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Abstract

We propose a privacy-preserving support vector machine (SVM) classifier for a data matrixA whose input
feature columns as well as individual data point rows are divided into groups belonging to different entities.
Each entity is unwilling to make public its group of columns and rows. Our classifier utilizes the entire data
matrix A while maintaining the privacy of each block. This classifieris based on the concept of a random
kernelK(A,B′) whereB′ is the transpose of a random matrixB, as well as the reduction of a possibly complex
pattern of data held by each entity into a checkerboard pattern. The proposed nonlinear SVM classifier, which
is public but does not reveal any of the privately-held data,has accuracy comparable to that of an ordinary
SVM classifier based on the entire set of input features and data points all made public.
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1 INTRODUCTION

Recently there has been wide interest in privacy-preserving supportvector machine (SVM) classification.
Basically the problem revolves around generating a classifier based on data, parts of which are held by private
entities who, for various reasons, are unwilling to make it public. When eachentity holds its own group of
input feature values for all individuals while other entities hold other groups of feature values for the same
individuals, the data is referred to asvertically partitioned. This is so because feature values are represented
by columns of a data matrix while individuals are represented by rows of the data matrix. In [22], privacy-
preserving SVM classifiers were obtained for vertically partitioned data byadding random perturbations to the
data. In [20, 21],horizontally partitionedprivacy-preserving SVMs and induction tree classifiers were obtained
for data where different entities hold the same input features for different groups of individuals. Other privacy
preserving classifying techniques include cryptographically private SVMs [16], wavelet-based distortion [10] and
rotation perturbation [2]. More recently [14, 13] a random kernelK(A,B′) whereB′ is the transpose of a random
matrix B was used to handle vertically partitioned data [14] as well as horizontally partitioned data [13].

In this work we propose a highly efficient privacy-preserving SVM (PPSVM) classifier for verticallyand
horizontally partitioned data that employs a random kernelK(A,B′). Thus them×n data matrixA with n features
andm data points, each of which inRn, is partitioned in a possibly complex way amongp entities as depicted,
for example, amongp = 4 entities as shown in Figure 1. Our task is to construct an SVM classifier based on the
entire data matrixA without requiring the contents of each entity’s matrix block be made public.

Our approach will be to first subdivide a given data matrixA that is owned byp entities into a checkerboard
pattern ofq cells, with q ≥ p, as depicted, for example in Figure 2. Secondly, each cell blockAi j of the
checkerboard will be utilized to generate the random kernel blockK(Ai j ,B· j

′), whereB· j is random matrix of
appropriate dimension. It will be shown in Section 2 that under mild assumptions, the random kernelK(Ai j ,B· j

′)
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Figure 1: A data matrixA partitioned intop = 4 blocks with each block owned by a distinct entity.

Figure 2: The checkerboard pattern containingq = 20 cell blocks generated from the data matrixA of Figure 1.



will safely protect the data blockAi j from discovery by entities that do not own it, while allowing the computation
of a classifier based on the entire data matrixA.

We now briefly describe the contents of the paper. In Section 2 we present our method for a privacy-protecting
linear SVM classifier for checkerboard partitioned data, and in Section 3 do the same for a nonlinear SVM
classifier. In Section 4 we give computational results that show the effectiveness of our approach, including
correctness that is comparable to ordinary SVMs that use the entire dataset. Section 5 concludes the paper with a
summary and some ideas for future work.

We describe our notation now. All vectors will be column vectors unless transposed to a row vector by a
prime ′. For a vectorx∈ Rn the notationx j will signify either the j-th component orj-th block of components.
The scalar (inner) product of two vectorsx andy in then-dimensional real spaceRn will be denoted byx′y. For

x ∈ Rn, ‖x‖1 denotes the 1-norm:(
n

∑
i=1

|xi |). The notationA ∈ Rm×n will signify a real m×n matrix. For such

a matrix,A′ will denote the transpose ofA, Ai will denote thei-th row or i-th block of rows ofA andA· j the
j-th column or thej-th block of columns ofA. A vector of ones in a real space of arbitrary dimension will
be denoted bye. Thus fore∈ Rm andy ∈ Rm the notatione′y will denote the sum of the components ofy. A
vector of zeros in a real space of arbitrary dimension will be denoted by 0. ForA∈ Rm×n andB∈ Rk×n, a kernel
K(A,B′) mapsRm×n×Rn×k into Rm×k. In particular, ifx andy are column vectors inRn then,K(x′,y) is a real
number,K(x′,B′) is a row vector inRk andK(A,B′) is anm× k matrix. The base of the natural logarithm will
be denoted byε. A frequently used kernel in nonlinear classification is the Gaussian kernel [18, 17, 11] whose
i j -th element,i = 1, . . . . . . ,m, j = 1, . . . . . . ,k, is given by:(K(A,B′))i j = ε−µ‖Ai−B· j

