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Abstract

We propose a novel privacy-preserving support vector machine (SVM) classifier for a data matrixA whose
input feature columns are divided into groups belonging to different entities. Each entity is unwilling to share
its group of columns or make it public. Our classifier is basedon the concept of a reduced kernelK(A,B′)
whereB′ is the transpose of a random matrixB. The column blocks ofB corresponding to the different
entities are privately generated by each entity and never made public. The proposed linear or nonlinear SVM
classifier, which is public but does not reveal any of the privately-held data, has accuracy comparable to that
of an ordinary SVM classifier that uses the entire set of inputfeatures directly.
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1 INTRODUCTION

Recently there has been wide interest in privacy-preserving supportvector machine (SVM) classifiers. Basically
the problem revolves around generating a classifier based on data, parts of which are held by private entities
who for various reasons are unwilling to make it public. When each entity holdsits own group of input feature
values for all individuals while other entities hold other groups of feature values for the same individuals, the
data is referred to asvertically partitioned. This is so because feature values are represented by columns of a data
matrix while individuals are represented by rows of the data matrix. In [24],privacy-preserving SVM classifiers
were obtained for vertically partitioned data by adding random perturbations to the data. In [22, 23],horizontally
partitionedprivacy-preserving SVMs and induction tree classifiers were obtainedfor data where different entities
hold the same input features for different groups of individuals. Otherprivacy preserving classifying techniques
include cryptographically private SVMs [18], wavelet-based distortion [13] and rotation perturbation [3].

In this work we propose a highly efficient privacy-preserving SVM (PPSVM) classifier for vertically
partitioned data that is different from existing SVM classifiers and is basedon the following two ideas. For
a given data matrixA ∈ Rm×n, instead of using the usual kernel functionK(A,A′) : Rm×n ×Rn×m −→ Rm×m,
we use areducedkernel [12, 11]K(A,B′) : Rm×n×Rn×m̄ −→ Rm×m̄, m̄< m, whereB is a completely random
matrix. The second idea is that the ¯mcolumns of the random matrixB∈ Rm̄×n are privately generated inp blocks
corresponding to thep entities holding thep blocks of input features. Each random column block of the matrixB
is generated by only one of thep entities, and that block of the randomB is known only to the entity that generated
it and never made public. By employing these two ideas, we shall describe analgorithm that completely protects
the privacy of each vertical partition of the data matrixA, owned by a distinct entity, while generating an SVM
classifier with ten-fold cross validation accuracy comparable to that of an ordinary SVM classifier that utilizes
the whole data in one shot.
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We now briefly describe the contents of the paper. In Section 2 we describe our method for a privacy-
protecting linear SVM classifier for vertically partitioned data, and in Section 3do the same for a nonlinear SVM
classifier. In Section 4 we give computational results that show the effectiveness of our approach, including
correctness that is comparable to ordinary SVMs. Section 5 concludes thepaper with a summary and some ideas
for future work.

We describe our notation now. All vectors will be column vectors unless transposed to a row vector by a
prime ′. For a vectorx∈ Rn the notationx j will signify either the j-th component orj-th block of components.
The scalar (inner) product of two vectorsx andy in then-dimensional real spaceRn will be denoted byx′y. For

x∈ Rn, ‖x‖1 denotes the 1-norm:(
n

∑
i=1

|xi |) while ‖x‖ denotes the 2-norm:(
n

∑
i=1

(xi)
2)

1
2 . The notationA∈ Rm×n will

signify a realm×n matrix. For such a matrix,A′ will denote the transpose ofA, Ai will denote thei-th row or
i-th block of rows ofA andA· j the j-th column or thej-th block of columns ofA. A vector of ones in a real space
of arbitrary dimension will be denoted bye. Thus fore∈ Rm andy∈ Rm the notatione′y will denote the sum of
the components ofy. A vector of zeros in a real space of arbitrary dimension will be denoted by 0. ForA∈ Rm×n

andB∈ Rk×n, a kernel K(A,B′) mapsRm×n×Rn×k into Rm×k. In particular, ifx andy are column vectors inRn

then,K(x′,y) is a real number,K(x′,B′) is a row vector inRk andK(A,B′) is anm× k matrix. The base of the
natural logarithm will be denoted byε. A frequently used kernel in nonlinear classification is the Gaussian kernel
[20, 19, 14] whosei j -th element,i = 1, . . . . . . ,m, j = 1, . . . . . . ,k, is given by:(K(A,B′))i j = ε−µ‖Ai−B· j

