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Abstract

We propose a hybrid algorithm for solving the NP-hard absolute
value equation (AVE): Az —|z| = b, where A is an n x n square matrix.
The algorithm makes no assumptions on the AVE other than solvability
and consists of solving iteratively a linear system of equations followed
by a linear program. The algorithm was tested on 100 consecutively
generated random solvable instances of the AVE with n =50, 100, 200,
500 and 1,000. The algorithm solved 100% of the test problems to
an accuracy of 1078 by solving an average of 2.77 systems of linear
equations and linear programs per AVE.

Keywords: absolute value equation, concave minimization, linear pro-
gramming, linear equations

1 Introduction
We consider the absolute value equation (AVE):
Az~ 2| =b, W)

where A € R™ ™ and b € R™ are given, and | - | denotes absolute value.
A slightly more general form of the AVE, Az 4+ Blz| = b was introduced
in [16] that was investigated algorithmically in [17] and in a more general
context in [8]. The AVE (1) was investigated in detail theoretically in [13],
and a bilinear program in the primal space of the problem was prescribed
there for the special case when the singular values of A are not less than
one. No computational results were given in either [13] or [8]. In contrast in
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[7], computational results were given for a linear-programming-based suc-
cessive linearization algorithm utilizing a concave minimization model, for
a primal-dual bilinear model in [11] and for a dual-complementarity based
linear programming formulation [12]. As was shown in [13], the general
NP-hard linear complementarity problem (LCP) [2, 3, 1], which subsumes
many mathematical programming problems, can be formulated as an AVE
(1). This implies that (1) is NP-hard in its general form. More recently a
generalized Newton method was proposed for solving the AVE (1) [9], while
a uniqueness result for the AVE (1) is presented in [18] and for a more gen-
eral version of the AVE (1) in [19]. Finally, existence and convexity results
are given in [4], while an algorithm for computing all solutions of an AVE
(1) is given in [20], and equivalent formulations of the AVE (1) are given in
[15].

Our present hybrid approach consists of an iterative process whereby
we first solve a system of linear equations based on AVE (1) and the +
signs of the components of the current iterate of x followed by a linear
program generated by a concave minimization formulation of AVE (1). This
process is repeated until a solution to AVE (1) is obtained. On average this
approach generates a solution to the AVE (1) in in less than three iterations.
In Section 2 we outline the theory behind our approach and in Section 3
we state our iterative algorithm that consists of iteratively solving a linear
system of equations followed by solving a linear program. In Section 4 we
give computational results that show the effectiveness of our approach by
solving 100% of a sequence of 100 randomly generated consecutive AVEs in
R to R t6 an accuracy of 10~® . In contrast only 90.2% of the 500 AVEs
attempted in [10] were solved by utilizing a linear programming approach
only that is proposed there. Similarly only 95% of the problems using merely
a linear programming iterative process in [7]. Section 5 concludes the paper.

We describe our notation now. All vectors will be column vectors unless
transposed to a row vector by a prime ’. For a vector z € R™ the notation z;
will signify the j-th component. The scalar (inner) product of two vectors
x and y in the n-dimensional real space R" will be denoted by z'y. For
x € R", ||x||co will denote the co-norm: max |x;|. The notation A € R"™*"

i=1,...,
will signify a real m x n matrix. For such a matrix, A’ will denote the
transpose of A. A vector of ones in a real space of arbitrary dimension will
be denoted by e, while I will denote the identity matrix. Thus for e € R™
and y € R™ the notation €'y will denote the sum of the components of y. A
vector of zeros in a real space of arbitrary dimension will be denoted by 0.
The abbreviation “s.t.” stands for “subject to”.



2 AVE as a Concave Minimization Problem

We begin with the following convex polyhedral region in R?" that contains
a solution to AVE (1):

Z ={(z,y) € R |y > |a|, y > Az — b}. (2)
That Z is a polyhedral set follows from its equivalent definition as:
Z={(z,y) € R |y 2w >~y y> Az —b}. (3)
That Z contains a solution of AVE (1) follows by setting:
y=lzl, y=Ar =", (4)

which generates a point (x, y) in Z that solves AVE (1). This latter condition
(4) can be achieved by the following concave minimization problem having
a zero minimum:

{Igjuyn dy—lz|) +e(y— Az +b) st. y>z>—y,y>Axr—b}=0. (5)

Our proposed hybrid approach consists of alternating between solving a
linear programming linearization of the concave minimization problem (5)
to generate a solution (z,y) and using the + signs of the solution z to
generate an n X n diagonal matrix £ of £1 to solve the following linear
system of equations:

Az — Ex =b. (6)

This turns out to be a very effective and efficient finite hybrid method, not
tried before, for solving AVE (1) as we shall describe in the following sections
of this paper. We further note that neither an iterative linearization of the
concave minimization problem (5) by itself [7] nor an iterative solution of
the linear system of equations (6) by itself lead always to an exact solution
of AVE (1). That is the principal reason for combining these two approaches
into the proposed hybrid approach here.

