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Abstract. We consider the system af linear equations im integer variableg\x = d and give sufficient con-
ditions for the uniqueness of its integer solutioa {—1,1}" by reformulating the problem as a linear program.
Uniqueness characterizations of ordinary linear progrargrsislutions are utilized to obtain sufficient unique-
ness conditions such as the intersection of the kernélarid the dual cone of a diagonal matrix-bl’s is the
origin in R". This generalizes the well known condition that(#er= 0 for the uniqueness of a non-integer solu-
tion x of Ax=d. A zero maximum of a single linear program ensures the unicggeaka given integer solution
of a linear equation.
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1. INTRODUCTION

We consider the system of linear equations in integer veasab
szdv Xe {71a 1}na (1)

whereA is a given real matrix iR™", d e R" andx € {—1,1}" is ann-dimensional
vector of integers each component of whichdi¢. This problem can be considered a
generalization of the classical knapsack feasibility peob[6, 3, 1, 2] of finding am-
dimensional binary integer vectgre {0,1}" such that:

aTy =G (2)

wherea is ann-dimensional column vector of positive integers and a positive integer.
An obvious generalization of this is the following genezall multi-knapsack feasibility
problem where there are no integrality or nonnegativityrieions on them x n real matrix
Aor the real vectob € R™

Ay=b, ye{0,1}". (3)
Using the transformation:

e—X
y:Tvxze_2y7 (4)
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whereeis a column vector of ones, we obtain the absolute value enqug]:

X = e
Ax — d, (5)
where:
d=Ae—-2b. (6)

It is evident then that (5) equivalent to our original prahlél).

We note here that characterizing uniqueness of solutiomfeger problems such as (1)
is essentially an NP-hard problem [10, 9, 8]. Our interesehg in providing sufficient
conditions for uniqueness of a given integer solution to &by utilizing these conditions
as a computational tool for a class of integer problems.

We now briefly describe the contents of the paper. In Sectiare 2resent our linear
programming formulation (7) and establish uniqueness a@ftyer solution of (1) via this
linear programming formulation. In fact we obtain a suffidgieondition for uniqueness of
an integer solution of (1) by solving a single linear progréifl). In Section 3 we give
some computational and uniqueness results for solving i@lhe linear programming
formulations of Section 2. Section 4 concludes the paper.

A word about our terminology and notation now. When we refeanianteger solution
x of either the linear equation (1) or the linear program (7lple we mean exactly that
x € {—1,1}" and exclude the case when a component &f zero. All vectors will be
column vectors unless transposed to a row vector by a sujr$c For a vectoix € R"
the notatiorx; will signify the j-th component. The scalar (inner) product of two vectors
x andy in the n-dimensional real spad®” will be denoted byy. Forx € R", |x| denotes
the vector inR" whose components are the absolute values of the comporfextsTae
notationA € R™" will signify a realm x n matrix. For such a matrixA™ will denote the
transpose oA, A will denote thei-th row andA;j theijth element. A vector of ones in
a real space of arbitrary dimension will be denotedebyhus fore € R" andx € R" the
notatione’ x will denote the sum of the componentsxofA vector of zeros in a real space
of arbitrary dimension will be denoted by 0. The abbreviatie.t.” stands for “subject to”.

2. Linear Programming Formulation and Uniqueness of I nteger Solution

We begin by stating a rather obvious linear programmingxagian of our integer variable
linear equation (1) as follows:

mXinOTx st. Ax=d, —e<x<e 7)

We note immediately that if this linear program has a unicplation and that solution is
integer then by solving this linear program a solution toiglpbtained. We first state a
rather obvious uniqueness result for (7).

Proposition 1 Uniqueness of Solution of Linear Program (7) The linear program (7)
has a unique solution if and only if it gives the same solution for any arbitrary objective
function hT x.
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Proof: This is evident or more formally follows from [5, Theorem 1]. ]

This proposition is useful for checking the uniqueness gfsoiution of the linear pro-
gram (7), whereas the following proposition establishesuhiqueness of a given solution
of (1). Since each solution of (1) is also a solution of thedinprogram (7), it follows that
if a solution of (1) is a unique solution of the linear progrér), then it must be a unique
solution of (1).

