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Abstract. We give a unified presentation of recent work in applying prior
knowledge to nonlinear kernel approximation [MW05] and nonlinear kernel
classification [MW06]. In both approaches, prior knowledge over general non-

linear sets is incorporated into nonlinear kernel approximation or classifica-
tion problems as linear constraints in a linear program. The key tool in this
incorporation is a theorem of the alternative for convex functions that con-

verts nonlinear prior knowledge implications into linear inequalities without
the need to kernelize these implications. Effectiveness of the proposed approx-
imation formulation is demonstrated on two synthetic examples as well as an
important lymph node metastasis prediction problem arising in breast cancer

prognosis. Effectiveness of the proposed classification formulation is demon-
strated on three publicly available datasets, including a breast cancer prognosis
dataset. All these problems exhibit marked improvements upon the introduc-
tion of prior knowledge of nonlinear kernel approximation and classification

approaches that do not utilize such knowledge.

1. Introduction

Prior knowledge has been used effectively in improving classification both for
linear [FMS03b] and nonlinear [FMS03a] kernel classifiers as well as for nonlinear
kernel approximation [MSW04, MST+05]. In all these applications prior knowledge
was converted to linear inequalities that were imposed on a linear program. The
linear program generated a linear or nonlinear classifier, or a linear or nonlinear
function approximation, all of which were more accurate than the corresponding
results that did not utilize prior knowledge. However, whenever a nonlinear kernel
was utilized in these applications, kernelization of the prior knowledge was not a
transparent procedure that could be easily related to the original sets over which
prior knowledge was given. In contrast, prior knowledge over arbitrary general sets
has been recently incorporated without kernelization of the prior knowledge sets into
nonlinear kernel approximation [MW05] and nonlinear kernel classification [MW06].
Here, we present a unified formulation of both approaches, which is made possible
through the use of a fundamental theorem of the alternative for convex functions
that we describe in Section 2 of the paper. An interesting, novel approach to
knowledge-based support vector machines that modifies the hypothesis space rather
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than the optimization problem is given in [LSG06]. In another recent approach,
prior knowledge is incorporated by adding additional points labeled based on the
prior knowledge to the dataset [MSWT06].

In Section 2 we describe a general formulation for incorporating prior knowl-
edge into kernel machines. Section 3 shows how this formulation can be specialized
to incorporate prior knowledge into nonlinear kernel approximation, while Section
4 shows how to specialize the formulation to incorporate prior knowledge into non-
linear kernel classification. Numerical examples from show prior knowledge can
improve both approximation and classification are presented in Section 5. Section
6 concludes the paper.

We describe our notation now. All vectors will be column vectors unless trans-
posed to a row vector by a prime ′. The scalar (inner) product of two vectors x
and y in the n-dimensional real space Rn will be denoted by x′y. For x ∈ Rn,‖x‖1

denotes the 1-norm:
n
∑

i=1

|xi|) while ‖x‖ denotes the 2-norm:
n
∑

i=1

(xi)
2)

1

2 and x+

denotes the vector max{x, 0}. The notation A ∈ Rm×n will signify a real m × n

matrix. For such a matrix, A′ will denote the transpose of A, Ai will denote the i-th
row of A and A·j the j-th column of A. A vector of ones in a real space of arbitrary
dimension will be denoted by e. Thus for e ∈ Rm and y ∈ Rm the notation e′y will
denote the sum of the components of y. A vector of zeros in a real space of arbitrary
dimension will be denoted by 0. For A ∈ Rm×n and B ∈ Rn×k, a kernel K(A,B)
maps Rm×n ×Rn×k into Rm×k. In particular, if x and y are column vectors in Rn

then, K(x′, y) is a real number, K(x′, B′) is a row vector in Rm and K(A,B′) is
an m×m matrix. We shall make no assumptions whatsoever on our kernels other
than symmetry, that is K(x′, y)′ = K(y′, x), and in particular we shall not assume
or make use of Mercer’s positive definiteness condition [Vap00, SS02, CST00]. The
base of the natural logarithm will be denoted by ε. A frequently used kernel in
nonlinear classification is the Gaussian kernel [Vap00, CM98, Man00] whose ij-th

element, i = 1, . . . ,m, j = 1, . . . , k, is given by: (K(A,B))ij = ε−µ‖Ai
′−B·j‖

2

,
where A ∈ Rm×n, B ∈ Rn×k and µ is a positive constant. The abbreviation “s.t.”
stands for “subject to”.

