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Abstract

We consider the problem of classifying completely or partially unlabeled data by using inequalities
that contain absolute values of the data. This allows each data point to belong to either one of two
classes by entering the inequality with a plus or minus value. By using such absolute value inequalities
(AVIs) in linear and nonlinear support vector machines, unlabeled or partially labeled data can be
successfully partitioned into two classes that capture most of the correct labels dropped from the
unlabeled data.
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1 Introduction

We begin by giving the following simple example of our unsupervised classifier based on the following
linear classifying plane:
2w —v=0, (1.1)

where the column vector x represents any data point in an n-dimensional space R"™, w € R™ is the
normal vector to the classifying plane, v determines the distance from the origin of the plane, and the
prime denotes the transpose of the column vector z. The plane (1.1) can be utilized to divide R™ into
two disjoint halfspaces by the following two linear inequalities:

:c'w—’y > 1,
fw—vy < -1 (1.2)

The key to our approach is to represent the last two inequalities by the following single absolute value
inequality (AVI):
|z'w — ] > 1, (1.3)

where | - | denotes the absolute value. Thus if 2’w —~ > 0 then AVI (1.3) reduces to the first linear
inequality of (1.2), whereas if ’w — v < 0 then AVI (1.3) reduces to the second linear inequality of
(1.2). Thus if we impose the AVI (1.3) on an unlabeled dataset, the dataset will be divided into two
categories to best fit the AVI (1.3) or equivalently the two linear inequalities (1.2).

There have been approaches to semisupervised classification utilizing support vector machines such
as [4, 8], but none of them have utilized absolute value inequalities. As far as unsupervised classification
is concerned there have been no approaches such as ours that do not use any labeled data as we do here.
There are of course many clustering techniques such as [1, 3, 5, 6, 18] that do not utilize any labels.
However these approaches are quite different from what we are proposing here. Furthermore none of
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these approaches utilize either absolute value inequalities [14] or absolute value equations [20, 21, 17, 12].
Our approach here, as will be made clear in Section 2, is based on dual complementarity, a technique
utilized in [15] for the solution of the NP-hard absolute value equation by a few linear programs, typically
three or less. More recently a different approach to the one described here, both in theory and method of
solution [16], was proposed that utilizes absolute value inequalities to handle both labeled and unlabeled
data. Similarly, the present approach can handle both such data, but computationally we shall restrict
ourselves to the more difficult and interesting case of unlabeled data classification.

We briefly describe now the contents of the paper. In Section 2 we outline the theory behind our
approach and in Section 3 we state our iterative algorithm that consists of solving a succession of linear
programs with modified objective functions. In Section 4 we give computational results that show the
effectiveness of our approach by recovering most labels that have been dropped from all (unsupervised)
data points. Section 5 concludes the paper.

We describe now our notation. The scalar product of two column vectors x and y in a n-dimensional
real space will be denoted by z’y. For a vector u, u; represents the jth group of components, whereas
u® represents the ith iterate of v during an iterative process. The identity matrix in a real space of
arbitrary dimension will be denoted by I, while a column vector of ones of arbitrary dimension will be
denoted by e and a column of zeros by 0. The abbreviation “s.t.” stands for “subject to”.

2 Unsupervised and Semisupervised Classification

We begin with an unlabeled dataset consisting of m points in the n-dimensional space R" represented
by the m x n matrix A and the labeled dataset consisting of k points in R™ represented by the k x n
matrix H and labeled by the k& x k diagonal matrix D with entries of +1 which denote which class of
+1 or —1 each row of H belongs to. Thus we wish to find two planes z’w — v = +1 in R" that specify
the £1 feasible regions generated by the two inequalities of (1.2) and which satisfy with minimal error
vectors y and s the following inequalities:

|[Aw —ey|+y > e
D(Hw —evy)+s > e, (2.4)
(y,5) > 0,

where the nonnegative slack variables (y,s) are to be driven to zero by the following optimization
problem:
min ez+v(ey+es)

w,Y,Y,8,2
s.t. |[Aw — evy| +y > e,
D(Hw —ey) + s > e, (2.5)
—z < w < z
() > 0.

