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Abstract. A concave minimization approach is proposed for classifying unlabeled data based
on the following ideas: (i) A small representative percentage (5% to 10%) of the unlabeled data
is chosen by a clustering algorithm and given to an expert or oracle to label. (ii) A linear sup-
port vector machine is trained using the small labeled sample while simultaneously assigning the
remaining bulk of the unlabeled dataset to one of two classes so as to maximize the margin (dis-
tance) between the two bounding planes that determine the separating plane midway between
them. This latter problem is formulated as a concave minimization problem on a polyhedral set
for which a stationary point is quickly obtained by solving a few (5 to 7) linear programs. Such
stationary points turn out to be very effective as evidenced by our computational results which
show that clustered concave minimization yields: (a) Test set improvement as high as 20.4% over
a linear support vector machine trained on a correspondingly small but randomly chosen subset
that is labeled by an expert. (b) Test set correctness averaged to within 5.1% when compared to
that of a completely supervised linear support vector machine trained on the entire dataset which
has been labeled by an expert.
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1. INTRODUCTION

Linear support vector machines (SVMs) [14, 5, 2] classify two-class labeled datasets
by constructing two parallel bounding planes, with maximum distance (margin)
apart and such that each plane bounds one class of the labeled points. The distance
between these planes, which is a measure of the generalization capability of the
SVM, is split midway by a plane parallel to the bounding planes and is used as the
classifying plane.

In semi-supervised learning, where only part of the two-class data is labeled, the
same procedure is utilized except that the algorithm assigns the unlabeled data to
one of two classes in such a way as to achieve separation by two bounding planes
and maximizing the margin between the planes.

Bennett and Demiriz [1], who treat datasets which are already partially labeled,
formulate the semi-supervised support vector machine (S*VM) as a mixed integer
program (MIP). Their formulation requires the introduction of a binary variable
for each unlabeled data point in the training set. This makes the problem diffi-
cult to solve for large unlabeled data. State-of-the-art software does not handle
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easily problems with much more than 50 unlabeled data points. To overcome this
difficulty we propose here a formulation that can handle large unlabeled datasets
(with a thousand points) and solve the semi-supervised problem in a considerably
shorter time. Our new approach consists of formulating the problem as a concave
minimization problem which is solved by a successive linear approximation algo-
rithm [7]. Such an approach has been successfully used on a number of machine
learning, data mining and other problems [7, 8, 3, 2]. We term our approach a
concave semi-supervised support vector machine (VS3VM).

For classifying unlabeled data, which is our principal aim here, we will make use of
the k-median clustering algorithm [3] in combination with the proposed VS*VM as
follows. The k-median algorithm is used to select a small representative percentage,
5% to 10%, to be labeled by an expert or an oracle in order to be used as labeled
data, together with the remaining part of the data, that remains unlabeled, in
VS3VM. Such an approach which can accommodate large datasets produces an
improvement as high as 20.4% over a randomly chosen set labeled by an expert
and used as a training set in a linear support vector machine. In addition, even if
the entire dataset is labeled by an expert and classified by a linear support vector
machine, our clustering concave minimization approach, using only 5% to 10% of
the data as labeled data, can come within an average of 5.1%, in test set correctness,
to an SVM trained on the entire dataset labeled by an expert.

When a clustering procedure is combined with VS?VM, as described above, we
term the resulting algorithm as clustered VS®VM ( CVS*VM).

