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Abstract

Smoothing methods, extensively used for solving important math-
ematical programming problems and applications, are applied here
to generate and solve an unconstrained smooth reformulation of the
support vector machine for pattern classification using a completely
arbitrary kernel. We term such reformulation a smooth support vec-
tor machine (SSVM). A fast Newton-Armijo algorithm for solving the
SSVM converges globally and quadratically. Numerical results and
comparisons are given to demonstrate the effectiveness and speed of
the algorithm. On six publicly available datasets, tenfold cross vali-
dation correctness of SSVM was the highest compared with four other
methods as well as the fastest. On larger problems, SSVM was compa-
rable or faster than SVMlight [17], SOR [23] and SMO [27]. SSVM can
also generate a highly nonlinear separating surface such as a checker-
board.

1 Introduction

Smoothing methods have been extensively used for solving important math-
ematical programming problems [8, 9, 7, 10, 11, 16, 29, 13]. In this paper, we
introduce a new formulation of the support vector machine with linear (5)
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and nonlinear kernel (24) [30, 5, 6, 21] for pattern classification. We begin
with the linear case which can be converted to an unconstrained optimization
problem (7). Since the objective function of this unconstrained optimization
problem is not twice differentiable, we employ a smoothing technique to
introduce the smooth support vector machine (SSVM) (9). The smooth sup-
port vector machine has important mathematical properties such as strong
convexity and infinitely often differentiability. Based on these properties, we
can prove that when the smoothing parameter α in the SSVM approaches
infinity, the unique solution of the SSVM converges to the unique solution of
the original optimization problem (5). We also prescribe a Newton-Armijo
algorithm (i.e. a Newton method with a stepsize determined by the simple
Armijo rule which eventually becomes redundant) to solve the SSVM and
show that this algorithm globally and quadratically converges to the unique
solution of the SSVM. To construct a nonlinear classifier, a nonlinear kernel
[30, 21] is used to obtain the nonlinear support vector machine (24) and its
corresponding smooth version (25) with a completely arbitrary kernel. The
smooth formulation (25) with a nonlinear kernel retains the strong convexity
and twice differentiability and thus we can apply Newton-Armijo algorithm
to solve it.

We briefly outline the contents of the paper now. In Section 2 we state
the pattern classification problem and derive the smooth unconstrained sup-
port vector machine (9) from a constrained optimization formulation (5).
Theorem 2.2 shows that the unique solution of our smooth approximation
problem (9) will approach the unique solution of the original unconstrained
optimization problem (7) as the smoothing parameter α approaches infinity.
A Newton-Armijo Algorithm 3.1 for solving the SSVM converges globally
and quadratically as shown in Theorem 3.2. In Section 4 we extend the
SSVM to construct a nonlinear classifier by using a nonlinear kernel. All the
Newton-Armijo convergence results apply to this nonlinear kernel formula-
tion. Numerical tests and comparisons are given in Section 5. For moderate
sized datasets, SSVM gave the highest tenfold cross validation correctness
on six publicly available datasets as well as the fastest times when compared
with four other methods given in [2, 4]. To demonstrate SSVM’s capability
in solving larger problems we compared SSVM with successive overrelaxation
(SOR) algorithm [23], sequential minimal optimization (SMO) algorithm [27]
and SVMlight [17] on the Irvine Machine Learning Database Repository Adult
dataset [26]. It turns out that SSVM with a linear kernel is very efficient for
this large dataset. By using a nonlinear kernel, SSVM can obtain very sharp
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separation for the highly nonlinear checkerboard pattern of [18] as depicted
in Figures 4 and 5. To make this paper self-contained, we state and prove a
Global Quadratic Convergence Theorem for the Newton-Armijo method in
the Appendix which is employed in Theorem 3.2.