2. General Formulation

We wish to impart knowledge to a function learned on a dataset in Rn repre-
sented by the m rows of the matrix A ∈ Rm×n with associated labels represented
by the m-dimensional vector d. For approximation problems, d will be real valued,
that is d ∈ Rm. For classification problems, d will have values +1 or −1 according
to the class of each example, that is d ∈ {−1,+1}m. The learned function f from
Rn to R is defined as follows:

(1) f(x) = K(x′, B′)u− γ

whereB ∈ Rk×n is an arbitrary basis matrix andK(x′, B′) : R1×n ×Rn×k −→ R1×k

is an arbitrary kernel function. In an approximation setting, we will use f(x) di-
rectly to obtain a predicted value at x ∈ Rn, while in a classification setting we will
use the value of the sign of f(x) to obtain the predicted class of x. In general, the
matrix B is set equal to A [Man00]. However, in reduced support vector machines
[LM01, HL04] B = Ā, where Ā is a submatrix of A whose rows are a small subset of
the rows of A. In fact, B can be an arbitrary matrix in Rk×n. The variables u ∈ Rk
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and γ ∈ R are parameters determined by the following optimization problem:

(2) min
u,γ

νL(u, γ,A, d) + ‖u‖1,

where L is an arbitrary loss function, and ν is a positive parameter that controls
the weight in the optimization problem of data fitting versus complexity reduction.
In approximation problems, the loss function L will measure the difference between
the actual values of the given data d and the predicted values given by f . For
classification problems, the loss function L will be related to misclassification rate.
The 1-norm of u is chosen in order to promote solution sparsity [BM98, ZRHT04].
In Section 3 we will demonstrate that the use of the 1-norm of the error between
the predicted and actual values for L in an approximation setting will result in a
linear program, while Section 4 shows that use of the hinge loss for L results in a
linear program for classification problems.

We now impose prior knowledge on the construction of our learned function
f(x) = K(x′, B′)u− γ through the following implication:

(3) g(x) ≤ 0 =⇒ K(x′, B′)u− γ ≥ φ(x), ∀x ∈ Γ.

Here, g(x) : Γ ⊂ Rn −→ Rp is a p-dimensional function defined on a subset Γ of
Rn that determines the region in the input space where prior knowledge requires
that K(x′, B′)u − γ be larger than some known function φ(x) : Γ ⊂ Rn −→ R.
In previous work [MSW04, FMS02, FMS03a], prior knowledge implications such
as (3) could not be handled directly as we shall do here by using Theorem 2.1
below. Instead, the inequality g(x) ≤ 0 was kernelized. This led to an inequality
not easily related to the original constraint g(x) ≤ 0. In addition, in [MSW04,
FMS02, FMS03a] could only handle linear g(x) and φ(x). The implication (3) can
be written in the following equivalent logical form:

(4)
g(x) ≤ 0, K(x′, B′)u− γ − φ(x) < 0,

has no solution x ∈ Γ.

It is precisely implication (3) that we shall convert to a system which is linear in
the parameters of f , (u, γ), by means of the following theorem of the alternative for
convex functions. The alternatives here are that either the negation of (4) holds,
or (5) below holds, but never both.

Theorem 2.1. Prior Knowledge as System of Linear Inequalities For
a fixed u ∈ Rk, γ ∈ R, the following are equivalent:

(i) The implication (3) or equivalently (4) holds.
(ii) There exists v ∈ Rp, v ≥ 0 such that:

(5) K(x′, B′)u− γ − φ(x) + v′g(x) ≥ 0, ∀x ∈ Γ,

where it is assumed for the implication (i)=⇒(ii) only, that g(x) and
K(x′, B′) are convex on Γ, φ(x) is concave on Γ, Γ is a convex subset of
Rn, u ≥ 0 and that g(x) < 0 for some x ∈ Γ.

Proof (i)=⇒(ii): This follows from [Man69, Corollary 4.2.2], the fact that the
functions g(x) and K(x′, B′)u− γ − φ(x) of (4) are convex on Γ and that g(x) < 0
for some x ∈ Γ.

(i)⇐=(ii): If (i) did not hold then there there exists an x ∈ Γ such that
g(x) ≤ 0, K(x′, B′)u− γ − φ(x) < 0, which would result in the contradiction:

(6) 0 > K(x′, B′)u− γ − φ(x) + v′g(x) ≥ 0.�
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We note immediately that in the proposed application of converting prior knowl-
edge to linear inequalities in the parameters (u, γ) all we need is the implication
(i)⇐=(ii), which requires no assumptions whatsoever on the functions g(x),
K(x′, B′), φ(x) or on the parameter u. We further note that the implication (3)
can represent fairly complex knowledge such as K(x′, B′)u− γ being equal to any
desired function whenever g(x) ≤ 0.

We note that Theorem 2.1 can also be invoked on the following prior knowledge
implication, which is similar to (3):

(7) h(x) ≤ 0 =⇒ K(x′, B′)u− γ ≤ −ψ(x), ∀x ∈ Λ.

We now incorporate the prior knowledge contained in implications (3) and (7) into
the optimization problem (2) as follows:

(8)

min
u,γ,z1,...,zℓ,q1,...,qt

νL(u, γ,A, d) + ‖u‖1 + σ(
ℓ
∑

i=1

zi +
t
∑

j=1

qj)

s.t. K(xi′, B′)u− γ − φ(xi) + v′g(xi) + zi ≥ 0,
zi ≥ 0, i = 1, . . . , ℓ,
v ≥ 0,

−K(xj ′, B′)u+ γ − ψ(xj) + r′h(xj) + qj ≥ 0,
qj ≥ 0, j = 1, . . . , t,
r ≥ 0.