′‖2
, whereA∈ Rm×n, B∈ Rk×n

andµ is a positive constant. We shall not assume that our kernels satisfy Mercer’s positive definiteness condition
[18, 17, 3], however we shall assume that they are separable in the following sense:

K([E F], [G H]′) = K(E,G′)+K(F,H ′) or K([E F], [G H]′) = K(E,G′)⊙K(F,H ′), (1.1)

where the symbol⊙ denotes the Hadamard component-wise product of two matrices of the same dimensions [5],
E ∈ Rm×n1, F ∈ Rm×n2, G∈ Rk×n1 andH ∈ Rk×n2. It is straightforward to show that a linear kernelK(A,B′) = AB′

satisfies (1.1) with the+ sign, and a Gaussian kernel satisfies (1.1) with the⊙ sign. The abbreviation “s.t.” stands
for “subject to”.

2 Privacy-Preserving Linear Classifier for Checkerboard Partitioned Data

The dataset that we wish to obtain a classifier for consists ofm points inRn represented by them rows of the
matrix A∈ Rm×n. The matrix columns ofA are partitioned intos vertical blocks ofn1,n2, . . . . . . andns columns
in each block such thatn1 +n2 + . . .+ns = n. Furthermore, all of the column blocks are identically partitioned
into r horizontal blocks ofm1,m2, . . . . . . andmr rows in each block such thatm1 + m2 + . . . + mr = m. This
checkerboard pattern of data similar to that of Figure 2 may result from a more complex data pattern such that of
Figure 1. We note that each cell block of the checkerboard is owned by aseparate entity but with the possibility
of a single entity owning more than one checkerboard cell. No entity is willing to make its cell block(s) public.
Furthermore, each individual row ofA is labeled as belonging to the class+1 or−1 by a corresponding diagonal
matrix D ∈ Rm×m of ±1’s. The linear kernel classifier to be generated based on all the data willbe a separating
plane inRn:

x′w− γ = x′B′u− γ = 0, (2.2)

which classifies a given pointx according to the sign ofx′w− γ. Here,w = B′u, w∈ Rn is the normal to the plane
x′w− γ = 0, γ ∈ R determines the distance of the plane from the origin inRn andB is a random matrix inRk×n.
The change of variablesw= B′u is employed in order to kernelize the data and is motivated by the fact that when
B = A and hencew = A′u, the variableu is the dual variable for a 2-norm SVM [11]. The variablesu∈ Rk and
γ ∈ Rare to be determined by an optimization problem such that the labeled dataA satisfy, to the extent possible,
the separation condition:



D(AB′u−eγ) ≥ 0. (2.3)

This condition (2.3) places the+1 and−1 points represented byA on opposite sides of the separating plane
(2.2). In general, the matrixB which determines a transformation of variablesw= B′u, is set equal toA. However,
in reduced support vector machines [9, 7]B= Ā, whereĀ is a submatrix ofA whose rows are a small subset of the
rows ofA. However,B can be a random matrix inRm̄×n with n≤ m̄≤m if m≥ n andm̄= m if m≤ n. This random
choice ofB holds the key to our privacy-preserving classifier and has been usedeffectively in SVM classification
problems [12]. Our computational results of Section 4 will show that there is no substantial difference between
using a randomB or a random submatrix of̄A of the rows ofA as in reduced SVMs [9, 8]. One justification for
these similar results can be given for the case when ¯m≥ n and the rank of the ¯m×n matrixB is n. For such a case,
whenB is replaced byA in (2.3), this results in a regular linear SVM formulation with a solution, sayv ∈ Rm.
In this case, the reduced SVM formulation (2.3) can match the regular SVM term AA′v by the termAB′u, since
B′u = A′v has a solutionu for anyv becauseB′ has rankn.