′‖2
, where

A∈ Rm×n, B∈ Rk×n andµ is a positive constant. We shall not assume that our kernels satisfy Mercer’s positive
definiteness condition [20, 19, 4], however we shall assume that they are separable in the following sense:

K([E F], [G H]′) = K(E,G′)+K(F,H ′) or K([E F], [G H]′) = K(E,G′)⊙K(F,H ′), (1.1)

where the symbol⊙ denotes the Hadamard component-wise product of two matrices of the same dimensions [8],
E ∈ Rm×n1, F ∈ Rm×n2, G∈ Rk×n1 andH ∈ Rk×n2. It is straightforward to show that a linear kernelK(A,B′) = AB′

satisfies (1.1) with the+ sign, and a Gaussian kernel satisfies (1.1) with the⊙ sign. The abbreviation “s.t.” stands
for “subject to”.

2 Privacy-Preserving Linear Classifier for Vertically Partitioned Data

The dataset that we wish to obtain a classifier for consists ofm points in Rn represented by them rows of
the matrixA ∈ Rm×n. The matrixA is divided into p vertical blocks ofn1,n2, . . . . . . and np columns with
n1 + n2 + . . . + np = n. Each block of columns is “owned” by an entity that is unwilling to make it public or
share it with the other entities. Furthermore, each row ofA is labeled as belonging to the class+1 or−1 by a
corresponding diagonal matrixD ∈ Rm×m of ±1’s. The linear kernel classifier to be generated based on this data
will be a separating plane inRn:

x′w− γ = x′B′u− γ = 0, (2.2)

which classifies a given pointx according to the sign ofx′w− γ. Here,w = B′u, w∈ Rn is the normal to the plane
x′w− γ = 0, γ ∈ R determines the distance of the plane from the origin inRn andB is a random matrix inRk×n.
The change of variablesw= B′u is employed in order to kernelize the data and is motivated by the fact that when
B = A and hencew = A′u, the variableu is the dual variable for a 2-norm SVM [14]. The variablesu∈ Rk and
γ ∈ Rare to be determined by an optimization problem such that the labeled dataA satisfy, to the extent possible,
the separation condition:

D(AB′u−eγ) ≥ 0. (2.3)

This condition (2.3) places the+1 and−1 points represented byA on opposite sides of the separating plane (2.2).
In general, the matrixB which determines a transformation of variablesw = B′u, is set equal toA. However, in
reduced support vector machines [12, 9]B = Ā, whereĀ is a submatrix ofA whose rows are a small subset of the
rows ofA. In factB can be a random matrix inRm̄×n with n≤ m̄≤ m if m≥ n andm̄= m if m≤ n. This random



choice ofB holds the key to our privacy-preserving classifier and has been usedeffectively in SVM classification
problems [15]. Our computational results of Section 4 will show that there is no essential difference between
using a randomB or a random submatrix of̄A of the rows ofA as in reduced SVMs [12, 11]. One justification for
these similar results can be given for the case when ¯m≥ n and the rank of them×n matrixB is n. For such a case,
whenB is replaced byA in (2.3), this results in a regular linear SVM formulation with a solution, sayv ∈ Rm.
In this case , the reduced SVM formulation (2.3) can match the regular SVM term AA′v by the termAB′u, since
B′u = A′v has a solutionu for anyv becauseB′ has rankn.