We briefly outline the contents of the paper now. In Section 2 we formulate
the semi-supervised support vector machine S*VM for classifying the elements of
a partially labeled two-class dataset as a concave minimization problem (2.1) and
prescribe a finite successive linear approximation VS*VM, Algorithm 1, for solving
it. In Section 3 we state the k-median clustering Algorithm 1 and demonstrate
its use in conjunction with the VS®*VM Algorithm on a small two dimensional
set. Figures 1 to 3 below, show the superiority of CVS3VM on this example over
both clustered and random choices for a training set used in conjunction with a
plain linear support vector machine. Section 4 contains our numerical tests on five
publicly available datasets which show the following: (a) CVS*VM, our clustered
semi-supervised approach, gave the best test set correctness when compared to
both a random and a clustered choice of the data used as a training set in a linear
support vector machine. Also, CVS?VM was much faster than a mixed integer
programming (MIP) formulation S*VM. (b) An improvement as high as 20.4% of
test set correctness of CVS3*VM over a random choice for a training set used in a
linear support vector machine. (c) Test set correctness of CVS3VM averaged to
within 5.1% when compared to a completely supervised linear SVM for which the
entire dataset has been labeled.

A word about our notation. All vectors will be column vectors unless transposed
to a row vector by a prime superscript ’. The scalar (inner) product of two vectors
z and y in the n-dimensional real space R™ will be denoted by z’y. For an £ x d
matrix A, A; will denote the ith row of A. The identity matrix in a real space of
arbitrary dimension will be denoted by I, while a column vector of ones of arbitrary



UNLABELED DATA CLASSIFICATION 3

dimension will be denoted by e. The component-by-component minimum of two
p-dimensional vectors r and s is denoted by min{r, s}, with component j being:

min{r;,s;},j=1,...,p.
2. CONCAVE SEMI-SUPERVISED SVM (VS3VM)

We consider here the dataset consisting of m labeled points and p unlabeled points
all in R™. The m labeled points are represented by the matrix A € R™*"™ and p
unlabeled points in R™ represented by the matrix B € RP*™. The labels for A are
given by an m x m diagonal matrix D of +1. Bennett and Demiriz [1] formulate the
semi-supervised linear support vector machine for generating the separating plane
z'w = v for this problem as follows:

’ ’ ’
min  ve y+e z+ pe min{r, s}
W,Y,Y,2,7,

s.t. D(Aw —ev) +y > e

—z < w < z (21)
Bw—evy+r > e
—Bw+ey+s > e

y=0,r>0,5=>0,

where v and p are positive parameters. The first two terms of the objective func-
tion together with the first two constrains and y > 0, correspond to a linear SVM
(3.6, below) [2, Equation (13)] which attempts to classify the labeled part of the
dataset represented by the matrix A. The last term in the objective function to-
gether with the remaining constraints assign each row of the matrix B, representing
unlabeled data, to class +1 or —1, whichever generates a lower misclassification er-
ror: min {r, s}. The parameters u, v are positive numbers that weight the different
terms of the objective function and are chosen as described in Section 4. Bennett
and Demiriz [1] formulate this problem as a mixed integer program (MIP) by as-
signing a binary decision variable to each row of the unlabeled matrix B. However
only relatively small unlabeled datasets (e.g. 50 points [1]) can be handled by this
MIP formulation which sometimes fails due to excessive branching [1]. However, if
some local search procedure is combined with the MIP formulation together with
the clustering techniques proposed in this paper, the MIP approach can conceivably
be considerably improved.

We propose here instead a concave minimization procedure, consisting of solving
a finite number (typically 5 to 7) of linear programs, which terminate at a point
satisfying a necessary optimality for problem (2.1). The approach is based on the
finite successive linear approximation algorithm for minimizing a concave function
on a polyhedral set [8, Algorithm 1] and is justified by the fact that nonlinear term
min {r, s} in the objective function of (2.1) is concave because it is the minimum
of two linear functions. The algorithm consists of linearizing the nonlinear term
min {r, s} around the current iterate (r’, s') by taking a supporting plane (general-
ization of a tangent plane for non-differentiable concave functions) approximation
of the function at that point and solving the resulting linear program. This leads to
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the following finitely terminating successive linear approximation algorithm based
on [8, Algorithm 1].

