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Abstract

We propose a novel privacy-preserving support vector nmect8VM) classifier for a data matrixwhose
input feature columns are divided into groups belongingffernt entities. Each entity is unwilling to share
its group of columns or make it public. Our classifier is basadhe concept of a reduced kerig(A, B')
whereB' is the transpose of a random mati&x The column blocks oB corresponding to the different
entities are privately generated by each entity and neveerpablic. The proposed linear or nonlinear SVM
classifier, which is public but does not reveal any of thegidily-held data, has accuracy comparable to that
of an ordinary SVM classifier that uses the entire set of iigatures directly.

Keywords: privacy preserving classification, support vector machines, vertipaltjtioned data

1 INTRODUCTION

Recently there has been wide interest in privacy-preserving supgcdr machine (SVM) classifiers. Basically
the problem revolves around generating a classifier based on datsoparhich are held by private entities
who for various reasons are unwilling to make it public. When each entity litsldsvn group of input feature
values for all individuals while other entities hold other groups of featataes for the same individuals, the
data is referred to agertically partitioned This is so because feature values are represented by columns of a data
matrix while individuals are represented by rows of the data matrix. In [Réjacy-preserving SVM classifiers
were obtained for vertically partitioned data by adding random perturlsatiotihe data. In [22, 23horizontally
partitionedprivacy-preserving SVMs and induction tree classifiers were obtdorathta where different entities
hold the same input features for different groups of individuals. Qthigacy preserving classifying techniques
include cryptographically private SVMs [18], wavelet-based distortid} and rotation perturbation [3].

In this work we propose a highly efficient privacy-preserving SVMPE¥M) classifier for vertically
partitioned data that is different from existing SVM classifiers and is basethe following two ideas. For
a given data matriA € R™", instead of using the usual kernel functifA, A’) : R™" x R™*M —, R™M,
we use areducedkernel [12, 11]JK(A,B') : R™" x R™*M —, R™M m < m, whereB is a completely random
matrix. The second idea is that tirecolumns of the random matr& € R™" are privately generated imblocks
corresponding to thp entities holding theo blocks of input features. Each random column block of the m&rix
is generated by only one of thpeentities, and that block of the randdsris known only to the entity that generated
it and never made public. By employing these two ideas, we shall descradg@ithm that completely protects
the privacy of each vertical partition of the data matkixowned by a distinct entity, while generating an SVM
classifier with ten-fold cross validation accuracy comparable to that ofdinasy SVM classifier that utilizes
the whole data in one shot.
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We now briefly describe the contents of the paper. In Section 2 we desauibmethod for a privacy-
protecting linear SVM classifier for vertically partitioned data, and in Sectida e same for a nonlinear SVM
classifier. In Section 4 we give computational results that show the e#eess of our approach, including
correctness that is comparable to ordinary SVMs. Section 5 concludpaplee with a summary and some ideas
for future work.

We describe our notation now. All vectors will be column vectors unlessp@sed to a row vector by a
prime’. For a vectox € R" the notatiorx; will signify either the j-th component of-th block of components.
The scalar (inner) product of two vectorsandy in the n-dimensional real spad%“ will be denoted by'y. For

x € R", ||x||1 denotes the 1-nornt: Z'X' |) while ||x|| denotes the 2- norrr(zl 3. The notatiorA € R™" will

signify a realm x n matrix. For such a matrix)’ will denote the transpose @, A; will denote thei-th row or
i-th block of rows ofA andA j the j-th column or thej-th block of columns ofA. A vector of ones in a real space
of arbitrary dimension will be denoted lgy Thus fore € R™ andy € R™ the notatiore'y will denote the sum of
the components of. A vector of zeros in a real space of arbitrary dimension will be denogeél BorA ¢ R™"
andB € R", akernel K(A,B') mapsR™" x R™k into R™, In particular, ifx andy are column vectors iR"
then,K(xX,y) is a real number< (X', B') is a row vector iR andK (A, B') is anm x k matrix. The base of the
natural logarithm will be denoted lzy A frequently used kernel in nonlinear classification is the Gaussiarekern
[20, 19, 14] whosej-th elementj =1, ...... mj=1,..... k, is given by:(K(A,B))ij = e WIA-BJI where
Ac R™" B e RN anduis a positive constant. We shall not assume that our kernels satisfy Réguositive
definiteness condition [20, 19, 4], however we shall assume that teeseparable in the following sense:

K([E F],[G H]) =K(E,G')+K(F,H") or K([E F],[G H]') =K(E,G) ®K(F,H), (1.1)

where the symbab denotes the Hadamard component-wise product of two matrices of the sanmsidinsg8],

E € R™M F c R™M, G e R*M andH € R™™, Itis straightforward to show that a linear keri&lA, B') = AB
satisfies (1.1) with the- sign, and a Gaussian kernel satisfies (1.1) withctteéggn. The abbreviation “s.t.” stands
for “subject to”.