We shall now partition the random matrixB into p column blocks with each column block belonging to one
of the p entities held privately by it and never made public. Thus, we have:

B = [B·1 B·2 . . . . . .B·p]. (2.4)

We are ready to state our algorithm which will provide a linear classifier for the data without revealing privately
held data blocks[A·1 A·2 . . . . . .A·p]. The accuracy of this algorithm will be comparable to that of a linear SVM
using a publicly availableA instead of merelyA·1B·1

′
,A·2B·2

′
. . . . . .A·pB·p

′, as is the case here.

ALGORITHM 2.1. Linear PPSVM Algorithm

(I) All p entities agree on thesamelabels for each data point, that is Dii = ±1, i = 1, . . . . . . ,m and on the
magnitude ofm̄, the number of rows of the random matrix B. (If an agreement on D is not possible, we can
use semisupervised learning to handle such data points [1, 7]. We leave this to future work.)

(II) Each entity generates its own privately held random matrix B· j ∈ Rm̄×n j , j = 1, . . . . . . , p, where nj is the
number of features held by entity j.

(III) Each entity j makes public its linear kernel A· jB· j
′. This does not reveal A· j but allows the public

computation of the full linear kernel:

AB′ = A·1B·1
′ +A·2B·2

′ + . . . . . .+A·pB·p
′ (2.5)

(IV) A publicly calculated linear classifier x′Bu− γ = 0 is computed by some standard method such as1-norm
SVM [14, 2]:

min
(u,γ,y)

ν‖y‖1 +‖u‖1

s.t. D(AB′u−eγ)+y ≥ e,
y ≥ 0.

(2.6)

(V) For eachnewx∈ Rn, each entity makes public xj
′B· j

′ from which a public linear classifier is computed as
follows:

x′B′u− γ = (x1
′B·1

′ +x2
′B·2

′ + . . . . . .+xp
′B·p

′)u− γ = 0, (2.7)

which classifies the given x according to the sign of x′Bu− γ.

REMARK 2.2. Note that in the above algorithm no entity j reveals its dataset A· j nor its components of a new
data point xj . This is so because it is impossible to compute the mnj numbers constituting A· j ∈ Rm×n j given only
the mm̄ numbers constituting(A· jB· j

′) ∈ Rm×m̄ and not even knowing B· j ∈ Rm̄×n j . Similarly it is impossible to
compute xj ∈Rn j from xj

′B· j
′ ∈R without even knowing B· j . Hence, all entities share the publicly computed linear

classifier (2.7) using AB′ and x′B′ without revealing either the individual datasets or new point components.

We turn now to nonlinear classification.



3 Nonlinear SVM Classifier for Vertically Partitioned Data

The approach to nonlinear classification is similar to that for the linear one, except that we make use of the
Hadamard separability of a nonlinear kernel (1.1) which is satisfied by a Gaussian kernel. Otherwise, the approach
is very similar to that of a linear kernel. We state that approach explicitly now.

ALGORITHM 3.1. Nonlinear PPSVM Algorithm

(I) All p entities agree on thesamelabels for each data point, that Dii = ±1, i = 1, . . . . . . , p and on the
magnitude ofm̄, the number of rows of the random matrix B. (If an agreement on D is not possible, we can
use semisupervised learning to handle such data points [1, 7].)

(II) Each entity generates its own privately held random matrix B· j ∈ Rm̄×n j , j = 1, . . . . . . , p, where nj is the
number of input features held by entity j.

(III) Each entity j makes public its nonlinear kernel K(A· j ,B· j
′). This does not reveal A· j but allows the public

computation of the full nonlinear kernel:

K(A,B′) = K(A·1,B·1
′)⊙K(A·2,B·2

′)⊙ . . . . . .⊙K(A·p,B·p
′) (3.8)

(IV) A publicly calculated linear classifier K(x′,B)u− γ = 0 is computed by some standard method such as
1-norm SVM [14, 2]:

min
(u,γ,y)

ν‖y‖1 +‖u‖1

s.t. D(K(A,B′)u−eγ)+y ≥ e,
y ≥ 0.

