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Abstract. A direct generalized Newton method is proposed for solving the NP-hard absolute
value equation (AVE) Az —|z| = b when the singular values of A exceed 1. A simple MATLAB im-
plementation of the method solved 100 randomly generated 1000-dimensional AVEs to an accuracy
of 1076 in less than 10 seconds each. Similarly, AVEs corresponding to 100 randomly generated
linear complementarity problems with 1000 x 1000 nonsymmetric positive definite matrices were
also solved to the same accuracy in less than 29 seconds each.
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1. Introduction

We consider the absolute value equation (AVE):
Az — |z| = b, (1)

where A € R"*™ and b € R™ are given, and | - | denotes absolute value. A slightly
more general form of the AVE, Az 4+ B|z| = b was introduced in [11] and inves-
tigated in a more general context in [6]. The AVE (1) was investigated in detail
theoretically in [7] and a bilinear program was prescribed there for the special case
when the singular values of A are not less than one. No computational results were
given in either [7] or [6]. In contrast in [5], computational results were given for
a linear-programming-based successive linearization algorithm utilizing a concave
minimization model. As was shown in [7], the general NP-hard linear complemen-
tarity problem (LCP) [3, 4, 2], which subsumes many mathematical programming
problems, can be formulated as an AVE (1). This implies that (1) is NP-hard in
its general form.

In Section 2 of the present work we propose a generalized Newton algorithm that
is globally convergent under certain assumptions. Effectiveness of the method is
demonstrated in Section 3 by solving 100 randomly generated 1000-dimensional
AVEs with singular values of A exceeding 1. Each AVE is solved to an accuracy
of 107% in time that is 26 times faster than that of the successive linearization
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algorithm of [5]. The generalized Newton method also solved a hundred 1000-
dimensional randomly generated positive definite linear complementarity problems
to the same accuracy of 107%. Section 4 concludes the paper with some open
questions.

A word about our notation and background material. The scalar product of
two vectors x and y in the n-dimensional real space will be denoted by x’y. For
2 € R™, the norm ||z|| will denote the 2-norm (#'z)2, |z| will denote the vector
in R™ of absolute values of components of x and sign(z) will denote a vector
with components equal to 1, 0 or —1 depending on whether the corresponding
component of x is positive, zero or negative. In addition, diag(sign(x)) will denote
a diagonal matrix corresponding to sign(z). The plus function x, which replaces
the negative components of x by zeros, is a projection operator that projects = onto
the nonnegative orthant. Note that the absolute value function can be written as
|z| = 24 + (—x)+. A generalized Jacobian 0|z| of |z| based on a subgradient [10, 9]
of its components is given by the diagonal matrix D(z):

D(z) = 0|z| = diag(sign(z)). (2)

For an m x n matrix A, A; will denote the ith row of A. The identity matrix in
a real space of arbitrary dimension will be denoted by I, while a column vector of
ones of arbitrary dimension will be denoted by e. For a solvable matrix equation
By = d we shall use the MATLAB backslash notation B\d to denote a solution y.
Similarly for A € R™*", sud(A) will denote the n singular values of A and eig(A)
will denote its n eigenvalues.

2. The Generalized Newton Method

We begin by defining the piece-wise linear vector function g(z) specified by the
AVE (1) as follows:
9(z) = Az — [z] —b. (3)

A generalized Jacobian dg(z) of g(x) is given by:
dg(x) = A— D(z), (4)

where D(x) = diag(sign(z)) as defined in (2). The generalized Newton method for
finding a zero of the equation g(x) = 0 consists then of the following iteration:

g(z") + dg(a’) (@ —a") = 0. ()
Replacing g(z*) by its definition (3) and setting dg(x?) = A — D(x?) gives:
Az' — |z'| = b+ (A — D(z%)) (2" — 2%) = 0. (6)

Noting that D(z%)x? = |2¢|, the generalized Newton iteration (6) simplifies to the
following: o
(A — D(z))x"Tt =b. (7)



NEWTON METHOD FOR ABSOLUTE VALUE EQUATIONS 3

Solving for z**! gives:
et = (A~ D(a")\b, (8)

which is our final simple generalized Newton iteration for solving the AVE (1).
We shall need a few theoretical results to establish convergence of the iteration
(8). We first quote the following result from [7, Lemma 1].

Lemma 1 The singular values of the matriz A € R™ "™ exceed 1 if and only if the
minimum eigenvalue of A’A exceeds 1.

The following useful consequence of the above lemma gives sufficient conditions
that the Newton iteration (8) is well defined.

Lemma 2 If the singular values of A € R™ "™ exceed 1 then (A — D)~1 exists for
any diagonal matriz D whose diagonal elements equal =1 or 0.

