
Large Scale Kernel Regression via Linear

Programming

O. L. Mangasarian David R. Musicant
Computer Sciences Dept. Dept. of Mathematics and Computer Science
University of Wisconsin Carleton College
1210 West Dayton Street One North College Street

Madison, WI 53706 Northfield, MN 55057
olvi@cs.wisc.edu dmusican@carleton.edu

Abstract

The problem of tolerant data fitting by a nonlinear surface, in-
duced by a kernel-based support vector machine [24], is formulated as
a linear program with fewer number of variables than that of other
linear programming formulations [21]. A generalization of the lin-
ear programming chunking algorithm [2] for arbitrary kernels [13] is
implemented for solving problems with very large datasets wherein
chunking is performed on both data points and problem variables. The
proposed approach tolerates a small error, which is adjusted paramet-
rically, while fitting the given data. This leads to improved fitting of
noisy data (over ordinary least error solutions) as demonstrated com-
putationally. Comparative numerical results indicate an average time
reduction as high as 26.0% over other formulations, with a maximal
time reduction of 79.7%. Additionally, linear programs with as many
as 16,000 data points and more than a billion nonzero matrix elements
are solved.

Keywords: kernel regression, support vector machines, linear pro-
gramming

1 Introduction

Tolerating a small error in fitting a given set of data, i.e. disregarding errors
that fall within some positive ε, can improve testing set correctness over a
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standard zero tolerance error fit [23]. Vapnik [24, Section 5.9] makes use
of Huber’s robust regression ideas [10] by utilizing a robust loss function
[24, p 152] with an ε-insensitive zone (Figure 1 below) and setting up linear
and quadratic programs for solving the problem. Schölkopf et al [18, 19]
use quadratic-programming-based support vector machines to automatically
generate an ε-insensitive “tube” around the data within which errors are dis-
carded. In [21], Smola et al use a linear programming (LP) based support
vector machine approach for ε-insensitive approximation. An LP formu-
lation has a number of advantages over the quadratic programming (QP)
based approach given by Vapnik [24], most notably sparsity of support vec-
tors [1, 25, 22] and the ability to use more general kernel functions [13]. In
this work we simplify the linear programming formulation of [21] by using a
fewer number of variables. This simplification leads to considerably shorter
computing times as well as a more efficient implementation of a generalization
of the linear programming chunking algorithm of [2] for very large datasets.
This generalization consists of chunking both data points and problem vari-
ables (row and column chunking) which allows us to solve linear programs
with more than a billion nonzero matrix elements.

We briefly outline the contents of the paper. In Section 2 we derive and
give the theoretical justification of our linear programming formulation (7)
based on the loss function of Figure 1 and show (Lemma 2.1) that it is equiv-
alent to the linear program (9) of [21] but with roughly 75% of the number
of variables. Proposition 2.2 shows that the tolerated error interval length 2ε
varies directly with the size of the parameter µ ∈ [0, 1] of our linear program
(7), where µ = 0 corresponds to a least 1-norm fit of the data (8) while the
value µ = 1 disregards the data and is therefore meaningless. It turns out,
that depending on the amount of noise in the data, some positive value of
µ < 1 gives a best fit as indicated by the computational results summarized in
Table 1. Section 3 implements and tests our linear programming formulation
(7) and compares it with the linear programming formulation (9) of Smola
et al [21]. Our formulation yielded an average computational time reduc-
tion as high as 26.0% on average, with a maximal time reduction of 79.7%.
Our chunking implementation solved problems with as many as 16,000 ob-
servations. By contrast the largest dataset attempted in [21] contained 506
points.

To summarize, there are three main results in this paper. We present a
kernel regression technique as a linear program which runs faster than previ-
ous techniques available. We introduce a simultaneous row-column chunking
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algorithm to solve this linear program. Finally, we demonstrate that this
row-column chunking algorithm can be used to significantly scale up the size
of problem that a given machine can handle.