(3.9)

(V) For eachnew x ∈ Rn, each entity makes public K(x j
′,B· j

′) from which a public nonlinear classifier is
computed as follows:

K(x′,B′)u− γ = (K(x1
′
,B·1

′)⊙K(x2
′
,B·2

′)⊙ . . . . . .⊙K(xp
′
,B·p

′))u− γ = 0, (3.10)

which classifies the given x according to the sign of K(x′,B′)u− γ.

REMARK 3.2. Note that in the above algorithm no entity j reveals its dataset A· j nor its components of a new
data point xj . This is so because it is impossible to compute the mnj numbers constituting A· j ∈ Rm×n j given only
the mm̄ numbers constituting K(A· j ,B· j

′) ∈ Rm×m̄ and not even knowing B· j ∈ Rm̄×n j . Similarly it is impossible to
compute xj ∈ Rn j from K(x j

′,B· j
′) ∈ R without even knowing B· j . Hence, all entities share the publicly computed

nonlinear classifier (3.10) using K(A,B′) and K(x′,B′) without revealing either the individual datasets or new
point components.

Before turning to our computational results, it is important to note that Algorithms2.1 and 3.1 can be used
easily with other kernel classification algorithms instead of the 1-norm SVM, including the ordinary 2-norm SVM
[19], the proximal SVM [6], and logistic regression [21].

It is instructive to compare our proposed privacy preserving SVM (PPSVM) given in Algorithms 2.1 and 3.1
to other recent work on privacy preserving classification for vertically-partitioned data which also makes use of
random matrices. Du et al. [5] propose a method by which two parties can compute a privacy-preserving linear
kernel classifier by securely computing the matrixA′A with the use of random matrices. Yu et al. [24] use random
matrices to securely compute the full kernel matrix,K(A,A′). Our approach is motivated by the observation that
the accuracy of an SVM using arandom kernel, K(A,B′), whereB is a completely random matrix, is comparable
to the accuracy of an SVM using the full kernelK(A,A′). We provide experimental support for this observation



in Section 4. By usingK(A,B′) instead ofK(A,A′) we are able to obtain an accurate classifier with only very
simple, asynchronous communication required among the entities. That is, each entity j need only broadcast
A· jB′

· j to and receive the corresponding message from each of the other entities. In [5, 24] more communication
steps are needed to securely computeA′A or K(A,A′). For example, in [24],p rounds of data communication are
needed among thep entities to computeK(A,A′).

We turn now to our computational results.

4 Computational Results

We illustrate the effectiveness of our proposed privacy preserving SVM (PPSVM) in two ways. First, we
demonstrate that by using our approach entities can obtain classifiers with lower misclassification error than
classifiers obtained using only the input features of each entity alone. Second, we show that a random
kernelK(A,B′) achieves comparable accuracy to the usual kernelK(A,A′) or the reduced kernelK(A, Ā′). All
experiments were run using both a linear kernel and the commonly used Gaussian kernel described in Section
1. In all of our results,̄A consisted of ten percent of the rows ofA randomly selected, whileB was a completely
random matrix of the same size asĀ. Each entry ofB was selected from a normal distribution with mean zero and
standard deviation one. All datasets were normalized so that each featurehad mean zero and standard deviation
one. Note that this normalization is carried out for each feature independently, and does not require cooperation
among the entities.

4.1 Comparison of our approach to classifiers obtained using only each entity’s features We investigate
the benefit of using our PPSVM approach instead of using only the input features available to each entity using
seven datasets from the UCI repository [17]. To simulate a situation in which each entity has only a subset of
the features for each data point, we randomly distribute the features among the entities such that each entity
receives about the same number of features. We chose arbitrarily to perform experiments using five entities
for each dataset, and also to perform experiments using whatever numberof entities was needed so that each
entity received about three features. We also investigate our approachas the number of entities increases on the
Ionosphere dataset described below and in Figures 3 and 4.

