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Abstract

We propose a simple privacy-preserving reformulation ofnedr program whose equality constraint
matrix is partitioned into groups of rows. Each group of ratows and its corresponding right hand side
vector are owned by a distinct private entity that is unwilio share or make public its row group or right hand
side vector. By multiplying each privately held constragnbup by an appropriately generated and privately
held random matrix, the original linear program is transfed into an equivalent one that does not reveal any
of the privately held data or make it public. The solutiontee®f the transformed secure linear program is
publicly generated and is available to all entities.
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1 INTRODUCTION

Recent interest in privacy-preserving classification and data miningl@ 514, 6, 2, 10, 8, 9, 12], wherein the
data to be classified or mined is owned by different entities that are unwillingvieat the data they hold or
make it public, has spread to the field of optimization and in particular lineargnoging [3, 12, 1, 7]. In
[1] a number of shortcomings in the privacy-preserving linear programgiierature are pointed out. In [7] a
method for handling privately held vertical partitions of a linear programmungstraint matrix and cost vector
is proposed that is based on private random transformations of thespomding problem variables. In this work
we deal with ahorizontal partition of the equality constraint matrix of a linear program and the cooredipg
right hand side vector into groups. Each group is owned by a distinct ewistying to keep its data private, but
at the same time wanting a solution to the overall problem based on all the dotsstyvile address this problem
by multiplying each privately held equality constraint by an appropriate awmdtply generated and held random
matrix. This process transforms the original linear program into an elguit/aecure linear program that does
not reveal any of the privately held data or make it public. The solutiotovés then generated publicly and is
made available to all entities.

We briefly describe the contents of the paper. In Section 2 we give theytlzea in Section 3 an
implementation of our method for a privacy-preserving linear programminmgudtation using a random
transformation of the problem constraints. In Section 4 we give nhumeneahples demonstrating our approach.
Section 5 concludes the paper with an open problem.

We describe our notation now. All vectors will be column vectors unlesspased to a row vector by a
prime’. For a vectox € R" the notatiorx; will signify either the j-th component oj-th block of components.
The scalar (inner) product of two vectorandy in the n-dimensional real spad®’ will be denoted by'y. The
notationA € R™" will signify a realm x n matrix. For such a matrixy’ will denote the transpose &, A; will
denote the-th row ori-th block of rows ofA andA the j-th column or thej-th block of columns ofA. A vector
of zeros in a real space of arbitrary dimension will be denoted by 0.
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2 Privacy-Preserving Linear Programming for Horizontally Partitioned Data
We consider the linear program:

miQ cx where X = {x| Ax= b, x> 0}. (2.1)
Xe

Here, the matrixA € R™" together with the right hand side vectore R™, that is|[A b], are divided intop
horizontal blocks ofng,my, ...... andmp, (n+ 1)-dimensional rows witn 4+ m + ... 4+ my = m. Each block of
rows of A and corresponding block of the right hand side vebtare “owned” by a distinct entity that is unwilling
to make this block of data public or share it with the other entities. We wish to sdb/értbar program without
revealing any privately held data. We shall achieve this by proceedifalless.

Each of thep entities chooses its own privately held random malixe R*™ i = 1,..., p, wherek > m.
Define:

B=[B1 Bs......Bp| € R*™. (2.2)

We note immediately that the rank of the randomly generated mB&h»R>™ with k > mis m[4], which is the
reason for choosinlg > m. Utilizing this fact we define the following transformations:

A
A «
BA= [B.]_ B.» ...B.p] L= B.1A1+B.2A2—|-...—|—B.pAp€ R ><n’ (23)
Ap
and
b1
b, .
Bb=[B.1 B> ...By] | = B.iby +Boby+ ...+ B.pbp € R". (2.4)
bp
With these transformations our original linear program (2.1) turns into th@Wing “secure” linear program:
mi\r{w c'y whereY = {y| BAy= Bb, y > 0}. (2.5)
ye
We use the term “secure” to describe the transformed linear programi{@cause it does not reveal any of
Al bl
. Ap b2 | . . _
the privately held dat . ,i=1...,p. Thisis so because for each entity different from enijtit is
Ap  bp

impossible to compute eithey from the revealed produd.A;, or b; from the revealed produd@.b; without
knowing the random matriB.,; chosen by entity and known to itself only. See also Remark 3.2 below.
We now relate our original linear program (2.1) to the transformed linezgnam (2.5) as follows.