Algorithm 1 VS3VM Successive Linear Approximation for S*VM (2.1) Choose
positive values for the parameters u,v. Start with a random (r°,s°) > 0. Hawving
(rt, s%) determine (w'tl 4Tl yitl LA+l pitl i) by solving the linear program:

. ’ ’ ro. L r— Ti
min  ve y+e z+ pd(e min{r’,s'}) i
WYY, 2,7, §— S

st. D(Aw—ey)+y > e

—z < w < z
Bw—ey+r > e (2.2)
—Bw+ey+s > e

y>0,r>0,s>0.

where the supergradient d(e’ min {r*,s'}) of ¢’ min {r, s} is defined below in (2.4).
Stop when the following necessary optimality condition holds:

ve (g1 —y) + € (21— 2)

, o iFl i
+pd(e min {r*, s'}) [;—H B ; ] = 0.

For a concave function f : R™ — R the supergradient 9(f(x)) of f at x is a vector
in R™ satisfying:

fly) = f(x) < Of(2)(y — ),

for all y € R™. The supergradient reduces to the ordinary gradient V f(z), when
f is differentiable at = [12, 13]. The set of all supergradients at a point x is called
the superdifferential.

/ . . . . .
In our case e min {r,s} : R?” — R is a non-differentiable concave function and
its supergradient is given by:
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d(e' min {r,s}) =

(éj) if r; < Sj
P

((}Jp) if T > S

Here 0, € R? is a column vector of zeros, I; € RP is the jth column of the identity
matrix I, and A € (0,1). In all our computations we set A = 0.5 .

By [8, Theorem 3] Algorithm 1 terminates after a finite number of linear programs
at a point satisfying the necessary optimality condition (2.3) for problem (2.1).

Our numerical experiments showed that instead of a random starting point (r°, s%) >
0, a much better starting point for the Algorithm 2.1 can be obtained by solving
the following linear program:

min  ve'y +e'z+ g(e’(r +3))

w,Y,Y,2,7,8

s.t. D(Aw —ev) +y > e
—z< w < (2.5)

Bw—ey+r > e

—Bw+ey+s > e

y=>0,7>0,52>0,

which corresponds to the linear program (2.2) with a supergradient of ¢/ min{r, s}
evaluated at r = s.

We turn our attention now to a combination of the S*VM with the k-median
clustering algorithm that will enable us to handle unlabeled data.

3. CLUSTERING + VS3VM (CVS3VM) FOR UNLABELED DATA

To handle unlabeled data we make use of the k-median clustering algorithm [3],
which de-emphasizes outliers, in order to form a small training set (5% to 10% of
the data) by choosing among the unlabeled data a “representative” subset to be
labeled by an expert. This also constitutes a means for handling large unlabeled
datasets such as those that occur in data mining in which case relatively few points
can be labeled through expensive or time consuming services of an expert. The
clustering approach can also be used as part of an incremental algorithm where
only a small percentage of incoming data is chosen by the k-median algorithm to
be labeled.

Our approach here will consist of the following: For a given percentage of the data,
select a “good” subset to label and give the resulting labeled-unlabeled dataset to
the VS3VM Algorithm 1. We describe now the “selection” procedure of the above
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approach, which will be carried out by using the k-median clustering algorithm [3]
described in the section below.

3.1. THE K-MEDIAN CLUSTERING ALGORITHM

Consider a set of t data points in R™ represented by a general matrix H € R**™. We
first find k cluster centers for the data such that the sum of distances between each
point and the closest cluster center C;,[ = 1, ..., k is minimized. The idea then is to
treat points within a certain distance from these k cluster centers as representative
points of that cluster, and hence of the overall dataset, and have them labeled by
an expert. These points generate the matrix A of the semi-supervised Algorithm 1
S3VM. The rest of the points remain unlabeled for use in S*VM as the matrix B.
In order to achieve this we use the simple and finite k-median clustering algorithm
of [3] given below. When the k-median clustering algorithm is applied as described
to select labeled data for the VS3VM Algorithm 1, the algorithm is referred to as
the CVS3VM Algorithm.

