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Abstract

We propose a privacy-preserving support vector machiné/{Sdfassifier for a data matriA whose input
feature columns as well as individual data point rows ar@eéiy into groups belonging to different entities.
Each entity is unwilling to make public its group of columnedaows. Our classifier utilizes the entire data
matrix A while maintaining the privacy of each block. This classifebased on the concept of a random
kernelK (A, B') whereB' is the transpose of a random matBxas well as the reduction of a possibly complex
pattern of data held by each entity into a checkerboard ipatiéne proposed nonlinear SVM classifier, which
is public but does not reveal any of the privately-held dates accuracy comparable to that of an ordinary
SVM classifier based on the entire set of input features atalptzints all made public.
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1 INTRODUCTION

Recently there has been wide interest in privacy-preserving sumeetbr machine (SVM) classification.
Basically the problem revolves around generating a classifier basedtanghrts of which are held by private
entities who, for various reasons, are unwilling to make it public. When eatity holds its own group of
input feature values for all individuals while other entities hold other gsoopfeature values for the same
individuals, the data is referred to a&ertically partitioned This is so because feature values are represented
by columns of a data matrix while individuals are represented by rows of dkee matrix. In [22], privacy-
preserving SVM classifiers were obtained for vertically partitioned datadding random perturbations to the
data. In [20, 21]horizontally partitionedprivacy-preserving SVMs and induction tree classifiers were obtained
for data where different entities hold the same input features for diffegeups of individuals. Other privacy
preserving classifying techniques include cryptographically privat®! S|16], wavelet-based distortion [10] and
rotation perturbation [2]. More recently [14, 13] a random kelkéA, B') whereB' is the transpose of a random
matrix B was used to handle vertically partitioned data [14] as well as horizontaltifipaed data [13].

In this work we propose a highly efficient privacy-preserving SVMPEYM) classifier for verticallyand
horizontally partitioned data that employs a random kekn@, B'). Thus themx n data matrixA with n features
andm data points, each of which iR", is partitioned in a possibly complex way amopg@ntities as depicted,
for example, among@ = 4 entities as shown in Figure 1. Our task is to construct an SVM classifiedlmasthe
entire data matriXA without requiring the contents of each entity’s matrix block be made public.

Our approach will be to first subdivide a given data ma#ithat is owned byp entities into a checkerboard
pattern ofq cells, withq > p, as depicted, for example in Figure 2. Secondly, each cell biggclof the
checkerboard will be utilized to generate the random kernel bkogk;,B.;’), whereB.; is random matrix of
appropriate dimension. It will be shown in Section 2 that under mild assumptlesandom kerndf (Ajj,B.;’)
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Figure 1: A data matriA partitioned intop = 4 blocks with each block owned by a distinct entity.

[

Figure 2: The checkerboard pattern containing 20 cell blocks generated from the data matinf Figure 1.



will safely protect the data block;; from discovery by entities that do not own it, while allowing the computation
of a classifier based on the entire data ma#ix

We now briefly describe the contents of the paper. In Section 2 we gresemethod for a privacy-protecting
linear SVM classifier for checkerboard partitioned data, and in Section ghe same for a nonlinear SVM
classifier. In Section 4 we give computational results that show the e#eetss of our approach, including
correctness that is comparable to ordinary SVMs that use the entire d&aston 5 concludes the paper with a
summary and some ideas for future work.

We describe our notation now. All vectors will be column vectors unlesspesed to a row vector by a
prime’. For a vectox € R" the notatiorx; will signify either the j-th component of-th block of components.
The scalar (inner) product of two vectorsandy in the n-dimensional real spad®’ will be denoted by'y. For

x € R, ||x||1 denotes the 1-norm( Z'X' The notationA € R™" will signify a real mx n matrix. For such