Proof: If (A — D) is singular then:
(A—D)x =0 for some x # 0. (9)

We then have the following contradiction where the first inequality follows from
Lemma 1:
v’'x <2’ A'Ar = 2’ DAz = o' DDz < 2’ (10)

Hence (A — D) is nonsingular. [ |

We now establish boundedness of the Newton iterates of (8) and hence the exis-
tence of an accumulation for these iterates.

Proposition 3 Boundedness of Newton Iterates Let the singular values of A
exceed 1. Then, the iterates x°t1 = (A— D(z%))\b of the generalized Newton method
(8) are well defined and bounded. Consequently, there exists an accumulation point
T such that (A — D)T = b for some diagonal matriz D with diagonal elements of
+1 or 0.

Proof: By Lemma 2 (A — D(z"))~! exists. Hence, the generalized Newton iter-
ation 21 = (A — D(2%))\b is well defined. Suppose now that the sequence {x'}
is unbounded. Then there exists a subsequence {zT'} — oo with nonzero z%*!

such that D(z%) = D, where D is a fixed diagonal matrix with diagonal elements
equal to £1 or 0 extracted from the finite number of possible configurations for

D(z") in the sequence {D(z%)}, and such that the bounded subsequence {”fjiiu
converges to Z. Hence,

zhitl b
[l it

(AT

Letting j — oo gives:
(A-D)i=0, [|z]| =1, (12)
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since z%T!1 — oo. This however contradicts the nonsingularity of (A — D) which
follows from Lemma 2. Consequently, the sequence {z'} is bounded and there
exists an accumulation point (D, ) of {D(x%),2**1} such that Z = (4 — D)\b, or
equivalently (A — D)z = b. [

Under a somewhat restrictive assumption we can establish finite termination of
the generalized Newton iteration at an AVE solution as follows.

Proposition 4 Finite Termination of the Newton Iteration Let the singular
values of A exceed 1. If D(z*+1) = D(2%) for some i for the well defined generalized
Newton iteration (8), then '+ solves the AVE (1).

Proof: By Lemma 2 the generalized Newton iteration 2! = (A4 — D(z?%))\b is
well defined, and if D(z**!) = D(z%) then:
0=(A— D))z —b= Az — D" — b= A" — 2T — b (13)

Hence x'! solves the AVE (1) [

For our final result, Proposition 7 below, which establishes linear convergence of
the generalized Newton iteration (8), we first establish the following two lemmas.

Lemma 5 Lipschitz Continuity of the Absolute Value Let x and y be points
in R™. Then:
[zl = [yl < 2[lz =yl (14)

Proof: The result follows from the following string of equalities and inequalities.

o + (=) = s = (=)
e = el + () = (o) (15)
Iz =y + (=) = (-]

2z — yl|

Iz = Jy[ |

A IA

The first inequality above follows from from the triangle inequality, and the sec-
ond inequality from the nonexpansive property of the projection operator (-)4 [1,
Proposition 2.1.3]. ]

Lemma 6 Linear Convergence of the Newton Iteration Under the assump-
tion that |[(A — D)7Y|| < & for any diagonal matriz D with diagonal elements of
+1 or 0, the generalized Newton iteration (8) converges linearly from any starting
point to a solution T for any solvable AVE (1).

Proof: Let T be a solution of the AVE (1). To simplify notation, le‘ED = D(z) =
diag(sign(z)) and D' = D(z') = diag(sign(z")). Noting that |Z| = DZ and |z*| =
Dix' we have the following upon subtracting (A — D)Z = b from (A — D)zt = b:

A(z™! —7) = Dz — Dz = Di(2'*! +2' —2%) — Dz
= |2'| = |z| + D' (z"*" —2?) . (16)
|z¢| — |zZ| + D¥(z*! — 7 4+ 7 — 2?)
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Hence,
(4= D)™ = &) = || - |a] - D'(a’ ~ 7). 17)
Consequently:
("' —2) = (A= D) !(|a| - |2| - D'(a’ — 7)), (18)
and by Lemma 5:
[zt — Z)|| < (A — D)~ Y2l — Z| + ||«° — Z|). (19)
Hence
”xH»l _ f?)” < 3H(A _ DZ)71H(H1‘1 _ j“) < ||1'1 — j“, (20)

where the last inequality of (20) follows from [[(A—D")~!(| < 3. Hence the sequence
{|l#* — Z||} converges linearly to zero and {x'} converges linearly to Z. [ |

We are now ready to prove our final result.

Proposition 7 Sufficient Conditions for the Linear Convergence of the
Newton Iteration Let |A™'| < 1 and |D(2%)|| # 0. Then, the AVE (1) is
uniquely solvable for any b and the generalized Newton iteration (8) is well defined

and converges linearly to the unique solution of AVE from any starting point z°.