Proposition 2 Uniqueness of a Given Integer solution of Linear Program (7) and the
Linear Equation (1) Letx=De, D; =+1,i=1,...,n, beasolution of (1). Then any one
of conditions (i), (ii) or (iii) below, imply that the linear program (7) and hence the linear
equation (1) have the unique solution x = De.

(i) Thesystem
Ax=0, Dx>0, x#0, (8)

has no solution x € R".

(ii) The following holds for the intersection of the kernel of A, ker (A), and the dual cone
{x | Dx > 0} generated by the rows of D:

ker(A)(")dual con¢D) =0 € R". (9)

(iii) For each g € R" the following system has solution (u,v) € R?":

ATu+Dv=q, v>0. (10)

Proof: We first note that at an integer solution of the linear prog(@jnwe have, for the
n x n diagonal matrixD of +1's corresponding ta-1 components of the integer solution
X, that:

Ax=d, Dx=e (11)

Hence the only active inequality constraints of the lingagpam (7) are those correspond-
ing to Dx = e. We then have that the sufficient conditions (i)-(iii) abdoethe uniqueness
of an integer solution of (7) hold because of the following.

(i) This part follows from [5, Theorem 2(iii)].

(i) This part is essentially is a restatement of (i) thisdrean once we note that the dual
cone ofD is merely the sefx | Dx > 0}.

(iii) This part follows from [5, Theorem 2(vii)].
|
An obvious corollary to Proposition 2(i) leads to the foliog simple linear programming

sufficient condition for the uniqueness of a given integdutson of the linear program (7)
and hence of our original linear equation (1).
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Corollary 3 Uniquenessof Integer Solution of theLinear Program (7) and theLinear
Equation (1) The linear program (7) and hence the linear equation (1) have a unique
integer solution x = De, where D;; = +1,i = 1,...,n, if the following linear program has
a zero maxi munn;

maxe'Dx st. Ax=0, Dx>0, —e<x<e (12)
X

Proof: The proof follows directly from Proposition 2(i). [ ]

We shall now use the linear programming formulation (7) dr@results above to gener-
ate integer solutions for our problem (1) and determine witgeimteger solution is unique.

3. Integer Solution of (1) viathe Linear Program (7)

We begin the section with two simple examples, the first witlh@a-unique integer solution
and the second with a unique one.

Example 1
Ax=d, whereA=[1 15 1], d=15. (13)

This problem has two integer solutioris;1 1 3 and[1 1 —1]. If we test for uniqueness
of the first solution by solving the linear program (12) we édvat:

m)?x{—x1+xz+x3 [X1+15%+x3=0, —x1 >0, x>0,x3 >0, —e<x<e}=2>0,

(14)
from which we conclude by Corollary 3 that the solutipal 1 1 is not necessarily a
unique integer solution of (1). A similar result holds if theear program (12) is applied
to the other solutiodl 1 — 1]. Using the linear programming formulation (7) on this
example gives the integer solutippl 1 3. Changing the objective function coefficient
vector of (7) from zero to the integer solutipnl 1 1] to force (7) away from that solution
gives the other integer solutigh 1 —1].

Example 2
Ax=d, whereA=[32 —-1], d=2 (15)

By enumeration this problem has a unique integer solufibn-1 — 1]. If we test for
uniqueness of this integer solution by solving the lineagpam (12) we have that:

7
mXaX{Xl—Xz—m |31 +2¢—%3=0,%>0, —%>0, x>0, ~-e<x<e}=>0,

(16)
from which we conclude by Corollary 3 that the solutidn —1 — 1] is not necessarily
a unique integer solution of (1). The linear program progf@jnobtains the non-integer
solution[-1/3 1 —1J.

In Table 1 we present computational results for fifteen iatdmear equations (1) by
solving the linear program (7), utilizing the CPLEX linealogramming code [4] within
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MATLAB [7]. The integer linear equation (1) was obtained lne ttransformation (4) of
15 randomly generated solvable multi-knapsack feasjiplibblems (3)3y = b, A€ R™",

y € {0,1}", with eachA;j randomly chosen from the s¢i,2,...,1000 and such that a
solutiony € {0,1}" of (3) exists with approximately a quarter of its componeming
zero. The times in Table 1 are for a 4 Gigabyte machine runRiedjHat Enterprise Linux
5. Column 4 gives the number of non-integer components ofudisn of (1) obtained by
the the linear program (7). We make the following remarksrding Table 1:

(i) For 10 of the 15 instances generated, the linear progirolftained integer solutions
which turned out to be unigue solutions of the system of limemations (1). Unique-
ness of an integer solution of (7) and hence of (1) was detathby a zero maximum
of the linear program (12) and is signified by a “yes” in colubaf Table 1.

