
Optimization Methods and Software

Vol. 00, No. 00, Month 200x, 1–12

Chunking for Massive Nonlinear Kernel Classification

O. L. Mangasarian and M. E. Thompson
(Received 00 Month 200x; In final form 00 Month 200x)

A chunking procedure [2] utilized in [18] for linear classifiers is proposed here for nonlinear kernel
classification of massive datasets. A highly accurate algorithm based on nonlinear support vector
machines that utilizes a linear programming formulation [15] is developed here as a completely
unconstrained minimization problem [17]. This approach together with chunking leads to a simple
and accurate method for generating nonlinear classifiers for a 250000-point dataset that typically
exceeds machine capacity when standard linear programming methods such as CPLEX [12] are used.
Because a 1-norm support vector machine underlies the proposed method, the approach together with
a reduced support vector machine formulation [13] minimizes the number of kernel functions utilized
to generate a simplified nonlinear classifier.

Keywords: classification, nonlinear kernel, massive datasets, linear program-

ming, dual penalty

1 Introduction

One of the principal advantages of 1-norm support vector machines (SVMs)
is that, unlike 2-norm SVMs, they are very effective in reducing the number
of kernel functions used [8] especially when a reduced support vector ma-
chine (RSVM) is used [13]. We utilize here an exact completely unconstrained
differentiable minimization formulation of 1-norm SVMs [17] coupled with a
chunking procedure [2], which allows us to handle massive datasets.

We start with a linear programming formulation of the nonlinear kernel 1-
norm SVM classifier [15]. We then show how such a linear program can be
solved exactly by minimizing a classical exterior penalty function of its dual
for a sufficiently small but finite value of the penalty parameter. We then apply
a chunking procedure [2] to decompose the 1-norm linear program for massive
datasets and solve the linear program for each chunk exactly by utilizing a

Data Mining Institute Technical Report 06-07, December 2006. Research supported by NSF Grants
CR-0138308 and IIS-0511905.
olvi@cs.wisc.edu. Computer Sciences Department, University of Wisconsin, Madison, WI 53706, and
Department of Mathematics, University of California at San Diego, La Jolla, CA 92093.
thompson@cs.wisc.edu. Computer Sciences Department, University of Wisconsin, Madison, WI
53706.

2

Newton method applied to the dual exterior penalty function of the linear
program chunk.

The contents of the paper are as follows.
In Section 2 we describe our unconstrained minimization formulation for a 1-

norm SVM and give a simple Newton method for its solution that merely solves
a sequence of linear equations. In Section 3 we combine our unconstrained
SVM formulation with a chunking method that enables it to handle massive
datasets. In Section 4 we present our numerical results for massive datasets
which show among other things an error reduction of more than 37% by our
nonlinear classifier over a linear classifier and an error reduction of more than
26% over a nonlinear classifier generated by 1% of the data. Section 5 concludes
the paper.

We now describe our notation and give some background material. All vec-
tors will be column vectors unless transposed to a row vector by a prime ′.
For a vector x in the n-dimensional real space Rn, x+ denotes the vector in
Rn with all of its negative components set to zero. For a vector x ∈ Rn, x∗

denotes the vector in Rn with components (x∗)i = 1 if xi > 0 and 0 oth-
erwise (i.e. x∗ is the result of applying the step function component-wise to
x). For x ∈ Rn, ‖x‖1 and ‖x‖ will denote the 1− and 2− norms of x. For
simplicity we drop the 2 from ‖x‖2. The notation A ∈ Rm×n will signify a
real m × n matrix. For such a matrix A′ will denote the transpose of A, Ai

will denote the i-th row of A, A·j will denote the j-th column of A, and Aij

will denote the ij-th element of A. A vector of ones or zeroes in a real space
of arbitrary dimension will be denoted by e or 0, respectively. For A ∈ Rm×n

and B ∈ Rn×k, a kernel K(A,B) maps Rm×n × Rn×k into Rm×k. In partic-
ular, if x and y are column vectors in Rn then, K(x′, y) is a real number,
K(x′, B) is a row vector in Rk and K(A,B) is an m × k matrix. We shall
make no assumptions whatsoever on our kernels other than symmetry, that is
K(x′, y)′ = K(y′, x), and in particular we shall not assume or make use of Mer-
cer’s positive definiteness condition [5,21,24]. The base of the natural logarithm
will be denoted by ε. A frequently used kernel in nonlinear classification is the
Gaussian kernel [3, 15, 24] whose ij-th element, i = 1, . . . ,m, j = 1, . . . , k,
is given by: (K(A,B))ij = ε−µ‖Ai