A word about our notation and background material. All vectors will be
column vectors unless transposed to a row vector by a prime superscript ′.
For a vector x in the n-dimensional real space Rn, the plus function x+ is
defined as (x+)i = max {0, xi}, i = 1, . . . , n. The scalar (inner) product of
two vectors x and y in the n-dimensional real space Rn will be denoted by
x′y and the p-norm of x will be denoted by ‖x‖p. For a matrix A ∈ Rm×n, Ai

is the ith row of A which is a row vector in Rn. A column vector of ones
of arbitrary dimension will be denoted by e. We shall employ the MATLAB
“dot” notation [25] to signify application of a function to all components of
a matrix or a vector. For example if A ∈ Rm×n, then A2

• ∈ Rm×n will denote
the matrix obtained by squaring each element of A. For A ∈ Rm×n and
B ∈ Rn×l, the kernel K(A, B) maps Rm×n×Rn×l into Rm×l. In particular, if
x and y are column vectors in Rn then, K(x′, y) is a real number, K(x′, A′)
is a row vector in Rm and K(A, A′) is an m×m matrix. If f is a real valued
function defined on the n-dimensional real space Rn, the gradient of f at x is
denoted by ∇f(x) which is a row vector in Rn and the n× n Hessian matrix
of second partial derivatives of f at x is denoted by ∇2f(x). The level set of
f is defined as Lµ(f) = {x|f(x) ≤ µ} for a given real number µ. The base
of the natural logarithm will be denoted by ε.

2 The Smooth Support Vector Machine (SSVM)

We consider the problem of classifying m points in the n-dimensional real
space Rn, represented by the m × n matrix A, according to membership of
each point Ai in the classes 1 or -1 as specified by a given m × m diagonal
matrix D with ones or minus ones along its diagonal. For this problem the
standard support vector machine with a linear kernel AA′ [30, 12] is given
by the following for some ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2
w′w

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(1)
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Here w is the normal to the bounding planes:

x′w − γ = +1
x′w − γ = −1,

(2)

and γ determines their location relative to the origin. The first plane above
bounds the class 1 points and the second plane bounds the class -1 points
when the two classes are strictly linearly separable, that is when the slack
variable y = 0. The linear separating surface is the plane

x′w = γ, (3)

midway between the bounding planes (2). See Figure 1. If the classes are
linearly inseparable then the two planes bound the two classes with a “soft
margin” determined by a nonnegative slack variable y, that is:

x′w − γ + yi ≥ +1, for x′ = Ai and Dii = +1,
x′w − γ − yi ≤ −1, for x′ = Ai and Dii = −1.

(4)

The 1-norm of the slack variable y is minimized with weight ν in (1). The
quadratic term in (1), which is twice the reciprocal of the square of the 2-norm
distance 2

‖w‖2
between the two bounding planes of (2) in the n-dimensional

space of w ∈ Rn for a fixed γ, maximizes that distance, often called the
“margin”. Figure 1 depicts the points represented by A, the bounding planes
(2) with margin 2

‖w‖2
, and the separating plane (3) which separates A+,

the points represented by rows of A with Dii = +1, from A−, the points
represented by rows of A with Dii = −1.

In our smooth approach, the square of 2-norm of the slack variable y is
minimized with weight ν

2
instead of the 1-norm of y as in (1). In addition

the distance between the planes (2) is measured in the (n + 1)-dimensional
space of (w, γ) ∈ Rn+1, that is 2

‖(w,γ)‖2
. Measuring the margin in this (n+1)-

dimensional space instead of Rn induces strong convexity and has little or no
effect on the problem as was shown in [23]. Thus using twice the reciprocal
squared of the margin instead, yields our modified SVM problem as follows:

min
w,γ,y

ν
2
y′y + 1

2
(w′w + γ2)

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(5)

At a solution of problem (5), y is given by

y = (e − D(Aw − eγ))+, (6)
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Figure 1: The bounding planes (2) with margin 2

‖w‖2

, and the plane (3) sep-

arating A+, the points represented by rows of A with Dii = +1, from A−, the

points represented by rows of A with Dii = −1.

where, as defined earlier, (·)+ replaces negative components of a vector by
zeros. Thus, we can replace y in (5) by (e − D(Aw − eγ))+ and convert
the SVM problem (5) into an equivalent SVM which is an unconstrained
optimization problem as follows:

min
w,γ

ν
2
‖(e − D(Aw − eγ))+‖

2
2 + 1

2
(w′w + γ2). (7)