2 Privacy-Preserving Linear Classifier for Vertically Partitioned Data

The dataset that we wish to obtain a classifier for consists @bints in R" represented by then rows of
the matrix A € R™". The matrixA is divided into p vertical blocks ofni,ny,...... and np columns with
N1+ M +...+np =n. Each block of columns is “owned” by an entity that is unwilling to make it public or
share it with the other entities. Furthermore, each rovk &f labeled as belonging to the clas4 or —1 by a
corresponding diagonal matrix e R™™ of +-1's. The linear kernel classifier to be generated based on this data
will be a separating plane R":

Xw—y=xBu-y=0, (2.2)

which classifies a given poimntaccording to the sign ofw—y. Here,w = B'u, w € R" is the normal to the plane
Xw—y =0,y e Rdetermines the distance of the plane from the origiRTrandB is a random matrix ifR".
The change of variableg = B'uis employed in order to kernelize the data and is motivated by the fact that when
B = A and hencev = A'u, the variableu is the dual variable for a 2-norm SVM [14]. The variables R and
y € Rare to be determined by an optimization problem such that the labeled datsfy, to the extent possible,
the separation condition:

D(ABuU—ey) > 0. (2.3)

This condition (2.3) places thel and—1 points represented #yon opposite sides of the separating plane (2.2).
In general, the matri® which determines a transformation of variables- B'u, is set equal té\. However, in
reduced support vector machines [12B%} A, whereA is a submatrix oA whose rows are a small subset of the
rows ofA. In factB can be a random matrix R™" with n < m < mif m> nandm= mif m < n. This random



choice ofB holds the key to our privacy-preserving classifier and has beenreiigatively in SVM classification
problems [15]. Our computational results of Section 4 will show that there isssential difference between
using a randonB or a random submatrix & of the rows ofA as in reduced SVMs [12, 11]. One justification for
these similar results can be given for the case whenn and the rank of then x n matrix B is n. For such a case,
whenB is replaced byA in (2.3), this results in a regular linear SVM formulation with a solution, sayR™.
In this case , the reduced SVM formulation (2.3) can match the regular S\iVA&Hv by the termAB'u, since
B'u = A'v has a solutiom for anyv becausé@’ has rankn.

We shall now partition the random matxinto p column blocks with each column block belonging to one
of the p entities held privately by it and never made public. Thus, we have:

B=[B1 Bas......B,. (2.4)

We are ready to state our algorithm which will provide a linear classifier d#ta without revealing privately
held data block$A1 A»......Ap]. The accuracy of this algorithm will be comparable to that of a linear SVM
using a publicly availablé instead of merelyA\1B.1",A2B, ...... AB.y, asis the case here.

ALGORITHM 2.1. Linear PPSVM Algorithm

(I) All p entities agree on theamelabels for each data point, that is;D=+1,i=1,...... ,m and on the
magnitude ofn, the number of rows of the random matrix B. (If an agreement on Btipassible, we can
use semisupervised learning to handle such data points [1, 7]. We leiavte flature work.)

(I) Each entity generates its own privately held random matrixd8R™™, j=1,...... , P, where n is the
X j
number of features held by entity j.

(Il) Each entity j makes public its linear kernel.jB.;’. This does not reveal . Abut allows the public
computation of the full linear kernel:

AB = A1B1 +ABy +......+ApB,y (2.5)

(IV) A publicly calculated linear classifierBu—y = 0 is computed by some standard method such-asrm

SVM [14, 2];
min VIIylla+[ull1
(uyy)
st. DABu—ey)+y > e (2.6)
y > 0.

(V) For eachnewx € R", each entity makes publig’B.;’ from which a public linear classifier is computed as
follows:

XBu—y=(x/B1 +x'B' +...... +Xp'Bp)Ju—y=0, 2.7)

which classifies the given x according to the sign’Biux-y.

REMARK 2.2. Note that in the above algorithm no entity j reveals its datasghér its components of a new
data point . This is so because it is impossible to compute themmbers constituting.Ac R™" given only
the mm numbers constitutingA jB.j’) € R™™ and not even knowing.Bc R™"i. Similarly it is impossible to
compute xe R from xB.;” € R without even knowing. B Hence, all entities share the publicly computed linear
classifier (2.7) using ABand XB' without revealing either the individual datasets or new point components.