PROPOSITION2.1. Let k> m for the random matrix B: R“™ of (2.2). The secure linear program (2.5) is
solvable if and only if the linear program (2.1) is solvable in which case thetiso sets of the two linear
programs are identical.

Proof Beause the rank of the random mat#of (2.2) ismthe following equivalence is obvious:
Ax=b <= BAx=Bb (2.6)

Consequently the feasible regidnof the original linear program (2.1) is equivalent to the feasible reyimi
the secure linear program (2.5). Since both objective functions areathe,st follows immediately that both
problems have the same solution $ét.

We turn now to an explicit implementation of the secure linear programming formulé2is).



3 Privacy-Preserving for Horizontally Partitioned Linear Program (PPHPLP)

Starting with the linear program (2.1) that is partitioned amerentities as described in Section 2, we propose
the following algorithm for generating a solution to the linear program withasitldsing any of the privately
held data.

ALGORITHM 3.1. PPHPLP Algorithm

(I) All p entities agree on a value fork m, where k is the number of rows of the random matrix B*™ as
defined in (2.2).

(1) Each entity generates its own privately held random matrixeBR™  i=1,...... , p, where mis the
number of rows held by entity i which results in:
B=[B1 Bz......Bp| € R*™. (3.7)

(1) Each entity i makes public only its matrix product/& as well as its right hand side productB. These
products do not reveal either; &r b; but allow the public computation of the full constraint matrix needed
for the secure linear program (2.5):

BA= [B1A; +BoAr+...+BpAy] € RO, (3.8)
as well as the right hand side for (2.5):
Bb=[B.1by +Baby +... 4 Bpbp| € RE. (3.9)

(IV) A public optimal solution vector y to the secure linear program (2.5pimimed which, by Proposition 2.1,
also solves the original linear program (2.1).

REMARK 3.2. Note that in the above algorithm no entity i reveals its data matyisrAts right hand side vector

b;. However, the solution vector y obtained is publicly available. Note furthdrithsimpossible to compute
the mn numbers constituting;A& R™*", given only the kn numbers constituting the revealed matrix product
B.iA € R™" and not knowing Be R™. Similarly it is impossible to compute & R™ from B;b; € RX. Hence,

all entities share the publicly computed optimal solution, but without reveétieig privately held data.

We turn now to some computational results.

4 Computational Results

We demonstrate our results by solving two examples as follows on a 4 Gigabgten@aunningi386.rhel5
Linux. We utilize the CPLEX linear programming code [5] within MATLAB [11] tolse our linear programs.
The first example has 600 constraints and 1000 variables, while thedsegzample has 1000 variables and
1000 constraints. For both examples, the components of the miatvere uniformly distributed in the interval
[—50,50], and approximately half of the components of the primal solution(2.1) were uniformly distributed
in the interval[0, 10] while the other half was zero. Similarly, approximately half of the constrainteeflual
problem were active, that is satisfied as equalities, while the other halfinsrgve. We used = 1000 in both
examples.

ExAMPLE 4.1. For our first example we generated a random solvable linear prograit) vith m= 600and
n= 1000 We partitioned the rows of A as well as the right hand side vector b into timaegs with m = 100

mp = 200 and ny = 300 We generated three random matrices, with coefficients uniformly distdbotéhe
interval [0,1] with B, € R“™ B, ¢ R™ and B € R™. We solved the secure linear program (2.5) and
compared its optimal solution with that of (2.1). The two optimal solutions idergical. Computation time was
11.817 seconds for the secure linear program (2.5).



EXAMPLE 4.2. For our second example we generated a random solvable linear pro@2al) with m= 1000
and n= 1000with approximately half of the primal constraints being redundant. We pantticthe rows of A
as well as the right hand side vector b into three groups with=n200, m, = 300and my = 500. We generated
three random matrices, with coefficients uniformly distributed in the intef¥al with B; € R*™, B, ¢ R
and B € R™_ We solved the secure linear program (2.5) and compared its optimal@okyith that of (2.1).
The two optimal solutions were identical. Computation time was 14.184 se(bils

5 Conclusion and Outlook

We have shown how to securely solve a linear program when its equaliggraomt matrix and its right hand side
data are partitioned among entities unwilling to share their data or make it publath@minteresting problem
in this realm occurs when the equality constraints of the linear programdglipequality constraints instead.
The approach proposed here does not work because we cannotyrthikige inequality constraints by a random
matrix B € R“™ even ifB > 0, and preserve the original feasible region of the problem. We leavestiis apen
problem for future research.
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