This problem is a strongly convex minimization problem without any con-
straints. It is easy to show that it has a unique solution. However, the
objective function in (7) is not twice differentiable which precludes the use
of a fast Newton method. We thus apply the smoothing techniques of [8, 9]
and replace x+ by a very accurate smooth approximation (see Lemma 2.1
below) that is given by p(x, α), the integral of the sigmoid function 1

1+ε−αx of
neural networks [19], that is

p(x, α) = x +
1

α
log(1 + ε−αx), α > 0. (8)

This p function with a smoothing parameter α is used here to replace the
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plus function of (7) to obtain a smooth support vector machine (SSVM) :

min
(w,γ)∈Rn+1

Φα(w, γ) := min
(w,γ)∈Rn+1

ν

2
‖p(e − D(Aw − eγ), α)‖2

2 +
1

2
(w′w + γ2).

(9)
We will now show that the solution of problem (5) is obtained by solving
problem (9) with α approaching infinity. We take advantage of the twice dif-
ferentiable property of the objective function of (9) to utilize a quadratically
convergent algorithm for solving the smooth support vector machine (9).

We begin with a simple lemma that bounds the square difference between
the plus function (x)+ and its smooth approximation p(x, α).

Lemma 2.1 For x ∈ R and |x| < ρ : p(x, α)2 − (x+)2 ≤ ( log 2
α

)2 + 2ρ

α
log 2,

where p(x, α) is the p function of (8) with smoothing parameter α > 0.
Proof We consider two cases. For 0 < x < ρ,

p(x, α)2 − (x+)2 =
1

α2
log2(1 + ε−αx) +

2x

α
log(1 + ε−αx)

≤ (
log 2

α
)2 +

2ρ

α
log 2.

For −ρ < x ≤ 0, p(x, α)2 is a monotonically increasing function, so we have

p(x, α)2 − (x+)2 = p(x, α)2 ≤ p(0, α)2 = (
log 2

α
)2.

Hence, p(x, α)2 − (x+)2 ≤ ( log 2
α

)2 + 2ρ

α
log 2. 2

We now show that as the smoothing parameter α approaches infinity the
unique solution of our smooth problem (9) approaches the unique solution of
the equivalent SVM problem (7). We shall do this for a function f(x) given
in (10) below that subsumes the equivalent SVM function of (7) and for a
function g(x, α) given in (11) below which subsumes the SSVM function of
(9).

Theorem 2.2 Let A ∈ Rm×n and b ∈ Rm×1. Define the real valued functions
f(x) and g(x, α) in the n-dimensional real space Rn:

f(x) =
1

2
‖(Ax − b)+‖

2
2 +

1

2
‖x‖2

2 (10)
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and

g(x, α) =
1

2
‖p((Ax − b), α)‖2

2 +
1

2
‖x‖2

2, (11)

with α > 0.

(i) There exists a unique solution x̄ of min
x∈Rn

f(x) and a unique solution x̄α

of min
x∈Rn

g(x, α).

(ii) For all α > 0, we have the following inequality:

‖x̄α − x̄‖2
2 ≤

m

2
((

log 2

α
)2 + 2ξ

log 2

α
), (12)

where ξ is defined as follows:

ξ = max
1≤i≤m

|(Ax̄ − b)i|. (13)

Thus, x̄α converges to x̄ as α goes to infinity with an upper bound given by
(12).
Proof (i) To show the existence of unique solutions, we know that since
x+ ≤ p(x, α), the level sets Lν(g(x, α)) and Lν(f(x)) satisfy