We note that we have discretized the variable x ∈ Γ and x ∈ Λ in the constraints
above to the finite meshes of points {x1, x2, . . . , xℓ} and {x1, x2, . . . , xt} in order to
convert a semi-infinite program [GL98] with an infinite number of constraints into
a finite mathematical program. We have also added nonnegative slack variables
z1, z2, . . . , zℓ and q1, q2, . . . , qt to allow small deviations in the prior knowledge.
The sum of these nonnegative slack variables for the prior knowledge inequalities
is minimized with weight σ > 0 in the objective function in order to drive them to
zero to the extent possible. Thus, the magnitude of the parameter σ enforces prior
knowledge while the magnitude of ν enforces data fitting.

We turn now to specific formulations for knowledge-based kernel approximation
and knowledge-based kernel classification.

3. Knowledge-Based Kernel Approximation

In the approximation setting, we wish to approximate a function, f , given exact
or approximate function values of a dataset of points represented by the rows of the
matrix A ∈ Rm×n. Thus, for each point Ai we are given an exact or inexact value
of f , denoted by a real number di, i = 1, . . . ,m. We therefore desire the parameters
(u, γ) of (1) to be determined such that:

(9) K(A,B′)u− eγ − d ≈ 0.

An appropriate choice of L to enforce the above condition is:

(10) L(u, γ,A, d) = ‖K(A,B′)u− eγ − d‖1.

This loss function is the sum of the absolute values of the differences between the
predicted values f(Ai) and the given values di, i = 1, . . . ,m. In order to incorporate
this loss function into the optimization problem (8) we introduce a vector s ∈ Rm

defined by:

(11) −s ≤ K(A,B′)u− eγ − d ≤ s.
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We can then incorporate the loss defined by (10) into (8) as follows:

(12)

min
u,γ,z1,...,zℓ,q1,...,qt,s

ν‖s‖1 + ‖u‖1 + σ(
ℓ
∑

i=1

zi +
t
∑

j=1

qj)

s.t. K(xi′, B′)u− γ − φ(xi) + v′g(xi) + zi ≥ 0,
zi ≥ 0, i = 1, . . . , ℓ,
v ≥ 0,

−K(xj ′, B′)u+ γ − ψ(xj) + r′h(xj) + qj ≥ 0,
qj ≥ 0, j = 1, . . . , t,
r ≥ 0,
−s ≤ K(A,B′)u− γ − d ≤ s.

Note that at the solution of (12), ‖s‖1 = ‖K(A,B′)u − γ − d‖1. Note further
that (12) is the same as [MW05, Equation 10], except that here we have explicitly
included implication (7) in addition to (3).

4. Knowledge-Based Kernel Classification

The classification problem consists of classifying the points represented by the
rows of the matrix A ∈ Rm×n into the two classes +1 and −1 according to their
labels given as d ∈ {−1,+1}m. Thus, for each point Ai we are given its label
di ∈ {−1,+1}, i = 1, . . . ,m and we seek to find a function f of the form in (1) that
satisfies, to the extent possible, the separation condition:

(13) D(K(A,B′)u− eγ) ≥ 0,

where D ∈ Rm×m is the diagonal matrix with diagonal d. Note that this condition
is satisfied if and only if di and f(Ai) both have the same sign. Support vector
machines attempt to impose a stronger condition, D(K(A,B′)u − eγ) ≥ e, using
the hinge loss:

(14) L(u, γ,A, d) = ‖(e−D(K(A,B′)u− eγ))+‖1.

Note that the hinge loss involves the plus function, (x)+ = max{x, 0}, introduced
in Section 1. This loss function can be added to the optimization problem (8) by
introducing a nonnegative slack variable s ∈ Rm as follows:

(15) D(K(A,B′)u− eγ) + s ≥ e, s ≥ 0.

The loss (14) is incorporated into the optimization problem (8) as follows:

(16)

min
u,γ,z1,...,zℓ,q1,...,qt,s

ν‖s‖1 + ‖u‖1 + σ(
ℓ
∑

i=1

zi +
t
∑

j=1

qj)

s.t. K(xi′, B′)u− γ − φ(xi) + v′g(xi) + zi ≥ 0,
zi ≥ 0, i = 1, . . . , ℓ,
v ≥ 0,

−K(xj ′, B′)u+ γ − ψ(xj) + r′h(xj) + qj ≥ 0,
qj ≥ 0, j = 1, . . . , t,
r ≥ 0,
D(K(A,B′)u− eγ) + s ≥ 0,
s ≥ 0.

We note that at the solution, ‖s‖1 = ‖(e−D(K(A,B′)u−eγ))+‖1. Note further that
(16) is the same as the optimization problem in [MW06] with φ(x) = ψ(x) = α, ∀x.
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Figure 1. The exact hyperboloid function η(x1, x2) = x1x2.