Here in addition, the 1-norm of w is minimized in order to maximize the distance between the two
bounding planes z'w —~ = +1 of the +1 feasible regions of the inequalities of (1.2), while v is a positive
parameter that balances the two groups of objectives of (2.5). Without the variable y and the first
absolute value inequality of the above minimization problem, (2.5) is a standard linear support vector
machine classification problem [10, 11]. In order to treat the nonlinear absolute value inequality in (2.5)
above we proceed as follows. We replace the term |Aw — e7y| in the absolute value inequality by an



upper bound r on it: —r < (Aw — ey) < r which results in the following linear programming problem:

min  h'r+ pe z+v(ey + e s)

w7’y7y787z7r

st.—r< Aw — ey <
4y > e (2.6)

D(Hw —ey) + s > e,

—2z < w <z

(y,5) > 0,

where p is another positive parameter, and the vector h is determined by using dual complementarity
as in [15], which will iteratively generate a solution to the original problem (2.5) as we shall describe in
the next section.

3 Iterative Linear Programming Solution of Unsupervised & Semisupervised
Classification

We begin by rewriting the last optimization problem (2.6) as follows:

min 0w  +0y +pe'z +ve's +vey +h'r

w7’y7y787'z7,r

s.t. Aw —ey +r > 0,
—Aw  +ey +r > 0,
Y +r = e
DHw —Dey +s > e, (3.7)
w +z > 0,
—w +z > 0,
s > 0,
Yy > 0.
The dual to the above linear program (3.7) is the following linear program with nonnegative dual
variables (uy,...,ug) corresponding to the first six inequalities of (3.7):
max e'us + €'uy
U1,u2,u3,uq,us5,U6
s.t. Aluqy — A'ug + H' Duy + us —ug = 0,
—e'uy + €'ug — €’ Duy = 0,
us + Ug = pue, (3.8)
Uy < e,
us < ve,
up + u2 + ug = h,
(w1, u2,u3, ug, us, Ug) > 0.
From the dual complementarity condition we have that:
(u1)' (Aw — ey + 1) + (u2)'(—Aw + ey + 1) = 0. (3.9)
It follows from the nonnegativity of all bracketed terms in (3.9) that:
uptuy >0 = r=—-Aw+eyorr=Aw —ey < r = |Aw — eyl (3.10)

Hence it follows from the last equality constraint of the dual linear program (3.8) and (3.10) above that:

h—u3>0 <= uj+u >0 = r=|Aw — e/ (3.11)



It follows from the last implications that:
h=us+ee = r=|Aw — ey, (3.12)

where € is some small positive parameter. This fact implies that if h = ug + ee then the objective term
h'r + ve'y in the linear program (2.6) has minimized the term h'|Aw — ey| + ve'y which in effect is
equivalent to minimizing the term ve'y in the optimization problem (2.5). However we cannot a priori
enforce the condition h = ug + €e since we do not know what ug before solving the linear program (3.7).
But, this gives us a lead to an iterative process, similar to that of [15], where h is reset to h = ug + €
once ug is computed with a previous value of h. This leads to the following iterative algorithm.

ALGORITHM 3.1. Choose a parameter value € for the definition of h in (3.12) (typically ¢ = 1075), and
a maximum number of iterations itmazx (typically itmaz= 10).

(1) Initialize the algorithm by choosing an initial nonnegative random vector in R™ for h and solve
the linear program (2.6). Set iteration number i = 0.

(II) If r* = |Aw’ — ev'| or i=itmaz stop.

(III) Obtain a dual optimal variable u't' € R3™HE+20 by solving the linear program (3.7) with
h = uj + ee.

(IV) Seti=1i+1 and go to Step (II).

We note that if at any iteration ¢ in the above algorithm, if ué“ = u}, then r’ = |Aw® — ey!| and the
plane 2’w’ —~* = 0 divides R™ into two halfspaces each containing part of the unlabeled data represented
by the matrix A within an error margin 3°, and the correct part of the labeled data represented by the
matrix H within an error margin denoted by s*. We thus have the following proposition.
ProposITION 3.1. If at some iteration i of Algorithm 3.1, ué‘H = u}, then r' = |Aw® — ey!| and the
plane 'w' —~* = 0 divides R" into two halfspaces each containing part of the unlabeled data represented
by the matriz A and the correct part of the labeled data represented by the matrix H within error margins

denoted by y* and s* respectively.