′−B·j‖2

, where A ∈ Rm×n, B ∈ Rn×k

and µ is a positive constant. For a piecewise-quadratic function such as,
f(x) = 1

2 ||(Ax − b)+||
2 + 1

2x′Px, where A ∈ Rm×n, P ∈ Rn×n, P = P ′, P

positive semidefinite and b ∈ Rm, the ordinary Hessian does not exist because
its gradient, the n×1 vector ∇f(x) = A′(Ax−b)++Px, is not differentiable but
is Lipschitz continuous with a Lipschitz constant of ‖A′‖ ‖A‖+‖P‖. However,
one can define its generalized Hessian [7, 10, 16] which is the n × n sym-
metric positive semidefinite matrix: ∂2f(x) = A′diag(Ax − b)∗A + P, where
diag(Ax − b)∗ denotes an m × m diagonal matrix with diagonal elements
(Aix− bi)∗, i = 1, . . . ,m. The generalized Hessian has many of the properties

3

of the regular Hessian [7, 10,16] in relation to f(x). If the smallest eigenvalue
of ∂2f(x) is greater than some positive constant for all x ∈ Rn, then f(x) is a
strongly convex piecewise-quadratic function on Rn. The abbreviation “s.t.”
stands for “subject to”.

2 Nonlinear 1-Norm SVMs as Unconstrained Minimization Problems

We consider first the 1-norm nonlinear SVM binary classification problem
[8,15]:

min
(v,γ,y)

ν‖y‖1 + ‖v‖1

s.t. D(K(A,B′)v − eγ) + y ≥ e,

y ≥ 0,

(1)

where the m × n matrix A represents m points in Rn to be separated to the
best extent possible by the nonlinear separating surface:

K(x′, B′)v = γ, (2)

according to the class of each row of A as given by the m×m diagonal matrix
D with elements Dii = ±1. Here, v ∈ Rk and γ ∈ R are parameters to be
determined by a linear program, B ∈ Rk×n and K(x′, B′) : R1×n × Rn×k −→
R1×k is an arbitrary kernel function. In general the matrix B is set equal to
A [15]. However, in reduced support vector machines [11,13] B = Ā, where Ā

is a submatrix of A whose rows are a small subset of the rows of A. In fact B

can be an arbitrary matrix in Rk×n. The objective term ‖y‖1 minimizes the
empirical classification error weighted with the positive parameter ν, while
the term ‖v‖1 minimizes the number of kernel functions utilized and leads to
classifier simplicity. We convert (1) to an explicit linear program as in [8] by
setting:

v = r − s, r ≥ 0, s ≥ 0, (3)

which results in the linear program:

min
(r,s,γ,y)

νe′y + e′(r + s)

s.t. D(K(A,B′)(r − s) − eγ) + y ≥ e,

r, s, y ≥ 0.

(4)

4

We note immediately that this linear program is solvable because it is feasi-
ble and its objective function is bounded below by zero. We shall utilize the
following proposition [17, Proposition 1] to reduce our linear program to a
completely unconstrained minimization problem. Briefly stated, Proposition
2.1 below states that by using a classical exterior penalty function on the dual
of the linear program (4) with a sufficiently small penalty parameter ǫ ∈ (0, ǭ]
we can get an exact solution to the primal problem (4).

Proposition 2.1 Exact 1-Norm SVM Solution via Unconstrained Min-
imization The unconstrained dual exterior penalty problem for the 1-norm
SVM (4):

min
u∈Rm

−ǫe′u + 1
2(‖(K(B,A′)Du − e)+‖

2 + ‖(−K(B,A′)Du − e)+‖
2

+(−e′Du)2 + ‖(u − νe)+‖
2 + ‖(−u)+‖

2),
(5)

is solvable for all ǫ > 0. For any ǫ ∈ (0, ǭ] and for some ǭ > 0, any solution u

of (5) generates an exact solution of the 1-norm SVM classification problem
(1) as follows:

v = r − s = = 1
ǫ
((K(B,A′)Du − e)+ − (−K(B,A′)Du − e)+),

γ = −1
ǫ
e′Du,

y = 1
ǫ
(u − νe)+.