We shall now partition then columns of the random matrixB ∈ Rm̄×n into s column blocks with column
block B· j containingn j columns for j = 1, . . . ,s. Furthermore, each column blockB· j will be generated by
entities owning them−by-n j column block ofA· j and is never made public. Thus, we have:

B = [B·1 B·2 . . . . . .B·s]. (2.4)

We will show that under the assumption that:

n j > m̄, j = 1, . . . ,s, (2.5)

the privacy of each checkerboard block privacy is protected.
We are ready to state our algorithm which will provide a linear classifier for the data without revealing pri-

vately held checkerboard cell blocksAi j , i = 1, . . . , r, j = 1, . . . ,s. The accuracy of this algorithm will, in general,
be comparable to that of a linear SVM using a publicly availableA instead of merelyA·1B·1

′
,A·2B·2

′
. . . . . .A·sB·s

′,
as will be the case in the following algorithm.

ALGORITHM 2.1. Linear PPSVM Algorithm

(I) All entities agree on thesamelabels for each data point, that is Dii = ±1, i = 1, . . . . . . ,m and on the
magnitude ofm̄, the number of rows of the random matrix B∈ Rm̄×n which must satisfy (2.5).

(II) All entities i = 1, . . . , r, sharing the same same column block j,1≤ j ≤ s, with nj features, must agree on
using the samēm×n j random matrix B· j which is privately held by themselves.

(III) Each entity i= 1, . . . , r, owning cell block Ai j makes public its linear kernel Ai j B· j
′, but not Ai j . This allows

the public computation of the full linear kernel:

(AB′)i = Ai1B·1
′ + . . . . . .+AisB·s

′
, i = 1, . . . , r. (2.6)

(IV) A publicly calculated linear classifier x′Bu− γ = 0 is computed by some standard method such as1-norm
SVM [11, 1] for some positive parameterν:

min
(u,γ,y)

ν‖y‖1 +‖u‖1

s.t. D(AB′u−eγ)+y ≥ e,
y ≥ 0.

(2.7)



(V) For eachnewx∈ Rn, the component blocks xj
′B· j

′, j = 1, . . . ,s, are made public from which a public linear
classifier is computed as follows:

x′B′u− γ = (x1
′B·1

′ +x2
′B·2

′ + . . . . . .+xs
′B·s

′)u− γ = 0, (2.8)

which classifies the given x according to the sign of x′Bu− γ.

REMARK 2.2. Note that in the above algorithm no entity i j which owns cell block Ai j reveals its dataset nor its
components of a new data point xj . This is so because it is impossible to compute the min j numbers constituting
Ai j ∈ Rmi×n j given only the mim̄ numbers constituting(Ai j B· j

′) ∈ Rmi×m̄, because min j > mim̄. Similarly it is
impossible to compute the nj numbers constituting xj ∈ Rn j from them̄ constituting xj ′B· j

′ ∈ Rm̄ because nj > m̄.
Hence, all entities share the publicly computed linear classifier (2.8) using AB′ and x′B′ without revealing either
the individual datasets or new point components.

We turn now to nonlinear classification.

3 Privacy Preserving Nonlinear Classifier for Checkerboard Partitioned Data

The approach to nonlinear classification is similar to that for the linear one, except that we make use of the
Hadamard separability of a nonlinear kernel (1.1) which is satisfied by a Gaussian kernel. Otherwise, the approach
is very similar to that of a linear kernel. We state that approach explicitly now.

ALGORITHM 3.1. Nonlinear PPSVM Algorithm

(I) All s entities agree on thesamelabels for each data point, that Dii = ±1, i = 1, . . . . . . ,m and on the
magnitude ofm̄, the number of rows of the random matrix B∈ Rm̄×n which must satisfy (2.5).

(II) All entities i = 1, . . . , r, sharing the same same column block j,1≤ j ≤ s, with nj features, must agree on
using the samēm×n j random matrix B· j which is privately held by themselves.

(III) Each entity i= 1, . . . , r, owning cell block Ai j makes public its nonlinear kernel K(Ai j ,B· j
′), but not Ai j .

This allows the public computation of the full nonlinear kernel:

K(A,B′)i = K(Ai1,B·1
′)⊙ . . . . . .⊙K(Ais,B·s

′), i = 1, . . . , r. (3.9)

(IV) A publicly calculated linear classifier K(x′,B′)u− γ = 0 is computed by some standard method such as
1-norm SVM [11, 1] for some positive parameterν:

min
(u,γ,y)

ν‖y‖1 +‖u‖1

s.t. D(K(A,B′)u−eγ)+y ≥ e,
y ≥ 0.