5. Numerical Experience

The effectiveness of our proposed formulation has been illustrated on three
approximation tasks [MW05] and three classification tasks [MW06]. We describe
these experiments and their results here. It is important to point out that the
present formulation is very different in nature from that presented in [FMS03a] and
[MSW04]. Our primary concern here is to incorporate prior knowledge in an explicit
and transparent manner without having to kernelize it as was done in [FMS03a]
and [MSW04]. In particular, we are able to directly incorporate general impli-
cations involving nonlinear inequalities in a linear program by utilizing Theorem
2.1. Synthetic examples were used to show how our approach uses nonlinear prior
knowledge to obtain approximations or classifiers that are much better than those
obtained without prior knowledge. Although the given prior knowledge for the syn-
thetic examples is strong, the examples illustrate the simplicity and effectiveness
of our approach to incorporate prior knowledge into nonlinear support vector clas-
sification and approximation. The Wisconsin Prognostic Breast Cancer (WPBC)
dataset was used to demonstrate situations in which prior knowledge and data are
combined to obtain a better approximation or classifier than by using only prior
knowledge or data alone.

5.1. Approximation Datasets. The effectiveness of our proposed approx-
imation formulation (12) has been illustrated on two synthetic datasets and the
Wisconsin Prognostic Breast Cancer (WPBC) database, available from [MA92].

5.1.1. Two-Dimensional Hyperboloid Function. The first approximation ex-
ample is the two-dimensional hyperboloid function:

(17) η(x1, x2) = x1x2.

This function was studied in [MSW04]. The given data consists of eleven points
along the line x1 = x2, x1 ∈ {−5,−4, . . . , 4, 5}. The given values at these points
are the actual function values.

Figure 1 depicts the two-dimensional hyperboloid function of (17). Figure 2
depicts the approximation of the hyperboloid function by a surface based on the
eleven points described above without prior knowledge. Figures 1 and 2 are taken
from [MSW04].

Figure 3 depicts a much better approximation than that of Figure 2 of the
hyperboloid function by a nonlinear surface based on the same eleven points above



NONLINEAR KNOWLEDGE IN KERNEL MACHINES 7

−5

0

5

−5

0

5
−25

−20

−15

−10

−5

0

5

10

15

20

25

Figure 2. Approximation of the hyperboloid function η(x1, x2) = x1x2

based on eleven exact function values along the line x2 = x1, x1 ∈

{−5,−4, . . . , 4, 5}, but without prior knowledge.
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Figure 3. Approximation of the hyperboloid function η(x1, x2) = x1x2

based on the same eleven function values as Figure 2 plus prior knowledge

consisting of the implication (18).

plus prior knowledge. The prior knowledge consisted of the implication:

(18) x1x2 ≤ 1 =⇒ f(x1, x2) ≤ x1x2,

which, because of the nonlinearity of x1x2, cannot be handled by [MSW04]. Note
that even though the prior knowledge implication (18) provides only partial in-
formation regarding the hyperboloid (17) being approximated, applying it is suf-
ficient to improve our kernel approximation substantially as depicted in Figure 3.
The prior knowledge implication (18) was applied in its equivalent inequality (5)
form, at discrete points as stated in the inequality constraints of (12). In this
example, the knowledge was applied at eleven points along the line x1 = −x2,
x1 ∈ {−5,−4, . . . , 4, 5}.

It is instructive to compare (18) with the prior knowledge used in [MSW04] to
obtain a visually similar improvement. In that work, the following prior knowledge
was used:

(19)
(x1, x2) ∈ {(x1, x2)|−

1
3x1 ≤ x2 ≤ − 2

3x1} ⇒
f(x1, x2) ≤ 10x1

and

(20)
(x1, x2) ∈ {(x1, x2)|−

2
3x1 ≤ x2 ≤ − 1

3x1} ⇒
f(x1, x2) ≤ 10x2.
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Figure 4. The exact tower function given by (21).

These implications were implemented by replacing f(x1, x2) with its nonlinear ker-
nel approximation (1) and by kernelizing the resulting prior knowledge [MSW04,
Equation 18]. The result can then be incorporated into a linear program with no dis-
cretization required [MSW04, Proposition 3.1]. However, as is noted in [MSW04],
the implications (19) and (20) are not correct everywhere, but are merely intended
to coarsely model the global shape of η(x1, x2). This inexactness arises because of
the limitation that knowledge be linear in the input space, and because the use of
the nonlinear kernel to map knowledge in the input space to higher dimensions is
difficult to interpret. In contrast, the prior knowledge of implication (18) is always
correct and exactly captures the shape of the function. Thus, this example illus-
trates that there is a significant gain in usability due to the fact that the knowledge
may be nonlinear in input space features.

5.1.2. Two-Dimensional Tower Function. For the second approximation ex-
ample, we considered the following function:

(21) τ(x1, x2) =























4, when ‖(x1, x2)‖ < 1
3, when 1 ≤ ‖(x1, x2)‖ < 2
2, when 2 ≤ ‖(x1, x2)‖ < 3
1, when 3 ≤ ‖(x1, x2)‖ < 4
0, otherwise

which is shown in Figure 4. Due to the visual appearance of this function, we refer
to it as the tower function.

The data used to approximate the tower function of (21) consists of 400 equally
spaced points on the grid [−4, 4] × [−4, 4], with given values defined using the
following equation:

(22) f(x1, x2) = min{τ(x1, x2), 2},

where τ(x1, x2) is given by (21). This misleading data explains the chopped-off
appearance that is shown by the approximation of Figure 5 which is a poor approx-
imation of the tower function based on this data without prior knowledge.