(i) In all ten instances for whichm > 3, the linear program (7) generated an integer
solution which turned out to be a unique solution of (1).

(iii) For the five problems for which integer solutions weretrobtained by the linear
program (7), exactlyn non-integer components were generated by the linear progra
(7) solution for each instance. For these instances, natesseegarding uniqueness
of solution is made in column 5 of Table 1, because the lineagnam (12) returned a
positive maximum for the known integer solution of thesehbems.

4. Conclusion and Outlook

We have transformed a generalized multi-knapsack feégilpitoblem into a system of
linear equations int1 integer variables and have formulated a linear prograniaf7its
solution. This linear programming formulation appears torkvwheneverm > 7. We
have also given a sufficient conditions for uniqueness ofgivgn integer solution of the
system of linear equations (1) by solving a single lineagpam (12). A topic worth further
investigation is that of giving sufficient conditions susdma> 3 plus other conditions, if
any, that would ensure the generation of an integer solliyotie linear program (7).
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Table 1. Integer solution of the system of linear equations AX)= d by the linear program (7), utilizing the
CPLEX linear programming code [4] within MATLAB [7]. The timeseafor a 4 Gigabyte machine running Red
Hat Enterprise Linux 5. Column 4 gives the number of non-integenponents of a solution obtained by the the
linear program (7). Column 5 states whether (1) has a uniglitiso as determined by the linear program (12)
having a zero maximum.

No. of Rows  No. of Variables  MATLAB Time Sec No. of Non-Integer Uniqueness of Integer
m n toc Components in LP Solution  Solution
3 10 0.005 3 —
5 10 0.005 0 yes
8 10 0.004 0 yes
30 100 0.007 30 —
50 100 0.009 0 yes
80 100 0.009 0 yes
150 500 0.131 150 —
250 500 0.266 0 yes
400 500 0.380 0 yes
300 1,000 1.282 300 —
500 1,000 3.308 0 yes
800 1,000 3.391 0 yes
600 2,000 17.499 600 —
1,000 2,000 41.598 0 yes
1,600 2,000 37.777 0 yes
References

1. E. Balas and E. Zemel. An algorithm for large zero—one kaelpgproblems. Operations Research,
28:1132-1154, 1980.

2. D.Fayard and G. Plateau. An algorithm for the solutiorhef@—1 knapsack probler@omputing, 28:269—
287, 1982.

3. R.Horst, P. Pardalos, and N. V. Thohitroduction to Global Optimization. Kluwer Academic Publishers,
Dodrecht, Netherlands, 1995.

4. ILOG, Incline Village, Nevada. ILOG CPLEX 9.0 User's Manual, 2003.
http://www.ilog.com/products/cplex/.

5. O. L. Mangasarian. Uniqueness of solution in linear progmning. Linear Algebra and Its Applications,
25:151-162, 1979.



INTEGER EQUATION SOLUTION UNIQUENESS 7

6.

10.

O. L. Mangasarian. Knapsack feasibility as an absoluteeveguation solvable by successive linear pro-
gramming. Optimization Letters, 3:161-170, 2009. ftp://ftp.cs.wisc.edu/pub/dmi/teeparts/08-03.pdf.
Optimization Letters online version: http://www.sprintiek.com/content/7011287432285747/.
MATLAB. User’'s Guide. The MathWorks, Inc., Natick, MA 01760, 1994-2006.
http://lwww.mathworks.com.

C.H. Papadimitriou. On the complexity of unique solutiomPtoceedings of the 23rd Annual Symposium
on Foundations of Computer Science, pages 14—-20, Chicago, IL, 1982. IEEE CNF.

O. A. Prokopyev, H.-X. Huang, and P. M. Pardalos. On conigl@®f unconstrained hyperbolic 0-1 pro-
gramming problemsOperations Rsearch Letters, 33:312-318, 2005.

L. G. Valiant and V. V. Vazirani. Np is as easy as detectingjue solutions. If\nnual ACM Symposium
on Theory of Computing, Proceedings of the 17th Annual ACM Symposium on Theory of Computing, pages
458-463, New York, NY, 1985. Association for Computing Mamry.