Lν(g(x, α)) ⊆ Lν(f(x)) ⊆ {x|‖x‖2
2 ≤ 2ν}, (14)

for ν ≥ 0. Hence Lν(g(x, α)) and Lν(f(x)) are compact subsets in Rn and the
problems min

x∈Rn
f(x) and min

x∈Rn
g(x, α) have solutions. By the strong convexity

of f(x) and g(x, α) for all α > 0, these solutions are unique.
(ii) To establish convergence, we note that by the first order optimality

condition and strong convexity of f(x) and g(x, α) we have that

f(x̄α) − f(x̄) ≥ ∇f(x̄)(x̄α − x̄) +
1

2
‖x̄α − x̄‖2

2 =
1

2
‖x̄α − x̄‖2

2, (15)

g(x̄, α) − g(x̄α, α) ≥ ∇g(x̄α, α)(x̄ − x̄α) +
1

2
‖x̄ − x̄α‖

2
2 =

1

2
‖x̄ − x̄α‖

2
2. (16)

Since the p function dominates the plus function we have that g(x, α)−f(x) ≥
0 for all α > 0. Adding (15) and (16) and using this fact gives:

‖x̄α − x̄‖2
2 ≤ (g(x̄, α) − f(x̄)) − (g(x̄α, α) − f(x̄α))

≤ g(x̄, α) − f(x̄)

= 1
2
‖p((Ax̄ − b), α)‖2

2 −
1
2
‖(Ax̄ − b)+‖

2
2.

(17)
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Application of Lemma 2.1 gives:

‖x̄α − x̄‖2
2 ≤ m

2
(( log 2

α
)2 + 2ξ log 2

α
), (18)

where ξ is a fixed positive number defined in (13). The last term in (18) will
converge to zero as α goes to infinity. Thus x̄α converges to x̄ as α goes to
infinity with an upper bound given by (12). 2

We will now describe a Newton-Armijo algorithm for solving the smooth
problem (9).

3 A Newton-Armijo Algorithm for the Smooth

Support Vector Machine

By making use of the results of the previous section and taking advantage
of the twice differentiability of the objective function of problem (9), we pre-
scribe a quadratically convergent Newton algorithm with an Armijo stepsize
[1, 15, 3] that makes the algorithm globally convergent.

Algorithm 3.1 Newton-Armijo Algorithm for SSVM (9)
Start with any (w0, γ0) ∈ Rn+1. Having (wi, γi), stop if the gradient of the
objective function of (9) is zero, that is ∇Φα(wi, γi) = 0. Else compute
(wi+1, γi+1) as follows:

(i) Newton Direction: Determine direction di ∈ Rn+1 by setting equal
to zero the linearization of ∇Φα(w, γ) around (wi, γi) which gives n+1
linear equations in n + 1 variables:

∇2Φα(wi, γi)di = −∇Φα(wi, γi)′. (19)

(ii) Armijo Stepsize [1]: Choose a stepsize λi ∈ R such that:

(wi+1, γi+1) = (wi, γi) + λid
i (20)

where λi = max{1, 1
2
, 1

4
, . . .} such that :

Φα(wi, γi) − Φα((wi, γi) + λid
i) ≥ −δλi∇Φα(wi, γi)di (21)

where δ ∈ (0, 1
2
).

8



Note that a key difference between our smoothing approach and that
of the classical SVM [30, 12] is that we are solving here a linear system of
equations (19) instead of solving a quadratic program as is the case with the
classical SVM. Furthermore, we can show that our smoothing Algorithm 3.1
converges globally to the unique solution and takes a pure Newton step after
a finite number of iterations. This leads to the following quadratic conver-
gence result:

Theorem 3.2 Let {(wi, γi)} be a sequence generated by Algorithm 3.1 and
(w̄, γ̄) be the unique solution of problem (9).

(i) The sequence {(wi, γi)} converges to the unique solution (w̄, γ̄) from
any initial point (w0, γ0) in Rn+1.

(ii) For any initial point (w0, γ0), there exists an integer ī such that the step-
size λi of Algorithm 3.1 equals 1 for i ≥ ī and the sequence {(wi, γi)}
converges to (w̄, γ̄) quadratically.

Although this theorem can be inferred from [15, Therem 6.3.4, pp 123-
125], we give its proof in the Appendix for the sake of completeness. We
note here that even though the Armijo stepsize is needed to guarantee that
Algorithm 3.1 is globally convergent, in most of our numerical tests Algo-
rithm 3.1 converged from any starting point without the need for an Armijo
stepsize.