Figure 6 shows an approximation of the tower function using the data described
above plus the following prior knowledge:

(23) (x1, x2) ∈ [−4, 4] × [−4, 4] =⇒ f(x1, x2) = τ(x1, x2),
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Figure 5. An approximation of the tower function in (21) using 400

equally spaced points on [−4, 4] × [−4, 4] given by (22) without prior knowl-

edge.
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Figure 6. An approximation of the tower function in (21) using 400

equally spaced points on [−4, 4]× [−4, 4] given by (22) with the prior knowl-

edge described in (23).

where τ(x1, x2) is the exact value of the tower function of (21). This implication
was enforced at 2500 equally spaced points on the grid [−4, 4] × [−4, 4]. The ap-
proximation depicted in Figure 6 was made by setting the parameters C and ν of
(12) to 101 and 1020 respectively. Thus, this example illustrates that despite poor
initial data, a substantially improved approximation using prior knowledge can be
made by incorporating prior knowledge in the form of an implication such as (23).

5.1.3. Predicting Lymph Node Metastasis. To demonstrate the effectiveness
of our approximation formulation (12) on a real-world dataset, a potentially useful
application of knowledge-based approximation to breast cancer prognosis [MSW95,
WSHM95, LMW03] was considered. An important prognostic indicator for breast
cancer recurrence is the number of metastasized lymph nodes under a patient’s
armpit which could be as many as 30. To obtain this number, a patient must
optionally undergo a potentially debilitating surgery in addition to the removal of
the breast tumor. Thus, it is useful to approximate the number of metastasized
lymph nodes using available information. The Wisconsin Prognostic Breast Can-
cer (WPBC) data, in which the primary task is to determine time to recurrence
[MA92], contains information on the number of metastasized lymph nodes for 194
breast cancer patients, as well as thirty cytological features obtained by a fine
needle aspirate and one histological feature, tumor size, obtained during surgery.
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Approximation RMSE
Without knowledge 5.92

With knowledge 5.04

Improvement due to knowledge 14.8%

Table I: Leave-one-out root-mean-squared-error (RMSE) of approximations with

and without knowledge on the present WPBC data. Best result is in bold.

Mangasarian et al. demonstrated in [MSW04] that a function that approximated
the number of metastasized lymph nodes using four of these features could be im-
proved using prior knowledge. The formulation developed here has been used to
approximate the number of metastasized lymph nodes using only the tumor size.

In order to simulate the situation where an expert provides prior knowledge
regarding the number of metastasized lymph nodes based on tumor size, the fol-
lowing procedure was used. First, 20% of the data was randomly selected as “past
data.” This past data was used to develop prior knowledge, while the remaining
80% of the data, the “present data,” was used for evaluation. The goal is to sim-
ulate the situation in which an expert can provide prior knowledge, but no more
data is available. To generate such prior knowledge, kernel approximation was used
to find a function φ(x) = K(x′, B′)u−γ, where B is the matrix containing the past
data and K is the Gaussian kernel defined in Section 1. This function was then
used as the basis for our prior knowledge. Since this function was not believed to be
accurate for areas where there was little data in the past data set, this knowledge
was imposed only on the region p(x) ≥ 0.1, where p(x) was the density function
for the tumor sizes in B estimated with the ksdensity routine, available in the
MATLAB statistics toolbox [MAT06]. The following prior knowledge implication
was considered:

(24) p(x) ≥ 0.1 =⇒ f(x) ≥ φ(x) − 0.01.

That is, the number of metastasized lymph nodes was greater than the predicted
value on the past data, with a tolerance of 0.01. This implication incorporates a
typical oncological surgeon’s advice that the number of metastasized lymph nodes
increases with tumor size. In order to accurately simulate the desired conditions,
this knowledge was formed by observing only the past data. No aspect of the prior
knowledge was changed after testing began on the present data.

Table I illustrates the improvement resulting from the use of prior knowledge.
The first two entries compare the leave-one-out error of function approximations
without and with prior knowledge. When training functions on each training set,
ten points of the training set were selected as a tuning set. This set was used
to choose the value of C from the set {2i|i = −7, . . . , 7}. The kernel parameter
was set to 2−7, which gave a smooth curve on the past data set. This value was
fixed before testing on the present data. For the approximation with knowledge,
the parameter ν was set to 106, which ensured that the prior knowledge would be
taken into account by the approximation. Implication (24) was imposed as prior
knowledge, and the discretization for the prior knowledge was 400 equally spaced
points on the interval [1, 5]. This interval approximately covered the region on which
p(x) ≥ 0.1. We note that the use of prior knowledge led to a 14.8% improvement.
In our experience, such an improvement is difficult to obtain in medical tasks, and
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indicates that the approximation with prior knowledge is more potentially useful
than the approximation without prior knowledge.