Figure 1 shows results comparing the ten-fold cross validation misclassification error of our linear kernel
PPSVM with the average misclassification error of the 1-norm SVM classifiers learned using only the input
features available to each entity. Points below the 45 degree line representexperiments in which our PPSVM
has lower error rate than the average error rate of the classifiers learned with only each entity’s subset of the
features. This indicates that the entities can expect improved performanceusing PPSVM instead of going it
alone. Note that each dataset is represented by two points: one for the experiment using five entities, and one for
the experiment using a sufficient number of entities so that each entity receives about three features. The results
shown in Figure 1 are detailed in Table 1. We note that PPSVM obtains classifiers with lower error than the
average of the classifiers using only each entity’s features in eleven of the fourteen experiments. The parameterν
was selected from{10i |i = −7, . . . ,7} for each dataset was selected using a random ten percent of each training
set as a tuning set.

Figure 2 shows results for similar experiments using Gaussian kernels, with details in Table 2. We used the
same datasets as for the experiments described above. To save time, we used the tuning strategy described in
[10]. In this Nested Uniform Design approach, rather than evaluating a classifier at each point of a grid in the
parameter space, the classifier is evaluated only at a set of points which is designed to “cover” the original grid to
the extent possible. The point from this smaller set on which the classifier does best is then made the center of a
grid which covers a smaller range of parameter space, and the process isrepeated. Huang et al. [10] demonstrate
empirically that this approach finds classifiers with similar misclassification error as a brute-force search through
the entire grid. We set the initial range of log10ν to [−7,7], and the initial range of log10µ as described in [10].
We used a Uniform Design with thirty runs fromhttp://www.math.hkbu.edu.hk/UniformDesign for both
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Figure 1: Error rate comparison of a 1-norm linear SVM sharingA· jB′
· j data for each entity versus a 1-norm

linear SVM using just the input featuresA· j of each entity. Points below the diagonal represent situations in
which the error rate for sharing is lower than the error rate for not sharing. Results are given for each dataset with
features randomly distributed evenly among 5 entities, and with features randomly distributed so that each entity
has about 3 features. Seven datasets given in Table 1 were used to generate two points each.

Dataset No. of Entities No Sharing Error Sharing Error
Examples× Input Features

Cleveland Heart 5 0.1310 0.1582
297× 13 4 0.1293 0.1516

Ionosphere 5 0.2229 0.1312
351× 34 11 0.2753 0.1282
WDBC 5 0.0607 0.0299

569× 30 10 0.1607 0.0281
Arrhythmia 5 0.2622 0.3051
452× 279 93 0.3780 0.3096

German Credit 5 0.2500 0.2390
1000× 24 8 0.2500 0.2490

Pima Indians 5 0.3184 0.2472
768× 8 2 0.2566 0.2251

Bupa Liver 5 0.5294 0.3652
345× 6 2 0.4853 0.3565

Table 1: Comparison of error rates for entities not sharing and sharing their datasets using a 1-norm linear SVM.
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Figure 2: Error rate comparison of a 1-norm nonlinear SVM sharingK(A· j ,B′
· j) data for each entity versus a

1-norm nonlinear SVM using just the input featuresA· j of each entity. Points below the diagonal represent
situations in which the error rate for sharing is lower than the error rate fornot sharing. Results are given for
each dataset with features randomly distributed evenly among 5 entities, and with features randomly distributed
so that each entity has about 3 features. Seven datasets given in Table 2were used to generate two points each.

Dataset No. of Entities No Sharing Error Sharing Error
Examples× Input Features

Cleveland Heart 5 0.1310 0.1751
297× 13 4 0.1552 0.1516

Ionosphere 5 0.1086 0.0826
351× 34 11 0.1506 0.0941
WDBC 5 0.0821 0.0263

569× 30 10 0.1196 0.0299
Arrhythmia 5 0.2756 0.2831
452× 279 93 0.3740 0.2611

German Credit 5 0.2460 0.2380
1000× 24 8 0.2400 0.2460

Pima Indians 5 0.3026 0.2394
768× 8 2 0.2368 0.2303

Bupa Liver 5 0.5294 0.3105
345× 6 2 0.4706 0.3077

Table 2: Comparison of error rates for entities not sharing and sharing their datasets using a 1-norm nonlinear
Gaussian SVM.



