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Abstract. We consider the system ofm linear equations inn integer variablesAx = d and give sufficient con-
ditions for the uniqueness of its integer solutionx ∈ {−1,1}n by reformulating the problem as a linear program.
Uniqueness characterizations of ordinary linear programming solutions are utilized to obtain sufficient unique-
ness conditions such as the intersection of the kernel ofA and the dual cone of a diagonal matrix of±1’s is the
origin in Rn. This generalizes the well known condition that ker(A) = 0 for the uniqueness of a non-integer solu-
tion x of Ax = d. A zero maximum of a single linear program ensures the uniqueness of a given integer solution
of a linear equation.
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1. INTRODUCTION

We consider the system of linear equations in integer variables:

Ax = d, x ∈ {−1,1}n, (1)

whereA is a given real matrix inRm×n, d ∈ Rm and x ∈ {−1,1}n is an n-dimensional
vector of integers each component of which is±1. This problem can be considered a
generalization of the classical knapsack feasibility problem [6, 3, 1, 2] of finding ann-
dimensional binary integer vectory ∈ {0,1}n such that:

aT y = c, (2)

wherea is ann-dimensional column vector of positive integers andc is a positive integer.
An obvious generalization of this is the following generalized multi-knapsack feasibility
problem where there are no integrality or nonnegativity restrictions on them×n real matrix
A or the real vectorb ∈ Rm:

Ay = b, y ∈ {0,1}n. (3)

Using the transformation:

y =
e− x

2
, x = e−2y, (4)
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wheree is a column vector of ones, we obtain the absolute value equation [6]:

|x| = e,
Ax = d,

(5)

where:
d = Ae−2b. (6)

It is evident then that (5) equivalent to our original problem (1).
We note here that characterizing uniqueness of solution forinteger problems such as (1)

is essentially an NP-hard problem [10, 9, 8]. Our interest here is in providing sufficient
conditions for uniqueness of a given integer solution to (1), and utilizing these conditions
as a computational tool for a class of integer problems.

We now briefly describe the contents of the paper. In Section 2we present our linear
programming formulation (7) and establish uniqueness of aninteger solution of (1) via this
linear programming formulation. In fact we obtain a sufficient condition for uniqueness of
an integer solution of (1) by solving a single linear program(12). In Section 3 we give
some computational and uniqueness results for solving (1) via the linear programming
formulations of Section 2. Section 4 concludes the paper.

A word about our terminology and notation now. When we refer toan integer solution
x of either the linear equation (1) or the linear program (7) below, we mean exactly that
x ∈ {−1,1}n and exclude the case when a component ofx is zero. All vectors will be
column vectors unless transposed to a row vector by a superscript T . For a vectorx ∈ Rn

the notationx j will signify the j-th component. The scalar (inner) product of two vectors
x andy in then-dimensional real spaceRn will be denoted byxT y. Forx ∈ Rn, |x| denotes
the vector inRn whose components are the absolute values of the components of x. The
notationA ∈ Rm×n will signify a realm×n matrix. For such a matrix,AT will denote the
transpose ofA, Ai will denote thei-th row andAi j the i jth element. A vector of ones in
a real space of arbitrary dimension will be denoted bye. Thus fore ∈ Rn andx ∈ Rn the
notationeT x will denote the sum of the components ofx. A vector of zeros in a real space
of arbitrary dimension will be denoted by 0. The abbreviation “s.t.” stands for “subject to”.

2. Linear Programming Formulation and Uniqueness of Integer Solution

We begin by stating a rather obvious linear programming relaxation of our integer variable
linear equation (1) as follows:

min
x

0T x s.t. Ax = d, −e ≤ x ≤ e. (7)

We note immediately that if this linear program has a unique solution and that solution is
integer then by solving this linear program a solution to (1)is obtained. We first state a
rather obvious uniqueness result for (7).