a matrix, A" will denote the transpose &, A will denote thei-th row ori-th block of rows ofA andA | the
j-th column or thej-th block of columns ofA. A vector of ones in a real space of arbitrary dlmen5|on will
be denoted by. Thus fore € R™ andy € R™ the notation€'y will denote the sum of the componentsyof A
vector of zeros in a real space of arbitrary dimension will be denoted FpA € R™" andB € R", akernel
K(A,B') mapsR™" x R™K into R™X, In particular, ifx andy are column vectors iR" then,K(x,y) is a real
number,K (X, B') is a row vector inR¢ andK (A, B') is anm x k matrix. The base of the natural logarithm will
be denoted bg. A frequently used kernel in nonlinear classification is the Gaussiarekg8, 17, 11] whose
ij-thelementj=1,...... mj=1,...... 'k, is given by:(K(A,B));j = e HIA-Bi'I* whereA e R™" B e RO"
andp is a positive constant. We shall not assume that our kernels satisfy Réguositive definiteness condition
[18, 17, 3], however we shall assume that they are separable in theifudieense:

K([E FJ,[G H]') =K(E,G)+K(F,H") or K([E F],[G H]') =K(E,G) ®K(F,H'), (1.1)

where the symbab denotes the Hadamard component-wise product of two matrices of the sanmesidinsg 5],

E € R™M F c R™M2, G e R*M andH € R™, Itis straightforward to show that a linear kert&lA, B') = AB
satisfies (1.1) with the- sign, and a Gaussian kernel satisfies (1.1) with:trsggn. The abbreviation “s.t.” stands
for “subject to”.

2 Privacy-Preserving Linear Classifier for Checkerboard Partitioned Data
The dataset that we wish to obtain a classifier for consista pbints inR" represented by the rows of the

matrix A € R™". The matrix columns oA are partitioned inte vertical blocks ofng, no,...... andns columns
in each block such that; + n, + ... 4+ ng = n. Furthermore, all of the column blocks are identically partitioned
into r horizontal blocks ofmy,my,...... andmy rows in each block such that; +mp 4+ ...+ m = m. This

checkerboard pattern of data similar to that of Figure 2 may result from a ownplex data pattern such that of
Figure 1. We note that each cell block of the checkerboard is ownedsbparate entity but with the possibility
of a single entity owning more than one checkerboard cell. No entity is willing teenitalcell block(s) public.
Furthermore, each individual row éfis labeled as belonging to the clas& or —1 by a corresponding diagonal
matrix D € R™™M of +1's. The linear kernel classifier to be generated based on all the dataevallseparating
plane inR™:

Xw—y=xBu-y=0, (2.2)
which classifies a given poimtaccording to the sign ofw—y. Here,w = B'u, w € R" is the normal to the plane
Xw—y=0,y e Rdetermines the distance of the plane from the origiRlrandB is a random matrix ifR>".
The change of variables = B'uis employed in order to kernelize the data and is motivated by the fact that when
B = A and hencev = A'u, the variableu is the dual variable for a 2-norm SVM [11]. The variables R and
y € Rare to be determined by an optimization problem such that the labeled datésfy, to the extent possible,
the separation condition:



D(ABu—ey) > 0. (2.3)

This condition (2.3) places thel and—1 points represented by on opposite sides of the separating plane
(2.2). In general, the matri& which determines a transformation of variables: B'u, is set equal té\. However,
in reduced support vector machines [9BA& A, whereA is a submatrix oA whose rows are a small subset of the
rows of A. However,B can be a random matrix R™" with n < m< mif m> nandm= mif m< n. This random
choice ofB holds the key to our privacy-preserving classifier and has beenaffgdively in SVM classification
problems [12]. Our computational results of Section 4 will show that there suibstantial difference between
using a randonB or a random submatrix ok of the rows ofA as in reduced SVMs [9, 8]. One justification for
these similar results can be given for the case whenn and the rank of thenx n matrix Bis n. For such a case,
whenB is replaced byA in (2.3), this results in a regular linear SVM formulation with a solution, gayR™.
In this case, the reduced SVM formulation (2.3) can match the regular S\HVIA&fv by the termAB'u, since
B'u= A'v has a solutiom for anyv becausd’ has rankn.

We shall now partition the columns of the random matri® € R™" into s column blocks with column
block B.j containingn; columns forj = 1,...,s. Furthermore, each column blodk; will be generated by
entities owning then—by-n; column block ofA j and is never made public. Thus, we have:

B=[B1 By......Bg. (2.4)
We will show that under the assumption that:
nj>m j=1,....s (2.5)

the privacy of each checkerboard block privacy is protected.