Algorithm 1 k-Median Algorithm Given C‘lj, e C,z at iteration j, compute
oIt C,J:rl by the following two steps:
(a) Cluster Assignment: For each H!, i =1,...t, determine £(i) such that C’g(i)

is closest to H| in the one norm.

(b) Cluster Center Update: For{=1,...,k choose Ci™" as a median of all H]
assigned to C.

Stop when Cg“ = CZ.

The choice of k£ in the k-median algorithm above depends on the size of the
original dataset and is typically chosen so that a certain desired total percentage,
say 5% to 10%, of the dataset falls within a desired distance from a closest cluster
center.

To show that the clustered choice of data labeled by an expert in combination
with a semi-supervised SVM is the most effective way for handling unlabeled data,
we compared CVS3VM with other plausible approaches as follows.

1. Total Set + SVM: Total Set labeled by expert + Linear SVM
‘We solve here the linear SVM:

min ve'y + €'z

w,7,y,2
st. D(Aw—ey)+y > e (3.6)
—z < w < z

y=>0.

Thus training is done here on a completely labeled data set which is equivalent
to (2.1) with an empty B. In contrast, although CS®*VM is trained on just a
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Figure 1. CVS3VM for Unlabeled Data: Example showing 10% of a dataset, as solid points,
whose labels, diamonds and circles, are unknown to the k-median algorithm which selects them to
be labeled by an expert and then are used as labeled data in VS3VM Algorithm 1. The remaining
90% points are used as unlabeled data by VS3VM. Resulting separating plane correctly
classifies 81% of the data
5% to 10% of the data that is labeled by an expert, its test correctness is close
to that obtained by a linear SVM using all the dataset labeled by an expert as

shown by our numerical tests.

2. Random 4+ SVM: Random choice for labeling by expert 4+ Linear
SVM

Here, 5%-10% of the data to be labeled is chosen randomly and used as training
data in the linear SVM algorithm. The information on the remaining unlabeled
data is not considered since we are applying a supervised learning approach to
the labeled data only. Because of the random choice of the training data, we
performed this experiment 10 times in order to obtain a more consistent result.
As was expected, this approach gave the worst performance.

3. Clustering + SVM: Clustering choice of data + Linear SVM

In this case no information on the unlabeled data is used. However, since
the k-median clustering algorithm is used to choose the data to be labeled, a
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Figure 2. Cluster + SVM for Unlabeled Data: Example showing 10% of a dataset, as solid
points, whose labels, diamonds and circles, are unknown to the k-median algorithm which selects
them to be labeled by an expert and then are used as labeled data in a linear SVM (3.6). The
resulting separating plane correctly classifies 72% of the data.

“smarter” choice of the data to be labeled is made. An improvement on test
set correctness over Random + SVM is obtained.

4. CVS3VM: Clustered choice of the data + VS?VM

This is the principal proposed algorithm of this paper. Pick a small percentage
of the unlabeled data by clustering to be labeled, then use this labeled data
with the the remaining unlabeled data in the Concave Semi-supervised SVM
(VS3VM).

5. Cluster + S3VM: Clustering choice of data + S*VM (MIP)

This case is similar to CVS?VM except that instead of solving a concave mini-
mization problem we solve here a Mixed Integer problem (MIP) as proposed in

.