In order to further illustrate the effectiveness of using prior knowledge, two
other experiments were performed. First, the root-mean-squared-error (RMSE) of
the function φ was calculated on the present data, which was not used to create
φ. The resulting RMSE was 6.12, which indicates that this function does not, by
itself, do a good job predicting the present data. The leave-one-out error on the
present data of an approximation that included the present data and the past data,
but without prior knowledge was also calculated. This approach led to less than one
percent improvement over the approximation without knowledge shown in Table I,
which indicates that the prior knowledge in the form of the implication (24) contains
more useful information than the raw past data alone. These results indicate that
the inclusion of the prior knowledge with the present data is responsible for the
14.8% improvement.

5.2. Classification Datasets. The effectiveness of our proposed classifica-
tion formulation (16) has been illustrated on three publicly available datasets: The
Checkerboard dataset [HK96], the Spiral dataset [Wie], and the Wisconsin Prog-
nostic Breast Cancer (WPBC) dataset [MA92].

5.2.1. Checkerboard Problem. The first classification example was based on the
frequently utilized checkerboard dataset [HK96, Kau99, MM01, LM01, FMS03a].
This synthetic dataset contains two-dimensional points in [−1, 1] × [−1, 1] labeled
so that they form a checkerboard. For this example, a dataset consisting of only the
sixteen points at the center of each square in the checkerboard was used to generate
a classifier without knowledge. The rows of both matrices A and B of (16) were
set equal to the coordinates of the sixteen points, which are the standard values.
Figure 7 shows a classifier trained on these sixteen points without any additional
prior knowledge.

Figure 8 shows a much more accurate classifier trained on the same sixteen
points as used in Figure 7, plus prior knowledge representing only the leftmost two
squares in the bottom row of the checkerboard. This knowledge was imposed via
the following implications:

(25)
−1 ≤ x1 ≤ −0.5 ∧ −1 ≤ x2 ≤ −0.5 =⇒ f(x1, x2) ≥ 0,
−0.5 ≤ x1 ≤ 0 ∧ −1 ≤ x2 ≤ −0.5 =⇒ f(x1, x2) ≤ 0.

The implication on the first line was imposed at 100 uniformly spaced points in
[−1,−0.5]× [−1,−0.5], and the implication on the second line were imposed at 100
uniformly spaced points in [−0.5, 0]× [−1,−0.5]. No prior knowledge was given for
the remaining squares of the checkerboard. We note that this knowledge is very
similar to that used in [FMS03a], although our classifier is more accurate here. This
example demonstrates that knowledge of the form used in [FMS03a] can be easily
applied with our proposed approach without kernelizing the prior knowledge.

5.2.2. Spiral Problem. The spiral dataset [Wie, FM01] was used as the second
synthetic example. This dataset consists of the two concentric spirals shown in
Figure 9.

In order to illustrate the effectiveness of our classification approach (16) on
this dataset, labels were provided for only a random subset of the points in Figure
9. For this dataset, the matrix B of Equation (1) consists of all the points in the
dataset. Figure 10 shows a classifier trained using ten-fold cross validation on the
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Figure 7. A classifier for the checkerboard dataset trained using only

the sixteen points at the center of each square without prior knowledge.

The white regions denote areas where the classifier returns a value greater

than zero, and the gray regions denote areas where the classifier returns

a value less than zero. A uniform grid consisting of 40, 000 points was

used to create the plot utilizing the obtained classifier.

points with given labels and no prior knowledge. The points for which labels were
given during training are circled. Note that the classifier incorrectly classifies many
of the points with label +1 for which no label was provided during training.

Figure 11 shows a much more accurate classifier trained on the same labeled
points plus prior knowledge based on the construction of the spiral dataset. This
knowledge can be represented as follows:
(26)

g(x) ≤ 0 =⇒ f(x) ≥ 1
g(x) ≥ 0 =⇒ f(x) ≤ −1 where

g(x) =

∥

∥

∥

∥

∥

(

‖x‖ cos
(

π(6.5−x)104
(16)(6.5)

)

‖x‖ sin
(

π(6.5−x)104
(16)(6.5)

)

)

− x

∥

∥

∥

∥

∥

−

∥

∥

∥

∥

∥

(

‖x‖ cos
(

π(6.5−x)104
(16)(6.5) + π

)

‖x‖ sin
(

π(6.5−x)104
(16)(6.5) + π

)

)

− x

∥

∥

∥

∥

∥

.

Though complicated in appearance, the derivation of this expression is actually
quite straightforward given the source code that generates the spiral dataset [Wie].
To impose the prior knowledge, each implication was imposed at the points defined
by the rows of the matrix B for which the left-hand side of the implication held,
as well as two additional points near that point. Recall that for this dataset, B
contains every point in the dataset as shown in Figure 9. For example, the first
implication was imposed on the points x and x±

(

0.2
0.2

)

where x is a row of the matrix
B and g(x) ≤ 0.

5.2.3. Predicting Breast Cancer Survival Time. We conclude our experimental
results with a potentially useful application of the Wisconsin Prognostic Breast
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Figure 8. A classifier for the checkerboard dataset trained using the

sixteen points at the center of each square with prior knowledge repre-

senting the two leftmost squares in the bottom row given in (25). The

white regions denote areas where the classifier returns a value greater

than zero, and the gray regions denote areas where the classifier returns

a value less than zero. A uniform grid consisting of 40, 000 points was

used to create the plot utilizing the knowledge-based classifier.