We turn now to nonlinear classification.



3 Nonlinear SVM Classifier for Vertically Partitioned Data

The approach to nonlinear classification is similar to that for the linear ormepexhat we make use of the
Hadamard separability of a nonlinear kernel (1.1) which is satisfied bylasgn kernel. Otherwise, the approach
is very similar to that of a linear kernel. We state that approach explicitly now.

ALGORITHM 3.1. Nonlinear PPSVM Algorithm

(I) All p entities agree on theamelabels for each data point, thatiD= +1, i =1,...... ,p and on the
magnitude ofn, the number of rows of the random matrix B. (If an agreement on Btipassible, we can
use semisupervised learning to handle such data points [1, 7].)

(I) Each entity generates its own privately held random matrixd8R™™, j=1,...... ,p, where n is the
number of input features held by entity j.

(Il) Each entity j makes public its nonlinear kerne(K;,B.;’). This does not reveal. Abut allows the public
computation of the full nonlinear kernel:

K(AB) =K(A1,B1) 0K(A2,B2)®......0K(Ap,By) (3.8)

(IV) A publicly calculated linear classifier ¢&',B)u—y = 0 is computed by some standard method such as
1-norm SVM [14, 2]

min Viylls+ull2

(uyy)

st. DK(AB)u—ey)+y > e (3.9)
y > 0

(V) For eachnew x € R", each entity makes public(K;’,B.;") from which a public nonlinear classifier is
computed as follows:

K(X,B)u—y= (K(x{,B1)oK(x',B2)®...... ©K(xp,Bp))u—y=0, (3.10)
which classifies the given x according to the sign @f'B')u—y.

REMARK 3.2. Note that in the above algorithm no entity j reveals its datasghér its components of a new
data point . This is so because it is impossible to compute thermmmbers constituting.A<c R™" given only
the mmn numbers constituting (A, B.;’) € R™™ and not even knowing.Bc R™"i. Similarly it is impossible to
compute x€ RY from K(x;",B.;’) € R without even knowing.p Hence, all entities share the publicly computed
nonlinear classifier (3.10) using (&, B") and K(x',B") without revealing either the individual datasets or new
point components.

Before turning to our computational results, it is important to note that Algoritirh@nd 3.1 can be used
easily with other kernel classification algorithms instead of the 1-norm SVWdimg the ordinary 2-norm SVM
[19], the proximal SVM [6], and logistic regression [21].

It is instructive to compare our proposed privacy preserving SVNMS{AR) given in Algorithms 2.1 and 3.1
to other recent work on privacy preserving classification for vertigadlstitioned data which also makes use of
random matrices. Du et al. [5] propose a method by which two parties capute a privacy-preserving linear
kernel classifier by securely computing the ma#iA with the use of random matrices. Yu et al. [24] use random
matrices to securely compute the full kernel matkixA, A"). Our approach is motivated by the observation that
the accuracy of an SVM usingrandom kernelK (A, B'), whereB is a completely random matrix, is comparable
to the accuracy of an SVM using the full kern€{A, A'). We provide experimental support for this observation



in Section 4. By usind{(A,B') instead ofK(A,A’) we are able to obtain an accurate classifier with only very
simple, asynchronous communication required among the entities. That liseetiy | need only broadcast
A.,-ij to and receive the corresponding message from each of the other ehtiffs24] more communication
steps are needed to securely comifeor K(A,A'). For example, in [24]p rounds of data communication are
needed among thgentities to comput& (A, A').

We turn now to our computational results.

4 Computational Results

We illustrate the effectiveness of our proposed privacy preserviiigl PSVM) in two ways. First, we
demonstrate that by using our approach entities can obtain classifiers wih foisclassification error than
classifiers obtained using only the input features of each entity aloneon&eeve show that a random
kernelK(A,B') achieves comparable accuracy to the usual kefiidl A') or the reduced kernéd (A A'). All
experiments were run using both a linear kernel and the commonly usedi@aksrnel described in Section
1. In all of our resultsA consisted of ten percent of the rowsAdfandomly selected, whilB was a completely
random matrix of the same sizeAsEach entry oB was selected from a normal distribution with mean zero and
standard deviation one. All datasets were normalized so that each featlneean zero and standard deviation
one. Note that this normalization is carried out for each feature indeptydend does not require cooperation
among the entities.