(6)

In addition this (v, γ, y) minimizes:

‖v‖2 + γ2 + ‖y‖2 + ‖D(K(A,B′)v − eγ) + y − e‖2, (7)

over the solution set of the 1-norm SVM classification problem (1).

We will now give a generalized Newton method for solving (5). To do that
we let f(u) denote the exterior penalty function (5). Then the gradient and
generalized Hessian as defined in the Introduction are given as follows.

∇f(u) = −ǫe + DK(A,B′)(K(B,A′)Du − e)+
−DK(A,B′)(−K(B,A′)Du − e)+
+Dee′Du + (u − νe)+ − (−u)+.

(8)

∂2f(u) = DK(A,B′)diag(K(B,A′)Du − e)∗K(B,A′)D
+DK(A,B′)diag(−K(B,A′)Du − e)∗K(B,A′)D
+Dee′D + diag((u − νe)∗ + (−u)∗)

= DK(B,A′)diag(|K(B,A′)Du| − e)∗)K(B,A′)D
+Dee′D + diag((u − νe)∗ + (−u)∗),

(9)

5

where the last equality follows from the equality:

(a − 1)∗ + (−a − 1)∗ = (|a| − 1)∗. (10)

We state now our generalized Newton algorithm for solving the uncon-
strained minimization problem (5) for which we have introduced a regular-
ization [23] parameter δ for purposes of numerical stability.

Algorithm 2.2 Generalized Newton Algorithm for (5) Let f(u), ∇f(u)
and ∂2f(u) be defined by (5),(8) and (9). Set the parameter values ν, ǫ, δ,
tolerance tol, and imax (typically: ǫ = 4 × 10−4 for linear SVMs and 1 for
nonlinear SVMs, tol = 10−6, imax = 1000, while ν and δ are set by a tuning
procedure). Start with any u0 ∈ Rm. For i = 0, 1, . . .:

(i) ui+1 = ui − λi(∂
2f(ui) + δI)−1∇f(ui) = ui + λid

i,
where the Armijo [1] stepsize λi = max{1, 1

2 , 1
4 , . . .} is such that:

f(ui) − f(ui + λid
i) ≥ −

λi

4
∇f(ui)′di, (11)

and di is the modified Newton direction:

di = −(∂2f(ui) + δI)−1∇f(ui). (12)

In other words, start with stepsize λi = 1 and keep multiplying λi by 1
2

until (11) is satisfied.
(ii) Stop if ‖ui − ui+1‖ ≤ tol or i = imax. Else, set i = i + 1 and go to (i).
(iii) Define the solution of the 1-norm SVM (1) with least quadratic perturba-

tion (7) by (6) with u = ui.

Note that in practice instead of using the explicit inverse (∂2f(ui)+δI)−1 in
Step (i) of Algorithm 2.2 we can use the backslash notation “\” of MATLAB
[19] (∂2f(ui) + δI)\∇f(ui) which does not usually require computation of the
inverse.

We state a convergence result for this algorithm now [17, Propositon 4].

Proposition 2.3 Let tol = 0, imax = ∞ and let ǫ > 0 be sufficiently small.
Each accumulation point ū of the sequence {ui} generated by Algorithm 2.2
solves the exterior penalty problem (5). The corresponding (v̄, γ̄, ȳ) obtained
by setting u to ū in (6) is an exact solution to the primal 1-norm SVM (1)
which in addition minimizes the quadratic perturbation (7) over the solution
set of (1).

We turn now to our chunking method for handling massive datasets.

6

3 Chunking Method

We shall apply the chunking approach proposed in [2] to our unconstrained
minimization approach of Section 2. We consider a general linear program

min
x

{

cT x |Hx ≥ b
}

, (13)

where c ∈ Rn, H ∈ Rm×n and b ∈ Rm. We state now our chunking algorithm
and establish its finite termination for the linear program (13), where m may
be orders of magnitude larger than n. In its dual form our algorithm can be
interpreted as a block-column generation method related to column generation
methods of Gilmore-Gomory [9], Dantzig-Wolfe [6], [4, pp 198-200,428-429] and
others [20, pp 243-248], but it differs from active set methods [14, pp 326-330]
in that it does not require the satisfaction of a working set of constraints as
equalities.