A word about our notation. All vectors will be column vectors unless
transposed to a row vector by a prime superscript ′. For a vector x in
the d-dimensional real space Rd, the plus function x+ is defined as (x+)i =
max {0, xi}, i = 1, . . . , d. The scalar (inner) product of two vectors x and
y in the d-dimensional real space Rd will be denoted by x′y. For an ` × d

matrix A, Ai will denote the ith row of A. The identity matrix in a real space
of arbitrary dimension will be denoted by I, while a column vector of ones of
arbitrary dimension will be denoted by e. For A ∈ R`×d and B ∈ Rd×`, the
kernel K(A, B) maps R`×d × Rd×` into R`×`. In particular if x and y are
column vectors in Rd then, K(x′, A′) is a row vector in R`, K(x′, y) is a real
number and K(A, A′) is an ` × ` matrix. Note that K(A, A′) will be assumed
to be symmetric, that is K(A, A′) = K(A, A′)′. The 1- 2- and ∞-norms will
be denoted by ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞, respectively.

2 The Support Vector Regression Problem

We consider a given dataset of ` points in d dimensional real space Rd rep-
resented by the matrix A ∈ R`×d. Associated with each point Ai is a given
observation, a real number yi, i = 1, . . . , `. We wish to approximate y ∈ R`

by some linear or nonlinear function of the matrix A with linear parameters,
such as the simple linear approximation:

Aw + be ≈ y, (1)

where w ∈ Rd and b ∈ R1 are parameters to be determined by minimizing
some error criterion. If we consider w to be a linear combination of the rows
of A, i.e. let w = A′α, α ∈ R`, then we have:

AA′α + be ≈ y. (2)

This immediately suggests the much more general idea of replacing the linear
kernel AA′ by some arbitrary nonlinear kernel K(A, A′) : R`×d × Rd×` −→
R`×` that leads to the following approximation, which may be nonlinear in
A but linear in α:

K(A, A′)α + be ≈ y. (3)
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We will measure the error in (3) by a vector s ∈ R` defined by:

−s ≤ K(A, A′)α + be − y ≤ s, (4)

which we modify by tolerating a small fixed positive error ε, possibly to
overlook errors in the observations y, as follows:

−s ≤ K(A, A′)α + be − y ≤ s

eε ≤ s
(5)

We now drive the error s no lower than the fixed (for now) tolerance ε

by minimizing the 1-norm of the error s together with the 1-norm of α for
complexity reduction or stabilization. This leads to the following constrained
optimization problem with positive parameter C:

min
(α,b,s)

1

`
‖α‖1 +

C

`
‖s‖1

s.t. −s ≤ K(A, A′)α + be − y ≤ s

eε ≤ s,

(6)

which can be represented as a linear program. For a linear kernel and a fixed
tolerance ε, this is essentially the model proposed in [23], which utilizes a
2-norm instead of a 1-norm. We now allow ε to be a nonnegative variable in
the optimization problem above that will be driven to some positive tolerance
error determined by the size of the parameter µ. By making use of linear
programming perturbation theory [14] we parametrically maximize ε in the
objective function with a positive parameter µ to obtain our basic linear
programming formulation of the nonlinear support vector regression (SVR)
problem:

min
(α,b,s,ε,a)

1

`
e′a +

C

`
e′s − Cµε

s.t. −s ≤ K(A, A′)α + be − y ≤ s

0 ≤ eε ≤ s,

−a ≤ α ≤ a.

(7)

For µ = 0 this problem is equivalent to the classical stabilized least 1-norm
error minimization of:

min
(α,b)

‖α‖1 + C‖K(A, A′)α + be − y‖1. (8)
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For positive values of µ, the zero-tolerance ε of the stabilized least 1-norm
problem is increased monotonically to ε = ‖y‖∞ when µ = 1. (See Proposi-
tion 2.2 below.) Components of the error vector s are not driven below this
increasing value of the tolerated error ε. Thus, as µ increases from 0 to 1,
ε increases correspondingly over the interval [0, ‖y‖∞]. Correspondingly, an
increasing number of error components (K(A, A′)α+be−y)i, i = 1, . . . , `, fall
within the interval [−ε, ε] until all of them do so when µ = 1 and ε = ‖y‖∞.
(See Proposition 2.2 below.)

One might criticize this approach by pointing out that we have merely
substituted one experimental parameter (ε in (6)) for another parameter (µ
in (7)). This substitution, however, has been shown both theoretically and
experimentally to provide tighter control on training errors [24, 19]. It has
also been suggested that in many applications, formulation (7) may be more
robust [19].

