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Abstract

We consider the linear complementarity problem (LCP): Mz+¢>0,2>0,2'(Mz+¢) =0 as an
absolute value equation (AVE): (M 4+ I)z+q = |(M — I)z + q|, where M is an n X n square matrix
and I is the identity matrix. We propose a concave minimization algorithm for solving (AVE) that
consists of solving a few linear programs, typically two. The algorithm was tested on 500 consecutively
generated random solvable instances of the LCP with n =10, 50, 100, 500 and 1,000. The algorithm
solved 100% of the test problems to an accuracy of 10~2 by solving 2 or less linear programs per LCP
problem.
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1 Introduction

We consider the linear complementarity problem (LCP) [2, 7, 3]:
Mz+q>0,2>0,2/(Mz+q) =0, (1.1)

where M € R™ "™ and ¢ € R™ are given, and no assumptions are made on the n x n matrix M. This
NP-complete problem [1], which may not have a solution, is easily shown to be equivalent (see Lemma
2.1 below) to the following absolute value equation:

(M+1)z+q=|(M—1I)z+q, (1.2)

where |- | denotes absolute value. We shall construct a concave minimization problem, (2.3) below, that
can efficiently solve the LCP by linearizing a concave objective function. Another concave minimization
approach to the LCP was given in [5] using a different and more complex concave objective function,
but without any computational results. In Section 2 we outline the theory behind our approach and in
Section 3 we state our iterative algorithm that consists of solving a succession of linear programs with
modified objective functions. In Section 4 we give computational results that show the effectiveness of
our approach by solving 100% of a sequence of 500 randomly generated consecutive LCPs in R to
R1090 t6 an accuracy of 1078 . Section 5 concludes the paper.

We describe now our notation and some background material. The feasible region of the LCP (1.1)
is the set Z = {z|Mz+ ¢ > 0, z > 0}. The scalar product of two vectors z and y in a n-dimensional
real space will be denoted by z’y. For a linear program Iggg ¢’z with a vertex solution, the notation:

arg vertex min ¢z,
z2€Z
will denote the set of vertex solutions of the linear program. For z € R", the norm ||z||o will denote the

infinity norm _max |zi]. For an m x n matrix A, A; will denote the ith row of A. The identity matrix
i=1,...,n
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in a real space of arbitrary dimension will be denoted by I, while a column vector of ones of arbitrary
dimension will be denoted by e and a column of zeros by 0. For a concave function f: R"® — R, a
supergradient df(z) of f at z is a vector in R" satisfying:

fy) = f(z) <Of(2)(y — 2),

for any y € R™. The set of supergradients of f at the point z is nonempty, convex, compact and reduces
to the ordinary gradient V f(z), when f is differentiable at z [8, 9]. For a vector z € R", diag(z) consists
of an n x n diagonal matrix with entries of z;, ¢ = 1,...,n. The abbreviation “s.t.” stands for “subject
to”.

2 LCP Solution as an AVE

We begin with the following simple lemma.
LEMMA 2.1. The LCP (1.1) is equivalent to the AVE (1.2).

Proof Let AVE (1.2) hold. If (M — I);z + ¢; > 0 then it follows from (1.2) that z; = 0, M;z + ¢; > 0,
and hence z;(M;z + ¢;) = 0. If on the other hand, (M — I);z + ¢; < 0 then it follows from (1.2) that
M;z+q; =0, z; > 0, and hence again z;(M;z+q;) = 0. Consequently, Mz+q > 0,2 > 0,2'(Mz+q) =0
and we have a solution to the LCP (1.1).

Conversely, let the LCP (1.1) hold. If z; =0, M;z + ¢; > 0, then:

(M + Dz + g = (M = Diz + g = [(M = D)z + i
On the other hand if z; > 0, M;z + ¢; = 0 then:
(M +1)iz+q = —(M—I)iz — g = |(M — I)iz + qil.

Hence AVE (1.2) holds. O
Our approach consists of representing AVE (1.2) as minimizing the difference between the two terms
of the inequality:
(M+1)z+q>|(M—1I)z+q|,

which is equivalent to
(M+Dz+q>M—-Dz+q>—(M+1)z—q,
which in turn is equivalent to:
z2>20,Mz > —q.