Algorithm 3.1 LPC: Linear Programming Chunking Algorithm for
(13) Let [H b] be partitioned into ℓ blocks, possibly of different sizes, as
follows:

[

H b
]

=







H1 b1

...
...

Hℓ bℓ






.

Assume that (13) and all subproblems (14) below, have vertex solutions. At
iteration j = 1, . . . compute xj by solving the following linear program:

xj ∈ arg vertex min

{

cT x

∣

∣

∣

∣

∣

H(j mod ℓ) x ≥ b(j mod ℓ)

H̄(j mod ℓ)−1 x ≥ b̄(j mod ℓ)−1

}

, (14)

where [H̄0 b̄0] is empty and [H̄j b̄j] is the set of active constraints (that
is all inequalities of (14) satisfied as equalities by xj) with positive optimal
Lagrange multipliers at iteration j. Stop when cT xj = cT xj+σ for some input
integer σ. Typically σ = 4.

Theorem 3.1 Finite Termination of LPC Algorithm The sequence {xj}
generated by the LPC Algorithm 3.1 has the following properties:

(i) The sequence {cT xj} of objective function values is nondecreasing and is
bounded above by the global minimum of min

x

{

cT x |Hx ≥ b
}

.

(ii) The sequence of objective function values {cT xj} becomes constant, that
is: cT xj+1 = cT xj for all j ≥ j̄ for some j̄ ≥ 1.

7

(iii) For j ≥ j̄, active constraints of (14) at xj with positive multipliers remain
active for iteration j + 1.

(iv) For all j ≥ j̃, for some j̃ ≥ j̄, xj is a solution of the linear program (13)
provided all active constraints at xj have positive multipliers for j ≥ j̄.

The proof of this theorem is given in [2] and is directly applicable to solving
our linear program (4) by solving successive small linear programs obtained
from chunks of the constraints of (4) using the formulation (5) and Algorithm
3.1.

Before describing our computational experience we outline how the chunking
procedure will be applied to the linear programming formulation (4) of the 1-
norm SVM. First we break the linear program (4) into chunks as outlined in
the LPC Algorithm 3.1. Then for each linear programming chunk that needs
to be solved by the LPC Algorithm 3.1 we utilize the Generalized Newton
Algorithm 2.2 to solve it exactly by minimizing its unconstrained exterior
dual penalty function which is of the form of the minimization problem (5).

We turn to our computational results now.

4 Computational Results

Before giving implementation and computational results for our Chunking Al-
gorithm 3.1 for solving (4)-(5) we would like to describe some computational
aspects of the underlying Generalized Newton Algorithm 2.2 for smaller clas-
sification problems. As reported in [17], a 1-norm linear SVM classifier was
obtained by Algorithm 2.2 on six public datasets, with points numbering be-
tween 297 and 4192, in time that was an average 9.6 times faster than that
of the state-of-the-art linear programming package CPLEX 9.0 [12]. This fa-
vorable comparison with a classical simplex or interior point method used in
CPLEX 9.0 motivated the idea of utilizing the Generalized Newton Algorithm
2.2, which requires only a simple linear equation solver, as the best candidate
for the proposed chunking approach.

We turn now to implementation details and computational results for our
chunking Algorithm 3.1.

In implementing Algorithm 3.1, we note that the constraints of (4) can be
grouped such that, for each constraint defined by Aj and Djj, there is a corre-
sponding yj. Therefore, each chunk is selected such that both the constraints
Djj(K(Aj , B

′)D(r − s)− γ) + yj ≥ 1 and yj ≥ 0 are always included together
in the chunk of constraints. Also, we always include the constraints r ≥ 0 and
s ≥ 0. We found that defining the chunks in this manner leads to the chunk-
ing algorithm terminating in fewer iterations than with an entirely random
constraint selection method. Furthermore, the problem maintains the form

8

of (1), allowing us to use Proposition 2.1 and Algorithm 2.2 to perform the
minimization of each chunk.

We tested our algorithm on multiple massive datasets based on normally
distributed clusters on cubes (NDCC) data generator [22]. NDCC generates
datasets using three 1-norm cubes of increasing size centered around the ori-
gin. It then generates multivariate normal distributions around each vertex
where the distributions that are centered around opposing vertices of each
cube belong to opposite classes. In addition, instead of distributing the num-
ber of points equally to each center, some centers are chosen to generate a
relatively small number of points, while the center on the opposite vertex of
the cube generates a relatively large number of points. An example of a dataset
generated using NDCC can be seen in Figure 1.