It turns out that our linear program (7) is equivalent to the one proposed
by Smola et al [21]:

min
(α1,α2,b,ξ1,ξ2,ε)

1
`
e′(α1 + α2) + C

`
e′(ξ1 + ξ2) + C(1 − µ)ε

s.t. −ξ2 − eε ≤ K(A, A′)(α1 − α2) + be − y ≤ ξ1 + eε

α1, α2, ξ1, ξ2, ε ≥ 0,
(9)

with 4`+2 variables compared to our 3`+2 variables. We now show that the
two problems are equivalent. Note first that at optimality of (9) we have that
α1′α2 = 0. To see this, let α = α1 − α2. Consider a particular component αi

at optimality. If αi > 0, then α1
i = αi and α2

i = 0 since we minimize the sum
of α1 and α2 in the objective function. By a similar argument, if αi < 0, then
α2

i = −αi and α1
i = 0. Hence for α = α1 − α2 it follows that |α| = α1 + α2.

We thus have the following result.

Lemma 2.1 LP Equivalence The linear programming formulations (7)
and (9) are equivalent.

Proof Define the deviation error:

d = K(A, A′)α + be − y. (10)

By noting that at an optimal solution of (9), ξ1 = max{d−eε, 0} = (d−eε)+

and ξ2 = max{−d − eε, 0} = (−d − eε)+, the linear program (9) can be
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written as:

min
(α,b,ε,d)

1

`
‖α‖1 +

C

`
(e′(d − eε)+ + e′(−d − eε)+) + C(1 − µ)ε, (11)

or equivalently

min
(α,b,ε,d)

1

`
‖α‖1 +

C

`
e′(|d| − eε)+ + C(1 − µ)ε. (12)

On the other hand, note that at optimality the variable s of the linear pro-
gram (7) is given by:

s = max{|d|, eε} = eε + max{|d| − eε, 0} = eε + (|d| − eε)+. (13)

Thus the linear program (7) becomes, upon noting that e′e
`

= 1:

min
(α,b,ε,d)

1

`
‖α‖1 +

C

`
e′(|d| − eε)+ + C(1 − µ)ε, (14)

which is identical to (12).2

Note that (14) is equivalent to:

min
(α,b,ε,d)

1

`
‖α‖1 +

C

`
(‖(|d| − eε)+‖1 + `(1 − µ)ε), (15)

and Figure 1 depicts the loss function (‖(|d|−eε)+‖1 + `(1−µ)ε) of (15) as a
function of a one dimensional error d with ` = 1. The loss function is being
minimized by the equivalent linear programs (7) and (9). The linear program
(7) generates a tolerance ε ∈ [0, ‖y‖∞] corresponding to the parameter µ ∈
[0, 1]. Within the increasing-size interval [−ε, ε], depicted in Figure 1, an
increasing number of errors corresponding to the constraints of (7) fall, i.e.:

−ε ≤ (K(A, A′)α + be − y)i ≤ ε, i ∈ I ⊂ {1, . . . , `}.

By using linear programming perturbation theory we can give a useful
interpretation of the role of the parameter (1 − µ) appearing in the formu-
lations above. We note first that the parameter µ lies in the interval [0, 1].
This is so because for µ > 1 the objective function of the linear program (9)
is unbounded below (let ε go to ∞), while for negative µ it is evident from
the linear program (7) that ε = 0 and we revert to the stabilized least one
norm formulation (8).
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Error d
−ε ε

(1 − µ)ε

Loss Function=‖(|d| − eε)+‖1 + (1 − µ)ε

|d| − µε |d| − µε

Figure 1: One Dimensional Loss Function Minimized

Proposition 2.2 Perturbation parameter interpretation

(i) For µ = 0 the linear program (7) is equivalent to the classical stabilized
least 1-norm approximation problem (8).

(ii) For all µ ∈ [0, µ̄] for some fixed µ̄ ∈ (0, 1], we obtain a fixed solution of
the stabilized least 1-norm approximation (8) as in (i) with the addi-

tional property of maximizing ε, the least error component. Hence ε

is fixed over the interval µ ∈ [0, µ̄].

(iii) For all µ ∈ [µ̂, 1] for some fixed µ̂ in [0,1), we obtain a fixed solution
of

min
(α,b,ε,d)

1

`
‖α‖1 +

C

`
e′(|d| − eε)+ (16)

with the additional property of minimizing ε, the least error compo-
nent. Hence ε is fixed over the interval µ ∈ [µ̂, 1].

(iv) For µ ∈ [0, 1] we get a monotonically nondecreasing least error com-
ponent ε dependent on µ until the value µ = 1 is reached whereat all
error components have been trapped within the interval [−ε, ε] with the
trivial solution: α = 0, b = 0, ε = ‖y‖∞, s = eε.