We then minimize the difference (M + I)z 4+ q — |(M — I)z + q| as the following concave minimization
problem:

mine' (M +1z+q—|(M—1)z+gq|) st. Mz> —q, z > 0. (2.3)
We immediately note for this concave minimization problem:
min f(z), (2.4)
z2€Z
where:
f)=e(M+Dz+q—|(M—-10z+gq|), and Z={z| Mz > —q, z > 0}, (2.5)

that f : R™ — R is a concave function on R”™ and Z is a polyhedral set that does not contain lines
going to infinity in both directions. For such a problem, since f is bounded below on Z, by zero here, it
follows that it has a vertex solution [9, Corollary 32.3.4]. We now state and establish finite termination
of a stepless successive linearization algorithm for solving the concave minimization problem (2.5).



ALGORITHM 2.2. Successive Linearization Algorithm (SLA) Start with z° = 0 € R". Having z*

determine 21 as follows: 4 ' '
2t € arg vertex mig of(2")(z — 2"). (2.6)
zE

Stop if 2' € Z and Of(2) (2! — 2%) = 0.
By invoking [5, Theorem 3] we have the following finite termination result for the SLA Algorithm (2.2).

ProPOSITION 2.3. Finite Termination of SLA 2.2 The SLA 2.2 generates a finite sequence of
feasible iterates {51,22, ..., 2} of strictly decreasing objective function values; f(z') > f(2%) > ... >
f(2Y), such that 2" satisfies the minimum principle necessary optimality condition:

Of(z)(z—2) >0, Vz€ Z (2.7)
We turn now to the specific application of the SLA 2.2 to the LCP (1.1).

3 LCP Solution via Linear Programming

We begin by stating our successive linear programming algorithm as follows.

ALGORITHM 3.1. LCP SLA Choose a termination tolerance (typically tol = 107%) and a mazimum
number of iterations itmaz (typically itmax = 10).

(I) Initialize the algorithm by by choosing z° = 0 and set iteration number i = 0.
(II) While ||diag(z")(M 2" + q)||oo > tol and i < itmaz perform the following two steps.

(IIT) Solve the following linear programming problem which is a linearization of(2.3) around z*:

mzin (M + 1)z + q — diag(sign(M — I))2" +q))(M — I)(z — 2%)) s.t. Mz > —q, 2> 0. (3.8)

(IV) Seti=1i+1 and go to Step (II).

It follows immediately by Proposition 2.3 that the LCP SLA Algorithm 3.1 terminates at in a finite
number of steps at a point satisfying the minimum principle necessary optimality condition for our
concave minimization problem (2.3) which is not guaranteed to be an LCP (1.1) solution. However,
computationally this appears to be the case as demonstrated in the next section where exact solutions
are obtained for 100% of 500 consecutively generated random solvable LCP problems to an accuracy of
1078.

4 Computational Results

We implemented our algorithm by solving 500 solvable random instances of the linear complementarity
problem (1.1) consecutively generated. Elements of the matrix M were random numbers picked from
a uniform distribution in the interval [—5,5]. A solution z with random components chosen from the
interval [0,5] was generated with approximately half of its components being zero. Finally the vector ¢
was generated such that the generated z solves the LCP (1.1). All computations were performed on 4
Gigabyte machine with a 3159MHz CPU running amd64-rhel6 Linux. We utilized the CPLEX linear
programming code [4] within MATLAB [6] to solve our linear programs.

Of the 500 test problems, 100% were solved exactly to an co-norm tolerance of 1078, The maximum
number of iterations was set at 10 for n = 10,50,100,500,1000. The computational results are
summarized in Table 1. It is interesting to note that 100% solution rate was achieved among the



500 problems described in Table 1 even though Proposition 2.3 does not guarantee a solution of LCP
(1.1) by Algorithm 2.2. One possible justification for our solution rate is that all our test problems
have a solution and it is not a simple matter to generate an LCP (1.1) that has no solution, to test
our algorithm on, nor can our algorithm determine with any certainty that no solution exists for such
a problem.

Problem Size | Number of LCPs out of 100 Solved Average # of Time in Seconds for
n with oo-norm Error < tol = 10~% | Iterations per Problem | Solving 100 LCPs
10 100 1.98 0.1112
50 100 2.00 0.4449
100 100 2.00 2.5863
500 100 2.00 352.11
1,000 100 2.00 3991.1

Table 1: Computational Results for 500 Randomly Generated Consecutive LCPs

5 Conclusion and Outlook

We have proposed a finite concave-minimization-based linear programming formulation for solving
the NP-hard linear complementarity problem. The method consists of solving a succession of linear
programs. In 100% of 500 consecutive instances of solvable random test problems, the proposed
algorithm solved the problem to an accuracy of 1078, Possible future work may consist of precise
sufficient conditions under which the proposed formulation and solution method is guaranteed to
terminate in a finite number of steps.
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