We now illustrate how CVS3VM works on a simple 2-dimensional example of 100
data points consisting of diamond and circular shapes depicted in Figure 1, created
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Figure 3. Random + SVM for Unlabeled Data: Example showing 10% of a dataset, as solid
points, which are randomly selected and labeled by an expert, then used as training set in a linear
SVM (3.6). Resulting separating plane correctly classifies 69% of the data.

by the NDC (normally distributed clusters) generator [11]. The labels (diamond
and circular shapes) are made known to VS3VM as follows. In Figure 1 the solid
shapes are the 10% of the original unlabeled dataset that are selected by the k-
median algorithm to be labeled data and given to VS®VM while the remaining
90% of the original data shown as hollow shapes are treated as unlabeled data by
VS3VM. The resulting separating plane shown in Figure 1 correctly classifies 81% of
the data. If we now drop the unlabeled data from the training part of the problem
and revert to a linear SVM (3.6) trained on data chosen by a k-median algorithm,
we obtain the separating plane shown in Figure 2 which correctly classifies a lower
percentage of the data: 72%. Finally, if we use the SVM (3.6) on a randomly chosen
set of points that are labeled and depicted as solid points, we obtain the separating
plane shown in Figure 3 with a still lower correctness of 69%.
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4. NUMERICAL TESTING

Our numerical testing was carried out on five publicly available labeled datasets.
Unlabeled data was simulated by dropping labels from some or all the points in a
given dataset. Four of the datasets are from the UCI Machine Learning Reposi-
tory [10], and one of them was created by the NDC (normally distributed clusters)
generator [11]. Table 1 shows the number of points of each dataset and the di-
mensionality of the space they are in. All the matrix manipulations were carried
out using MATLAB [9]. Linear programs were solved by calling the state-of-the-
art CPLEX solver [6] from MATLAB and GAMS [4]. All experiments were run
on Locopl, one of the machines of the University of Wisconsin Computer Sciences
Department Data Mining Institute. Locopl is a Dell PowerEdge 6300 server pow-
ered with four 400 MHz Pentium IT Xeon processors, four gigabytes of memory, 36
gigabytes of disk space, and the Windows NT Server 4.0 operating system.

Test 1 The following five experiments were performed:

(i) Total Set Linear SVM
Linear SVM (3.6) trained on a completely labeled dataset.

(ii) Random + Linear SVM A linear SVM for which a random 5% to 10% subset
of the data is selected as the training set to be labeled by an expert.

(i1i) Cluster 4+ Linear SVM A linear SVM is used together with the k-median
Clustering Algorithm 1 for selection of a 5%-10% subset of data points to be
labeled and used as a training set.

(vi) CVS3VM Algorithm VS?VM 1 with k-median Clustering Algorithm 1 for se-
lection of a 5%-10% subset of data points to be labeled by an expert with the rest
of the data remaining unlabeled in Algorithm VS VM 1.

(v) Cluster + S*VM (MIP) Use Algorithm S>VM [1] (MIP formulation) with
k-median Clustering Algorithm 1 for selection of a 5%-10% subset of data points
to be labeled by an expert with the rest of the data remaining unlabeled.

When the k-median algorithm was used in order to choose the 5% (10%) subset of
the data, the value for k was approximately set to 5% (10%) of the total number of
points in the whole dataset. For example for the Ionosphere dataset of 351 points,
we chose 10% of the data to be labeled, thus k& = 35. The labeled training set
was chosen as the set of points within a certain distance from the cluster centers
of the k-median algorithm so as to total to 10% of the original unlabeled dataset.
For CVS3VM, we performed a variation of the standard tenfold cross-validation.
Once we obtained our 10% labeled data to be used as training set, we divided the
remaining 90% of data points into 10 folds, so that each fold contained 9% of the
original dataset. We then used nine of these 10 folds (81 % of the original points)
as unlabeled training data and the remaining 9% as a testing set. We repeated this
procedure ten times choosing a different fold for testing and the remaining folds as
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a unlabeled training data every time. The 10% of the labeled data was fixed for all
the ten problems corresponding to each fold. See Figure 4 for a graphical depiction
of this procedure. When comparison with a random choice of labeled data was
made, we repeated the latter process ten times and reported the average.

Figure 4. CVS3VM tenfold Cross Validation

The parameter v appearing in the formulation of the S*VM problem (2.1) is
determined by a formula proposed in [1]: v = %, where m is the number of the
labeled points, and p the number of the remaining unlabeled points. The parameter
win (2.1) was adjusted by tuning. When the SVM was used on the complete dataset
as labeled data, the parameter v was also adjusted by tuning.