We are ready to state our algorithm which will provide a linear classifier ferddita without revealing pri-
vately held checkerboard cell blockg,i=1,...,r, j=1,...,s The accuracy of this algorithm will, in general,
be comparable to that of a linear SVM using a publicly avail#biestead of merehA1B.1/,A2B’...... ABYS,
as will be the case in the following algorithm.

ALGORITHM 2.1. Linear PPSVM Algorithm

(I) All entities agree on thesamelabels for each data point, that isjD= £1, i =1,...... ,m and on the
magnitude ofn, the number of rows of the random matrixxBR™" which must satisfy (2.5).

(Il) All entitiesi=1,...,r, sharing the same same column block g j <'s, with nj features, must agree on
using the samen x n; random matrix By which is privately held by themselves.

(Il Eachentityi=1,...,r, owning cell block & makes public its linear kernel/B.;’, but not A;. This allows
the public computation of the full linear kernel:

(AB); = A1By +...... T ABS i=1,....r (2.6)

(IV) A publicly calculated linear classifier Bu—y= 0 is computed by some standard method such-asrm
SVM [11, 1] for some positive parameter

min VIl =+ [ull1

(uyy)

st. DABu—ey)+y > e (2.7)
y > 0



(V) For eachnewx € R", the component blockg'B.;’, j =1,...,s, are made public from which a public linear
classifier is computed as follows:

XBUu—y=(x{/B1 +x'B'+...... +%xBs)u—y=0, (2.8)
which classifies the given x according to the sign’Biux-y.
REMARK 2.2. Note that in the above algorithm no entity ij which owns cell blogkéveals its dataset nor its
components of a new data point X his is so because it is impossible to compute thig numbers constituting
Aij € R™*Mi given only the nm numbers constitutingA;;B.;") € R"*™, because m; > mm. Similarly it is
impossible to compute thg numbers constituting;x R" from them constituting XB.;" € R™ because p> m.

Hence, all entities share the publicly computed linear classifier (2.8) usBigad XB’ without revealing either
the individual datasets or new point components.

We turn now to nonlinear classification.

3 Privacy Preserving Nonlinear Classifier for Checkerboard Partiioned Data

The approach to nonlinear classification is similar to that for the linear oreepéxhat we make use of the
Hadamard separability of a nonlinear kernel (1.1) which is satisfied byiastan kernel. Otherwise, the approach
is very similar to that of a linear kernel. We state that approach explicitly now.

ALGORITHM 3.1. Nonlinear PPSVM Algorithm

(I) All s entities agree on theamelabels for each data point, thatiD= +1, i=1,...... ,m and on the
magnitude ofn, the number of rows of the random matrixcBR™" which must satisfy (2.5).

(Il) All entitiesi=1,...,r, sharing the same same column block g j <'s, with nj features, must agree on
using the samen x nj random matrix B which is privately held by themselves.

(Il Each entity i=1,...,r, owning cell block 4 makes public its nonlinear kernel(;;,B.;’), but not A.
This allows the public computation of the full nonlinear kernel:

K(AB)i =K(AL,B1)®...... ©K(As,Bs),i=1,....r. (3.9)

(IV) A publicly calculated linear classifier &',B')u—y = 0 is computed by some standard method such as
1-norm SVM [11, 1] for some positive parameter

min V|yllz+[lull2

(uyy)

st. DK(AB)u—ey)+y > e (3.10)
y > 0

(V) For eachnewx € R", the component blocks(Ki’, B.j’), j=1,...,s, are made public from which a public
nonlinear classifier is computed as follows:

K(X,BYu—y= (K(x//,B1)OK(x',B2)o...... OK(x,Bs))u—y=0, (3.11)

which classifies the given x according to the sign ¢f'iB )u—y.



REMARK 3.2. Note that in the above algorithm no entity i j which owns cell blogkéveals its dataset nor its
components of a new data point Xhis is so because it is impossible to compute ti/g numbers constituting
Aij € R given only the sm numbers constituting (&;,B.j’) € RT XM hecause m; > mm. Similarly it
is impossible to compute thg numbers constituting;x R from them constituting Kx;’,B.j’) € R™ because
nj > m. Hence, all entities share the publicly computed nonlinear classifier (8sifig K(A,B') and K(x',B')
without revealing either the individual datasets or new point components.