(3.10)

(V) For eachnewx∈ Rn, the component blocks K(x j ′,B· j
′), j = 1, . . . ,s, are made public from which a public

nonlinear classifier is computed as follows:

K(x′,B′)u− γ = (K(x1
′
,B·1

′)⊙K(x2
′
,B·2

′)⊙ . . . . . .⊙K(xs
′
,B·s

′))u− γ = 0, (3.11)

which classifies the given x according to the sign of K(x′,B′)u− γ.



REMARK 3.2. Note that in the above algorithm no entity i j which owns cell block Ai j reveals its dataset nor its
components of a new data point xj . This is so because it is impossible to compute the min j numbers constituting
Ai j ∈ Rmi×n j given only the mim̄ numbers constituting K(Ai j ,B· j

′) ∈ Rmi×m̄, because min j > mim̄. Similarly it
is impossible to compute the nj numbers constituting xj ∈ Rn j from them̄ constituting K(x j

′,B· j
′) ∈ Rm̄ because

n j > m̄. Hence, all entities share the publicly computed nonlinear classifier (3.11) using K(A,B′) and K(x′,B′)
without revealing either the individual datasets or new point components.

Before turning to our computational results, it is useful to note that Algorithms2.1 and 3.1 can be used easily
with other kernel classification algorithms instead of the 1-norm SVM, including the ordinary 2-norm SVM [17],
the proximal SVM [4], and logistic regression [19].

We turn now to our computational results.

4 Computational Results

To illustrate the effectiveness of our proposed privacy preserving SVM (PPSVM), we used seven datasets from
the UCI Repository [15] to simulate a situation in which data is distributed among several different entities. We
formed a checkerboard partition which divided the data into blocks, with each entity owning exactly one block.
Each block had data for approximately 25 examples, and we carried out experiments in which there were one, two,
four, and eight vertical partitions (for example, the checkerboard pattern in Figure 2 has four vertical partitions).
Thus, the blocks in each experiment all contained all, one half, one fourth, or one eighth of the total number of
features. With one vertical partition, our approach is the same as the technique for horizontally partitioned data
described in [13], and these results provide a baseline for the experiments with more partitions. We note that the
errors with no sharing represent a worst-case scenario in that a different entity owns each block of data. If entities
owned multiple blocks, their errors without sharing might decrease. Nevertheless, it is unlikely that such entities
would generally do better than our PPSVM approach, especially in cases inwhich the PPSVM is close to the
ordinary 1-norm SVM.

We compare our PPSVM approach to a situation in which each entity forms a classifier only using its own
data, with no sharing, and to a situation in which all entities share the reduced kernelK(A, Ā′) without privacy,
whereĀ is a matrix whose rows are a random subset of the rows ofA [9]. Results for one, two, four, and eight
vertical partitions are reported in Table 1. All experiments were run using the commonly used Gaussian kernel
described in Section 1. In every result,Ā consisted of ten percent of the rows ofA randomly selected, whileB
was a completely random matrix with the same number of columns asA. The number of rows ofB was set to
the minimum ofn−1 and the number of rows of̄A, wheren is the number of features in the vertical partition.
Thus, we ensure that the condition (2.5) discussed in the previous sections holds in order to guarantee that the
private dataAi j cannot be recovered fromK(Ai j ,B′). Each entry ofB was selected independently from a uniform
distribution on the interval[0,1]. All datasets were normalized so that each feature was between zero andone.
This normalization can be carried out if the entities disclose only the maximum and minimum of each feature
in their datasets. When computing ten-fold cross validation, we first dividedthe data into folds and set up the
training and testing sets in the usual way. Then each entity’s dataset was formed from the training set of each
fold. The accuracies of all classifiers were computed on the testing set ofeach fold.

To save time, we used the tuning strategy described in [6] to choose the parametersν of (3.10) andµ of
the Gaussian kernel. In this Nested Uniform Design approach, rather than evaluating a classifier at each point
of a grid in the parameter space, the classifier is evaluated only at a set of points which is designed to “cover”
the original grid to the extent possible. The point from this smaller set on which the classifier does best is
then made the center of a grid which covers a smaller range of parameter space, and the process is repeated.
Huang et al. [6] demonstrate empirically that this approach finds classifierswith similar misclassification
error as a brute-force search through the entire grid. We set the initial range of log10ν to [−7,7], and the
initial range of log10µ as described in [6]. Note that we set the initial range of log10µ independently for