Proposition 1 Uniqueness of Solution of Linear Program (7) The linear program (7)
has a unique solution if and only if it gives the same solution for any arbitrary objective
function hT x.
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Proof: This is evident or more formally follows from [5, Theorem 1].

This proposition is useful for checking the uniqueness of any solution of the linear pro-
gram (7), whereas the following proposition establishes the uniqueness of a given solution
of (1). Since each solution of (1) is also a solution of the linear program (7), it follows that
if a solution of (1) is a unique solution of the linear program(7), then it must be a unique
solution of (1).

Proposition 2 Uniqueness of a Given Integer solution of Linear Program (7) and the
Linear Equation (1) Let x = De, Dii =±1, i = 1, . . . ,n, be a solution of (1). Then any one
of conditions (i), (ii) or (iii) below, imply that the linear program (7) and hence the linear
equation (1) have the unique solution x = De.

(i) The system
Ax = 0, Dx ≥ 0, x 6= 0, (8)

has no solution x ∈ Rn.

(ii) The following holds for the intersection of the kernel of A, ker(A), and the dual cone
{x | Dx ≥ 0} generated by the rows of D:

ker(A)
\

dual cone(D) = 0∈ Rn. (9)

(iii) For each q ∈ Rn the following system has solution (u,v) ∈ R2n:

AT u+Dv = q, v ≥ 0. (10)

Proof: We first note that at an integer solution of the linear program(7) we have, for the
n× n diagonal matrixD of ±1’s corresponding to±1 components of the integer solution
x, that:

Ax = d, Dx = e. (11)

Hence the only active inequality constraints of the linear program (7) are those correspond-
ing toDx = e. We then have that the sufficient conditions (i)-(iii) abovefor the uniqueness
of an integer solution of (7) hold because of the following.

(i) This part follows from [5, Theorem 2(iii)].

(ii) This part is essentially is a restatement of (i) this theorem once we note that the dual
cone ofD is merely the set{x | Dx ≥ 0}.

(iii) This part follows from [5, Theorem 2(vii)].

An obvious corollary to Proposition 2(i) leads to the following simple linear programming
sufficient condition for the uniqueness of a given integer solution of the linear program (7)
and hence of our original linear equation (1).
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Corollary 3 Uniqueness of Integer Solution of the Linear Program (7) and the Linear
Equation (1) The linear program (7) and hence the linear equation (1) have a unique
integer solution x = De, where Dii = ±1, i = 1, . . . ,n, if the following linear program has
a zero maximum:

max
x

eT Dx s.t. Ax = 0, Dx ≥ 0, −e ≤ x ≤ e. (12)

Proof: The proof follows directly from Proposition 2(i).

We shall now use the linear programming formulation (7) and the results above to gener-
ate integer solutions for our problem (1) and determine whenits integer solution is unique.

3. Integer Solution of (1) via the Linear Program (7)

We begin the section with two simple examples, the first with anon-unique integer solution
and the second with a unique one.

Example 1
Ax = d, where A = [1 1.5 1], d = 1.5. (13)

This problem has two integer solutions,[−1 1 1] and[1 1 −1]. If we test for uniqueness
of the first solution by solving the linear program (12) we have that:

max
x

{−x1 + x2 + x3 | x1 +1.5x2 + x3 = 0, −x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, −e ≤ x ≤ e} = 2 > 0,

(14)
from which we conclude by Corollary 3 that the solution[−1 1 1] is not necessarily a
unique integer solution of (1). A similar result holds if thelinear program (12) is applied
to the other solution[1 1 − 1]. Using the linear programming formulation (7) on this
example gives the integer solution[−1 1 1]. Changing the objective function coefficient
vector of (7) from zero to the integer solution[−1 1 1] to force (7) away from that solution
gives the other integer solution[1 1 −1].