Proof
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0 µ̄ µ̂ 1

(i) (ii) (iii) (iv)

Figure 2: Visual representation of Proposition 2.2. The interval [0, 1] is
shown, with µ̄ and µ̂ indicated as well. The Roman numerals indicate which
part of Proposition 2.2 is relevant.

(i) Because a ≥ 0, s ≥ 0 and ε is absent from the objective function of (7),
ε can be set to zero and the resulting problem is that of minimizing
the stabilized classical least 1-norm approximation (8).

(ii) We first note that the linear program (7) is solvable for all µ ∈ [0, 1]
because its objective function is bounded below by zero on its nonempty
feasible region as follows:

1
`
e′a + C

`
e′s − Cµε = 1

`
e′a + C

`
e′(s − µeε)

≥ 1
`
e′a + C

`
e′(s − eε) ≥ 0.

(17)

The desired result is then a direct consequence of [14, Theorem 1]
which states that for all sufficiently small perturbations of a linear pro-
gramming objective function by another possibly nonlinear function, a
solution of the linear program is obtained that in addition optimizes
the perturbation function as well. This translates here to obtaining a
solution of the stabilized least 1-norm approximation problem (8) that
also maximizes ε.

(iii) We observe that the linear program (7) is equivalent to the linear pro-
gram (12), as shown in Lemma 2.1. We therefore obtain result (iii) by
a similar application of linear programming perturbation theory as in
(ii). Thus for µ = 1 the linear program (12) is equivalent to (16) and
for µ sufficiently close to 1, that is µ ∈ [µ̂, 1] for some µ̂ ∈ [0, 1), we get
a solution of (16) that also minimizes ε.

(iv) Let 0 ≤ µ1 < µ2 ≤ 1. Let the two points (α1, b1, s1, ε1, a1) and
(α2, b2, s2, ε2, a2) be corresponding solutions of (7) for the values of µ

of µ1 and µ2 respectively. Because both of the two points are feasible
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for (7), without regard to the value of µ which appears in the objective
function only, it follows by the optimality of each point that:

1

`
e′a1 +

C

`
e′s1 − Cµ1ε1 ≤

1

`
e′a2 +

C

`
e′s2 − Cµ1ε2,

1

`
e′a2 +

C

`
e′s2 − Cµ2ε2 ≤

1

`
e′a1 +

C

`
e′s1 − Cµ2ε1.

Adding these two inequalities gives:

C(µ2 − µ1)ε1 ≤ C(µ2 − µ1)ε2.

Dividing the last inequality by the positive number C(µ2 − µ1), gives
ε1 ≤ ε2.

To establish the last statement of (iv) we note from (17) that the ob-
jective function of (7) is nonnegative. Hence for µ = 1, the point
(α = a = 0, b = 0, ε = ‖y‖∞, s = eε) is feasible and renders the
nonnegative objective function zero, and hence must be optimal. Thus
ε = ‖y‖∞. 2

We turn now to computational implementation of our SVR linear program
(7) and its numerical testing.

3 Numerical Testing

We conducted two different kinds of experiments to illustrate the effectiveness
of our formulation of the support vector regression problem. We first show
the effectiveness of our linear programming formulation (7) when compared
to the linear programming formulation (9) by using both methods on some
large datasets. We then implement our method with a chunking methodology
in order to demonstrate regression on massive datasets.

All experiments were run on Locop2, which is one of the machines associ-
ated with the University of Wisconsin Computer Sciences Department Data
Mining Institute. Locop2 is a Dell PowerEdge 6300 server powered with four
400 MHz Pentium II Xeon processors, four gigabytes of memory, 36 gigabytes
of disk space, and the Windows NT Server 4.0 operating system. All linear
programs were solved with the state-of-the-art CPLEX solver [12].
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We used the Gaussian radial basis kernel [24, 5] in our experiments,
namely

K(A, A′) = exp(−γ‖Ai − Aj‖
2
2), i, j = 1, . . . , `, (18)

where γ is a small positive number specified in Table 1.

3.1 Comparison of Methods

Our linear programming formulation (7) for handling support vector regres-
sion will be referred to hereafter as the MM method. The experiments in
this section compare MM to the linear programming formulation (9) given
by Smola, Schölkopf, and Rätsch in [21], which will be referred to as the
SSR method. We implemented the bookkeeping for both these methods in
the MATLAB environment [15]. The actual linear programs were solved
by the CPLEX [12] solver, using a homegrown MATLAB executable “mex”
interface file [16] to CPLEX. This interface allows us to call CPLEX from
MATLAB as if it were a native MATLAB function. In order to do a fair
comparison, both the MM method and the SSR methods were implemented
without the chunking ideas which we describe in Section 3.2.