Dataset No. of Vertical Rows ofB Ideal Error Using PPSVM Error Error Using
Examples× Features Partitions Entire Data Sharing Individual Data

without Privacy Protected Data without Sharing
K(A, Ā′) K(A,B′) K(Ais,Ais

′)

Cleveland Heart (CH) 1 12 0.17 0.15 0.24
297× 13 2 5 0.19 0.19 0.28

4 2 0.17 0.24 0.30
Ionosphere (IO) 1 33 0.07 0.09 0.19

351× 34 2 16 0.06 0.11 0.20
4 7 0.05 0.17 0.21
8 3 0.06 0.26 0.24

WDBC (WD) 1 29 0.03 0.03 0.11
569× 30 2 14 0.02 0.04 0.10

4 6 0.03 0.06 0.12
8 2 0.03 0.11 0.16

Arrhythmia (AR) 1 45 0.21 0.27 0.38
452× 279 2 45 0.22 0.28 0.36

4 45 0.23 0.27 0.40
8 33 0.24 0.29 0.40

Pima Indians (PI) 1 7 0.23 0.25 0.36
768× 8 2 3 0.23 0.31 0.35

4 1 0.23 0.34 0.38
Bupa Liver (BL) 1 5 0.30 0.40 0.42

345× 6 2 2 0.30 0.42 0.42
German Credit (GC) 1 23 0.24 0.24 0.34

1000× 24 2 11 0.24 0.29 0.34
4 5 0.24 0.30 0.34
8 2 0.24 0.30 0.33

Table 1: Comparison of error rates for entities sharing entire data without privacy through the reduced kernel
K(A, Ā′), sharing data using our PPSVM approach, and not sharing data. Whenthere are enough features, results
are given for situations with one, two, four, and eight vertical partitions using a Gaussian kernel.

each entity using only that entity’s examples and features. We used a Uniform Design with thirty runs from
http://www.math.hkbu.edu.hk/UniformDesign for both nestings, and used leave-one-out cross validation
on the training set to evaluate each(ν,µ) pair when the entities did not share and five-fold cross validation on the
training set they did. We used leave-one-out cross validation when not sharing because only about 25 examples
were available to each entity in that situation.

To illustrate the improvement in error rate of PPSVM compared to an ordinary 1-norm SVM based only on
the data for each entity with no sharing, we provide a graphical presentation of some results in Table 1. Figure 3
shows a scatterplot comparing the error rates of our data-sharing PPSVM versus the 1-norm no-sharing reduced
SVM using Gaussian kernels. The diagonal line in both figures marks equal error rates. Note that points below
the diagonal line represent datasets for which PPSVM has a lower errorrate than the average error of the entities
using only their own data. Figure 3 shows a situation in which there are two vertical partitions of the dataset,
while Figure 4 shows a situation in which there are four vertical partitions. Note that in Figure 3, our PPSVM
approach has a lower error rate for six of the seven datasets, while in Figure 4, PPSVM has a lower error rate on
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Figure 3: Error rate comparison of our PPSVM with a random kernelK(A,B′) vs 1-norm nonlinear SVMs sharing
no data for checkerboard data with two vertical partitions. For points belowthe diagonal, PPSVM has a better
error rate. The diagonal line in each plot marks equal error rates. Each point represents the result for the dataset
in Table 1 corresponding to the letters attached to the point.
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error rate. The diagonal line in each plot marks equal error rates. Each point represents the result for the dataset
in Table 1 corresponding to the letters attached to the point. Note that there arenot enough features in the Bupa
Liver dataset for four vertical partitions.



all six datasets.

5 Conclusion and Outlook

We have proposed a linear and nonlinear privacy-preserving SVM classifier for a data matrix, arbitrary blocks
of which are held by various entities that are unwilling to make their blocks public. Our approach divides
the data matrix into a checkerboard pattern and then creates a linear or nonlinear kernel matrix from each cell
block of the checkerboard together with a suitable random matrix that preserves the privacy of the cell block
data. Computational comparisons indicate that the accuracy of our proposed approach is comparable to full and
reduced data classifiers. Furthermore, a marked improvement of accuracy is obtained by the privacy-preserving
SVM compared to classifiers generated by each entity using its own data alone. Hence, by making use of a
random kernel for each cell block, the proposed approach succeeds in generating an accurate classifier based on
privately held data without revealing any of that data.

Future work will entail combining our approach with other ones such as those of rotation perturbation [2],
cryptographic approach [16] and data distortion [10].
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