rd;z2R`

1

2
kzk22 � 
kAxÿ bÿ zk1: �8�

This problem in turn can be reduced to a simple convex

quadratic program as follows.

Proposition 2.2 (Huber linear estimator as a convex QP). A

Huber linear estimator x�
� that solves (2) with � defined by

(3) is given by any solution �x�
�; z�
�; t�
�� of the following

convex quadratic program:

min
x2Rd;z2R`;t2R`

1
2
kzk22 � 
e0t

s:t: ÿt � Axÿ bÿ z � t:
�9�

Using this formulation, an immediate consequence of a

perturbation result of linear programming [17] is the

intuitively plausible result when all errors fall within 
,

that for each linear estimation problem (1) there exists a

positive �
 such that every Huber estimator for all 
 � �
 is

identical to the classical least 2-norm estimator. Hence, for

all 
 larger than this threshold, a classical least-squares

solution also solves (1). We state this result as follows.

Proposition 2.3. (Huber M-estimator is a least squares

estimator for all large 
). For a given A 2 R`�d and

b 2 R`�1, there exists a �
 such that for all 
 � �
 a Huber

M-estimator obtained by solving either of the equivalent

problems (8) or (9) is equivalent to a classical least squares

estimator that solves

min
x2Rd

kAxÿ bk22: �10�

Proof. Theorem 1 of [17] says that under certain easily

satisfiable technical assumptions (which are satisfied

here), the solution of the perturbation of any solvable

linear program is also a solution of the original linear

program itself, as long as the perturbation is sufficiently

small. More formally, there exists �
 such that for each


 � �
, each corresponding Huber estimate solution

(x�
�; z�
�) of (8) is a solution of

min
x2Rd;z2R`

kAxÿ bÿ zk1; �11�

that is, z�
� � Ax�
� ÿ b, which also solves:

min
z2R`

kzk22; �12�

that is, x�
� solves (10). tu

Perturbing 
 in the other direction toward zero is more

interesting. In fact, one can show that Huber M-estimators

depend linearly on the parameter as the latter converges to

zero, as shown in Proposition 2.4, below. However, an

example [13, Example 3.8] shows that Huber M-estimators

need not be least 1-norm estimators even for arbitrarily

small values of the parameter 
. This is in contrast to

Proposition 2.3 which states that for all sufficiently large 


Huber M-estimators are least 2-norm estimators.

Proposition 2.4. (HuberM-estimators converge linearly to a

least 1-normsolution). For every sequence f
ig converging to

zero, a corresponding subsequence of Huber M-estimators fxijg

such that fxij ; zij ; tijg solve (9) for 
 � 
ij depends linearly on

f
ijg, that is for some p and q in Rd

xij � p� q
ij ; f
ijg ! 0: �13�

Proof. For 
 � 
i, the Karush-Kuhn-Tucker optimality

conditions [15] for (9) are:
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ÿA0�rÿ s� � 0

z� rÿ s � 0

r� s � 
ie

0 � r; Axÿ z� tÿ b � 0;

0 � s; ÿAx� z� t� b � 0;

r0�Axÿ z� tÿ b� � 0; s0�ÿAx� z� t� b� � 0: ���

�14�

For each 
i, pick a basic solution [20, Lemma 2.1], [7,
Theorem 2.11] which also satisfies the complementarity
condition (*). Since there are a finite number of linearly
independent columns in the linear system of (14), one set
of linearly independent columns is used infinitely often
by a basic solution corresponding to the sequence f
ig.
Choose a subsequence f
ijg corresponding to this
repeated basic solution. Hence, there exists a matrix M

with d� 2`� `1 � `2 rows (`1; `2 � `) and linearly inde-
pendent columns corresponding to basic components yB
(typically nonzero) of y :� �x; z; t; r; s�, such that:

MyB �

0

0


ije

b

ÿb

2

6

6

6

6

4

3

7

7

7

7

5

: �15�

It follows then that:

yB � �M 0M�ÿ1
M 0

0

0


ije

b

ÿb

2

6

6

6

6

4

3

7

7

7

7

5

�16�

from which (13) follows. tu

It is interesting to note that Li and Swetits [13] have

established a related result, Lipschitz continuity, for the

dual of the quadratic Huber M-estimator problem (9) which

turns out to be:

min
u




2
kuk22 � b0u j A0u � 0; ÿe � u � e

n o

: �17�

They show that the solution u�
� of this dual problem,

which is a least 2-norm solution of the dual of the least

1-norm problem minx kAxÿ bk1, is Lipschitzian with

respect to 
.
Another interesting observation is that if the square of

the 2-norm in (17) is replaced by the 1-norm as follows:

min
u


kuk1 � b0u j A0u � 0; ÿe � u � e
� 	

; �18�

then the linear programming dual of (18) is:

ÿmin
x;z

kAxÿ bÿ zk1 j kzjj1 � 

� 	

: �19�

The loss function corresponding to this problem is

essentially that of [18], [30], which is zero in the interval

�ÿ
; 
�, and otherwise linear. Thus, this loss function

replaces the quadratic part of the Huber loss function by

zero. Such a loss function was also studied in [32].