351 Examples and 34 Features
Linear 1-Norm SVM for the Ionosphere Dataset with
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Figure 3: Box-and-whisker (median and interquartile) plot showing the improvement in error rate of linear kernel
PPSVM as the number of entities increases from 2 to 30.

nestings, and used five-fold cross validation on the training set to evaluateeach(ν,µ) pair.
We further explore the behavior of our approach as the number of entitieschanges on the Ionosphere dataset.

Figure 3 shows the difference in misclassification error rates as the numberof entities varies according to
{2,4, . . . ,30}. For each number of entities, a box-and-whisker plot is given which shows the median (represented
by a dot), interquartile range (the space between the dot and the vertical lines), and data range (the vertical lines)
with outliers removed for each fold of ten-fold cross validation for all the entities. Note that as the number of
entities increases, our PPSVM approach tends to have better median errorrates, and that more of the observations
favor PPSVM as more of the data lies above they = 0 axis. The results shown in Figure 3 indicate that as each
entity has fewer features, greater improvement due to using PPSVM would be expected, and also that some
improvement is more likely to be observed. Figure 4 shows similar results using aGaussian kernel. Each
experiment was tuned according to the procedures for linear and nonlinear kernels described above.

4.2 Comparison of a random kernel to full and reduced kernelsTo justify the use of a random kernel we
compare the performance of our PPSVM (Algorithms 2.1 and 3.1) with both an ordinary 1-norm SVM using a
full kernel matrix and a 1-norm SVM using a reduced kernel matrix (RSVM) [12]. Figure 5 shows scatterplots
comparing the error rates of our PPSVM with 1-norm SVM and PPSVM with RSVM, all using linear kernels.
Note that points close to the 45 degree line represent datasets for which theclassifiers being compared have
similar error rates. All of the error rates were obtained using the procedure described above for linear kernels,
and the datasets used are those in Table 1. Figure 6 shows similar results using the Gaussian kernel. All of the
error rates were obtained using the same procedures and datasets as those in Table 2, described above. We note
that the misclassification error for our PPSVM approach is comparable to that of 1-norm SVM and RSVM using
both linear and Gaussian kernels.



351 Examples and 34 Features
Nonlinear 1-Norm SVM for the Ionosphere Dataset with
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Figure 4: Box-and-whisker (median and interquartile) plot showing the improvement in error rate of Gaussian
kernel PPSVM as the number of entities increases from 2 to 30.
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AB′ vs. AA′
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Figure 5: Error rate comparison of 1-norm linear SVMs for random kernel versus full and reduced kernels. For
points below the diagonal, the random kernel has a lower error rate. Thediagonal line in each plot marks equal
error rates. One result is given for each dataset in Table 1.



K(A,B′) vs. K(A, Ā′)
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K(A,B′) vs. K(A,A′)
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Figure 6: Error rate comparison of 1-norm nonlinear SVM for random kernel versus full and reduced kernels.
For points below the diagonal, the random kernel has a lower error rate.The diagonal line in each plot marks
equal error rates. One result is given for each dataset in Table 2.

5 Conclusion and Outlook

We have proposed a linear and nonlinear privacy-preserving SVM classifier based on a privately generated
and privately held random matrix by each entity. Each entity possesses a different set of input features used
collectively to generate the SVM classifier. The proposed approach uses all the privately held data in a form that
does not reveal what that data is. Computational comparisons indicate thatthe accuracy of our proposed approach
is comparable to full and reduced data classifiers. Furthermore, a markedimprovement of accuracy is obtained
by the privacy-preserving SVM compared to classifiers generated by each entity using its own data alone. Hence,
by making use of a random kernel, the proposed approach succeeds ingenerating an accurate classifier based on
privately held data without revealing any of that data.

Future work for horizontally partitioned data, wherein each entity possesses all of the same input features,
but for different individuals, can be treated in a similar manner and will be described in a forthcoming paper [16].
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