4 SSVM with a Nonlinear Kernel

In Section 2 the smooth support vector machine formulation constructed a
linear separating surface (3) for our classification problem. We now describe
how to construct a nonlinear separating surface which is implicitly defined by
a kernel function. We briefly describe now how the generalized support vector
machine (GSVM) [21] generates a nonlinear separating surface by using a
completely arbitrary kernel. The GSVM solves the following mathematical
program for a general kernel K(A, A′):

min
u,γ,y

νe′y + f(u)

s.t. D(K(A, A′)Du − eγ) + y ≥ e

y ≥ 0.

(22)

9



Here f(u) is some convex function on Rm which suppresses the parameter u

and ν is some positive number that weights the classification error e′y versus
the suppression of u. A solution of this mathematical program for u and γ

leads to the nonlinear separating surface

K(x′, A′)Du = γ (23)

The linear formulation (1) of Section 2 is obtained if we let K(A, A′) =
AA′, w = A′Du and f(u) = 1

2
u′DAA′Du. We now use a different classifica-

tion objective which not only suppresses the parameter u but also suppresses
γ in our nonlinear formulation:

min
u,γ,y

ν
2
y′y + 1

2
(u′u + γ2)

s.t. D(K(A, A′)Du − eγ) + y ≥ e

y ≥ 0.

(24)

We repeat the same arguments as in Section 2 to obtain the SSVM with a
nonlinear kernel K(A, A′):

min
u,γ

ν
2
‖p(e − D(K(A, A′)Du − eγ), α)‖2

2 + 1
2
(u′u + γ2), (25)

where K(A, A′) is a kernel map from Rm×n × Rn×m to Rm×m. We note
that this problem, which is capable of generating highly nonlinear separating
surfaces, still retains the strong convexity and differentiability properties for
any arbitrary kernel. All of the results of the previous sections still hold.
Hence we can apply the Newton-Armijo Algorithm 3.1 directly to solve (25).

We turn our attention now to numerical testing.

5 Numerical Results and Comparisons

We demonstrate now the effectiveness and speed of the smooth support vector
machine (SSVM) approach by comparing it numerically with other methods.
All parameters in the SSVM algorithm were chosen for optimal performance
on a tuning set, a surrogate for a testing set. For a linear kernel, we divided
the comparisons into two parts, moderate sized problems and larger prob-
lems. We also tested the ability of SSVM in generating a highly nonlinear
separating surface. Although we established global and quadratic conver-
gence of our Newton algorithm under an Armijo step-size rule, in practice
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the Armijo stepsize was turned off in all numerical tests without any notice-
able change. Furthermore, we used the limit values of the sigmoid function

1
1+ε−αx and the p function (8) as the smoothing parameter α goes to infinity,

that is the unit step function with value 1
2

at zero and the plus function (·)+

respectively, when we computed the Hessian matrix and the gradient in (19).
This gave slightly faster computational times but made no difference in the
computational results from those obtained with α = 5. All our experiments
were run on the University of Wisconsin Computer Sciences Department
Ironsides cluster. This cluster of four Sun Enterprise E6000 machines, each
machine consists of 16 UltraSPARC II 250 MHz processors and 2 gigabytes
of RAM, resulting in a total of 64 processors and 8 gigabytes of RAM. All lin-
ear and quadratic programming formulations were solved using the CPLEX
package [14] called from within MATLAB [25].

In order to evaluate how well each algorithm generalizes to future data,
we performed tenfold cross-validation on each dataset [28]. To evaluate the
efficacy of SSVM, we compared computational times of SSVM with robust
linear program (RLP) algorithm [2], the feature selection concave minimiza-
tion (FSV) algorithm, the support vector machine using the 1-norm approach
(SVM‖·‖1

) and the classical support vector machine (SVM‖·‖2
2
) [4, 30, 12].

We ran all tests on six publicly available datasets: the Wisconsin Prognos-
tic Breast Cancer Database [24] and four datasets from the Irvine Machine
Learning Database Repository [26]. It turned out that tenfold testing cor-
rectness of the SSVM is the highest for these five methods on all datasets
tested as well as the computational speed. We summarize all these results in
Table 1.