Finally, we also note that Smola [29], [31] uses rather
different techniques to derive a dual formulation of the
quadratic Huber M-estimator problem (9). Smola's formu-
lation can be stated as follows, after removing a suppression
term:

min
u;v



2
�kuk22 � kvk22� � b0�uÿ v�

s:t: A0�uÿ v� � 0

0 � u; v � e;

�20�

which is equivalent to the Li-Swetits dual formulation (17)
above. It is this formulation of Smola's that we use in our
comparative experiments.

3 ROBUST NONLINEAR SUPPORT VECTOR

REGRESSION AS A CONVEX QUADRATIC

PROGRAM

In order to apply the Huber loss function to nonlinear
regression problems using kernel functions [33], [16], we
follow an approach similar to that of [27], [26], [19] where
loss functions other than the Huber one were utilized. The
idea is to implicitly transform the data of the problem from
the given input space into a higher dimensional feature space,
and perform linear regression in that space. This then
corresponds to a nonlinear regression surface in the original
input space. For that purpose, we make a variable
transformation in our system of linear equations (1):

x � A0�; � 2 R`: �21�

Corresponding to this transformation our convex quadratic
program of the Huber linear estimator becomes:

min
�2R`;z2R`;t2R`

1
2
kzk22 � 
e0t

s:t: ÿt � AA0�ÿ bÿ z � t:
�22�

We observe that problem (22) depends only on a matrix
consisting of scalar products of different rows in A, i.e. AA0.
This immediately leads to the idea of replacing the kernel
AA0 for a linear estimator by a much more general kernel
K�A;A0� : R`�d �Rd�` ! R`�`. Under certain conditions,
this kernel is a surrogate for mapping the data into a
higher dimensional space and performing the scalar
products there. The use of a kernel function, therefore,
allows an implicit mapping into a higher dimensional space
while saving significant computational costs. This concept
is described in much more detail in some of the support
vector machine literature [33], [4], [16]. Substituting AA0 for
K�A;A0� leads to the following convex quadratic program
for a Huber nonlinear estimator:

min
�2R`;z2R`;t2R`

1
2
kzk22 � 
e0t

s:t: ÿt � K�A;A0��ÿ bÿ z � t:
�23�

We determine the predicted value for a new data point p by
the calculation K�p0; A0��. As such, the regression surface
depends strongly on the training matrix A in precisely the
same fashion as a classification or regression surface does in
traditional support vector machines. We do point out that
the matrix K�A;A0� has ` by ` nonzero elements. If the
dataset is large, i.e., ` is large, than this problem is
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significantly larger than the linear formulation, which has `

by d nonzero elements in the matrix A. For a large dataset,
the linear problem (9) will therefore solve dramatically
faster than the nonlinear formulation (23). However, our
experimental results in Section 4 show that nonlinear
kernels can yield higher test set accuracies. Kernels have
also been used in Smola's dual QP method. We note that
our description of kernels here follows directly from our
formulation (9), and is noticeably different from the
approach taken in [31].

4 NUMERICAL TESTS AND RESULTS

We first show the effectiveness of our formulation (9) of the
Huber linear estimator as a QP by comparing it to four other
algorithms to solve the same problem, namely:

. Smola's dual QP method [29]

. Huber's Gauss-Seidel method [12]

. Madsen and Nielsen's Newton type method [14]

. Li's conjugate gradient method [12].

In all cases except the last one, a termination tolerance of
10ÿ5 was used. Li's conjugate gradient method showed
extremely long termination times, so we reduced the
tolerance for this algorithm to 10ÿ3: The primary purpose
of these experiments is to examine differences in training

times. Training and testing set accuracies are not of
importance in these experiments, since all these algorithms
in theory converge to a solution of the same QP, thus
leading to similar training and testing set correctness.
Inconsequential differences in accuracies arise in practice
due to the fact that each algorithm yields a slightly different
approximate solution. Additionally, it is possible that
different algorithms could converge to different solutions
if there are multiple solutions.

We note that in implementing our algorithm, we used
the following equivalent variation of the QP given in (9):

min
x2Rd;z2R`;r2R`;s2R`

1
2
kzk22 � 
e0�r� s�

s:t: Axÿ bÿ z � rÿ s

r; s � 0:

�24�

Formulation (24) yielded faster running times than a
straightforward implementation of (9).