Cancer (WPBC) dataset [MA92, LMW99]. This dataset contains thirty cytological
features obtained from a fine needle aspirate and two histological features, tumor
size and the number of metastasized lymph nodes, obtained during surgery for
breast cancer patients. The dataset also contains the amount of time before each
patient experienced a recurrence of the cancer, if any. Here, the task of predicting
whether a patient will remain cancer free for at least 24 months is considered.
Past experience with this dataset has shown that an accurate classifier for this
task is difficult to obtain. In this dataset, 81.9% of patients are cancer free after
24 months. To our knowledge, the best result on this dataset prior to [MW06] is
86.3% correctness obtained by Bennett in [Ben92]. It is possible that incorporating
expert information about this task is necessary to obtain higher accuracy on this
dataset. In [MW06] it was demonstrated that with sufficient prior knowledge, our
approach can achieve 91.0% correctness.

To obtain prior knowledge for this dataset, the number of metastasized lymph
nodes was plotted against the tumor size, along with the class label, for each patient.
An oncological surgeon’s advice was then simulated by selecting regions containing
patients who experienced a recurrence withing 24 months. In a typical machine
learning task, not all of the class labels would be available. However, the purpose
here is to demonstrate that if an expert is able to provide useful prior knowledge, our
approach can effectively apply that knowledge to learn a more accurate classifier.
We leave studies on this dataset in which an expert provides knowledge without all
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Figure 9. The spiral dataset. The filled circles represent points with

label +1 while the crosses represent points with label −1.

of the labels available to future work. In such studies, the expert would be given
information regarding the class of only data points in a training set that is a subset
of all the data, and then give advice on the class of points in the entire dataset. The
prior knowledge constructed for this dataset is depicted in Figure 12 and consists
of the following three implications:
(27)

∥

∥

(

(5.5)x1

x2

)

−
(

(5.5)7
9

)∥

∥+
∥

∥

(

(5.5)x1

x2

)

−
(

(5.5)4.5
27

)∥

∥− 23.0509 ≤ 0 =⇒ f(x) ≥ 1




−x2 + 5.7143x1 − 5.75
x2 − 2.8571x1 − 4.25

−x2 + 6.75



 ≤ 0 =⇒ f(x) ≥ 1

1
2 (x1 − 3.35)2 + (x2 − 4)2 − 1 ≤ 0 =⇒ f(x) ≥ 1.

The class +1 represents patients who experienced a recurrence in less than 24
months. Here, x1 is the tumor size, and x2 is the number of metastasized lymph
nodes. Each implication is enforced at the points in the dataset for which the left-
hand side of the implication is true. These regions are shown in Figure 12. The first
implication corresponds to the region closest to the upper right-hand corner. The
triangular region corresponds to the second implication, and the small elliptical
region closest to the x1 axis corresponds to the third implication. Although these
implications seem complicated, it would not be difficult to construct a more intuitive
interface similar to standard graphics programs to allow a user to create arbitrary
regions. Applying these regions with our approach would be straightforward.

In order to evaluate our proposed approach, the misclassification rates of two
classifiers on this dataset were compared. One classifier is learned without prior
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Figure 10. A classifier for the spiral dataset trained using only a sub-

set of given labels without prior knowledge. The circled points represent

the labeled points constituting the dataset represented by the matrix A

of Equation (16). The matrix B consists of all points shown. The white

regions denote areas where the classifier returns a value greater than

zero, thus classifying the points therein as +1, i.e. white ⇒ dots. Gray

regions denote areas where the classifier returns a value less than zero,

thus classifying points as −1, i.e. gray ⇒ crosses. Note the many points

(dots) incorrectly classified as −1.

knowledge, while the second classifier is learned using the prior knowledge given
in (27). For both cases the rows of the matrices A and B of (16) were set to
the usual values, that is to the coordinates of the points of the training set. The
misclassification rates are computed using leave-one-out cross validation. For each
fold, the parameter ν and the kernel parameter µ were chosen from the set {2i|i ∈
{−7, . . . , 7}} by using ten-fold cross validation on the training set of the fold. In the
classifier with prior knowledge, the parameter σ was set to 106, which corresponds
to very strict adherence to the prior knowledge. The results are summarized in
Table 1. The reduction in misclassification rate indicates that our classification
approach can use appropriate prior knowledge to obtain a classifier on this difficult
dataset with 50% improvement.

6. Conclusion and Outlook

We have proposed a unified, computationally effective framework for handling
general nonlinear prior knowledge in kernel approximation and kernel classifica-
tion problems. We have reduced such prior knowledge to easily implemented linear
constraints in a linear programming formulation. We have demonstrated the effec-
tiveness of our approach on four synthetic problems and two important real world
problems arising in breast cancer prognosis. Possible future extensions are to even
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Figure 11. A classifier for the spiral dataset trained using only the

subset represented by circled points with given labels plus the prior knowl-

edge given in (26). The white regions denote areas where the classifier

returns a value greater than zero and should contain only dots. The gray

regions denote areas where the classifier returns a value less than zero

and should contain only crosses. Note that there are no misclassified

points.