4.1 Comparison of our approach to classifiers obtained using only ehcentity’s features We investigate
the benefit of using our PPSVM approach instead of using only the ieptiifies available to each entity using
seven datasets from the UCI repository [17]. To simulate a situation in wiich entity has only a subset of
the features for each data point, we randomly distribute the features amemgtities such that each entity
receives about the same number of features. We chose arbitrarily fayrpegxperiments using five entities
for each dataset, and also to perform experiments using whatever nofnbetities was needed so that each
entity received about three features. We also investigate our appasable number of entities increases on the
lonosphere dataset described below and in Figures 3 and 4.

Figure 1 shows results comparing the ten-fold cross validation misclassifieatior of our linear kernel
PPSVM with the average misclassification error of the 1-norm SVM classifgarned using only the input
features available to each entity. Points below the 45 degree line repeeg@miments in which our PPSVM
has lower error rate than the average error rate of the classifiergdeaiith only each entity’s subset of the
features. This indicates that the entities can expect improved performiaimge PPSVM instead of going it
alone. Note that each dataset is represented by two points: one forpibrénegnt using five entities, and one for
the experiment using a sufficient number of entities so that each entityesadout three features. The results
shown in Figure 1 are detailed in Table 1. We note that PPSVM obtains clessifida lower error than the
average of the classifiers using only each entity’s features in eleven @ifuhteen experiments. The parameter
was selected froi10|i = —7,...,7} for each dataset was selected using a random ten percent of eaatgtrain
set as a tuning set.

Figure 2 shows results for similar experiments using Gaussian kernels, et#iisdn Table 2. We used the
same datasets as for the experiments described above. To save timegdvilkeusming strategy described in
[10]. In this Nested Uniform Design approach, rather than evaluatingssitier at each point of a grid in the
parameter space, the classifier is evaluated only at a set of points whedigeed to “cover” the original grid to
the extent possible. The point from this smaller set on which the classifsriokst is then made the center of a
grid which covers a smaller range of parameter space, and the procegsased. Huang et al. [10] demonstrate
empirically that this approach finds classifiers with similar misclassification esrataute-force search through
the entire grid. We set the initial range of lg@ to [—7,7], and the initial range of logu as described in [10].
We used a Uniform Design with thirty runs fromtp://www.math.hkbu.edu.hk/UniformDesign for both



Sharing vs. No Sharing

Sharing Error

0 0.1 0.2 0.3 0.4 0.5
No Sharing Error

Figure 1: Error rate comparison of a 1-norm linear SVM sha;t}q@fj data for each entity versus a 1-norm
linear SVM using just the input featurés; of each entity. Points below the diagonal represent situations in
which the error rate for sharing is lower than the error rate for nofrsfpaResults are given for each dataset with
features randomly distributed evenly among 5 entities, and with featuresméydistributed so that each entity
has about 3 features. Seven datasets given in Table 1 were use@tatgdwo points each.

Dataset No. of Entities| No Sharing Error| Sharing Error
Examplesx Input Features

Cleveland Heart 5 0.1310 0.1582
297 x 13 4 0.1293 0.1516
lonosphere 5 0.2229 0.1312
351x 34 11 0.2753 0.1282
WDBC 5 0.0607 0.0299
569 x 30 10 0.1607 0.0281
Arrhythmia 5 0.2622 0.3051
452 x 279 93 0.3780 0.3096
German Credit 5 0.2500 0.2390
1000x 24 8 0.2500 0.2490
Pima Indians 5 0.3184 0.2472
768 % 8 2 0.2566 0.2251
Bupa Liver 5 0.5294 0.3652
345x 6 2 0.4853 0.3565

Table 1: Comparison of error rates for entities not sharing and shaeirgdidtasets using a 1-norm linear SVM.



Sharing vs. No Sharing

Sharing Error

0 0.1 0.2 0.3 0.4 0.5
No Sharing Error

Figure 2: Error rate comparison of a 1-norm nonlinear SVM shalﬁ(lgj,ij) data for each entity versus a
1-norm nonlinear SVM using just the input featuiks of each entity. Points below the diagonal represent
situations in which the error rate for sharing is lower than the error ratadbsharing. Results are given for
each dataset with features randomly distributed evenly among 5 entities jithrféatures randomly distributed
so that each entity has about 3 features. Seven datasets given in Viadrle @sed to generate two points each.