Before turning to our computational results, it is useful to note that Algoritbrh&ind 3.1 can be used easily
with other kernel classification algorithms instead of the 1-norm SVM, inctythie ordinary 2-norm SVM [17],
the proximal SVM [4], and logistic regression [19].

We turn now to our computational results.

4 Computational Results

To illustrate the effectiveness of our proposed privacy presenvivig #PSVM), we used seven datasets from
the UCI Repository [15] to simulate a situation in which data is distributed amoragaalifferent entities. We
formed a checkerboard partition which divided the data into blocks, with eatity owning exactly one block.
Each block had data for approximately 25 examples, and we carriedpetierents in which there were one, two,
four, and eight vertical partitions (for example, the checkerboard ypaitted=igure 2 has four vertical partitions).
Thus, the blocks in each experiment all contained all, one half, one faurtine eighth of the total number of
features. With one vertical partition, our approach is the same as the taehioighorizontally partitioned data
described in [13], and these results provide a baseline for the expdsimvégh more partitions. We note that the
errors with no sharing represent a worst-case scenario in that eediffentity owns each block of data. If entities
owned multiple blocks, their errors without sharing might decrease. Neless, it is unlikely that such entities
would generally do better than our PPSVM approach, especially in casesich the PPSVM is close to the
ordinary 1-norm SVM.

We compare our PPSVM approach to a situation in which each entity formssifielasnly using its own
data, with no sharing, and to a situation in which all entities share the redecedl K (A, A’) without privacy,
whereA is a matrix whose rows are a random subset of the rows [8]. Results for one, two, four, and eight
vertical partitions are reported in Table 1. All experiments were run usiagtmmonly used Gaussian kernel
described in Section 1. In every resulconsisted of ten percent of the rowsAfandomly selected, whilB
was a completely random matrix with the same number of columis a$he number of rows oB was set to
the minimum ofn— 1 and the number of rows &, wheren is the number of features in the vertical partition.
Thus, we ensure that the condition (2.5) discussed in the previous sehtitds in order to guarantee that the
private datad; cannot be recovered frol(A;j, B'). Each entry oB was selected independently from a uniform
distribution on the interval0, 1]. All datasets were normalized so that each feature was between zeomand
This normalization can be carried out if the entities disclose only the maximum arnchammof each feature
in their datasets. When computing ten-fold cross validation, we first divildedlata into folds and set up the
training and testing sets in the usual way. Then each entity’s dataset maedfdrom the training set of each
fold. The accuracies of all classifiers were computed on the testing sathbffold.

To save time, we used the tuning strategy described in [6] to choose thmegdarav of (3.10) andu of
the Gaussian kernel. In this Nested Uniform Design approach, ratheretlsuating a classifier at each point
of a grid in the parameter space, the classifier is evaluated only at a seints prhich is designed to “cover”
the original grid to the extent possible. The point from this smaller set onhwthie classifier does best is
then made the center of a grid which covers a smaller range of parametey, spal the process is repeated.
Huang et al. [6] demonstrate empirically that this approach finds classiins similar misclassification
error as a brute-force search through the entire grid. We set the iratiger of logyv to [—7,7], and the
initial range of logyu as described in [6]. Note that we set the initial range of;jpgindependently for