3 Finite Hybrid Method for Solving AVE

We begin by stating our hybrid linear equation-linear programming algo-
rithm as follows.

Algorithm 3.1 Choose and accuracy tolerance (typically tol=10"%), and
mazimum number of iterations itmaz (typically itmaz= 10). Initialize the
algorithm by setting iteration number i =0 and 2° = 0.



(I) Let E = diag(sign(x?)) and solve the linear equation (6) and call its
solution 2*.

II) Linearize the concave minimization problem (5) around z* as follows:
p

min  —e' Az — sign(2') x + 2¢'y

I?y
S.t. Axr —y <0b, (7)
r—=y S 07
—z—y < 0.

Call the solution of this linear program (x*+1, i*1).

(II) If the number of components satisfying |Az** — |2*T1| — b| > tol is 0
or if i = itmax stop.

(III) Seti=1i+1 and go to Step (I).

We note that since the feasible region of (7) has a finite number of
vertices, then for an infinite sequence {(z%,%%)} in the above algorithm, one
such vertex (Z,y) of (7) must appear an infinite number of times if itmaz =
00. This fact in itself does not necessarily ensure that Z is a solution of AVE
(1) or that Algorithm 3.1 will terminate at a solution of AVE (1). However,
computationally this appears to be case in all cases run, as demonstrated in
the next section where exact solutions of AVE (1) are obtained for 100% of
100 randomly generated problems to an accuracy of 1075,

We further note that since we are linearizing the concave minimization
problem (5) in Step (II) of Algorithm 3.1, we can invoke Theorem 3 of [6]
which states that for a concave function bounded below on a polyhedral set,
successive minimization of the linearized concave function ends in a finite
number of steps at a stationary point. This then leads to the following
proposition under a stated assumption that takes into account the hybrid
feature (I) of Algorithm 3.1.

Proposition 3.2 Finite Termination Result Under the assumption that
sign(2") "t = sign(z?) x'Tt, Algorithm 3.1 terminates in a finite number
of iterations at a stationary point of the concave minimization problem (5)
whose global solution solves AVE (1).

Although this proposition does not guarantee that Algorithm 3.1 terminates
at an exact solution of AVE (1), our computational results strongly indicate
that it does so in all of the 100 test problems attempted.



4 Computational Results

We implemented our algorithm by solving 100 solvable random instances of
the absolute value equation (1) consecutively generated. Elements of the
matrix A were random numbers picked from a uniform distribution in the
interval [—5,5]. A random solution x with random components from [-.5,.5]
was generated and the right hand side b was computed as b = Az — |z|. All
computation was performed on 4 Gigabyte machine with a 3159MHz CPU
running amd64-rhel6 Linux. We utilized the CPLEX linear programming
code [5] within MATLAB [14] to solve our linear programs.

Of the 100 test problems, 100% were solved exactly to an co-norm tol-
erance of 1078, The maximum number of iterations was set at 10 for
n = 50,100, 200, 500, 1000. The computational results are summarized in
Table 1 and are better in the percentage of problems solved accurately and
in total solution time than those given in [11] for a similar set of prob-
lems where a bilinear minimization approach was used but only 88.6% of
the problems were solved to a lower accuracy of 1076, The present results
are also better than those of [10] where a different complementarity-based
method was utilized to solve only 90.2% of the problems attempted. Fur-
thermore, the present approach is much more general than that of [9] which
is applicable only to AVEs with singular values of A greater than 1.

Problem Size | Number of Average # of Violated Average # | Time in Seconds
n Problems Components of AVE (1) of Iterations per Iteration
at Initial Iteration Point 2! | per Problem

50 20 0.95 2.15 0.01

100 20 1.45 2.65 0.07

200 20 1.7 3.15 0.24

500 20 1.65 2.70 2.82

1,000 20 3.2 3.2 104.42

Table 1: Computational Results for 100 Random Consecutively Generated
AVEs Each Solved to an Accuracy of 1075.

5 Conclusion and Outlook

We have proposed a hybrid linear equations-linear programming formula-
tion for solving the NP-hard absolute value equation. The method consists




of solving a succession of linear equations-linear programs. In 100% of 100
consecutive instances of solvable random test problems, the proposed algo-
rithm solved the problem to an accuracy of 1078, Possible future work may
consist of precise sufficient conditions under which the proposed formulation
and solution method is guaranteed to terminate in a finite number of steps.
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