We note that all the above results can be extended to nonlinear kernel classification [19, 9, 7] by
replacing the linear separating plane (1.1) by a nonlinear separating surface K (z', A")u —~ = 0 that
is linear in the unknowns (u,~), but nonlinear in the data variable z € R", where K is any nonlinear
kernel.

4 Computational Results

We first note that our linear program (2.6) can be utilized in a semi-supervised algorithm wherein both
labeled and unlabeled data are present. However our experimental results will focus on the unsupervised
classification case where no labels are available. This is mainly because of our novel absolute value
inequality technique and the availability of various approaches for handling semisupervised classification.
We shall implement our algorithm on several publicly available datasets from the UCI repository [24]:
the Wisconsin Diagnosis Breast Cancer (WDBC), Ionosphere and Cleveland, as well as the federalist
papers dataset as described in [2].

Since our main goal is unsupervised binary classification, we intentionally ignored the labels for each
one of these datasets. However, the labels were utilized to measure the classification performance of
our Algorithm 3.1. All the experiments were performed using MATLAB [22], on a Dell Latitude E5430
with a Intel Core i5-3340M Processor and 8 GB of RAM memory.



In order to have an idea of the effectiveness of the approach, we used K-means clustering [23] (the
MATLAB-included implementation) as a baseline approach. Note that since our formulation (2.6)
uses the L1 norm for regularization of the w vector of the separating hyperplane, hence our algorithm
produces a sparse solution. That is the generated classifier depends on a minimal subset, as little as
9%, of the original input feature components of the dataset. In contrast, K-means utilizes the entire
components of the dataset.

Our algorithm requires tuning of the parameters v and p, however in an unsupervised formulation
there are no labels to test the “goodness” of the parameters in the tuning process. To circumvent
this difficulty, we use the Silhouette method, a widely used method of interpretation and validation of
clusters of data [13]. The Silhouette coefficient is a number between zero and one that can be interpreted
as a measure of how appropriately the data has been grouped or clustered. We favored combinations of
the pair (v*,u*) that maximize the Silhouette coefficient. After we picked the optimal pair (v*,u*) we
used the previously ignored labels to assess performance. We call our method Unsupervised Absolute
Value Inequality Classifier UAVIC.

Table 1 shows the dimensions of each dataset, the performance UAVIC for the best (v*,u*)
(best tuned performance) as described above. Since UAVIC performs unsupervised feature selection
we report the number of used features in parentheses next to the corresponding performance. For
comparison purposes the best performance achieved by any (v,u) pair and the K-Means performance
(using all features) are also included.

Dataset | (m , n) | UAVIC-tuned accuracy | UAVIC-best accuracy | K-means accuracy
(# of features) (# of features)

WDBC | (603,9) 0.96 (7) 0.96(7) 0.96
Ionosphere | (351,33) 0.69 (12) 0.73 (3) 0.70
Cleveland | (297,13) 0.73(5) 0.73(5) 0.84
Federalist | (106,70) 0.75(13) 0.75(13) 0.82

Table 1: Computational results for 4 datasets showing dimensions of each dataset, the performance of
UAVIC for the best (v*,u*) (best tuned performance) , the best performance achieved by any (v,u)
and the K-Means performance. Performance given in percentage correctness is based on classification
correctness using original dataset labels not available to the unsupervised classification Algorithm 3.1.

5 Conclusion and Outlook

We have proposed an absolute-value-inequality-based classification of a totally or partially unlabeled
dataset and tested it on four datasets without making use of any of the dataset labels in the algorithm.
The proposed approach classification correctness based on data labels withheld from the algorithm
ranged between 73% and 96%. Feature reduction achieved was in the range of 9% to 77%. Future
research into other approaches for unlabeled data classification that utilize absolute value inequalities
will hopefully lead to algorithms with higher classification accuracy.
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