We also tested SSVM on the Irvine Machine Learning Database Repos-
itory [26] Adult dataset to demonstrate the capability of SSVM in solving
larger problems. Training set sizes varied from 1,605 to 32,562 training ex-
amples and each example included 123 binary attributes. We compared the
results with RLP directly and SOR [23], SMO [27] and SVMlight [17] indi-
rectly. The results show that SSVM not only has a very good testing set
accuracy but also has low computational times. The results for SOR, SMO
and SVMlight are quoted from [23]. We summarize these details in Table 2
and Figure 2. We also solved the Adult dataset with 1,605 training examples
via a classical support vector machine approach. It took 1,695.4 seconds to
solve the problem using the CPLEX quadratic programming solver which
employs a barrier function method [14]. In contrast, SSVM took 1.9 seconds
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only to solve the same problem as indicated in Table 2. Figure 2 indicates
that computational time grows almost linearly for SSVM whereas it grows
at a faster rate for SOR and SMO.

To test the effectiveness of the SSVM in generating a highly nonlinear
separating surface, we tested it on the checkerboard dataset of [18] depicted
in Figure 3. We used the following symmetric sixth degree polynomial kernel
introduced in [23] as well a Gaussian kernel in the SSVM formulation (25):

Polynomial Kernel : ((A
λ
− ρ)(A

λ
− ρ)′ − µ)d

•

Gaussian Kernel : ε−µ‖Ai−Aj‖
2
2 , i, j = 1, 2, 3 . . .m.

Values of the parameters λ, ρ, µ used are given in Figures 4 and 5 as well
as that of the parameter ν of the nonlinear SSVM (25). The results are
shown in Figures 4 and 5 . We note that the boundaries of the checkerboard
are as sharp as those of [23], obtained by a linear programming solution,
and considerably sharper than those of [18], obtained by a Newton approach
applied to a quadratic programming formulation.

6 Conclusion and Future Work

We have proposed a new formulation, SSVM, which is a smooth uncon-
strained optimization reformulation of the traditional quadratic program as-
sociated with a SVM. SSVM is solved by a very fast Newton-Armijo al-
gorithm and has been extended to nonlinear separation surfaces by using
nonlinear kernel techniques. The numerical results show that SSVM is faster
than other methods and has better generalization ability. Future work in-
cludes other smooth formulations, feature selection via SSVM and smooth
support vector regression. We also plan to use the row and column generation
chunking algorithms of [5, 22] in conjunction with SSVM to solve extremely
large classification problems which do not fit in memory, for both linear and
nonlinear kernels.
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Ten-Fold Training Correctness, %
Ten-Fold Testing Correctness, %

Ten-Fold Computational Time, sec.
Dataset size Method

m × n SSVM RLP SVM‖·‖1
SVM‖·‖2

2
FSV

WPBC(24 months) 86.16 85.23 74.40 81.94 88.89

155 × 32 83.47 67.12 71.08 82.02 81.93

2.32 6.47 6.25 12.50 22.54

WPBC(60 months) 80.20 87.58 71.21 80.91 86.36

110 × 32 68.18 63.50 66.23 61.83 64.55

1.03 2.81 3.72 4.91 7.31

Ionosphere 94.12 94.78 88.92 92.96 94.87

351 × 34 89.63 86.04 86.10 89.17 86.76

3.69 10.38 42.41 128.15 10.49

Cleveland 87.32 86.31 85.30 72.05 87.95

297 × 13 86.13 83.87 84.55 72.12 85.31

1.63 12.74 18.71 67.55 21.15

Pima Indians 78.11 76.48 75.52 77.92 77.91

768 × 8 78.12 76.16 74.47 77.07 76.96

1.54 195.21 286.59 1138.0 227.41

BUPA Liver 70.37 68.98 67.83 70.57 71.21

345 × 6 70.33 64.34 64.03 69.86 69.81

1.05 17.26 19.94 123.24 25.10

Table 1: Ten-fold cross-validation correctness results on six moderate sized

datasets using five different methods. All linear and quadratic programming

formulations were solved using the CPLEX package [14] called from within

MATLAB [25]. Bold type indicates the best result.
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Testing Correctness %
Dataset size Running Time Sec