Three datasets were used for testing the methods. The first dataset, Cen-
sus, is a version of the US Census Bureau “Adult” dataset, which is publicly
available from Silicon Graphics’ website [3]. This dataset contains nearly
300,000 data points with 11 numeric attributes, and is used for predicting
income levels based on census attributes. The second dataset, Comp-Activ,
was obtained from the Delve website [8]. This dataset contains 8192 data
points and 25 numeric attributes. We implemented the “cpuSmall proto-
task”, which involves using twelve of these attributes to predict what fraction
of a CPU’s processing time is devoted to a specific mode (“user mode”). The
third dataset, Boston Housing, is a fairly standard dataset used for testing
regression problems. It contains 506 data points with 12 numeric attributes,
and one binary categorical attribute. The goal is to determine median home
values, based on various census attributes. This dataset is available at the
UCI repository [17].

We present testing set results from tenfold cross-validation on the above
datasets. We randomly partitioned each dataset into ten equal parts, and
ran the algorithm ten times on 90% of this dataset. Each time, a different
one of the ten segments was held out to serve as a test set. We used this
test set to measure the generalization capability of the learning method by

10



measuring relative error. For an actual vector of values y and a predicted
vector ŷ, the relative error as a percentage was determined as:

‖ŷ − y‖2

‖y‖2

× 100 (19)

The test set errors shown in Table 1 are averages over tenfold cross-validation
of this relative error.

For the Boston Housing dataset, all points in the dataset were used. For
the Census and Comp-Activ datasets, a randomly selected subset of 2000
points was utilized for these experiments. The parameter C of the linear
programs (7) and (9), and the parameter γ in the kernel (18) were chosen
by experimentation to yield best performance. The parameter µ of (7) and
(9) was varied as described below. We also observed in our experiments that
tolerant training yields stronger improvements over standard least 1-norm
fitting when there is a significant amount of noise in the training set. We
therefore added Gaussian noise of mean zero and standard deviation σ to all
training sets. Our parameter settings are shown in Table 1 below along with
the results.

For each dataset, we began by setting µ = 0 and doing the regression.
This corresponds to doing a standard least 1-norm fit. Increasing µ for values
near µ = 0 typically increases fitting accuracy. Note that it would not make
sense to start the experiments at µ = 1, as Part (iv) of Proposition 2.2
demonstrates that the solution at µ = 1 is trivial (ε = 0, b = 0).

We therefore started at µ = 0 and raised µ at increments of 0.1 until
we saw a degradation in testing set accuracy. The “total time” column in
Table 1 reflects for a single fold the total time required to solve all problems
we posed, from µ = 0 up to our stopping point for µ. While it is true that
varying both C and µ simultaneously might produce even more accurate
results than those that we show, such experiments would be significantly more
time consuming. Moreover, the experiments that we do perform demonstrate
clearly that introducing ε into the regression problem can improve results
over the classical stabilized least 1-norm problem. We applied the same
experimental method to both the MM and the SSR methods, so as to make
a fair comparison.

Table 1 summarizes the results for this group of numerical tests. We make
the following points:

(i) The MM method is faster on all problems, by as much as 26.0% on
average and 79.7% maximally, than the SSR method.
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(ii) Test set error bottoms out at an intermediate positive value of the
tolerated error ε. The size of the tolerated error ε is monotonically
increasing with the parameter µ of the linear programs (7) and (9).
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Dataset Train size / 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Total Time

Test size Time (sec) Improvement

Census C 100,000 2000 Test set error 5.10% 4.74% 4.52% 4.24% 4.16% 3.99% 3.79% 3.91% Max

γ 0.01 1000 ε 0.00 0.02 0.05 0.08 0.11 0.14 0.17 0.21 79.7%

σ 0.2 SSR time (sec) 980 935 814 623 540 504 403 287 5086 Avg

MM time (sec) 199 294 351 392 480 573 710 766 3765 26.0%

Comp- C 100 2000 Test set error 6.60% 6.32% 6.16% 6.09% 6.01% 5.88% 5.60% 5.79% Max