Example 2
Ax = d, where A = [3 2 −1], d = 2. (15)

By enumeration this problem has a unique integer solution,[1 −1 −1]. If we test for
uniqueness of this integer solution by solving the linear program (12) we have that:

max
x

{x1− x2− x3 | 3x1 +2x2− x3 = 0, x1 ≥ 0, −x2 ≥ 0, −x3 ≥ 0, −e ≤ x ≤ e} =
7
3

> 0,

(16)
from which we conclude by Corollary 3 that the solution[1 −1 −1] is not necessarily
a unique integer solution of (1). The linear program program(7) obtains the non-integer
solution[−1/3 1 −1].

In Table 1 we present computational results for fifteen integer linear equations (1) by
solving the linear program (7), utilizing the CPLEX linear programming code [4] within
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MATLAB [7]. The integer linear equation (1) was obtained by the transformation (4) of
15 randomly generated solvable multi-knapsack feasibility problems (3)Ay = b, A ∈ Rm×n,
y ∈ {0,1}n, with eachAi j randomly chosen from the set{1,2, . . . ,1000} and such that a
solution y ∈ {0,1}n of (3) exists with approximately a quarter of its componentsbeing
zero. The times in Table 1 are for a 4 Gigabyte machine runningRed Hat Enterprise Linux
5. Column 4 gives the number of non-integer components of a solution of (1) obtained by
the the linear program (7). We make the following remarks regarding Table 1:

(i) For 10 of the 15 instances generated, the linear program (7) obtained integer solutions
which turned out to be unique solutions of the system of linear equations (1). Unique-
ness of an integer solution of (7) and hence of (1) was determined by a zero maximum
of the linear program (12) and is signified by a “yes” in column5 of Table 1.

(ii) In all ten instances for whichm ≥ n
2, the linear program (7) generated an integer

solution which turned out to be a unique solution of (1).

(iii) For the five problems for which integer solutions were not obtained by the linear
program (7), exactlym non-integer components were generated by the linear program
(7) solution for each instance. For these instances, no assertion regarding uniqueness
of solution is made in column 5 of Table 1, because the linear program (12) returned a
positive maximum for the known integer solution of these problems.

4. Conclusion and Outlook

We have transformed a generalized multi-knapsack feasibility problem into a system of
linear equations in±1 integer variables and have formulated a linear program (7)for its
solution. This linear programming formulation appears to work wheneverm ≥ n

2. We
have also given a sufficient conditions for uniqueness of anygiven integer solution of the
system of linear equations (1) by solving a single linear program (12). A topic worth further
investigation is that of giving sufficient conditions such as m ≥ n

2 plus other conditions, if
any, that would ensure the generation of an integer solutionby the linear program (7).

Acknowledgments

Research described in this Data Mining Institute Report 09-01, July 2009, was supported
by National Science Foundation Grant IIS-0511905. We are indebted to our colleague Eric
Bach for reference [10] and for discussions regarding uniqueness of integer solutions.



6 O. L. MANGASARIAN & M. C. FERRIS

Table 1. Integer solution of the system of linear equations (1)Ax = d by the linear program (7), utilizing the
CPLEX linear programming code [4] within MATLAB [7]. The times are for a 4 Gigabyte machine running Red
Hat Enterprise Linux 5. Column 4 gives the number of non-integer components of a solution obtained by the the
linear program (7). Column 5 states whether (1) has a unique solution as determined by the linear program (12)
having a zero maximum.

No. of Rows No. of Variables MATLAB Time Sec No. of Non-Integer Uniqueness of Integer
m n toc Components in LP Solution Solution

3 10 0.005 3 —

5 10 0.005 0 yes

8 10 0.004 0 yes

30 100 0.007 30 —

50 100 0.009 0 yes

80 100 0.009 0 yes

150 500 0.131 150 —

250 500 0.266 0 yes

400 500 0.380 0 yes

300 1,000 1.282 300 —

500 1,000 3.308 0 yes

800 1,000 3.391 0 yes

600 2,000 17.499 600 —

1,000 2,000 41.598 0 yes

1,600 2,000 37.777 0 yes
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