Dataset No. of Vertical | Rows ofB | Ideal Error Using| PPSVM Error | Error Using
Examplesx Features|  Partitions Entire Data Sharing Individual Data
without Privacy | Protected Data without Sharing
K(AA) K(A,B) K(Ais,Ais’)
Cleveland Heart (CH 1 12 0.17 0.15 0.24
297 x 13 2 5 0.19 0.19 0.28
4 2 0.17 0.24 0.30
lonosphere (10) 1 33 0.07 0.09 0.19
351x 34 2 16 0.06 0.11 0.20
4 7 0.05 0.17 0.21
8 3 0.06 0.26 0.24
WDBC (WD) 1 29 0.03 0.03 0.11
569 x 30 2 14 0.02 0.04 0.10
4 6 0.03 0.06 0.12
8 2 0.03 0.11 0.16
Arrhythmia (AR) 1 45 0.21 0.27 0.38
452 x 279 2 45 0.22 0.28 0.36
4 45 0.23 0.27 0.40
8 33 0.24 0.29 0.40
Pima Indians (PI) 1 7 0.23 0.25 0.36
768 x 8 2 3 0.23 0.31 0.35
4 1 0.23 0.34 0.38
Bupa Liver (BL) 1 5 0.30 0.40 0.42
345x 6 2 2 0.30 0.42 0.42
German Credit (GC) 1 23 0.24 0.24 0.34
1000x 24 2 11 0.24 0.29 0.34
4 5 0.24 0.30 0.34
8 2 0.24 0.30 0.33

Table 1: Comparison of error rates for entities sharing entire data withoutay through the reduced kernel
K(A,A), sharing data using our PPSVM approach, and not sharing data. trerare enough features, results
are given for situations with one, two, four, and eight vertical partitiosingia Gaussian kernel.

each entity using only that entity’s examples and features. We used a tdriiesign with thirty runs from
http://www.math.hkbu.edu.hk/UniformDesign for both nestings, and used leave-one-out cross validation
on the training set to evaluate eashp) pair when the entities did not share and five-fold cross validation on the
training set they did. We used leave-one-out cross validation wherhadhg because only about 25 examples
were available to each entity in that situation.

To illustrate the improvement in error rate of PPSVM compared to an ordinagrih SVM based only on
the data for each entity with no sharing, we provide a graphical presemttgbme results in Table 1. Figure 3
shows a scatterplot comparing the error rates of our data-sharingMR8Mus the 1-norm no-sharing reduced
SVM using Gaussian kernels. The diagonal line in both figures markd egoarates. Note that points below
the diagonal line represent datasets for which PPSVM has a lowerrateaihan the average error of the entities
using only their own data. Figure 3 shows a situation in which there are twiwalgpartitions of the dataset,
while Figure 4 shows a situation in which there are four vertical partitionge et in Figure 3, our PPSVM
approach has a lower error rate for six of the seven datasets, whileuneFg PPSVM has a lower error rate on



K(A,B') vs. K(Ais,As’) for Two Vertical Partitions
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Figure 3: Error rate comparison of our PPSVM with a random kei&{él, B') vs 1-norm nonlinear SVMs sharing
no data for checkerboard data with two vertical partitions. For points b&élevwdiagonal, PPSVM has a better
error rate. The diagonal line in each plot marks equal error ratesh g@iat represents the result for the dataset
in Table 1 corresponding to the letters attached to the point.

K(A,B') vs.K(As, Ais') for Four Vertical Partitions
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Figure 4: Error rate comparison of our PPSVM with a random kei&{él, B') vs 1-norm nonlinear SVMs sharing
no data for checkerboard data with four vertical partitions. For poiniswbéhe diagonal, PPSVM has a better
error rate. The diagonal line in each plot marks equal error ratesh g@iat represents the result for the dataset
in Table 1 corresponding to the letters attached to the point. Note that thametazrough features in the Bupa
Liver dataset for four vertical partitions.



all six datasets.

5 Conclusion and Outlook

We have proposed a linear and nonlinear privacy-preserving SVbsifier for a data matrix, arbitrary blocks
of which are held by various entities that are unwilling to make their blocks puliiar approach divides
the data matrix into a checkerboard pattern and then creates a linear ore@orkernel matrix from each cell
block of the checkerboard together with a suitable random matrix thatmpesstehe privacy of the cell block
data. Computational comparisons indicate that the accuracy of our gppgroach is comparable to full and
reduced data classifiers. Furthermore, a marked improvement of agdarabtained by the privacy-preserving
SVM compared to classifiers generated by each entity using its own data dieree, by making use of a
random kernel for each cell block, the proposed approach sdsée@enerating an accurate classifier based on
privately held data without revealing any of that data.

Future work will entail combining our approach with other ones such asthbsotation perturbation [2],
cryptographic approach [16] and data distortion [10].
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