Proof: The unique solvability of the AVE (1) for any b follows from [7, Proposition
4] which requires that ||A~!|| < 1. By the Banach perturbation lemma [8, Page
45], ||(A — D(x%))~1|| exists for any z’ since A= exists and ||A7!|| - | D(z?)| < 1.
We also have by the same lemma that:

AT - DY) il 1

A= D)< e e < Tt —y @)

1.
4

Hence by Lemma 6 above the sequence {x?} converges linearly to the unique solution
of AVE from any starting point z°. [ |

Remark 8 We note that, just like the ordinary Newton method for solving nonlin-
ear equations, our generalized Newton iteration (8) for solving the nondifferentiable
AVE (1) requires at the very least that the AVE (1) is solvable. Without such a
solvability assumption, the generalized Newton iteration (8) will not converge. As
a trivial example consider the AVE in R*: x — |z| = 1 which has no solution. For if
it did, it would lead to the contradiction: —1 = |z| —x > 0. For this example, our
generalized Newton iteration (8) degenerates to 't = m We thus have
2 = 0o for ' > 0. For x' = 0 we have 't =1 and 22 = oo, while for * < 0

we have 't = % and 2 = co.

We turn now to our computational testing.
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3. Computational Results

We used MATLAB 7.1 to test our generalized Newton iteration (8) on 100 con-
secutively generated solvable random AVEs (1) with fully dense matrices A €
R1000x1000 " 55 well as on 100 AVEs based on consecutively generated random solv-
able 1000-dimensional linear complementarity problems.

For the first group of explicitly generated AVEs we first chose a random A from
a uniform distribution on [-10,10], then we chose a random z from a uniform distri-
bution on [-1,1]. Finally we computed b = Az — |z|. We ensured that the singular
values of each A exceeded 1 by actually computing the minimum singular value
and rescaling A by dividing it by the minimum singular value multiplied by a ran-
dom number in the interval [0,1]. Our method solved all 100 AVEs to an accuracy
of 1076 in total time of 940.30 seconds on 3.00Ghz Pentium 4 processor running
Linux Release 5.1. In comparison the successive linear programming algorithm of
[5] solved 95 out of 100 similarly sized AVEs on the same machine in 24, 773 seconds
to the same accuracy. We also note that our method converged in very few itera-
tions, typically 5, under the mere condition that the singular values of A exceed 1
which ensures that the generalized Newton iteration (8) is well defined. Note that
we do not impose the more stringent conditions of Proposition 7 on our examples.

We also tested our method on AVEs based on randomly generated linear comple-
mentarity problems. As pointed out in [7, Proposition 2] every linear complemen-
tarity problem (LCP):

2>0, Mz+q>0, 2/(Mz+q) =0, (22)

for a given M € R™*™ and ¢ € R", can be reduced to the following AVE:

(M —I)""(M + Da — |z| = (M - 1) g, (23)
with 1
r=3((M =Dz +aq), (24)

provided 1 is not an eigenvalue of M, which can be easily achieved by rescaling
M and q. Using the above relations we solved a hundred 1000-dimensional linear
complementarity problems generated as follows. The LCP matrices were nonsym-
metric positive definite matrices that were the sum of products of random matrices
whose elements were chosen from a uniform distribution on [-10,10]. A random
solution z was picked for each LCP whose elements where chosen from a uniform
distribution on [0,5] and such that half the components of z were zero. Finally ¢
was chosen such that the LCP was solvable. The corresponding AVE solved for
each LCP was that specified by (23).
Table 1 gives a summary of our computational results. We note the following:

(i) All 100 consecutive instances of both AVEs and LCPs were solved without
failure to an accuracy of 1076 in satisfying || Az — |z| — b|| = 0.

(ii) The average number of Newton iterations was 5 for the 100 AVEs and 8.06 for
the 100 LCPs.
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(iii) The average time for generating and solving each of the 100 AVEs was 9.40
seconds, and 28.61 seconds for each LCP.

(iv) The overall minimum of the singular values of each A for the 100 AVEs was
288.37 and 1.0 for the LCPs.

Table 1. Generalized Newton method results for 100 consecutive ran-
dom AVEs and LCPs each with n=1000.

Problem ‘ AVE LCP
Properties svd(A)>1 M pos. def. non-symm.
Problem size n 1000 1000
Number of problems solved 100 100
|Az — |z| — b]| < accuracy 106 106
Total overall Newton iterations 500 806
Total time in seconds 940.30 2860.6
Overall min of singular values of all A’s 288.37 1.0

4. Conclusion

We have proposed a fast linearly convergent generalized Newton method for solving
the the NP-hard absolute value equation Az — || = b under certain assumptions
on A. It turns out that the algorithm works under the less stringent condition that
the singular values of A exceed 1. This ensures that the Newton iteration (8) is
well defined. It would be very useful to establish convergence under this or even
a more general assumption. Another interesting problem to address is that of the
most general linear complementarity problem that can be solved as an absolute
value equation. These questions as well as enhancement of the Newton iteration by
a step size are topics for future research.
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