(Training, Testing) Method

n = no. of feature SSVM SOR SMO SVMlight RLP

(1605, 30957) 84.27 84.06 - 84.25 78.68
n = 123 1.9 0.3 0.4 5.4 9.9

(2265, 30297) 84.57 84.24 - 84.43 77.19
n = 123 2.8 1.2 0.9 10.8 19.12

(3185, 29377) 84.63 84.23 - 84.40 77.83
n = 123 3.9 1.4 1.8 21.0 80.1

(4781, 27781) 84.55 84.28 - 84.47 79.15
n = 123 6.0 1.6 3.6 43.2 88.6

(6414, 26148) 84.60 84.30 - 84.43 71.85
n = 123 8.1 4.1 5.5 87.6 218.8

(11221, 21341) 84.79 84.37 - 84.68 60.00
n = 123 14.1 18.8 17.0 306.6 449.2

(16101, 16461) 84.96 84.62 - 84.83 72.52
n = 123 21.5 24.8 35.3 667.2 632.6

(22697, 9865) 85.35 85.06 - 85.17 77.43
n = 123 29.0 31.3 85.7 1425.6 991.9

(32562, 16282) 85.02 84.96 - 85.05 83.25
n = 123 44.5 83.9 163.6 2184.0 1561.1

Table 2: Testing set correctness results on the larger Adult dataset obtained by

five different methods. The SOR, SMO and SVMlight are from [23]. The SMO

experiments were run on a 266 MHz Pentium II processor under Windows

NT 4 and using Microsoft’s Visual C++ 5.0 compiler. The SOR experiments

were run on a 200 MHz Pentium Pro with 64 megabytes of RAM, also under

Windows NT 4 and using VisualC++ 5.0. The SVMlight experiments were run

on the same hardware as that for SOR, but under the Solaris 5.6 operating

system. Bold type indicates the best result and a dash (-) indicates that the

results were not available from [23].
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Figure 2: Comparison of SSVM, SOR and SMO on the larger Adult dataset.

Note the essentially linear time growth of SSVM.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Figure 3: The checkerboard training dataset
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Figure 4: Indefinite sixth degree polynomial kernel separation of the checker-

board dataset (ν = 320, 000, λ = 100, ρ = 1, d = 6, µ = 0.5)
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Appendix

We establish here global quadratic convergence for a Newton-Armijo Algo-
rithm for solving the unconstrained minimization problem:

min
x∈Rn

f(x), (26)

where f is a twice differentiable real valued function on Rn satisfying con-
ditions (i) and (ii) below. This result, which can also be deduced from [15,
Theorem 6.3.4, pp 123-125] is given here for completeness.

Newton-Armijo Algorithm for Unconstrained Minimization Let f

be a twice differentiable real valued function on Rn. Start with any x0 ∈ Rn.
Having xi, stop if the gradient of f at xi is zero, that is ∇f(xi) = 0. Else
compute xi+1 as follows:

(i) Newton Direction: Determine direction di ∈ Rn by setting equal to
zero, the linearization of ∇f(x) around xi which gives n linear equations
in n variables:

∇2f(xi)di = −∇f(xi)′. (27)

(ii) Armijo Stepsize [1]: Choose a stepsize λi ∈ R such that:

xi+1 = xi + λid
i (28)

where λi = max{1, 1
2
, 1

4
, . . .} such that :

f(xi) − f(xi + λid
i) ≥ −δλi∇f(xi)di (29)

where δ ∈ (0, 1
2
).

Global Quadratic Convergence Theorem Let f be a twice differentiable
real valued function on Rn and such that :

(i) ‖∇2f(y) −∇2f(x)‖2 ≤ κ‖y − x‖2, for all x, y ∈ Rn and some κ > 0,

(ii) y∇2f(x)y ≥ µ‖y‖2
2, for all x, y ∈ Rn and some µ > 0.