Activ γ 0.01 200 ε 0.00 3.09 7.06 11.20 15.43 19.87 24.90 30.65 65.7%

σ 30 SSR time (sec) 1364 1286 1015 1045 917 747 601 629 7604 Avg

MM time (sec) 468 660 664 859 815 983 1043 1040 6533 14.1%

Boston C 1,000,000 481 Test set error 14.69% 14.62% 14.23% 13.71% 13.59% 13.77% Max

Housing γ 0.0001 25 ε 0.00 0.42 1.37 2.31 3.23 4.20 52.0%

σ 6 SSR time (sec) 36 34 28 25 24 23 170 Avg

MM time (sec) 17 23 24 23 26 27 140 17.6%

Parameters

µ

C, µ: Parameters of the linear programs (7) and (9)

γ: Parameter of the Gaussian kernel (18)

σ: Standard deviation of introduced noise

ε: Variable in linear programs (7) and (9) which indicates tolerated error (see Figure 1).

Its size is directly proportional to the parameter µ.

Empty columns under µ indicate experiments were not needed

due to degradation of testing set accuracy.

Table 1: Tenfold cross-validation results for MM and SSR methods.
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Dataset µ̄ 1 − µ̂

Census 0.051 5 × 10−7

Comp-Activ 0.01 1 × 10−5

Boston Housing 0.005 1 × 10−7

Table 2: Experimental values for µ̄ and µ̂.

Finally, we ran some experiments to determine the values of µ̄ and µ̂ as
in Proposition 2.2. We perturbed µ from 0 and from 1, and observed when
the appropriate objective function value began to change. Table 2 shows the
results for a single fold from each of the data sets under consideration. Note
that Table 1 shows that the optimal values for µ are typically in the 0.4-0.6
range, and therefore are not included in either the intervals [0, µ̄] or [µ̂, 1].
This yields the interesting result that the best solution to linear program
(7) is a Pareto optimal solution that optimizes a weighted sum of the terms
in the objective function. In other words, the solution is not subject to
interpretations (ii) or (iii) of Proposition 2.2. Nevertheless, Proposition 2.2
gives a new interpretation of what kind of solution we get for values of µ

close to 0 or close to 1, which in some instances may lead to the best testing
set correctness.

3.2 Massive Datasets via Chunking

The Linear Programming Chunking method (LPC) has proven to be a useful
approach in applying support vector machines to massive datasets by chunk-
ing the constraints that correspond to data points [2]. Other support vector
machine research has utilized chunking as well [6]. We describe below how to
chunk both the constraints and variables, which allows the solution of con-
siderably larger problems than those considered previously. We first present
a brief review of how the basic LPC is implemented. We then discuss the
optimizations and improvements that we made.

The basic chunking approach is to select a subset of the constraints of
the linear program (7) under consideration. When optimization on this first
chunk of constraints is complete, a second chunk is created by combining all
active constraints (those with positive Lagrange multipliers) from the first
chunk and adding to it new unseen constraints. This process is repeated,
looping a finite number of times through all constraints of the linear program
until the objective function remains constant. This approach yields a non-
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decreasing objective value that will eventually terminate at a solution of the
original linear program [2].

To make our chunking implementation simpler, we apply the variable
substitutions s = t + eε and α = α1 − α2, α1 ≥ 0, α2 ≥ 0, which results in a
linear program that is solved faster:

min
(α1 ,α2,b,t,ε)

1
`
e′(α1 + α2) + C

`
e′t + C(1 − µ)ε

s.t. −t − eε ≤ K(A, A′)(α1 − α2) + be − y ≤ t + eε

α1, α2, t ≥ 0,

(20)

Formulation (20) looks similar to (9), but it has an important distinction.
The two variables ξ1 and ξ2 have been replaced by the single variable t. This
version of our problem is simpler for chunking than (7), since we do not need
to be concerned with chunking the eε ≤ s constraint.

One difference between our approach and the LPC in [2] is that each sup-
port vector has associated with it two constraints, namely the first two in-
equalities in (20). For a given support vector, only one of the two constraints
associated with it has a nonzero multiplier (except possibly for a trivial case
involving equalities). Our code tracks both constraints for a given support
vector, and only retains from chunk to chunk those constraints with positive
multipliers.