Dataset No. of Entities| No Sharing Error| Sharing Error
Examplesx Input Features

Cleveland Heart 5 0.1310 0.1751
297 x 13 4 0.1552 0.1516
lonosphere 5 0.1086 0.0826
351x 34 11 0.1506 0.0941
WDBC 5 0.0821 0.0263
569 x 30 10 0.1196 0.0299
Arrhythmia 5 0.2756 0.2831
452 x 279 93 0.3740 0.2611
German Credit 5 0.2460 0.2380
1000x 24 8 0.2400 0.2460
Pima Indians 5 0.3026 0.2394
768 x 8 2 0.2368 0.2303
Bupa Liver 5 0.5294 0.3105
345x 6 2 0.4706 0.3077

Table 2: Comparison of error rates for entities not sharing and shammgdatasets using a 1-norm nonlinear
Gaussian SVM.



Difference in Error Rates Between Not Sharing and Sharing for a
Linear 1-Norm SVM for the lonosphere Dataset with
351 Examples and 34 Features
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Figure 3: Box-and-whisker (median and interquartile) plot showing theawggnent in error rate of linear kernel
PPSVM as the number of entities increases from 2 to 30.

nestings, and used five-fold cross validation on the training set to evaaetév, 1) pair.

We further explore the behavior of our approach as the number of emtfitzagyes on the lonosphere dataset.
Figure 3 shows the difference in misclassification error rates as the nuvhlsstities varies according to
{2,4,...,30}. For each number of entities, a box-and-whisker plot is given whictvsittee median (represented
by a dot), interquartile range (the space between the dot and the vertes| limd data range (the vertical lines)
with outliers removed for each fold of ten-fold cross validation for all théties. Note that as the number of
entities increases, our PPSVM approach tends to have better mediaragrspand that more of the observations
favor PPSVM as more of the data lies aboveyhe 0 axis. The results shown in Figure 3 indicate that as each
entity has fewer features, greater improvement due to using PPSVM weudkgected, and also that some
improvement is more likely to be observed. Figure 4 shows similar results usthaguasian kernel. Each
experiment was tuned according to the procedures for linear and nankemels described above.

4.2 Comparison of a random kernel to full and reduced kernelsTo justify the use of a random kernel we
compare the performance of our PPSVM (Algorithms 2.1 and 3.1) with bothidinamy 1-norm SVM using a
full kernel matrix and a 1-norm SVM using a reduced kernel matrix (R$YM2]. Figure 5 shows scatterplots
comparing the error rates of our PPSVM with 1-norm SVM and PPSVM witklRXall using linear kernels.
Note that points close to the 45 degree line represent datasets for whiclagisdiers being compared have
similar error rates. All of the error rates were obtained using the proeedkscribed above for linear kernels,
and the datasets used are those in Table 1. Figure 6 shows similar resugtthesdaussian kernel. All of the
error rates were obtained using the same procedures and datasetseds ffeble 2, described above. We note
that the misclassification error for our PPSVM approach is comparablettofthenorm SVM and RSVM using
both linear and Gaussian kernels.



Difference in Error Rates Between Not Sharing and Sharin% for a
Nonlinear 1-Norm SVM for the lonosphere Dataset wit
351 Examples and 34 Features
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Figure 4. Box-and-whisker (median and interquartile) plot showing theawgment in error rate of Gaussian
kernel PPSVM as the number of entities increases from 2 to 30.
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Figure 5: Error rate comparison of 1-norm linear SVMs for randonmékeversus full and reduced kernels. For
points below the diagonal, the random kernel has a lower error ratedidienal line in each plot marks equal
error rates. One result is given for each dataset in Table 1.
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Figure 6: Error rate comparison of 1-norm nonlinear SVM for rande@mé&l versus full and reduced kernels.
For points below the diagonal, the random kernel has a lower error Tate diagonal line in each plot marks
equal error rates. One result is given for each dataset in Table 2.

5 Conclusion and Outlook

We have proposed a linear and nonlinear privacy-preserving SVkkifier based on a privately generated
and privately held random matrix by each entity. Each entity possesseferenlifset of input features used
collectively to generate the SVM classifier. The proposed approacalidbe privately held data in a form that
does not reveal what that data is. Computational comparisons indicatledlzaicuracy of our proposed approach
is comparable to full and reduced data classifiers. Furthermore, a margeosvement of accuracy is obtained
by the privacy-preserving SVM compared to classifiers generateddyentity using its own data alone. Hence,
by making use of a random kernel, the proposed approach succegelsarating an accurate classifier based on
privately held data without revealing any of that data.

Future work for horizontally partitioned data, wherein each entity posseasof the same input features,
but for different individuals, can be treated in a similar manner and willdseidbed in a forthcoming paper [16].
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