Table 1 gives tenfold testing set correctness for 5 totally unlabeled datasets for
the five algorithms described in Test 1: Total Set + Linear SVM, Random +
Linear SVM, Cluster + Linear SVM, CVS3*VM and Cluster + S*VM (MIP). The
improvement and the p-values shown in the table are relative to the Random +
Linear SVM approach.

CVS3VM had the highest test set correctness and the relative improvement, over
Random + Linear SVM, was as high as as 20.4% with a p-value of 0.02. Also,
CVS3M test set correctness using as little as 5% to 10% of the data as labeled data,
was on average within 5.1% of that for a linear SVM using all the data as a labeled
training dataset.

When S3VM-MIP terminated before reaching the 10,000-seconds time limit, it
was much slower than CVS3M. For example, in the Heart dataset the total time
spent by S3VM-MIP on tenfold cross validation was 462.2 seconds, while the time
used by VS3VM was 14.9 seconds in total. The corresponding times for the Housing
dataset were 1193.2 seconds for S*VM-MIP and 32.9 for VS*VM.
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(i) Total Set SVM : Entire dataset labeled by an expert and used by a linear SVM (3.6).
(ii) R 4+ SVM: Small randomly chosen subset labeled by an expert and used by a linear SVM

(3.6).

(ili) C 4+ SVM: Small subset of the data chosen by clustering, labeled by an expert and used
by a linear SVM (3.6).

(iv) CVS3VM: Small subset of the data chosen by clustering, labeled by an expert and
VS3VM (2.1) solved the concave minimization algorithm, Algorithm 1.

(v) C 4 S3VM: Same as 4 except a Mixed Integer Program (MIP) is used instead of the
concave minimization algorithm, Algorithm 1.

* The relative improvement and the the p-value are calculated with respect to Random + SVM.

T Failure was declared when total time exceeded 10,000 seconds.

Table 1. Tenfold test set correctness of the experiments described in Test 4.1 on 5 public datasets. Bold figures

denote highest test set correctness.

Data Set Total Set SVM | R + SVM C + SVM CVS*VM C + S*VM(MIP)
pointsx dim. Test Test Test Test Test
Improvement™ | Improvement™ Improvement™
p-value® p-value® p-value®
NDC Set 72.6% 58.0% 60.0% 67.0% Failedf
1000 x 32 3.4% 15.5% -
0.38 0.01 -
Cleveland Heart 83.2% 69.0% 73.3% 76.0% 76.0%
297 x 13 6.2% 10.1% 10.1%
0.01 0.01 0.01
Housing 86.2% 70.0% 73.3% 81.4% 81.0%
506 x 13 4.7% 16.2% 15.7%
0.18 0.05 0.08
Tonosphere 87.1% 78.3% 78.5% 84.2% Failedf
351 x 34 0.25% 7.5% -
0.93 0.05 -
Sonar 77.4% 64.0% 74.6% 77.1% FailedT
208 x 60 16.6% 20.4% -
0.04 0.02 -
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5. CONCLUSION

We have proposed a concave formulation for the semi-supervised support vector
machine problem and given a fast finite linear programming based formulation
for its solution. Unlike a mixed integer formulation, our concave minimization
Algorithm 1 can handle large datasets that are mostly unlabeled. Numerical tests
show the potential of the concave semi-supervised support vector machine algorithm
as an efficient and viable tool for handling large totally unlabeled datasets. This
is carried out by selecting a small portion of the unlabeled dataset by clustering,
labeling it by an expert and using the concave minimization algorithm VS3VM.
Future directions include application of VS3VM to incremental data mining where a
small portion of the dataset is labeled incrementally as new data becomes available,
as well as multi-category unlabeled data classification.
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