Classifier Misclassification Rate
Without knowledge 0.1806

With knowledge 0.0903

Improvement due to knowledge 50.0%

Table 1. Leave-one-out misclassification rate of classifiers with and

without knowledge on the WPBC (24 mo.) dataset. Best result is in

bold.

more general prior knowledge, such as that where the right hand side of the impli-
cations (3) and (7) are replaced by very general nonlinear inequalities involving the
kernel function (1). Another important avenue of future work is to construct an
interface which allows users to easily specify arbitrary regions to be used as prior
knowledge.
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Figure 12. Number of metastasized lymph nodes versus tumor size

for the WPBC (24 mo.) dataset. The solid dots represent patients who

experienced a recurrence within 24 months of surgery, while the crosses

represent the cancer free patients. The shaded regions which correspond

to the areas in which the left-hand side of one of the three implications in

Equation (27) is true simulate an oncological surgeon’s prior knowledge

regarding patients that are likely to have a recurrence. Prior knowledge

was enforced at the points enclosed in squares.
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[LSG06] Q. V. Le, A. J. Smola, and T. Gärtner, Simpler knowledge-based support vector ma-
chines, Proceedings of the 23rd International Conference on Machine Learning, Pitts-

burgh, PA, 2006, 2006, http://www.icml2006.org/icml2006/technical/accepted.html.
[MA92] P. M. Murphy and D. W. Aha, UCI machine learning repository, 1992,

www.ics.uci.edu/∼mlearn/MLRepository.html.

[Man69] O. L. Mangasarian, Nonlinear programming, McGraw–Hill, New York, 1969, Reprint:
SIAM Classic in Applied Mathematics 10, 1994, Philadelphia.

[Man00] , Generalized support vector machines, Advances in Large Margin Classifiers
(Cambridge, MA) (A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, eds.), MIT

Press, 2000, ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps, pp. 135–146.
[MAT06] MATLAB, User’s guide, The MathWorks, Inc., Natick, MA 01760, 1994-2006,

http://www.mathworks.com.

[MM01] O. L. Mangasarian and D. R. Musicant, Lagrangian support vector machines, Journal
of Machine Learning Research 1 (2001), 161–177, ftp://ftp.cs.wisc.edu/pub/dmi/tech-
reports/00-06.ps.

[MST+05] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild, Giving advice about preferred

actions to reinforcement learners via knowledge-based kernel regression, Proceedings of
the 20th National Conference on Artificial Intelligence, 2005, pp. 819–824.

[MSW95] O. L. Mangasarian, W. N. Street, and W. H. Wolberg, Breast cancer diagnosis and
prognosis via linear programming, Operations Research 43 (1995), no. 4, 570–577.

[MSW04] O. L. Mangasarian, J. W. Shavlik, and E. W. Wild, Knowledge-based ker-
nel approximation, Journal of Machine Learning Research 5 (2004), 1127–1141,
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/03-05.ps.



NONLINEAR KNOWLEDGE IN KERNEL MACHINES 19

[MSWT06] R. Maclin, J. Shavlik, T. Walker, and L. Torrey, A simple and effective method for
incorporating advice into kernel methods, Proceedings of the 21st National Conference

on Artificial In telligence, 2006.
[MW05] O. L. Mangasarian and E. W. Wild, Nonlinear knowledge in kernel approximation,

Tech. Report 05-05, Data Mining Institute, Computer Sciences Department, University
of Wisconsin, Madison, Wisconsin, October 2005, ftp://ftp.cs.wisc.edu/pub/dmi/tech-

reports/05-05.pdf. IEEE Transactions on Neural Networks, to appear.
[MW06] , Nonlinear knowledge-based classification, Tech. Report 06-04, Data Mining In-

stitute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin,

August 2006, ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/06-04.pdf.
[SS02] B. Schölkopf and A. Smola, Learning with kernels, MIT Press, Cambridge, MA, 2002.
[Vap00] V. N. Vapnik, The nature of statistical learning theory, second ed., Springer, New York,

2000.

[Wie] A. Wieland, Twin spiral dataset, http://www-cgi.cs.cmu.edu/afs/cs.cmu.edu/project/ai-
repository/ai/areas/neural/bench/cmu/0.html.

[WSHM95] W. H. Wolberg, W. N. Street, D. N. Heisey, and O. L. Mangasarian, Computerized
breast cancer diagnosis and prognosis from fine-needle aspirates, Archives of Surgery

130 (1995), 511–516.
[ZRHT04] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani, 1-Norm support vector machines,

Advances in Neural Information Processing Systems 16–NIPS2003 (Sebastian Thrun,

Lawrence K. Saul, and Bernhard Schölkopf, eds.), MIT Press, 2004.

Computer Sciences Department, University of Wisconsin, Madison, WI 53706 and

Department of Mathematics, University of California at San Diego, La Jolla, CA 92093.

E-mail address: olvi@cs.wisc.edu

Computer Sciences Department, University of Wisconsin, Madison, WI 53706.

E-mail address: wildt@cs.wisc.edu