Let {xi} be a sequence generated by the Newton-Armijo Algorithm. Then:

(a) The sequence {xi} converges to x̄ such that ∇f(x̄) = 0, where x̄ is the
unique global minimizer of f on Rn.
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(b) ‖xi+1 − x̄‖2 ≤
κ
2µ
‖xi − x̄‖2

2, for i ≥ ī for some ī.

Proof (a) Since

f(xi) − f(xi+1) ≥ δλi∇f(xi)∇2f(xi)−1∇f(xi)′ ≥ 0, (30)

the sequence {xi} is contained in the compact level set:

Lf(x0)(f(x)) ⊆ {x| ‖x − x0‖2 ≤
2

µ
‖∇f(x0)‖2}. (31)

Hence

y∇2f(xi)y ≤ ν‖y‖2
2, for all i = 0, 1, 2, . . . , y ∈ Rn, for some ν > 0. (32)

It follows that

−∇f(xi)di = ∇f(xi)∇2f(xi)−1∇f(xi)′ ≥
1

ν
‖∇f(xi)‖2, (33)

and by Theorem 2.1, Example 2.2 (iv) of [20] we have that each accumu-
lation point of {xi} is stationary. Since all accumulation points of {xi} are
identical to the global unique minimizer of the strongly convex function f ,
it follows that {xi} converges to x̄ such that ∇f(x̄) = 0 and x̄ is the unique
global minimizer of f on Rn.

(b) We first show that the Armijo inequality holds from a certain i0 onward
with λi = 1. Suppose not, then there exists a subsequence {xij} such that

f(xij ) − f(xij + dij) < −δ∇f(xij )dij , dij = −∇2f(xij)−1∇f(xij)′. (34)

By the twice differentiability of f :

f(xij + dij) − f(xij ) = ∇f(xij )dij +
1

2
dij ′∇2f(xij + tijdij)dij , (35)

for some tij ∈ (0, 1). Hence

−∇f(xij )dij −
1

2
dij ′∇2f(xij + tijdij)dij < −δ∇f(xij )dij . (36)

Collecting terms and substitution for dij gives:

−1
2
∇f(xij )∇2f(xij )−1∇2f(xij + tijdij )∇2f(xij )−1∇f(xij )′

< −(1 − δ)∇f(xij )∇2f(xij )−1∇f(xij )′.
(37)
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Dividing by ‖∇f(xij )‖2
2 and letting j go to infinity gives:

−
1

2
q̄∇2f(x̄)−1q̄′ ≤ −(1 − δ)q̄∇2f(x̄)−1q̄′,

or

(
1

2
− δ)q̄∇2f(x̄)−1q̄′ ≤ 0, (38)

where q̄ = lim
j→∞

∇f(xij)

‖∇f(xij )‖2
.

This contradicts the positive definiteness of ∇2f(x̄) for δ ∈ (0, 1
2
). Hence for

i ≥ ī for some ī, we have a pure Newton iteration, that is

xi+1 = xi −∇2f(xi)−1∇f(xi)′, i ≥ ī. (39)

By part (a) above {xi} converges to x̄, such that ∇f(x̄) = 0. We now estab-
lish the quadratic rate given by the inequality in (b). Since for i ≥ ī:

xi+1 − x̄ = xi − x̄ −∇2f(xi)−1 [∇f(x̄ + t(xi − x̄))]
t=1
t=0

= (xi − x̄) −∇2f(xi)−1
∫ 1

0
(∇2f(x̄ + t(xi − x̄) −∇2f(xi) + ∇2f(xi))(xi − x̄)dt,

(40)
we have, upon cancelling the terms (xi − x̄) inside and outside the integral
sign and taking norms, that :

‖xi+1 − x̄‖2 ≤ ‖∇2f(xi)−1‖2

∫ 1

0
‖∇2f(x̄ + t(xi − x̄) −∇2f(xi)‖2‖x

i − x̄‖2dt

≤ ‖∇2f(xi)−1‖2‖x
i − x̄‖2

∫ 1

0
κ(1 − t)‖xi − x̄‖2dt

= κ
2µ
‖xi − x̄‖2

2. 2

(41)
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