−600 −400 −200 0 200 400 600 800
−600

−400

−200

0

200

400

600

Figure 1. Example of a NDCC dataset generated in R2. Clusters of normally
distributed points are centered around the vertices of each of the three 1-norm cubes

(squares in R2) shown in dotted lines.

We ran Algorithm 3.1 on each dataset using tenfold cross validation and give
our results in Table 1. In solving the 1-norm nonlinear SVM via unconstrained
minimization, we set the parameter values to be ν = 25, µ = 2−20, δ =
10−6, ǫ = 1, tol = 10−6, and imax = 1000. In addition, the number of rows
of the matrix B in the reduced kernel K(A,B′) was fixed at 90 regardless
of the number of points in the dataset. In implementing the chunking, we
used a 10% chunk size, which means it takes 10 chunking iterations to go
through all the points in the dataset once. As in [2], we found that it was

9

only necessary to incorporate into [H̄j b̄j] the active constraints without
determining whether the optimal Lagrange multipliers were positive. Also,

instead of stopping when c′xj = c′xj+σ, we stopped when |c′xj−c′xj+1|
|c′xj | ≤ 0.01

for three consecutive iterations. This led to faster termination and did not
affect the accuracy of our solutions. In our tests, we found that the execution
time of Algorithm 3.1 grew at a rate less than the square of the increase of
the number of points in the dataset. We also compared our results with those
of a linear classifier and results using Algorithm 3.1 on a random subset of
1% of the original data points and testing the classifier, obtained on the 1%
subset, on 10% of the original data. These results are given in Table 2. Note
that by using Algorithm 3.1, error is reduced by more than 37% compared to
the linear SVM and more than 26% compared to running the nonlinear SVM
on a random subset of the points.

Dataset NDCC
of Points 250000 100000 50000
Time (hours) 56.2 11.9 3.5
Iterations 14 14 14
Training error 13.82% 13.64% 14.28%
Testing error 13.81% 13.67% 14.31%
of Kernel Functions used 89.7 89.1 88.7

Table 1. Results using Algorithm 3.1 on test problems using the NDCC dataset generator in

R
10, averaged over ten folds. Note that time grows less than the square of the increase of the

number of points in the dataset.

Dataset NDCC
of Points 250000 100000 50000
Algorithm 3.1 13.81% 13.67% 14.31%
Algorithm 3.1 using 1% sample of points 18.91% 19.38% 20.77%
1-norm linear SVM 22.43% 22.61% 22.74%

Table 2. Comparison of testing set error results on each dataset using various algorithms.

Algorithm 3.1 reduces the error by more than 26% compared to using a small sample of the

given points and by more than 37% compared to a linear SVM.

Since we are using tenfold cross validation, a problem with 90% of the given
points is being solved for each fold. So, for our 100000-point dataset, we are
training on 90000 points, which, when using the formulation of (4), results
in a problem with 90181 variables and 90000 constraints, excluding bounds,
with B ∈ R90×10. Figure 2 depicts a typical run of Algorithm 3.1 on one fold
of the 100000-point NDCC dataset and demonstrates how the objective value
of the linear program increases as active constraints are added and others are
dropped in each iteration. It also shows the quick leveling off of the objective

10

function value as well as the number of active constraints despite the fact
that the algorithm continuously drops and adds constraints. Both of these are
important factors in the practical viability of the algorithm. Figure 3 shows
the error on one fold of the 100000-point NDC dataset using Algorithm 3.1.
This demonstrates how the error decreases as the algorithm progresses and
then stabilizes before the algorithm terminates.

0 2 4 6 8 10 12 14
10

4

10
5

10
6

Chunking Iteration

V
al

ue

Cumulative Active Constraints
Objective

Figure 2. Number of active constraints ond objective function values versus number of
iterations for the 100000-point NDCC dataset. The value of the objective function
steadily increases and reaches its optimal value after only ten chunking iterations.

Note the logarithmic scale.

Comparing Algorithm 3.1 to other methods, all of our datasets caused
CPLEX 9.0 [12], a state-of-the-art linear programming code, to fail with an
out-of-memory error.