We make a further computational improvement involving upper bounds
of the multipliers. This is motivated by looking at the dual problem of (20),
which can be written as

max
(u,v)

y′(u − v)

s.t. K(u − v) ≤ e
`

K(−u + v) ≤ e
`

e′(u − v) = 0
u + v ≤ C

`
e

e′(u + v) ≤ C(1 − µ)
u, v ≥ 0,

(21)

where u and v are the multipliers associated with the constraints that we
use for chunking. The constraint u + v ≤ C

`
e indicates that these multipliers

have an upper bound of C
`
e. Experimentation has shown us that constraints

with multipliers ui or vi at this upper bound have a strong likelihood of
remaining at that upper bound in future chunks. This observation has been

15



made in the context of other support vector machine algorithms as well [4].
We therefore use this knowledge to our advantage. When optimization over a
chunk of constraints is complete, we find all active constraints in that chunk
that have multipliers at this upper bound. In the next chunk, we constrain
the multiplier to be at this bound. This way the constraint remains active,
but CPLEX does not have to spend resources determining this multiplier
value. This frees up memory to add more new constraints to the chunk.
This constraint on the multiplier is removed when the constraint selection
procedure loops again through the entire constraint list, and tries to re-add
this constraint to the problem. Our software actually represents the primal
version of the linear program (20), as experimentation has shown that this
solves faster than the dual. We therefore fix multipliers at this upper bound
value by taking all associated constraints and adding them together to create
a single collapsed constraint.

One difficulty in using the approach presented thus far is that as the
number of data points increases, both the number of constraints and the
number of variables increases. This is due to the kernel K(A, A′). The
vectors α1 and α2, which are variables in the optimization problem, grow as
data points are added to the problem. This means that the number of points
that can fit in memory decreases as the problem size increases overall. This
somewhat limits the success of chunking. A sufficiently large problem has
so many variables that even a small number of support vectors cannot be
represented in memory.

We therefore present a new approach for dealing with this issue: we chunk
not only on the rows of the linear program, i.e. the constraints, but also on
the columns of the linear program, i.e. the variables. We have observed
that at optimality, most values of α1 and α2 are zero. For a given set of
constraints, we choose a small subset of the α1 and α2 values to actually
participate in the the linear program. All others are fixed at zero. This
drastically reduces the size of the chunk, as the chunk width is no longer
determined by the number of points in the entire problem, but merely by
the number of nonzero α1 and α2. We solve this small problem, retain all
α1 and α2 values which are nonzero, and proceed to chunk on another set of
columns. For a fixed set of constraints, we loop repeatedly over the columns
in the linear program until we terminate for that particular set of rows. Then
another chunk of rows is selected as described above, and the process begins
again. The column chunking is similar to the column generation method of
Gilmore-Gomory and Dantzig-Wolfe [9, 7].
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Figure 3: Objective function value and tuning set error versus row-column
iteration and time in days.

We used this chunking approach on a subset of the Census dataset con-
sisting of 16,000 data points. This results in a linear program with 32,000
rows and over 32,000 non-sparse columns, thereby containing over one billion
nonzero values. Values for C and γ were chosen the same as shown in Table
1. We also chose σ = 1 and µ = 0.9, and picked the initial chunk size to be
5000 rows and 2500 columns.

This massive problem was solved in 18.8 days, terminating with 1621
support vectors and 33 nonzero components of α1 and α2. Approximately 90
chunks, or 10 sweeps through the dataset, were required to reach termination.
Figure 3 depicts the objective function value and tuning set error for each
row-column chunk.

The final tuning set error achieved by this fit was 9.8% on a tuning set of
1000 points. We note that at termination of the first chunk, the tuning set
error was at 16.2%. This indicates that a large sample of points can prove
useful in getting better solutions.

Finally, we note that the techniques in this paper are certainly applicable
to practitioners who use less powerful machines. On a smaller machine,
a smaller chunk size can be used. Chunking will significantly increase the
problem size that any machine can handle, when compared to the capabilities
of such a machine without chunking.
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4 Conclusion

A new formulation of a linear program to perform support vector regression
can be solved considerably faster than other linear programming formulations
of the same problem, while producing identical test set generalization capabil-
ity. Row-column chunking is a new approach presented which has been shown
to successfully handle massive nonlinear regression problems with more than
a billion entries. Future work includes generalizing to loss functions other
than that depicted in Figure 1. For example, we plan to consider the Hu-
ber M-estimator loss function [11] which is quadratic for small errors and
linear for large errors by using quadratic programming. Extension to larger
problems will also be considered using parallel processing for both linear and
quadratic programming formulations.
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