All experiments were run on the University of Wisconsin
Computer Sciences Department Ironsides cluster. This
cluster of four Sun Enterprise E6000 machines consists of
16 UltraSPARC II 250 MHz processors and two gigabytes of
RAM on each node resulting in a total of 64 processors and
eight gigabytes of RAM. We implemented data I/O, cross-
validation procedures, and kernel calculations in the
MATLAB environment [21], though all algorithms were
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TABLE 1
Comparison of Algorithms for Robust Linear Regression

Best times, in bold type, were achieved by our simple quadratic programming formulation in all cases except one.



implemented in C++ using a MATLAB executable ªmexº
file [22]. This methodology allows us to call the algorithms
from MATLAB as if they were native functions. All QPs in
our algorithm were solved with the state-of-the-art CPLEX
solver [11].

To demonstrate the performance of these algorithms, we
performed tenfold cross validation of these algorithms on
two datasets. The first dataset, Census, is a version of the US
Census Bureau ªAdultº dataset, which is publicly available
from Silicon Graphics' website [1]. This dataset contains
nearly 300,000 data points with 11 numeric attributes, and is
used for predicting income levels based on census
attributes. We ran the algorithms on varying subsets of
this dataset. The second dataset, Comp-Activ, was obtained
from the Delve website [5]. This dataset contains 8,192 data
points and 25 numeric attributes. We implemented the
ªcpuSmall prototask,º which involves using twelve of these
attributes to predict what fraction of a CPU's processing
time is devoted to a specific mode (ªuser modeº).

We scaled the data by dividing by the following factor � ,
suggested by Holland and Welsh in [8]:

� � 1:48 �medifj�Ax̂ÿ b�i ÿmedjf�Ax̂ÿ b�jgjg; �25�

where x̂ is an estimate of the solution x. We determined x̂

by taking a small sample of the data and doing a standard
least-squares regression. The factor 1.48 provides an
approximately unbiased estimate of scale when the error
model is Gaussian [8].

We also varied the parameter 
 as specified in (3).
Holland and Welsh recommend 
 � 1:345, which satisfies
certain statistical properties [8]. We have also used 
 � 1

and 
 � 0:1. We note that these smaller values of 
 provide
a closer approximation to a traditional 1-norm regression
problem.

Table 1 shows the comparison of the various algorithms.
In nearly all cases, our algorithm shows faster running
times than the other algorithms. The differences in running
times between our algorithm and the others become more
pronounced for the larger versions of the Census dataset. In
comparison to the other algorithms, Smola's dual QP also
performs reasonably. Huber's Gauss-Seidel method per-
forms well for large 
, but deteriorates significantly for
small 
. Madsen and Nielsen's method, while very low in
the number of iterations, runs somewhat slowly. Li's
conjugate gradient method appears somewhat in the
middle, though it should be remembered that a less
stringent termination tolerance was used. The experimental
success of our method demonstrates the value in

representing the Huber regression problem as a simple
quadratic program. By doing so, we can leverage the time
and effort that has been put into high-powered and well-
tweaked software tools like CPLEX to solve the problem.
Some of the other approaches require software tailored to fit
the problem. We also note that while other lesser-perform-
ing solvers might yield slower running times on our
formulation than that yielded by CPLEX, the fundamental
result here is that our formulation is a general quadratic
program that can be used in any solver. As solver
technology improves, solution time for our method will
continue to improve. This is not the case for the specialized
programs required by some of the other algorithms, which
are not likely to see the same effort in improving their
efficiencies.

Our second set of experiments is designed to show the
effectiveness of using a kernel function in performing
nonlinear robust regression. We used the Gaussian radial
basis kernel [33], [2] in our experiments, namely

�K�A;A0��i;j � exp�ÿ�kAi ÿAjk
2
2�; i; j � 1; . . . ; `; �26�

where � is a small positive parameter. These experiments
take significantly longer to run than the first set, as the
kernel function enlarges the size of the problem. We
therefore ran these experiments for a subset of the
CPUSmall task containing only 500 data points, and for
the Boston Housing dataset (containing 506 points) avail-
able at the UCI machine learning repository [24]. The results
of these experiments are shows in Table 2. In both cases, the
Gaussian kernel resulted in improved testing set accuracy
over the linear one. This demonstrates that robust regres-
sion can be used for finding complex nonlinear regression
surfaces.

5 CONCLUSION

A new methodology for solving the Huber M-estimator
problem is presented which reduces the problem to a
simple quadratic program. This formulation is shown to
perform well when compared to other algorithms in the
literature. A modification of this quadratic program is
introduced to allow kernel functions to be used. These
kernel functions are used to find nonlinear regression
surfaces which can yield better testing set performances
than a purely linear separating surface. Future work
includes using chunking methodologies to solve massive
versions of these problems, as well as considering parallel
solutions to these massive problems.
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