5 Conclusion and Outlook

We have proposed an approach that effectively classifies massive datasets of up
to 250000 points using nonlinear kernels with 1-norm support vector machines.
Our method solves these problems by breaking a huge constraint set into
chunks and solving the resulting linear programs by a simple linear equation
solver. Our approach solves problems that cause conventional state-of-the-art
methods to fail and produces less error than competing methods. Possible

11

0 2 4 6 8 10 12 14
13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

Chunking Iteration

P
er

ce
nt

Training Set Error
Testing Set Error

Figure 3. Training and testing set error versus number of iterations for the
100000-point NDCC dataset. The error steadily decreases as the algorithm progresses

and then stabilizes before the algorithm terminates.

future work includes modifying the constraint inclusion criterion to include
only a fraction of the active constraints based on the Lagrange multipliers,
allowing even larger datasets to be classified.

References
[1] L. Armijo. Minimization of functions having Lipschitz-continuous first partial derivatives. Pacific

Journal of Mathematics, 16:1–3, 1966.
[2] P. S. Bradley and O. L. Mangasarian. Massive data discrimination via linear support vec-

tor machines. Optimization Methods and Software, 13:1–10, 2000. ftp://ftp.cs.wisc.edu/math-
prog/tech-reports/98-05.ps.

[3] V. Cherkassky and F. Mulier. Learning from Data - Concepts, Theory and Methods. John Wiley
& Sons, New York, 1998.

[4] V. Chvátal. Linear Programming. W. H. Freeman and Company, New York, 1983.
[5] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge

University Press, Cambridge, 2000.
[6] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations Research,

8:101–111, 1960.
[7] F. Facchinei. Minimization of SC1 functions and the Maratos effect. Operations Research Letters,

17:131–137, 1995.
[8] G. Fung and O. L. Mangasarian. A feature selection Newton method for support vector ma-

chine classification. Computational Optimization and Applications, 28(2):185–202, July 2004.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/02-03.ps.

[9] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting stock problem.
Operations Research, 9:849–859, 1961.

[10] J.-B. Hiriart-Urruty, J. J. Strodiot, and V. H. Nguyen. Generalized hessian matrix and second-
order optimality conditions for problems with CL1 data. Applied Mathematics and Optimization,
11:43–56, 1984.

[11] S.Y. Huang and Y.-J. Lee. Theoretical study on reduced support vector machines. Technical

12

report, National Taiwan University of Science and Technology, Taipei, Taiwan, 2004. yuh-
jye@mail.ntust.edu.tw.

[12] ILOG, Incline Village, Nevada. ILOG CPLEX 9.0 User’s Manual, 2003.
http://www.ilog.com/products/cplex/.

[13] Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. In Proceedings
First SIAM International Conference on Data Mining, Chicago, April 5-7, 2001, CD-ROM,
2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-07.ps.

[14] D. G. Luenberger. Linear and Nonlinear Programming. Addison–Wesley, second edition, 1984.
[15] O. L. Mangasarian. Generalized support vector machines. In A. Smola, P. Bartlett, B. Schölkopf,

and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 135–146, Cambridge,
MA, 2000. MIT Press. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps.

[16] O. L. Mangasarian. A finite Newton method for classification problems. Technical Report 01-
11, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison,
Wisconsin, December 2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-11.ps.Optimization
Methods and Software 17, 2002, 913-929.

[17] O. L. Mangasarian. Exact 1-Norm support vector machines via unconstrained con-
vex differentiable minimization. Technical Report 05-03, Data Mining Institute, Com-
puter Sciences Department, University of Wisconsin, Madison, Wisconsin, August 2005.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-03.ps. Journal of Machine Learning Research 7,
2006, 1517-1530.

[18] O. L. Mangasarian and M. E. Thompson. Massive data classification via unconstrained sup-
port vector machines. Journal of Optimization Theory and Applications, 131:315–325, 2006.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/06-01.pdf.

[19] MATLAB. User’s Guide. The MathWorks, Inc., Natick, MA 01760, 1994-2006.
http://www.mathworks.com.

[20] K. G. Murty. Linear Programming. John Wiley & Sons, New York, 1983.
[21] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.
[22] M. E. Thompson. NDCC: Normally distributed clustered datasets on cubes, 2006.

www.cs.wisc.edu/dmi/svm/ndcc/.
[23] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill–Posed Problems. John Wiley & Sons, New

York, 1977.
[24] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, second edition,

2000.

